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Nuclear Transport Factors: Global Regulation of Mitosis

Douglass J. Forbes†,¶, Anna Travesa†, Matthew Nord†, and Cyril Bernis†

†Section of Cell and Developmental Biology, Division of Biological Sciences 0347, Room 2124A 
Pacific Hall, University of California-San Diego, 9500 Gilman Drive, La Jolla CA 92093-0347

Abstract

The unexpected repurposing of nuclear transport proteins from their function in interphase to an 

equally vital and very different set of functions in mitosis was very surprising. The multi-talented 

cast when first revealed included the import receptors, importin alpha and beta, the small 

regulatory GTPase RanGTP, and a subset of nuclear pore proteins. In this review, we report that 

recent years have revealed new discoveries in each area of this expanding story in vertebrates: (a) 

The cast of nuclear transport receptors playing a role in mitotic spindle regulation has expanded: 

both transportin, a nuclear import receptor, and Crm1/Xpo1, an export receptor, are involved in 

different aspects of spindle assembly. Importin beta and transportin also regulate nuclear envelope 

and pore assembly. (b) The role of nucleoporins has grown to include recruiting the key 

microtubule nucleator the γ-TuRC complex and the exportin Crm1 to the mitotic kinetochores of 

humans. Together they nucleate microtubule formation from the kinetochores towards the 

centrosomes. (c) New research finds that the original importin beta/RanGTP team have been 

further co-opted by evolution to help regulate other cellular and organismal activities, ranging 

from the actual positioning of the spindle within the cell perimeter, to regulation of a newly 

discovered spindle microtubule branching activity, to regulation of the interaction of microtubule 

structures with specific actin structures. (d) Lastly, because of the multitudinous roles of 

karyopherins throughout the cell cycle, a recent large push toward testing their potential as 

chemotherapeutic targets has begun to yield burgeoning progress in the clinic.

Karyopherins and RanGTP in mitosis: An evolutionary tour-de-force of 

repurposing

Each dividing eukaryotic cell cycles with elegant choreography between interphase and 

mitosis. Mitosis in higher eukaryotes, the focus of this review, involves the set up and 

breakdown of multiple “scenes”, each with a different purpose or theme. First, there is 

assembly of a large mitotic spindle with duplicated chromosomes aligned via their 

kinetochores (metaphase). Then a poignant separation of the duplicated chromosomes 

occurs (anaphase), and finally a triumphant reassembly of nuclear envelopes and nuclear 

pores around the sets of separated chromosomes (telophase). At the molecular level, each 
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structure involves the choreographed assembly of hundreds (kinetochores and NPCs) to 

thousands (spindles and nuclei) of individual proteins. Early on in cell cycle research, it was 

found that kinases and phosphatases determine the timing of the above events. This set of 

regulatory phosphorylations was further aided by key ubiquitination and proteolytic events 

in order to convey irreversibility, such as in the shift from metaphase to anaphase. But what 

spatial regulation directs each of the large mitotic structures to assemble in the correct 

place?

The answer was unexpected. If the first act of cell cycle proliferation is interphase, the 

second act is mitosis. Instead of changing the protagonists, in an ingenious tour-de-force, 

evolution kept the main actors of nuclear transport -- karyopherins and RanGTP -- and 

assigned them new roles for mitosis. Other cast members came on stage for the second act. 

These different assembly factors, regulated by karyopherins and RanGTP, proved to be 

proteins directly involved in forming the mitotic structures to be assembled: spindle 

assembly factors (SAFs) for the mitotic spindle, nucleoporins for nuclear pore assembly, 

and quite a few surprises.

Initial studies: In vitro spindle and nuclear reconstitution

Prior to 1999, little thought of a mitotic role for karyopherins was envisioned. Then, an 

impressive set of seminal studies by multiple labs broke upon the scene from 1999–2002. 

Using in vitro mitotic Xenopus egg extracts, long known to be capable of spindle assembly 

[1], multiple groups discovered that importin beta and RanGTP together determine where 

spindle assembly occurs [2–8]. Importin beta, often with the aid of its NLS-binding adaptor 

protein, importin alpha, binds to and masks Spindle Assembly Factors (SAFs) in 

cytoplasmic areas distant from the chromatin. By such binding, importin beta prevents 

spatially inappropriate spindle formation. In the vicinity of the mitotic chromosomes, 

however, importin β releases its bound SAFs, which sets spindle assembly in motion. Why 

only around chromosomes? Strikingly, a localized RanGTP “cloud” is produced around the 

mitotic chromosomes. This localized RanGTP cloud results from the fact that active RCC1, 

the RanGEF that stimulates the production of RanGTP, is a chromatin- and DNA-binding 

protein [9–11]. In addition, RanGAP is cytoplasmic and converts any RanGTP that diffuses 

away from the chromatin into RanGDP. Thus, importin beta (or α/β-) bound SAFs are 

released from inhibition by the high levels of RanGTP near the mitotic chromosomes and 

the mitotic spindle in all its complexity and beauty forms solely in that locale [9,10] (Figure 

1B).

