
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Computation of in vivo myocardial deformation from planar imaging

Permalink
https://escholarship.org/uc/item/0b474291

Author
Rodriguez, Miguel Angel

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b474291
https://escholarship.org
http://www.cdlib.org/

Computation of in vivo myocardial deformation from planar imaging

by

Miguel Angel Rodriguez

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Shawn C. Shadden, Chair
Professor David J. Steigmann

Associate Professor Moriel H. Vandsburger

Summer 2022

Computation of in vivo myocardial deformation from planar imaging

Copyright 2022
by

Miguel Angel Rodriguez

1

Abstract

Computation of in vivo myocardial deformation from planar imaging

by

Miguel Angel Rodriguez

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Shawn C. Shadden, Chair

Cardiovascular disease has remained the leading cause of death worldwide. In addition,
the 2015 Annual Data Report from the US Renal Data System shows that sudden cardiac
death and arrhythmias are the leading cause of mortality for patients on routine hemodialysis
for end-stage renal disease (ESRD). In this study, we aim to augment cardiac magnetic reso-
nance (CMR) images obtained for such patients through a registration framework developed
for analyzing two-dimensional (2D) CMR image sequences. The framework consolidates
existing tools, such as segmentation and the large deformation diffeomorphic metric map-
ping (LDDMM) algorithm, and provides a systematic process to define the circumferential
and radial directions in general left ventricle geometries, to quantify its myocardial strain
throughout the cardiac cycle. While CMR image sequences are used in this work, the frame-
work is designed to be agnostic to the imaging modality. In conjunction with this framework,
validation tests were developed using synthetic deformation data generated through solid me-
chanics simulations. This was done for three analytical shapes: a box, thick-walled cylinder,
and a thick-walled ellipsoid, all in three dimensions. This synthetic data was then used
to provide a 2D input to the registration framework, which allowed a direct comparison of
the deformation computed from the solid mechanics simulation and the registration frame-
work. All of this was developed to use data that is generally readily accessible in clinical
settings, as well as to provide a template for designing validation tests for myocardial strain
computations.

i

A mis padres que arriesgaron todo para darnos más de lo que tuvieron.

ii

Contents

Contents ii

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation Outline . 2

2 Computational Solid Mechanics 3
2.1 Continuum Mechanics . 3
2.2 Discretizing the governing equations . 15
2.3 FEniCS Mechanics . 17
2.4 Applications and examples . 21

3 In vivo Myocardial Strain 38
3.1 Motivation . 38
3.2 Planar Deformation Framework . 40
3.3 Strain Computations in non-Circular Domains 44
3.4 Population Study . 48

4 Validation of Planar Strain Computations 54
4.1 Planar Deformation Framework Applied to Synthetic Data 55
4.2 Computing Errors . 60
4.3 Accuracy of Framework in Synthetic Cases 63
4.4 Discussion . 75

5 Summary 78

Bibliography 80

A Inner Wall Pressure 85

iii

List of Figures

2.1 Diagram indicating the flow of information in FM from the user-defined config

dictionary to the written output files. 18
2.2 Class inheritance tree for classes defined within FEniCS Mechanics. 20
2.3 Free-body diagram of the steady-state elongation of a unit square. 22
2.4 Tetrahedral mesh of the 3D box domain with 9,532 nodes and 46,448 tetrahedral

cells. 22
2.5 Displacement of the box-domain. 25
2.6 Tetrahedral mesh of the thick-walled cylinder, D0, with cells conforming to the

Y Z and XZ planes. This mesh contains 2,483 nodes and 9,654 tetrahedral cells. 26
2.7 Displacement of the thick-walled cylinder. 29
2.8 Tetrahedral meshes used for the thick-walled ellipsoids. The axisymmetric mesh

contains 21,504 nodes and 108,738 tetrahedral cells, while the eccentric mesh
contains 23,317 nodes and 119,360 tetrahedral cells. 31

2.9 Fibers and sheets . 31
2.10 Deformation of thick-walled axisymmetric ellipsoid. 33
2.11 Pressure wave form applied at S2

inner. 35
2.12 Deformation of the thick-walled eccentrically aligned ellipsoid for t ∈ [0, 1] ∪ [2, 3]. 37

3.1 Cross section schematic of the four-chamber plane through the human heart show-
ing the cutting plane line of two short-axis planes. This schematic was derived
from [32]. 39

3.2 Image sequence . 40
3.3 Registration pre-processing . 42
3.4 The template mesh surface and the target meshes to which it is mapped to. Note

that the maroon arrows indicate registration between two consecutive images,
while red indicates multiple registrations with intermediate images that are not
shown. 43

3.5 The deformed template mesh and the resulting displacement field with respect
to M0. 44

3.6 Laplace’s Equation . 45
3.7 The three components of the 2D right Cauchy-Green tensor. 47
3.8 Box plots for the spatial mean of the strain components for control and CKD

patients. 51

iv

3.9 Box plots for the spatial standard deviation of the strain components for control
and CKD patients. 52

4.1 Imaging planes shown alongside of 3D tetrahedral meshes, as well as the resulting
segmentations within each plane. 58

4.2 Selected interior curves used for computing the strain tensor components for the
synthetic cases. 62

4.3 Full Lagrangian and Eulerian displacement error for the box domain, R0. 64
4.4 The perpendicular component of the Lagrangian and Eulerian error for the box

domain, R0. 65
4.5 Parallel component of the Lagrangian and Eulerian error for the box domain, R0. 66
4.6 Full Lagrangian and Eulerian error for the cylinder domain, D̂0. 67
4.7 The perpendicular component of the Lagrangian and Eulerian error for the cylin-

der domain, D̂0. 68
4.8 The parallel component of the Lagrangian and Eulerian error for the cylinder

domain, D̂0. 69
4.9 Full Lagrangian and Eulerian error for the ellipsoid domain, V̂2

0 70
4.10 The perpendicular component of the Lagrangian and Eulerian error for the ellip-

soid domain, V̂2
0 . 71

4.11 The parallel component of the Lagrangian and Eulerian error for the ellipsoid
domain, V̂2

0 . 72
4.12 In-plane Lagrangian and Eulerian strain error for the box domain, R0. 73
4.13 In-plane Lagrangian and Eulerian strain error for the cylindrical domain, D̂0. . . 74
4.14 In-plane Lagrangian and Eulerian strain error for the ellipsoidal domain, V̂2

0 . . . 75

v

List of Tables

2.1 Abbreviations of some of the classes defined within FEniCS Mechanics. Note that
the NonlinearVariationalSolver class is defined in dolfin from the FEniCS
project. 19

2.2 Axes lengths and rotations used to construct the geometries for the axisymmetric
and eccentric cases. 30

2.3 Convergence study results for the ellipsoid problem. P2-P1 elements were used
for all simulations. Endocardial and epicardial apex locations are in agreement
with Figure 6 in Land et al. [31]. 34

3.1 Age demographics of patients used for statistical testing. 48
3.2 Student t-test performed on the mean and standard deviation over spatial variable

of the three strain components. 50
3.3 Classification of patients using the k-means algorithm on the n-max temporal

evaluation of the strain components, with the most ideal scenario highlighted. . 53

4.1 The unique identifiers for synthetic cases, as well as their imaging planes given
in terms of an origin and unit normal vector. 56

4.2 Summary of the Lagrangian (L) and Eulerian (E) errors for all components of
displacement and curve strain considered. 76

vi

Acknowledgments

My journey before and during graduate school is indebted to many wonderful people.
First and foremost, I would like to thank my PhD advisor, Dr. Shawn Shadden, whose
support has granted me with a breadth of knowledge and confidence in effectively commu-
nicating the work we do—even after showing up unannounced to his research group. The
courses provided by Dr. David Steigmann have also been a great source of knowledge pro-
vided with a level of rigor that is unparalleled by many. I will forever be grateful for our
continuum mechanics discussions and his expert guidance. Additionally, the work presented
in this dissertation would not have been possible without Dr. Moriel Vandsburger, as well as
his support and assistance. The image data provided by Dr. Vandsburger and his colleagues
was a true savior to my research; as well as the assistance in processing this image data by
Cindy Ayala and Paul Dennig. I would be remiss if I didn’t thank Meltem for always making
sure I had what I needed to succeed.