The flurry of initial studies showed that RanGTP and importin beta act as dueling positive 

(RanGTP) and negative (importin beta) regulators. At heart, RanGTP acts as an all-powerful 

“GPS” or “genome-positioning signal” for mitotic assembly, counteracting the overall 

micromolar concentrations of karyopherins, albeit in a very localized area. In this manner, 

the production of RanGTP acts as a spatial cue that directs the major mitotic structures to 

assemble around the chromosomes -- and not elsewhere (Figure 1B) [9]. Depending on the 

phase of mitosis, the dueling karyopherin/RanGTP team regulates assembly of the mitotic 

spindle, the nuclear envelope, and the nuclear pores (see left panels, Figure 3 A–C). Indeed, 
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it was the easy manipulability of Xenopus egg extracts that facilitated the in vitro study of all 

these assembly events [10,12–16].

Spindle assembly factors: Extensive regulation

The first molecular targets of karyopherin/Ran regulation were in the area of spindle 

assembly. The identification of a number of importin beta- (and alpha/beta-) inhibited 

spindle assembly factors burst upon the scene (Figure 1B). In our review, the definition of 

SAF is taken to mean any factor that promotes the assembly (or nucleation) of microtubules 

into a bipolar spindle at mitosis. Many of the SAFs identified (Table 1) were found, quite 

logically, to regulate microtubule nucleation, growth, stability and organization. 

Microtubule-associated proteins (MAPs) with specific spindle assembly functions include 

the MAPs TPX2, NuMA, Xnf7, HURP, Maskin, and NuSAP. Other SAFs were kinesins 

(XCTK2, Kid), which affect spindle bipolarity and chromosome orientation, and Cdk11, a 

cyclin-L-dependent Kinase, responsible for microtubule stabilization and microtubule-

kinetochore interaction [9,17]. Still other relevant players were found to regulate RanGTP 

production and modulation. These include the RanGEF RCC1, the RanGAP, its activating 

partner RanBP1, and RanBP2 (Figure 2A) [18,19]. Interestingly, some proteins that are 

nuclear in interphase and SAFs in mitosis, such as lamin B and Rae1, are part of a mitotic 

spindle matrix, an entity that includes all proteins encompassed in the cytoplasmic region of 

the spindle [9,20–22].

Since 2008, more SAFs controlled by importin beta and Ran have been identified (Table 1). 

These include: (a) the tumor suppressor Adenomatous polyposis coli (Apc), which helps 

assemble and bundle microtubules [23], (b) two chromatin remodeling ATPases, CHD4 and 

ISWI, that act as Ran-dependent microtubule stabilizers [24,25], (c) a k-fiber stabilizer, 

MCRS1 [26], and (d) a set of nucleoporins (see below) [27,28]. Each of the above SAFs, 

both old and new, are hypothesized to be bound and inhibited by importin beta (or α/β) away 

from chromatin and released by RanGTP near chromatin.

Nuclear pore proteins act in spindle microtubule nucleation

A very unexpected group of spindle assembly factors were revealed to be nuclear pore 

proteins or nucleoporins (Nups). It turns out that a subset of nucleoporins, like importin beta 

and Ran, lead a double life during mitosis. In interphase, the nucleoporins in question reside 

largely at the nuclear pore (and to a lesser level at certain chromatin sites) [29–31]. In 

mitosis, however, this set of Nups transits broadly to the kinetochores, centrosomes, and/or 

fibers of the mitotic spindle to carry out mitotic functions [27,28].

In spindle assembly in animal cells, it is known that microtubules can grow from the 

centrosomes and from the kinetochores. Depending on the cell type or situation, one or the 

other source of microtubule growth can dominate [32–35]. It is now clear that Ran regulates 

both types of microtubule assembly [36].

An expanding list of nucleoporins has been found to regulate multiple aspects of mitosis 

[27–29]. A full description is not possible here, but among them the most intriguing is the 9-

member nuclear pore subunit termed the Nup107–160 or Y complex and its closely 
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associated partner, ELYS. These Nups clearly localize to the kinetochore at mitosis and have 

proven essential for functional kinetochores and for microtubule nucleation into spindles 

(Figure 2A) [37–44]. In fact, depletion of the Y complex was shown to allow initiation of 

centrosomal microtubules in in vitro spindle reconstitution extracts, but proper connection to 

the chromosomes was not possible, and the microtubules disassembled with time [38].

Surprisingly, it was later discovered that the Nup107–160 subcomplex acts to recruit γ-

TuRCs (gamma-tubulin ring complexes) to the kinetochore at mitosis, which initiate “k-

fiber” or kinetochore-initiated spindle microtubules [42]. This startling discovery made 

symmetrical sense from a nucleation point of view in that γ-TuRC ring complexes were first 

discovered at the poles of the spindle and act there as the microtubule-nucleating 

components of the centrosomes. RanGTP has also been found to be present at both 

kinetochores and centrosomes [34,36,42,45,46]. Importantly, the presence of RanGTP at the 

kinetochore is vital for Nup107–160/γ-TuRC-microtubule nucleation and counteracts the 

effects of importin beta (Figure 2A) [42,45,47]. In different studies, it was shown that 

importin β binds to the Nup107–160 protein complex and the nucleoporin ELYS/Mel-28 and 

prevents their interaction both with chromatin [40,43,48–51] and with kinetochores [52] in 

Xenopus in vitro extracts.

Microtubule branching occurs in spindles and is regulated by RanGTP

A newer discovery was in the works: it had long been thought that microtubule assembly 

occurs by the linear addition of tubulin α/β hetero-dimers to existing microtubules to 

produce entirely linear microtubules. A recent surprising study has shown that during in 

vitro spindle assembly in Xenopus egg extracts, a branching microtubule assembly 

mechanism occurs [53– 55]. Petry et al (2013), using total internal fluorescence (TIRF) 

microscopy, visualized microtubules initiating on the sides of existing microtubules: branch 

points could clearly be seen. This branching requires the microtubule nucleating protein 

augmin, γ-tubulin and TPX2, and is stimulated by RanGTP (Figure 2B), the latter of which 

was shown to act by freeing the spindle assembly factor TPX2, presumably from importin 

α/β [53,54,56]. The branching leads to an increased density of bundles of spindle 

microtubules and the authors suggest this may be for the purpose of amplifying the effect of 

the RanGTP gradient around the mitotic chromosomes. Nup98 also can induce a phenotype 

of excess microtubules in mitotic spindle assays, via excess Nup98 C-terminal fragment 

addition. The Nup98 fragment appears to inhibit MCAK (the microtubule-depolymerizing 

mitotic centromere-associated kinesin) [57]. It will be interesting to determine whether 

Nup98 or MCAK in some way influence the hitherto unsuspected branching microtubule 

mechanism that enhances spindle assembly.

RanGTP and its modifiers: New findings and variations on the theme

It is now well established that a gradient of RanGTP is crucial for spatially assembling the 

right mitotic structures at the right place: microtubule nucleation occurs where RanGTP is 

sufficiently high, which in most in vivo instances is around chromatin (Figure 3A, left 

panel). Indeed, addition of excess RanGTP to Xenopus mitotic extracts causes starbursts of 

microtubule nucleation (i.e., asters) to occur throughout the extract, as karyopherin 
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inhibition is released everywhere (Figure 3A, right panel). Another study further showed 

that simply tethering RanGTP-generating machinery to the plasma membrane causes 

organized microtubule arrays to form at that locale [58]. The discovery that RanGTP is 

found at other sites in the cell, such as at the centrosomes and kinetochores where 

microtubules nucleate (see Crm1 section below) or inside of primary or motile cilia [59,60]), 

leads one to believe that we have not heard the last of Ran’s molecular talents.

Probing the regulatory mechanism for generating local RanGTP in mitosis is thus of great 

interest. Localization of RCC1 on chromatin has been seen to increase during mitosis 

[61,62], an increase tightly regulated by RanBP1 [19]. RanBP1, already known to increase 

the activity of the RanGAP, has been shown to bind to RCC1 and modulate RCC1's 

enzymatic activity, thus controlling the spatial organization and amplitude of the mitotic 

spindle [19]. Other experiments using beads coated with purified RCC1 in Xenopus egg 

extracts demonstrate that RCC1 is one of the minimal chromosome components able to 

generate a spindle [63].