I would also like to thank my undergraduate professors and mentors. The confidence
that Dr. Hubertus von Bremen placed in me throughout my undergraduate studies kept me
motivated to learn as much as I possibly could, both from an engineering and mathematical
perspective. I owe a great deal of gratitude to Dr. Marco Quadrelli—another phenomenal
expert in continuum mechanics—for giving me the opportunity and support to participate
in the internship program at the Jet Propulsion Laboratory; it is here that I was introduced
to Python and Emacs. Dr. Arlo Caine also provided a breadth of mathematical knowledge
that satiated my desire for rigor often lacking in undergraduate engineering curriculums.
Not only was he able to answer many of my questions on the spot, he is the person who,
knowing my history with congenital heart disease, introduced me to the field of cardiovascular
biomechanics. That was the moment I decided to contribute to this field.

I can confidently say that I would not have made it this far without the care provided by
my physicians, specifically Dr. Richard Wittner and the cardiology team at UCLA. Dr. Wit-
tner’s incredibly high standards towards medical colleagues served as an example of how one
should stay honest to themselves and their work. I owe my life to him.

My graduate school experience would not have been complete without the community
of friends and colleagues. The student organization LAGSES provided the perfect setting
for building life-long friendships. I owe much appreciation to Benson, Roberto, and Jeff
who were always there when needed and willingly spent many days sharing experiences,
stories, and recipes. To Jasmine, thank you for the love and support you continue to provide
throughout our journey together; also for enduring the pandemic with me.

Last, but definitely not least, I would like to thank my family. They provided an im-
mense amount of love and support throughout my entire life; particularly during my medical
hardships. Mom and Dad, I would not have gotten this far nor would I be who I am without
your love, support, and incredible guidance throughout my life. Thank you for everything
that you have risked and provided for us.

Stay honest and please help leave this world in better shape than when we arrived.

1

Chapter 1

Introduction

1.1 Motivation

Engineers and mathematicians have contributed more and more to the study of the human
body over the past few decades. This is due to the rise in computational power and the fact
that the physical principles used to design a vehicle that can safely transport hundreds of
people in the air across the globe make no assumption about their application. Therefore,
the human body and its complex characteristics—many of which are yet to be understood—
should be describable through these same fundamental tools. In addition, surgeries have
been one of trial-and-error at the detriment of unsuspecting test subjects for the better part
of its existence as can be inferred from its history [1], further motivating the need to quantify
healthy and pathological phenomena.

To this day, cardiovascular disease remains the leading cause of death worldwide [2]. No-
tably, the 2015 Annual Data Report from the US Renal Data System states that the leading
causes of death for patients on routine hemodialysis for end-stage renal disease (ESRD)
are sudden cardiac death and arrhythmias [3]. Though cardiac magnetic resonance (CMR)
imaging combined with gadolinium-based contrast agents is the standard for diagnosing
heart disease [4, 5, 6], these contrast agents are contraindicated in patients with ESRD
due to their reduced kidney function [7]. Driven by this limitation, and the increased risk
of adverse cardiac events [8], Stromp et al. developed a gadolinium-free imaging method to
identify diseased myocardium [9] and subsequently found a strong correlation between initial
fibrotic burden and subsequent loss of contractile function [10].

While these and other advancements in medical imaging have provided clinicians with
the capability to obtain views of the cardiovascular system that were previously unfath-
omable, there are still many unknowns. Namely, while medical images capture the varying
shapes the heart exhibits throughout a cardiac cycle, they are incapable of quantifying the
mechanical strain that the tissue undergoes on their own. Herein we refer to this mechanical
strain, i.e. the geometric measure of deformation, solely as deformation. To quantify such
deformation requires that mathematical descriptions of deformable motion be augmented,

CHAPTER 1. INTRODUCTION 2

either through image analysis or mathematical modeling. Continuum mechanics provides
a formal mathematical approach to describe such motion which, in conjunction with medi-
cal images, can expand our understanding of the differing kinematics of the heart between
different patients. Additional challenges include accurately diagnosing patients due to the
plethora of various heart diseases, heart anatomies, and intra- and inter-operator variations
in acquiring and analyzing image data.

As Amzulescu et al. mention in their review [11], numerous approaches to compute my-
ocardial strain have been developed to address the aforementioned challenges. Speckle track-
ing echocardiography, for example, uses feature tracking (FT) algorithms to compute defor-
mation from images themselves. More specifically, the intensities of the images are used to
track their speckle texture as in Notomi et al. [12], or through block matching as reviewed
in [13]. Another approach is tagged CMR wherein different regions of tissue are magneti-
cally labeled to provide the tagged pattern throughout the cardiac cycle [14]. Amzulescu et
al. point out the drastic differences in spatial and temporal resolutions across various tech-
niques. They also summarize the various causes for differences between these techniques,
e.g. the quality of the acquisition, size of the search region in FT algorithms, down to the
definition of strain itself (Lagrangian vs. Eulerian strain). This led to our goal of developing
and applying a registration framework to planar images in order to compute myocardial
strain, while simultaneously designing a validation process using synthetically generated
data. Though this framework was applied to readily available CMR images, only the endo-
and epicardium were extracted from them.

1.2 Dissertation Outline

This work consisted of developing a framework that would augment planar medical images
by computing myocardial deformation of the left ventricle (LV). A validation procedure
was also designed in conjunction to test the strain computing framework with higher rigor
than is typically found in the literature. This analysis was performed using synthetic data
generated through solid mechanics simulations of idealized geometries in order to allow a
direct comparison of the framework’s results with a true answer—something that is, at this
moment, ethically untenable with patient data.

Some basics of continuum mechanics needed to formulate cardiovascular biomechanics
problems are provided in Chapter 2, along with a summary of FEniCS Mechanics [15],
which is a Python package for simulating a single-domain, steady or time-dependent, fluid
or solid mechanics problem. Chapter 3 then describes the framework developed to compute
LV deformation from two-dimensional (2D) CMR data, and presents results for 35 patients.
The validation tests developed and performed on the strain computing framework using
idealized geometries are presented in Chapter 4. It is here that the choice of parameters
used when computing the strain for patient image data is determined. Lastly, an overall
summary of the results, shortcomings, and potential future work are discussed in Chapter 5.

3

Chapter 2

Computational Solid Mechanics

In this chapter, we will cover the fundamentals necessary to solve computational mechanics
problems. Specifically, we will cover continuum mechanics, the variational formulation of
such mechanics problems, and discretization techniques used to obtain approximate solutions
to these problems. Additionally, we will present the Python package FEniCS Mechanics, as
well as some specific examples that will be of interest later on. While we will try to make
this as extensive as necessary for chapters that follow, the interested reader is encouraged
to read additional material such as Chadwick [16] and Hughes [17] for continuum mechanics
and FEM, respectively.