This is perhaps a good place to bring forth the fact that a set of recent studies find that 

certain cell types and developmental stages appear to have become less reliant on spatial 

control by Ran/karyopherin gradients [35,64]. One example is in spindle size scaling [65–

67]. Xenopus frog species differ in overall size, a difference mirrored in their mitotic 

spindles. Eggs of the small frog X. tropicalis contain 3-fold as much SAF TPX2 as eggs of 

the larger X. laevis. Interestingly, artificially increasing TPX2 concentration in X. laevis egg 

extracts (without increasing importin alpha/beta) produces smaller spindles [65] (Figure 

3D). It may be that simply increasing SAF concentration in some cell types, via evolutionary 

change, could decrease normal control by karyopherin/RanGTP if the latter’s concentrations 

remained lower. However, an in-depth analysis of diverse adaptations such as this can be 

better obtained from more extensive reviews [35,64]

Nuclear membrane and nuclear pore assembly: Karyopherin/RanGTP 

regulation in in vitro reconstitution systems

Equally compelling were discoveries that the importin beta/Ran pair of dueling regulators 

also spatially controlled the major assembly events of late mitosis, i.e., nuclear membrane 

assembly and nuclear pore assembly [10,68–72]. Following recruitment of membrane 

vesicles to mitotic chromatin in interphase nuclear reconstitution extracts, importin beta/

RanGTP were found to regulate the vesicle-vesicle fusion reaction required to form a double 

nuclear membrane. Excess importin beta inhibited fusion, while excess RanGTP promoted 

it. The balance of their activity was essential: excess importin beta resulted in unfused 

membrane vesicles, while excess RanGTP resulted in excessive, invaginated nuclear 

membranes around the chromatin [10,69] (Figure 3B). One recent study implicates the 

Lamin B receptor, LBR, as an importin beta-regulated target involved in nuclear membrane 

formation [73].

A similar regulatory scheme controls nuclear pore assembly in late mitosis: excess importin 

beta blocks nuclear pore assembly, while added RanGTP allows NPC assembly [10,69–

72,74] (Figure 3C). For example, importin beta regulates the seeding of initiation sites for 
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NPC assembly on chromatin via binding to and inhibiting ELYS and Nup107–160 complex, 

the initiators of telophase NPC assembly (aka “postmitotic” assembly), from anchoring to 

chromatin in vitro [40,48,50,75]. Importin beta regulation of NPC assembly is also observed 

to take place in vivo in interphase pore assembly [76]. Further description of these events 

and more complete references are reviewed in [10,77,78].

An expanding karyopherin network: Transportin

With 21 importin beta family members in humans [79], a key question is whether 

karyopherins other than importin beta regulate mitotic assembly events. It is widely thought 

that importin beta binds the SAFs it regulates in mitosis by binding to their nuclear 

localization sequences (NLSs). Transportin, the first identified relative of importin beta, 

recognizes a different class of NLS that, although varying in length and sequence, is often 

characterized by a Proline-Tyrosine (PY) dipeptide [80,81]. PG, PV or PL NLS motifs as 

well as very different Lys/Arg basic NLSs are also recognized by transportin [82,83]. An 

extensive review of transportin in normal and disease contexts is available [84].

Transportin has been found to negatively regulate spindle assembly, nuclear membrane 

assembly, and nuclear pore assembly [49,52], by directly binding and inhibiting targets, in a 

manner parallel to importin beta. Addition of a super-affinity Transportin NLS (M9M) 

causes aster assembly throughout the extract cytoplasm, indicating that simply freeing 

transportin’s cargo is enough to initiate spindle and aster assembly. It was found that 

transportin also regulates nuclear envelope and NPC assembly via a direct inhibition model 

[52]. What are transportin’s assembly factor targets? For spindle assembly, a major likely 

target is the Nup107/160 Y complex, given that mitotic extracts depleted of the Nup107/160 

Y complex fail to form bipolar spindles, and transportin blocks the binding of the Y 

complex to kinetochores in vitro [52] [27,38,41,85]. Thus, the network of regulatory 

importins is expanded to include both transportin and importin beta.

The exportin Crm1 is a cell cycle regulator and chemotherapy target

Crm1, also known as Exportin-1 or Xpo-1, is the major nuclear export receptor for protein 

cargos in interphase. Crm1 recognizes leucine-rich nuclear export signals (NESs) on a 

multitude of gene regulatory and nucleocytoplasmic shuttling proteins. Crm1 can only 

export its cargos in the form of a ternary complex, Crm1/NEScargo/RanGTP. Upon 

reaching the cytoplasmic face of the pore (where in mammals RanGAP is bound), RanGAP 

together with RanBP1 and RanBP2 stimulate RanGTP hydrolysis to disassemble the export 

complex (Figure 1C) [86].

In the past decade, a growing body of evidence has revealed that Crm1 plays essential roles 

in mitosis. However, instead of releasing assembly factors in areas of high RanGTP as do 

importin β and transportin, Crm1 binds to both RanGTP and key mitotic proteins to target 

those proteins to specific areas of the spindle.
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Crm1 and Kinetochores

One key area is the kinetochore of mitotic chromosomes. Surprisingly, Crm1/Xpo1, 

localizes to the mitotic kinetochores of both yeast and humans [18]. Such Crm1 presence 

was shown to be needed for functional kinetochore nucleation of microtubules in humans 

[18,34,87]. Specifically, Crm1 targets a complex of RanBP2, RanGAP1 and RanGTP to the 

kinetochores of human cells (Figure 2A) [18,87,88]. With its partners, Crm1 is proposed to 

stabilize the connection of microtubule kinetochore fibers (k-fibers) to the kinetochore and, 

by doing so, promote proper chromosome segregation. In addition, Crm1 in human cells has 

been implicated in tethering the Chromosomal Passenger Complex (CPC) to the centromeric 

region of chromosomes, via the CPC Survivin protein’s NES domain [89]. A recent study 

delineating antagonistic roles of importin beta and Crm1 at human kinetochores reveals that 

overlapping karyopherin regulatory webs exist [90]. Lastly, it should be noted that Xenopus 

kinetochores have been mentioned to lack Crm1 and/or RanGAP presence (mentioned, but 

not shown in ref 87), but it is not known whether this apparent lack is due to antigen 

inaccessibility, less stable k-fibers, or actual absence of Crm1 (M. Dasso, personal 

communication).

Crm1 and centrosomes

Interestingly, Crm1 is also observed to be present at the centrosomes throughout the cell 

cycle (Figure 2C) [91]. It is proposed that Crm1 binds to RanGTP present in the centrosome, 

then recruits the major centrosomal scaffold protein, pericentrin. Pericentrin in turn is 

known to recruit γ-TuRC complexes and together these act to nucleate the centrosome-

initiated spindle microtubules. Either RNAi depletion of Crm1 or overexpression of the N-

terminal RanGTP-binding domain of Crm1 causes reduction in both pericentrin and γ-

TuRCs at centrosomes and disrupts the mitotic spindles in cultured cells [91]. Also, Prior to 

its targeting, Crm1 is mitotically phosphorylated by the mitotic kinase CDK1/cyclin-B 

(Ser391), which enhances its ability to target RanBP2/RanGAP1 to the mitotic spindle [92].

Crm1 has also been observed to be involved in the targeting of NES-bearing proteins to the 

centrosome. BRCA1 and BARD1, an E3 ubiquitin ligase when heterodimerized, are both 

targeted to the centrosome by Crm1 independently of one another [93,94]. Normally, the 

BRCA1/BARD1 protein complex plays roles in DNA damage response and centrosome 

duplication, thus ensuring proper centrosome duplication. Correct centrosomal targeting of 

these proteins is critical, since perturbations to centrosome duplication can lead to inherited 

genetic defects and aneuploidy. For example, inhibition of Crm1 in early metaphase results 

in excess, acentriolar spindle poles [95].

Crm1, cancer and chemotherapy

Crm1 is the major nuclear export receptor for many DNA damage monitors and tumor 

repressor proteins, including p53, Rb, and FOXO [96,97]. The observed overexpression of 

Crm1 in many cancers results in preferential localization of these tumor suppressors to the 

cytoplasm where it is thought they are unable to function to subvert DNA damage and 

inappropriate cell proliferation [97]. Newly developed Small Inhibitors of Nuclear Export or 

SINEs represent a promising treatment for many cancer types. Modeled on an older inhibitor 

of Crm1 (Leptomycin B/LMB), SINEs prevent NES-cargo binding to vertebrate Crm1 by 
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covalently binding to Cysteine 528 in the NES-binding cleft. SINEs are less toxic than 

LMB, as they are more highly specific to Crm1 [98]. Currently it is thought that the fact that 

SINEs block the export of many tumor suppressor proteins and other functionally relevant 

cell cycle inhibitors from the nucleus explains how SINEs act as cancer inhibitors in 

cultured cell studies, mouse studies, and an increasing number of human clinical trials. 

However, it would appear from the above considerations equally possible that SINEs could 

interfere with the mitotic roles of Crm1 delineated above, and thereby affect their observed 

block to cell proliferation in cancer trials.