2.1 Continuum Mechanics

Continuum mechanics is the foundation on which mathematical descriptions of a majority
of physical phenomena around us is based. As the name suggests, the key assumption is
that we are dealing with continuous media; that is to say that there are no voids present
in any infinitesimal neighborhood of any interior point of the body of interest. While we
now know that this assumption will be proved erroneous by sufficiently zooming into any
material, it is still reasonable for a vast number of engineering applications. So much so
that undergraduate engineering curricula are primarily based on the formulations provided
by continuum mechanics.

A brief dive into the myriad of continuum mechanics textbooks will quickly show that
the level of mathematical formatility varies significantly based on the author. Here, we will
aim to be as formal as possible while assuming familiarity with certain results from calculus
and tensor analysis.

2.1.1 Kinematics of Continua

The first step in our journey to describe the behavior of continuous media is to define some
terminology. In our case, we aim to describe the motion of an arbitrary body that is assumed

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 4

to occupy a subregion of three-dimensional Euclidean space, E3, at some initial time t0. We
will denote this arbitrary region by B0 and refer to it as the reference configuration. The
subregion of E3 occupied by the same body (same set of material points) at some later time,
t, will be denoted by B and referred to as the current configuration. The description that we
seek is in the form of a map that transforms the body from B0 to B, which we will denote
as ϕ : B0 × R → B. In order to first develop some tools, we will assume that ϕ is known
to be continuously differentiable with respect to spatial variables. I.e., there exists a unique
second-order tensor F such that

ϕ(X2, t) = ϕ(X1, t) + F(X1, t) (X2 −X1) + o(d), (2.1)

where X1,X2 ∈ B0 are position vectors to two material points in the reference configuration,
and

lim
d→0

o(d)

d
= 0,

where d = ‖X2 − X1‖. The tensor F is what is known as the deformation gradient. A
common convention in continuum mechanics is to define this deformation gradient such that

dx = F dX, (2.2)

where x = ϕ(X, t), and hence dx and dX are vectors between two infinitesimally close
material points at the current and reference configuration, respectively. Since F is really
just a derivative of the map ϕ, it may also be denoted as

F =
∂ϕ

∂X
. (2.3)

Furthermore, note that the map ϕ can be written in terms of a displacement, i.e.

x = ϕ(X, t) = X + u(X, t).

Thus, the deformation gradient can also be written as

F = I +
∂u

∂X
. (2.4)

If the map is also assumed to be differentiable with respect to time t, its velocity field is
given by

v =
∂x

∂t
=
∂ϕ(X, t)

∂t
. (2.5)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 5

2.1.1.1 Key results from tensor algebra and calculus

In order to ensure that the deformation described by a map ϕ is in accordance with our
experience of the world, we must impose some mathematical restrictions on it. To do so,
however, we first look at quantities associated with a second-order tensor that are invariant to
a frame of reference. The values we will discuss are often simply referred to as the invariants
of a tensor. First though, let

[u,v,w] = u · (v ×w) , (2.6)

known as the box product of three vectors. The three invariants of a second-order tensor,
say A, in E3 that we will consider are I1 (A) , I2 (A) , I3 (A), such that

I1(A)[u,v,w] = [Au,v,w] + [u,Av,w] + [u,v,Aw], (2.7)

I2(A)[u,v,w] = [Au,Av,w] + [Au,v,Aw] + [u,Av,Aw], (2.8)

I3(A)[u,v,w] = [Au,Av,Aw], (2.9)

for any u,v,w ∈ E3. It can be shown that

I1(A) = tr A, (2.10)

I2(A) =
1

2

[
(I1(A))2 − I1(A2)

]
, (2.11)

I3(A) = det A, (2.12)

where tr denotes the trace of a tensor, and det denotes its determinant. The third invariant
is of key importance for the mathematical description that we seek since, from calculus, we
know that ∫

B
f dv =

∫
B0
f̂J dV, (2.13)

when f : B → R undergoes a change of coordinates, or configuration, defined by ϕ : B0 → B,
and J = det F is the determinant of its deformation gradient. Here, f̂ = f ◦ ϕ. Note that
setting f = 1 for all x ∈ B results in ∫

B
dv =

∫
B0
J dV,

which indicates that J quantifies the amount by which an infinitesimal volume element in
the reference configuration, dV , is altered by the deformation resulting from ϕ. Thus,

det F = J > 0 (2.14)

must hold in order for ϕ to make physical sense.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 6

If f is extended such that it is time dependent, i.e. f : B × R → R, its rate of change
with respect to time as the material particle at which it is evaluated is held constant is given
by

ḟ =
d

dt
f(x, t) =

d

dt
f(ϕ(X, t), t) =

∂f

∂t
+ v · grad f, (2.15)

where “grad” is the gradient differential operator with respect to x ∈ B, and v is the
velocity field of ϕ. Upper-case versions of differential operators, e.g. “Grad” indicate that
the differential operator is instead taken with respect to X ∈ B0. Note that this result is
obtained by applying the chain rule from multivariable calculus, and is referred to as the
material derivative. This definition can be extended to vector-valued functions; consider a
vector-valued function g which also depends on x and t. The material derivative of g is

ġ =
∂g

∂t
+ (grad g) v. (2.16)

While the material derivative is often denoted by

D(·)
Dt

=
∂(·)
∂t

+ v · ∇(·)

in the literature, the overhead dot will be preserved for this explicit purpose here. Note
that the material derivative of a function reparametrized to be defined in terms of X rather
than x mantains the same physical meaning while eliminating the second term in Equations
(2.15) and (2.16).

With this result and definition of the third invariant, it can be shown that

J̇ = J tr L, (2.17)

where L = grad v = grad ϕ̇ is the gradient of the velocity vector field.
Other important results are the transport relations for scalar- and vector-valued functions.

The transport relations state that for an arbitrary scalar-valued function, f ,

d

dt

∫
B
f dv =

∫
B

(
ḟ + f tr L

)
dv, (2.18)

It can also be shown that tr L = div v. Similarly, for a vector-valued function u,

d

dt

∫
B

u dv =

∫
B

(u̇ + u tr L) dv. (2.19)

Lastly, we would like to recall the divergence theorem, which allows us to transform an
integral over a volumetric domain, e.g. B, to an integral over its boundary, ∂B. We take the
general form of this theorem presented by Chadwick [16], which is∫

∂B
u⊗

(
TTn

)
da =

∫
B

(u⊗ div T + (grad u) T) dv, (2.20)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 7

where ⊗ denotes the tensor product, T is an arbitrary second-order tensor, and u is an
arbitrary vector. The reader is encouraged to arrive at familiar forms of the divergence
theorem by exploring special cases of T and u.

All of the aforementioned results will be useful for the development of the balance laws,
which in turn will give us a set of equations to solve.

2.1.1.2 Strain components along a curve

In preparation for later chapters, let us consider a continuously differentiable simple curve,
call it C0, embedded in the body of interest. That is to say that C0 ⊂ B0. Let M be a unit
vector tangent to C0 at X. Furthermore, an infinitesimal arc of the curve at X is denoted
by dX = MdS, where M is a unit vector tangent to the curve at X, and dS is the length
of the infinitesimal arc. This material curve is then mapped to C = ϕ (C0), and thus dX
is mapped to dx in the current configuration, where x = ϕ(X, t). Making use of Equation
(2.2), we can write

ds2 = dx · dx = (F dX) · (F dX) = dX ·
(
FTF

)
dX = (M dS) ·

(
FTF

)
(M dS)

=
(
M ·

(
FTF

)
M
)
dS2 = (M ·CM) dS2,

(2.21)

where dS2 = dX · dX, ds2 = dx · dx, and C = FTF is the right Cauchy-Green tensor. Note
that M ·CM can be interpreted as the “M -M” component of C since M is a unit vector.
Thus, the diagonal components of the right Cauchy-Green tensor is the square of the stretch
experienced by the curve at the material point X under the deformation described by ϕ.

Now, let us consider a second curve that intersects orthogonally with C0 at X, call it Ĉ0.
Let M̂ be the unit tangent vector to this second curve, while dX̂ and dx̂ are the correspond-
ing infinitesimal tangent vectors in the reference and current configurations, respectively.
Following the same strategy as in Equation (2.21), we see that

dx̂ · dx =
(
F dX̂

)
· (F dX) = dX̂ ·C dX

=
(
M̂ dŜ

)
·C (M dS) =

(
M̂ ·CM

)
dŜ dS.

Note that
dx̂ · dx = (m̂ dŝ) · (m ds) = (m̂ ·m) dŝ ds = cos θ dŝ ds,

where m̂ and m are the unit vectors tangent to Ĉ and C, respectively, and θ is the angle
between them. Thus,

cos θ dŝ ds =
(
M̂ ·CM

)
dŜ dS. (2.22)

This shows that the off-diagonal components of C with respect to an orthonormal basis are
the product of the stretch undergone by two infinitesimal material curve elements along the
two directions and the cosine of the resulting angle in the current configuration. We will
be making further use of the right Cauchy-Green strain tensor when discussing constitutive
equations, and Equations (2.21) and (2.22) will be applied in Section 3.3.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 8

2.1.2 Balance Laws

In the previous section, we discussed the map, ϕ, that transforms the reference configuration
of a body, B0, to the current configuration, B. The observant reader will have already noticed
that we made no comment on how ϕ is determined. While leaving this discussion general
opens the door to numerous applications, we are specifically interested in describing the
motion of continuous media constrained by the laws of physics. In order to abide by these
non-negotiable laws, we must ensure that our description of motion guarantees that:

1. mass is neither created or destroyed,

2. the rate of change in linear (angular) momentum of the body is balanced by the sum
of forces (moments) exerted on the body.

3. energy is neither created or destroyed,

These three seemingly simple postulates (at first glance), we are able to arrive at a general
mathematical description for the motion of a myriad of continuous media. First, we describe
the conservation of mass.

2.1.2.1 Conservation of mass

At this point, we will depend on our intuition of what mass is. The total mass in a sub-region
of a body in the current configuration, call it D ⊂ B, is given by

m(D, t) =

∫
D
ρ(x, t) dv,

where we assume that there exists a non-negative mass density function ρ : B ×R→ R. By
the first postulate, we must have that the mass in a fixed subregion, such as D, must remain
constant with respect to time. I.e.,

0 =
dm(D, t)

dt
=

d

dt

∫
D
ρ dv =

∫
D

(ρ̇+ ρ tr L) dv,

where we made use of the transport relation given in Equation (2.18), and we can conclude
that

∂ρ

∂t
+ div (ρv) = ρ̇+ ρ div v = 0 (2.23)

by shrinking the region D such that its volume tends to zero, which is known as the continuity
equation.

While ρ was defined as the density function in the current configuration, we can let
ρ0 : B0 → R be the referential density function. Note that

0 = ρ̇+ ρ tr L = ρ̇+ ρ
J̇

J
=

1

J

(
ρ̇J + ρJ̇

)
=

1

J
(ρJ) ,̇

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 9

which shows that ρJ is constant for all time, and hence

ρ0 = ρJ (2.24)

is the referential form of the continuity equation.
The reader will also find other mathematical forms of this postulate in the literature.

Namely,

d

dt

∫
W
ρ dv +

∫
∂W

ρv · n da = 0, (2.25)

where W is a sub-region of B that is not necessarily made up of the same material points,
∂W is its surface boundary, and n is the unit outward normal to this surface.

2.1.2.2 Balance of momentum

Next, we consider the balance of linear momentum. First, we consider two types of forces
which are recognized in continuum mechanics. Namely, body forces and traction (or surface)
forces. Body forces whose magnitude depends on the amount of matter on which it is acting
on. Let b(x, t) be the net sum of this body force per unit mass at x. Then the total body
force exerted on the region of interest is

btotal(B, t) =

∫
B
ρb dv. (2.26)

On the other hand, traction forces act on surface regions and are thus proportional in
magnitude to surface area. For this category of forces, let t(x, t; n) denote the net sum of
traction forces per unit area acting at x ∈ ∂B. Note that this traction force density depends
on the position, time, and the vector normal to the surface at x. The total traction force
exerted on B is then

ttotal(∂B, t) =

∫
∂B

t da. (2.27)

Now, recall that the linear momentum of a particle is defined as the product of its mass
and velocity. Thus, for the case of a continuous media, the total linear momentum is given
by

G(B, t) =

∫
B
ρv dv. (2.28)

Then, by the second postulate, we must have that

d

dt
G(B, t) = btotal(B, t) + ttotal(∂B, t).

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 10

In other words,

d

dt

∫
B
ρv dv =

∫
B
ρv̇ dv =

∫
B
ρb dv +

∫
∂B

t da, (2.29)

where we made use of the transport Equation (2.18) and the Continuity Equation (2.23) in
order to convert the time derivative outside of the integral into a material derivative of the
velocity field. It can be shown that there exists a unique second-order tensor T(x, t)

t(x, t; n) = Tn. (2.30)

This tensor is called the Cauchy stress tensor. Substituting this tensor into Equation (2.29)
and making use of the divergence theorem, we arrive at the governing partial differential
equation for continuous media, which is

ρv̇ = div T + ρb. (2.31)

This partial differential equation (PDE), along with a set of initial and boundary conditions
(BCs) defines an Initial Boundary Value Problem (IBVP) for which analytical solutions can
only be found for specialized cases.

While one can continue to dive deeper into the development of the Cauchy stress tensor,
we will simply state that, for our purposes, the balance of angular momentum simply provides
us with the necessary condition that

TT = T (2.32)

must hold for all x ∈ B and t ∈ R.
As we initially did with the conservation of mass, our developments to this point have all

been in the current configuration. Some massaging of the equations will lead us to conclude
that

ρ0v̇ = Div P + ρ0b, (2.33)

where Div is the divergence operator with respect to the referential coordinates, and both
v and b are assumed to have been re-parameterized with respect to these same referential
coordinates. Also,

P = JTF−T (2.34)

is known as the first Piola-Kirchhoff stress tensor. With this tensor, we can define the
referential traction force

p = PN, (2.35)

where N is the unit vector that is normal to the surface in the reference configuration, ∂B0.
We will make extensive use of these governing equations in the reference configuration.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 11

2.1.2.3 Conservation of energy

For the last postulate, we will simply state the general form of the resulting governing
equation. This is due to the fact that the conservation of energy is inherently satisfied for
the applications that we will consider.

d

dt

∫
B
ρ

(
1

2
v · v + e

)
dv =

∫
B
ρ (v · b + r) dv +

∫
∂B

(v ·Tn + h) da (2.36)

where e is the internal energy per unit mass, r is the rate at which heat is transferred to the
material per unit mass, h is the heat flux per unit area through the boundary ∂B, and all
other variables are as before.