In vivo evidence

Strong corroborative evidence for the karyopherin/Ran control of spindle assembly comes 

from a number of in vivo studies, only a few of which can be mentioned here. The presence 

of a RanGTP cloud around mitotic chromatin has been demonstrated in vivo using the 

fluorescent biosensor Rango, which increases its FRET signal when released from importin 

beta by RanGTP [99–101]. Increased RanGTP has also been observed using RanGTP 

biosensors around spindles assembled in vitro in mitotic Xenopus egg extracts [102]. 

Similarly, a RanGTP gradient has been observed in vivo in living mouse oocytes using 

FRET [64,103].

Excellent reviews of a number of seminal in vivo studies on the karyopherin/Ran dueling 

regulators by the Lavia group and others include [64,104]. Recently, Hasegawa et al [105] 

found a steep RanGTP gradient exists around the mitotic chromosomes of rapidly growing 

cells, while reduced RanGTP gradients are observed around the chromosomes in primary 

cells (HFF-1 cells). Interestingly, overexpression of the RanGEF RCC1 in these primary 

cells causes induction of a steep RanGTP gradient. Further, cell-cell fusion studies lead the 

authors to propose that chromosome gain can also increase the RanGTP gradient [105], a 

gain that might also be seen in cancer cells.

Strong in vivo evidence for importin beta’s role in mitosis comes from microinjection of 

different importin beta protein fragments into cells at prophase or prometaphase: a fragment 

of importin beta (aa 71–876) lacking the Ran-GTP binding domain caused blockage of 

spindle assembly and/or proper chromosome segregation in a majority of cells [4,106]. 

Thus, the above in vivo findings reinforce the in vitro findings: RanGTP and karyopherins 

are dueling regulators and a correct balance helps coordinate correct mitotic assembly 

events.

New cellular arenas for karyopherin/RanGTP regulation

Karyopherin/Ran and the timing of anaphase

Rape and colleagues [107,108] have discovered that -- once anaphase begins and the 

Anaphase Promoting Complex (APC/C) is activated by successful chromosome attachment 

-- a higher level of regulation takes over. They found that, unlike cyclin B1 which is 

ubiquitinated and degraded at the very onset of anaphase, SAFs such as TPX2, HURP, and 

NuSAP, remain stable through anaphase. These SAFs, presumably originally freed from 

importin beta by RanGTP, are now protected from ubiquitination and degradation through 
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anaphase by their physical association with the spindle microtubules. Later, when released 

from microtubules, the SAFs are quickly modified by the APC/C and degraded. This 

protective mechanism ensures that these SAFs are maintained as long as the spindle needs 

them, and their subsequent degradation prepares conditions for the next phase of the cell 

cycle [107–110].

Spindle positioning along the cell axis

Often in cell division, the spindle in mitotic cells orients along the long axis of the cell. In a 

study designed to reveal why this positioning occurs, a new role for karyopherins and 

RanGTP was discovered. Proteins that generate pulling forces on the astral microtubules, 

LGN and NuMA, the latter of which was an early SAF target of importin α/β [9], were also 

found to be key for spindle positioning [111]. When an inhibitor of the RanGTP/importin 

beta interaction, importazole, was added to human cells, a misoriented spindle resulted 

[111]. It turned out that LGN and NuMA had become mislocalized. The addition of 

CLASP1, a protein that stabilizes aster microtubules, restored correct spindle orientation. It 

appears that the karyopherin/Ran system works with LGN and NuMA to define proper 

spindle orientation along the long axis of the cell [111,112] (Figure 3E).

Actin cytoskeleton regulation

Up to this point the cytoskeletal elements influenced by the karyopherin/RanGTP team have 

been microtubule-related. Now Samwer et al [113] have found an actin connection. They 

identify a novel actin-bundling kinesin, NabKin (for Nuclear and meiotic actin-bundling 

Kinesin), that binds to and stabilizes nuclear actin bundles in interphase and also stabilizes 

the actin-based cortical ring structure that divides cells during cytokinesis. In vitro, they find 

that importin beta blocks NabKin kinase interaction with filamentous actin, while RanGTP 

reverses this inhibition. They conclude that NabKin directly links microtubules to F-actin 

and does so in a classical karyopherin/Ran-regulated manner [113].

These new arenas can be added to the previous most unexpected area for karyopherin 

regulation, that of synapse-to-nucleus communication, where importin beta mediates the 

retrotranslocation of damage signals from an injured nerve terminus to its neuronal cell 

nucleus [10,114,115].