2.1.3 Constitutive Equations

As mentioned before, the conservation of energy is inherently satisfied by our formulation.
Thus, we only need to worry about the conservation of mass and the balance of momentum.
I.e., our starting point from here on out will be

ρ0 = ρJ, X ∈ B0,

ρ0ü = Div P + ρ0b, X ∈ B0,
(2.37a)

u(X, t) = ū(X, t), X ∈ Γu0 ,

P(X, t)N(X) = p̄(X, t), X ∈ Γq0 ,
(2.37b)

u(X, 0) = u0(X), X ∈ B̄0,

u̇(X, 0) = u̇0(X), X ∈ B̄0,
(2.37c)

ρ̇+ ρ div v = 0, x ∈ B,
ρv̇ = div T + ρb, x ∈ B,

(2.38a)

v(x, t) = v̄(x, t), x ∈ Γv,

T(x, t)n(x, t) = t̄(x, t), x ∈ Γq,
(2.38b)

v(x, 0) = v0(x), x ∈ B̄, (2.38c)

where the equations on the left column are for problems formulated with respect to the
reference configuration, and those on the right with respect to the current configuration.
Note that B is the interior of the body excluding its boundary ∂B, the domains Γu and Γq
are disjointed subsets of the boundary, and B̄ denotes the closure of B. I.e., Γu ∩ Γp = ∅
and B̄ = B ∪ ∂B. The same holds true for the corresponding domains in the reference
configuration.

It is clear that there are too many unknowns for this set of equations in either case.
Thus, it is imperitive to provide additional equations in order to solve the problem. These
additional equations are the constitutive equations, which characterize the properties of
specific materials of interest. While the elegance of this field is phenomenal, we refrain
from stating more than just the necessary results for this current work. Specifically, the
constitutive equations for linear, neo-Hookean [18], and Guccione [19] solid materials are
given. The constitutive equations on Newtonian fluids will not be covered, though FEniCS
Mechanics is suited for solving these problems.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 12

Before proceeding, we remind the reader that the constitutive equations for many elastic
materials are often given in terms of a strain energy function, which can be shown to be
related to the first Piola-Kirchhoff stress tensor by

P =
∂ψ̂

∂F
= 2F

∂ψ

∂C
, (2.39)

where ψ̂ is the strain energy function expressed in terms of F, and ψ is the same quantity
re-parameterized in terms of C. Keep in mind that ψ is the more commonly used form for
reasons not discussed here.

Additionally, we would like to mention that many materials are modeled as incompress-
ible, which is accomplished through a constraint of the form

G(C, p) = φ(C)− 1

κ
p = 0, (2.40)

where p is the hydrostatic pressure, and κ is the bulk modulus of the material. In this work,
either

φ(C) =
1

2
(J − 1)2 or φ(C) =

1

2
(ln J)2 (2.41)

is used.

2.1.3.1 Linear Elastic Material

The simplest solid material that one can consider is a linearly elastic material. This material
is such that there is no need to distinguish between reference and current configurations given
that the deformation can be approximated in a linear fashion. The constitutive equation in
this equation is

T(x, t) = λ(tr ε)I + 2µε, (2.42)

where

ε =
1

2

[
∂u

∂X
+

(
∂u

∂X

)T]

is the symmetric part of the displacement gradient, and λ, µ are known as the first and
second Lamé parameters, respectively. The Lamé parameters are related to the more familiar
Young’s modulus, E, and Poisson’s ratio, ν, by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (2.43)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 13

2.1.3.2 Neo-Hookean Material

The next material we consider is one that behaves linearly under shear deformation. Unlike
a linear elastic material, however, we must maintain the distinction between the reference
and current configurations. The strain energy function for this material is given by

ψ (C) =
1

2
µ (I1 (C)− 3) +

1

2
κ (J − 1)2 , (2.44)

where µ is the shear modulus (same as the second Lamé parameter), and κ is the bulk
modulus of the material.

This results in the first Piola Kirchhoff stress tensor

P = µF + κJ(J − 1)F−T . (2.45)

For computational purposes, the multiplicative decomposition F = FvolF̄, where Fvol = J1/3I
and hence F̄ = J−1/3F, is used in order to presume an additive decomposition of the strain
energy function

ψ(C) = U(J) + ψ̄
(
C̄
)

(2.46)

in which the first component quantifies strain energy due to changes in volume, while the
second quantifies strain energy due to isochoric deformation. This decomposition of the
strain energy function is used extensively, e.g. [20, 21, 22]. It was originally formulated to
model polymers [23], but has been postulated for tissue behavior as well. The resulting first
Piola-Kirchhoff stress tensor with this decomposition is

P = J−1/3

[
J(J − 1)− 1

3
µ tr C̄

]
F̄−T + µJ−1/3F̄, (2.47)

or, in terms of F and C,

P =

[
J(J − 1)− 1

3
µJ−2/3 tr C

]
F−T + µJ−2/3F. (2.48)

One benefit of the decomposition that can be concluded from Equation (2.46) is the ability
to debug by “turning off” the volumetric component and ensuring that a constant volume
is maintained.

2.1.3.3 Guccione Material

Another constitutive equation that is used was developed by Guccione et al. [19]. This
models a transversely isotropic material with

ψ =
1

2
C
(
eQ − 1

)
(2.49)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 14

as its strain energy function, where

Q = bfE
2
11 + bt

(
E2

22 + E2
33 + E2

23 + E2
32

)
+ bfs

(
E2

12 + E2
21 + E2

13 + E2
31

)
. (2.50)

Note that these components of the Lagrangian strain tensor,

E =
1

2
(C− I) ,

are with respect to an orthonormal basis, say {b1,b2,b3}, where b1 is the fiber direction,
b2 is the direction normal to the fiber within the fiber plane, and b3 is the out-of-plane
direction. This basis can vary continuously throughout the domain. Thus, bf quantifies
the stiffness in the fiber, while bt quantifies it within the plane perpendicular to the fiber
direction, and bfs quantifies the shear stiffness in the fiber direction. On the other hand, the
scalar C scales the quantity to give the stress.

Similar to the neo-Hookean material, the additive decomposition of the strain energy
function in Equation (2.46) is used. This leads to the first Piola-Kirchhoff stress tensor

P = Pvol + Piso. (2.51)

The stress due to isochoric deformation is given by

Piso = J−2/3FŜ− 1

3
J−2/3 tr(CŜ)F−T , (2.52)

where

(2.53)
Ŝ = CeQ̄

[
bf Ē11b1 ⊗ b1 + btĒ22b2 ⊗ b2 + btĒ33b3 ⊗ b3

+ bfsĒ12 (b1 ⊗ b2 + b2 ⊗ b1) + btĒ23 (b2 ⊗ b3 + b3 ⊗ b2)

+ bfsĒ13 (b1 ⊗ b3 + b3 ⊗ b1)
]
.

On the other hand, the stress due to changes in volume is given by

Pvol = κ(ln J)F−T , (2.54)

for a compressible material where we used

U(J) =
1

2
κ (ln J)2

in this case. If the material is specified as incompressible, the volumetric portion of the stress
is given by

Pvol = −JpF−T , (2.55)

where p is the pressure and serves as the Lagrange multiplier for the incompressibility con-
straint.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 15

2.2 Discretizing the governing equations

Now that the governing equations for the motion and deformation of solid materials has
been developed, we must discretize them in order to obtain approximate solutions. This is
necessary since analytical solutions to these equations are only possible in very specialized
cases. Here, we will use a combination of the Finite Element Method (FEM) and Finite
Differences (FD) for approximating solutions to the resulting IBVP. This will, however, only
provide a brief overview of the method, and thus the reader is referred to [17] for a more
detailed discussion.