Perspectives

The karyopherins, importin beta and transportin, and their RanGTP counterpart are in fact a 

unique way to impose a wide-reaching regulatory regime over disparate cellular events. 

While kinase/phosphatase and ubiquitinase/proteolysis pairs depend on enzymatic 

amplification, the karyopherin/Ran paradigm depends instead on: (a) the high and pervasive 

concentrations (micromolar) of these transport receptors throughout the cytoplasm during 

mitosis, (b) the ability of each karyopherin to bind to a very broad spectrum of motifs and 

molecules, and (c) importantly, the focused production of RanGTP in specified locales for 

targeted activation of assembly factors and pathways. Perhaps rivaled only by the hsp70 

chaperone family for versatility of binding, the added element of localized RanGTP 
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production renders the evolutionary power of the karyopherin/Ran regulation even greater. It 

now stands out as one to be watched by all.
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Figure 1. Karyopherins and RanGTP in interphase and mitosis
(A) In interphase, RanGTP (yellow) is primarily found only in the nucleus, due to the 

localization of the RanGEF, RCC1 (purple), to chromatin. RanGDP (light grey) is found in 

the cytoplasm where the RanGAP and its accessory protein RanBP1 (both not shown) are 

also localized and induce RanGTP hydrolysis. (B) In mitosis, RCC1 continues to be bound 

to the chromatin of the mitotic chromosomes and produces a “cloud” of RanGTP, which 

dissociates any adjacent importin beta/SAF or transportin/SAF pairs. The freed spindle 

assembly factors or SAFs thus promote spindle assembly only around the mitotic 

chromosomes. At a distance from the chromosomes, the SAFs are held inactive by the 

binding of the transport receptors importin beta and transportin [9,49,52]. Thus, overall 

RanGTP appears to act as a spatial cue for assembly of the mitotic spindle and, later in 

mitosis, for assembly of the nuclear membranes and nuclear pores around chromatin. (C) 
For reference, the schematic shows the details of nuclear import of an NLS cargo protein by 

a generic importin receptor. The importin/NLS cargo complex is dissociated by nuclear 

RanGTP. Also shown is the export of an NES cargo protein by a generic exportin receptor. 

In this case, the export complex requires RanGTP as a co-factor in its formation. After 
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export, the exportin/NES cargo/RanGTP complex is dissociated upon RanGTP hydrolysis 

by cytoplasmic RanGAP/RanBP1 (not shown).
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Figure 2. Microtubule nucleation occurs at multiple locales within the spindle and is regulated 
by RanGTP in each
(A) In mitosis, microtubules have been shown to grow from γ-TuRC complexes recruited to 

the kinetochore by the Nup107–160 nucleoporin complex [42]. In humans, the export 

receptor Crm1 is also present at the kinetochore with its binding partners RanGap1, 

RanBP1, and RanBP2. The RanGEF RCC1 is present on mitotic chromosomes and, as 

described in Legend 1B, produces a gradient (“cloud”) of RanGTP around the 

chromosomes. RanGTP frees local SAFs from inhibition by importin beta (multiple SAFs) 

and transportin (the Nup107/160 complex and Elys SAFs) [9,10,49,52], such that k-fiber 
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microtubules can grow from the kinetochores. (B) A newly discovered branching 

mechanism acting in spindle microtubule assembly is depicted. Here assembly can occur not 

only from centrosomes and kinetochores, as has long been known, but also from the sides of 

existing spindle microtubules. Augmin and γ-TuRC complexes are involved in the initiation 

of branching; RanGTP and TPX2 are also involved, but their exact mechanistic roles remain 

unknown [53–55]. (C) Spindle microtubules also initiate strongly from the centrosomes in 

many instances [35], nucleated by γ-TuRC complexes. Exportin Crm1/RanGTP aids in the 

recruitment of pericentrin to the centrosome region, which then recruits the γ-TuRC 

complexes [91].
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Figure 3. Multiple different arenas are regulated by karyopherins and RanGTP
(A) Spindle assembly. During normal mitotic conditions (left panel), as also described in 

Legend 1B, importin beta (Imp β, red) and transportin (Trn, green) bind to and inhibit 

Spindle Assembly Factors (inactive SAFs; grey) in areas far from chromatin. This inhibition 

prevents mitotic microtubule assembly at a distance from the chromosomes. A RanGTP 

cloud (yellow area), produced by the RanGEF RCC1 (not shown), around the mitotic 

chromosomes causes localized release of the SAFs from adjacent importins; the released 

SAFs are now active and promote spindle assembly (active SAF; blue) in the correct 
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location, i.e.,, around the chromosomes. In extracts, as in cells, the initial balance of 