2.2.1 Variational form of PDEs

The FEM begins with a variational form of the governing equations. Such a form is typically
“derived” by integrating Equation (2.31) over the domain of the entire body, B, which is then
integrated by parts. Though there is a minor flaw in this narrative that ends up correcting
itself. This process should be considered a motivation for the variational form rather than its
derivation. This is due to the fact that a certain level of smoothness is necessary to integrate
by parts, but is then taken away in the interest of weakening what is asked of the solution.

With this is in mind, consider the variational form∫
B
ξ · ρv̇ dv +

∫
B

∂ξ

∂x
·T dv −

∫
B
ξ · ρb dv −

∫
Γq

ξ · t̄ da = 0, (2.56)

where ξ is what is commonly referred to as a vector-valued test function. In Calculus of
Variations, this will be referred to as the first variation of all possible solutions. It can be
shown that a smooth enough solution to this form, where ξ = 0 for x ∈ Γu, will also be
a solution to Equation (2.31). Note that this variational form is given with respect to the
current configuration of a body, but does not include the conservation of mass given by∫

B
ζ (ρ̇+ ρ div v) dv = 0, (2.57)

where ζ is a scalar-valued test function. Different variational forms motivated by the above
can be formulated to be better suited for boundary conditions. They can also be shown to
be equivalent when sufficient smoothness of the solution and test functions is assumed.

However, we will make exclusive use of the governing equations formulated with respect
to the reference configuration of the body. In this case, we have∫

B0
ξ · ρ0ü dV +

∫
B0

∂ξ

∂X
·P dV −

∫
B0
ξ · ρ0b dV −

∫
Γq0

ξ · p̄ dA = 0, (2.58)

where, once again, a smooth enough solution to this variational form will also be a solution
to Equation (2.33). While the conservation of energy needs to be included in most cases
formulated with respect to the current configuration, it can be shown that this is not the case

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 16

with respect to the reference configuration. This is due to the fact that a surface within B0 is
also a material surface. Thus the mass flux across any such surface will be zero. Therefore,
the conservation of mass is automatically satisfied by the fact that the variational form is
expressed with respect to the reference configuration.

2.2.2 Finite element formulation for solid mechanics

Now that we have an equivalent variational form for the governing equations of solid me-
chanics, Equation (2.58), we can discuss a bit more of the specifics. Namely that the utility
of the FEM is realized once the geometry is discretized. Furthermore, if the true solution
belongs to a function space F , the FEM uses a subspace of this such that it is spanned by
a basis with finite cardinality, which we will denote by Fh. We take {ηi}ni=1 to be the set of
basis functions where n ∈ N. In our work, we will make use of polynomial basis functions
with order p.

Now, for solid mechanics problems formulated with respect to the reference configuration,
the goal is to solve for the displacement field as a function of referential coordinates, and

potentially time. We can then represent an approximate solution uh ∈
(
Fh
)3

as a linear
combination of the basis functions, i.e.

uh(X, t) =
Nn∑
i=1

ûi(t)ηi(X), (2.59)

where ûi are the coefficients of the approximation, and Nn is the cardinality of Fh. We can
substitute this approximation of u into Equation (2.58) and obtain a system of ordinary
differential equations (ODEs) in which we will solve for ûi(t). We will write this system of
ODEs as

Mü+R(u, p) = Fb(t) + Fq(u, t),

G(u, p) = 0
(2.60)

where u and p (when incompressibility constraint is applied) are now column matrices storing
the coefficient values ûi and p̂i, respectively, for all i = 1, . . . , Nn at time t. I.e.,

u = [û0, v̂0, ŵ0, . . . , ûi, v̂i, ŵi, . . . , ûNn , v̂Nn , ŵNn]T ,

p = [p̂0, p̂1, . . . , p̂i, . . . , p̂Nn] .
(2.61)

Note that

ûi = ûiEx + v̂iEy + ŵiEz,

where Ex,Ey,Ez are the orthonormal basis vectors in the reference configuration.
Furthermore, R(u, p) is the column matrix that results from the stress tensor term in

Equation (2.58). In general, this term is not linear. The terms Fb(t) and Fq(u, t) are the

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 17

column matrices resulting from the body and traction force terms, respectively. Note that
Fq is dependent on u by its use of Nanson’s formula,

n da = JF−TN dA, (2.62)

which helps convert surface integrals between the reference and current configurations.

2.2.3 Finite difference methods

At this point, the derivatives with respect to spatial variables have been taken care of, and
hence we need to approximate the derivatives with respect to time. For the system of second-
order ODEs resulting from the FEM formulation of solid mechanics, we will be using the
Newmark scheme [24], which is a finite difference method for second order ODEs. As can be
seen in Equation (2.58), the only term that needs to be approximated using a finite difference
is u. The Newmark scheme gives

u̇n+1 = u̇n + ∆t [(1− γ)ün + γün+1] , (2.63a)

un+1 = un + u̇n∆t+
1

2
(∆t)2 [(1− 2β) ün + 2βün+1] , (2.63b)

or alternatively,

vn+1 = vn + ∆t [(1− γ)an + γan+1] , (2.64a)

un+1 = un + vn∆t+
1

2
(∆t)2 [(1− 2β) an + 2βan+1] , (2.64b)

where vn = u̇n, and an = ün, and γ, β are the Newmark scheme parameters. Typical values
used are γ = 1/2 and β = 1/4. Now with this finite difference scheme, we can rewrite
Equation (2.60) as

(2.65)Man+1 = θ [Fb(tn+1) + Fq(tn+1)−R(un+1, tn+1)]

+ (1− θ) [Fb(tn) + Fq(tn)−R(un, tn)] ,

where θ ∈ [0, 1] specifies whether the problem is integrated in time explicitly, implicitly, or a
combination of both. After this equation is solved for an+1, we can compute un+1 and vn+1

with Equations (2.64b) and (2.64a), respectively.

2.3 FEniCS Mechanics

The formulation of the resulting IBVP from continuum mechanics and the computation of
its numerical solution through the FEM was streamlined with FEniCS Mechanics (FM)—a
Python package built on top of the tools provided by the FEniCS Project [25]. While there
are many options for FEM modeling [26], FEniCS was chosen as the backend because it is
open-source, widely-used, well-supported, and has broad capabilities that are leveraged by
the FM package developed.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 18

Problem definition:

config

UFL objects:

Problem Formulation

Material Law

Numerics:

Solver Interface

Figure 2.1: Diagram indicating the flow of information in FM from the user-defined config

dictionary to the written output files.

2.3.1 Motivation

FEniCS, the backend to FM, was designed to solve problems that can be formulated in vari-
ational form. Thus, it is the perfect tool for problems that arise from continuum mechanics;
specifically when solved using the FEM method. Using FEniCS to solve such IBVPs, one
must specify the variational form of the PDEs, function space, finite element types, solver
settings, etc., through scripts. It is, however, possible to formulate a range of continuum
mechanics problems similarly, as is shown by Equations (2.56) and (2.58) where no mention
of material behavior or properties was yet made. This is the basis for FM.

With FM, a variety of continuum mechanics problems can be formulated and solved
through minor changes to a configuration file, or potentially “minimally-invasive” changes to
scripts that define a generalized mechanics problem. This results in an efficient framework
to consider a variety of mechanics problems, or testing of various modeling choices, e.g.
types of materials or boundary conditions. Overall, this package increases accessibility to
computational mechanics simulations for users with minimal programming knowledge, while
still maintaining a powerful and extensive open-source framework that can access all of the
capabilities provided through the FEniCS Project.

At the current state, FM supports both steady-state and time-dependent problems in a
single domain, and the user can choose from a list of implemented material models, or provide
their own, so long as the material is elastic (stress depends on the deformation gradient) or
viscous (stress depends on the velocity gradient). The discretization in time is handled by
single-step finite-difference schemes, including the θ-method for first order systems, and the
Newmark scheme (covered in Section 2.2.3).

2.3.2 Code structure

The overall flow of information in FM is shown in Figure 2.1. The user defines the problem
to be solved through nested Python dictionaries, which we will refer to as config. The
sub-dictionaries are named mesh, material, and formulation. In these, the user specifies
the material model, time integration parameters, domain, BCs, and the file where the mesh
is stored. Specific examples will be shown in Section 2.4, though the full documentation can
be found in [27]. This config dictionary is parsed as part of the instantiation of a problem
class.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 19

Abbrev. Full Name Abbrev. Full Name

BMP BaseMechanicsProblem EM ElasticMaterial

MP MechanicsProblem IM IsotropicMaterial

FMP FluidMechanicsProblem LIM LinearIsoMaterial

SMP SolidMechanicsProblem NHM NeoHookeMaterial [18]

MBS MechanicsBlockSolver AM AnisotropicMaterial

NVS NonlinearVariationalSolver FM FungMaterial [28]

BMS BaseMechanicsSolver GM GuccioneMaterial [19]

SMS SolidMechanicsSolver F Fluid

FMS FluidMechanicsSolver NF NewtonianFluid

Table 2.1: Abbreviations of some of the classes defined within FEniCS Mechanics. Note that
the NonlinearVariationalSolver class is defined in dolfin from the FEniCS project.

We will now use the abbreviations shown in Table 2.1. As shown in Figure 2.2, all
problem classes are child classes of the BMP class. This base class provides methods common
to all mechanics problems, including the parsing of the config dictionary. Key-value pairs
provided in config and their combinations are checked by the parsing process to ensure that
problem definitions are physically consistent.

Once config is parsed, the respective problem class—currently MP, SMP, or FMP—
defines the variational equations for the respective problem using the UFL. The MP class
defines the variational problem with separate function spaces for vector- and scalar-valued
field variables, whereas the SMP and FMP classes use the mixed function space functionality
of dolfin. The information pertaining to material models in config is passed to separate
classes defining constitutive equations, as can be seen in Figure 2.1.

With the variational equations defined through the UFL and stored as member data of
a problem object, a solver object is next created. The three current solver classes are MBS,
SMS, and FMS, and are to be used with MP, SMP, and FMP, respectively. These solver
objects have methods that use the UFL forms from the problem objects to assemble the
resulting linear algebraic system at each iteration of a nonlinear solve. This is repeated for
each time step if the problem is time-dependent. Note that SMS and FMS are a subclass of
the NVS class from dolfin through the BMS class, while MBS is a stand-alone block solver
class based on the FEniCS Application, CBC-Block [29], as shown in Figure 2.2b.

The user is expected to interact the most with the problem and solver classes mentioned
above. However, in addition to these, various constitutive models have been implemented in
a materials sub-module within FM. These constitutive models and their inheritance trees

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 20

BMP

MP SMP
FMP

(a) Classes to define the variational problem
using the UFL.

NVS

SMS

MBS

FMS

(b) Classes to assemble the variational forms
defined by problem objects, and call the nu-
merical solvers.

EM

IM

LIM NHM

AM

FM

GM

(c) Classes that define the constitutive equa-
tions for different elastic materials initiated in
SMP or MP.

F

NF

(d) Classes that define the constitutive equa-
tions for fluids initiated in FMP or MP.

Figure 2.2: Class inheritance tree for classes defined within FEniCS Mechanics.

are shown in Figures 2.2c and 2.2d. The design of FM also allows the user to define their
own constitutive equation. In order to do this, the user must define a class with expressions
of the stress tensor. Further details on this procedure can be found on [27].

In summary, FM facilitates the problem formulation and solving by providing three
overarching functionalities:

1. Key-value pairs provided, and their combinations, are checked for validity. This in-
creases accessibility by making sure that invalid, or inconsistent, values in config are
not used.

2. FM uses the problem specification provided in config to define the variational form
using the UFL.

3. The variational form defined through the UFL is used to assemble the resulting linear
systems and obtain a numerical solution to the problem.

The next section will demonstrate all of these functionalities with four different examples.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 21

2.4 Applications and examples

As previously mentioned, FM parses a Python dictionary, config, in which the user de-
fines the computational mechanics problem they wish to solve. Various examples of solid
mechanics problems solved with FM will be shown in this section.

2.4.1 Three-dimensional Box

For the first case, we formulate a solid mechanics problem on a 3D box domain subject to a
time-dependent load. Consider a three-dimensional box domain denoted by

R0 =
{

X ∈ E3

∣∣∣ (X1, X2, X3) ∈ [0, Lx]× [0, Ly]× [0, Lz]
}
, (2.66)

with Lx = 10 mm, Ly = 2 mm, Lz = 4 mm, and two boundary regions,

Γu0 =
{

X ∈ ∂R0

∣∣∣ X1 = 0
}
, (2.67a)

and

Γq0 =
{

X ∈ ∂R0

∣∣∣ X1 = 10
}
. (2.67b)

We model this as a nearly incompressible neo-Hookean material with a bulk modulus of
κ = 106 [Pa or g/mm2], a shear modulus of µ = 1333/9.242 = 144.23 [Pa or g/mm2], and
a density of ρ0 = 1055 [kg/m3] = 1.055× 10−3 [g/mm3]. The bulk and shear moduli values
were chosen to be as compatible as possible to Augustin et al. [20], though an exponential
type of strain energy function is used there, while the density was taken from Gheorge et al.
[30].

The time-dependent pressure

t̄ = −p̄(t)n ⇒ p̄ = −p̄(t)JF−TN, (2.68a)

with

p̄(t) =
1

2
p̄0 [cos (2πt)− 1] (2.68b)

is applied at X1 = 10, where p̄0 = 100 [Pa or g/mm2]. The free-body diagram as viewed
from the XY -plane for this problem is shown in Figure 2.3, where the traction force, p̄,
is distributed over the entire surface Γq0 . The resulting variational form of the governing
equations is then∫

R0

ξ · ρ0ü dV +

∫
R0

∂ξ

∂X
·P dV −

∫
Γq0

ξ · p̄ dA−
∫
R0

ζ

(
1

κ
p− φ(C)

)
dV = 0, (2.69)

such that u = 0 for X ∈ Γu0 .

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 22

R0 p̄

X

Y

Figure 2.3: Free-body diagram of the steady-state elongation of a unit square.

XY -plane
XZ-plane

Y Z-plane

Figure 2.4: Tetrahedral mesh of the 3D box domain with 9,532 nodes and 46,448 tetrahedral
cells.