RanGTP, karyopherins AND SAFs determines the influence of karyopherins and Ran on 

spindle assembly. If excess importin beta is added (middle panel), the importin beta (red) 

overwhelms the amount of RanGTP produced (not shown for clarity) and sequesters even 

the SAFs close to the chromosomes preventing formation of a mitotic spindle. In contrast, if 

excess RanGTP is added (right panel, yellow), the release of SAFs from importin beta and 

transportin (not shown) occurs throughout the extract, independently of their position with 

respect to chromatin. Thus, microtubules nucleate throughout the reaction, generating not 

only a mitotic spindle, but abundant microtubule asters (stars). (B) Nuclear membrane 

assembly. Normally the coordinated action of RanGTP and importin beta promote the 

formation of a double nuclear membrane surrounding the chromatin during telophase (green 

lines; left panel). If excess importin beta is added (middle panel), this is found to prevent the 

fusion of the ER membrane vesicles and tubules that normally form the double nuclear 

membrane, resulting in unfused vesicles (green circles). This occurs presumably by 

inhibiting one or more “membrane assembly factors” (M-AFs), whose nature is still 

unknown and could be either soluble or membrane-bound. If instead too much RanGTP is 

added (right panel), this causes excess nuclear membrane production, which appears as 

invaginated nuclear membranes replete with nuclear pores (light grey) around the chromatin. 

(C) Nuclear pore assembly. In normal conditions, cells possess a double nuclear membrane 

studded with nuclear pore complexes (purple cylinders; right panel). When excess importin 

beta is added to a pore-free nuclear assembly intermediate (containing fused nuclear 

membranes but no nuclear pores that has been induced by BAPTA [52]; middle panel), the 

excess importin beta binds to and inhibits nuclear pore complex assembly factors (NPC-

AFs: purple color), and thus the nucleus remains devoid of nuclear pores. These NPC-AFs 

are disassembled nuclear pore proteins that act as NPC assembly factors at the end of 

mitosis. If, instead, excess RanGTP is included with the excess importin beta (left panel), 

the balance between the two is restored and nuclear pore assembly occurs as normal. Note: 

In (A), (B) and (C), an excess of transportin would cause the same effect that an excess of 

importin beta does (middle panels). (D) Spindle scaling. In nature, mitotic spindle size 

mirrors organismal size. For example, the spindle of the large frog, X laevis (left panel), is 

larger than the spindle of a smaller frog, X tropicalis (middle panel). This spindle scaling has 

been shown to be dependent on TPX2 levels. Indeed, adding an excess of TPX2 to X laevis 

spindle assembly reactions reduces the size of the X laevis spindle to that of X. tropicalis 

(right panel). Note: Karyopherins and RanGTP are present, but are dominated by higher 

TPX2 concentrations [65]. (E) Spindle positioning in the cell. The mitotic spindle orients 

lengthwise in a normal cell (left panel) due to the pulling forces that cortically-bound LGN 

and NuMA (green) generate on the astral microtubules (black lines). Inhibition of importin 

β, using the inhibitor importazole, causes misoriented spindles due to a loss of LGN and 

NuMA from the cortex (right panel).

Forbes et al. Page 22

Curr Opin Cell Biol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Forbes et al. Page 23

Table 1

Spindle Assembly Factors (SAFs) Examples Refs.

MAPs TPX2, NuMA, Xnf7, HURP, Maskin, NuSAP [9]

Kinesins (1)XCTK2(2)Kid [9]

Spindle Matrix Proteins Lamin B, Rae1 [9] [20–22]

K-fiber stabilization MCRS1* [26]

Tumor Suppressor Adenomatous Polyposis Coli (Apc)* [23]

Chromatin Remodeling ATPases CHD4*, ISWI* [24] [25]

Multiple cellular functions Nucleophosmin, Survivin, Cdk11 [9] [17]

NPC Proteins Nup107–160 complex, Nup98*, ELYS/Mel28* [38] [39]
[42] [44]

NPC Assembly Factors Examples Refs.

Importin Beta and/or Transportin
Regulated Nups

Nup107–160 complex, ELYS
FG Nups (Nup358, Nup214, Nup153, Nup98, Nup62, Nup50)

[39][40]
[50–52]

Ran Modulation Factors Examples Refs.

RCC1, RanGAP, RanBP1*, RanBP2, Sumo [9] [19] [63]

(1)
Spindle-Kinesin

(2)
Chromokinesin

The star (*) indicates recently characterized Ran- and/or Karyopherin- regulated SAFs
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