The mesh used to solve this problem is shown in Figure 2.4, along with three observation
points, namely

r0 = 10Ex +
11

10
Ey +

1

2
Ez, (2.70a)

r1 = 10Ex +
11

10
Ey + 2Ez, (2.70b)

and

r0 = 10Ex +
11

10
Ey +

7

2
Ez, (2.70c)

where all components are given in millimeters. The Python script to formulate and solve
this problem is shown below:

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 23

Python code
import fenicsmechanics as fm

Region IDS

ALL_ELSE = 0

LEFT = 1

RIGHT = 2

BOTTOM = 3

TOP = 4

Limit the amount of printed messages to make logs more readable.

rank = fm.MPI.rank(fm.MPI.comm_world)

if rank > 0:

dlf.set_log_level(fm.LogLevel.ERROR)

Density from:

#

Cardiac left ventricular myocardial tissue density , evaluated by

computed

tomography and autopsy , by A.G. Gheorge et al. (2019)

#

material_dict = {

"type": "elastic",

"const_eqn": "neo_hookean",

"incompressible": True ,

"density": 1.055e-3, # g/mm^3

"mu": 1333.0/9.242 , # g/mm*s^2

"kappa": 1e6 , # g/mm*s^2

}

mesh_dict = {

"mesh_file": "mesh/box -domain.h5",

"boundaries": "mesh/box -domain.h5"

}

2e3 g/(mm*s^2) is approximately 15 mmHg

p_max = 100.0 # g/mm*s^2

a = p_max/2.0

p_inner = "{a}*(cos(2.0*pi*t) - 1.0)".format(a=a)

formulation_dict = {

"time": {

"dt": 0.01,

"interval": [0.0, 4.0]

},

"element": "p2-p1",

"domain": "lagrangian",

"bcs": {

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 24

"dirichlet": {

"displacement": [[0.0, 0.0, 0.0]],

"regions": [LEFT],

"components": ["all"]

},

"neumann": {

"regions": [RIGHT],

"types": ["pressure"],

"values": [p_inner]

}

}

}

config = {

"mesh": mesh_dict ,

"material": material_dict ,

"formulation": formulation_dict

}

fname_hdf5 = "results/hdf/displacement.h5"

fname_disp = "results/vtk/displacement.pvd"

fname_pressure = "results/vtk/pressure.pvd"

fname_config = "results/vtk/config.log"

problem = fm.SolidMechanicsProblem(config)

problem.write_config(fname_config)

solver = fm.SolidMechanicsSolver(problem , fname_disp=fname_disp ,

fname_pressure=fname_pressure ,

fname_hdf5=fname_hdf5)

solver.full_solve ()

As can be seen from the problem configuration, the deformation is simulated for four full
cycles of the loading function. The resulting deformation of the full domain during the first
and last loading cycle are shown in Figure 2.5a. Additionally, the components of displacement
at the three observation points given in Equation (2.70) are shown in Figures 2.5b-2.5c. Given
the problem formulation, including the geometry and boundary conditions, the vector-valued
displacement field exhibits symmetry with respect to the plane Z = lz/2. This can be seen
by the fact that the u3 component evaluated at r2 is the negative of the u3 component at r0.

2.4.2 Thick-walled Cylinder

For the next example, consider a thick-walled cylinder

D0 =
{

X ∈ E3

∣∣∣ R2
1 < X2

1 +X2
2 < R2

2, −L/2 < X3 < L/2
}
, (2.71)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 25

t = 0.0 [s] t = 0.25 [s] t = 0.5 [s] t = 0.75 [s] t = 1.0 [s]

t = 3.0 [s] t = 3.25 [s] t = 3.5 [s] t = 3.75 [s] t = 4.0 [s]
0

1

2

‖u
‖

[m
m

]

(a) Deformation of the box domain during the first and last loading cycle.

0.0 2.5

0

1

2

(b) Evaluted at r0

0.0 2.5

Time [s]

0

1

2

Displacement [mm]

(c) Evaluated at r1

0.0 2.5

0

1

2

(d) Evaluated at r2

u1

u2

u3

Figure 2.5: Displacement of the box-domain.

where R1 = 0.65, R2 = 1.1, and L = 1. Additionally, the surfaces

SDin =
{

X ∈ ∂D0

∣∣∣ X3 = −L/2
}
, (2.72a)

SDout =
{

X ∈ ∂D0

∣∣∣ X3 = L/2
}
, (2.72b)

SDinner =
{

X ∈ ∂D0

∣∣∣ X2
1 +X2

2 = R2
1

}
, (2.72c)

SD
Y Z

=
{

X ∈ D̄0

∣∣∣ X1 = 0
}
, (2.72d)

and

SD
XZ

=
{

X ∈ D̄0

∣∣∣ X2 = 0
}
, (2.72e)

are regions on which BCs or constraints will be imposed. Note that the superscript D denotes
the fact that these are sub-domains of D0, while D̄0 refers to the closure of D0. The BCs

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 26

imposed are

u(X, t) · Ez = u
Z
(X, t) = 0 for X ∈ Sin ∪ Sout, (2.73a)

u(X, t) · Ex = u
X

(X, t) = 0 for X ∈ S
Y Z
, (2.73b)

u(X, t) · Ey = u
Y

(X, t) = 0 for X ∈ S
XZ
, (2.73c)

and

p̄(X, t) = −p̄(t)JF−TN for X ∈ Sinner, (2.73d)

where

p̄(t) =
1

2
p̄0 (1− cos(2πt)) , (2.73e)

with p̄0 = 700 kPa. The surfaces S
Y Z

and S
XZ

, though internal surfaces, are defined in order
to constrain the solution, u, such that it is axisymmetric. The mesh was generated so that
the finite elements conform across these surfaces, i.e. the facets of the nearby tetrahedral
cells coincide with the surfaces, and is shown in Figure 2.6. Unlike the others, the last BC
shown in Equation (2.73d) is a traction BC.

Y Z-plane

XZ-plane

SDin

SDout

SDinner

Figure 2.6: Tetrahedral mesh of the thick-walled cylinder, D0, with cells conforming to the
Y Z and XZ planes. This mesh contains 2,483 nodes and 9,654 tetrahedral cells.

Though we subject this body to a time-dependent loading function, we assume a quasi-

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 27

static deformation. Thus, the resulting variational form for this problem is∫
D0

∂ξ

∂X
·P dV + p̄(t)

∫
SDinner

ξ ·
(
JF−TN

)
dA,−

∫
D0

ζ

(
1

κ
p− φ(C)

)
dV = 0, (2.74)

where we made use of the fact that p̄(t) is not dependent on spatial variables and hence can
be taken out of the integral. Here, we use the model for a nearly incompressible neo-Hookean
material with κ = 10 GPa, and µ = 1.5 MPa. Note that the density of the material is not
used here due to the fact that the inertial term has been neglected.

The Python script to solve this problem is shown below:

Python code
import fenicsmechanics as fm

material = {

"type": "elastic",

"const_eqn": "neo_hookean",

"incompressible": True ,

"density": 0.0,

"kappa": 10e9 , # Pa

"mu": 1.5e6 # Pa

}

mesh = {

"mesh_file": "mesh/thick -walled -cylinder.h5",

"boundaries": "mesh/thick -walled -cylinder.h5"

}

p_max = 7e5

p_expr = "0.5*{p_max}*(1.0 - cos(2.0*pi*t))".format(p_max=p_max)

Region IDs defined during mesh generation

INNER_WALL = 1

INLET = 3

OUTLET = 4

YZ_PLANE = 5

XZ_PLANE = 6

formulation = {

"element": "p2-p1",

"domain": "lagrangian",

"time": {

"dt": 0.01,

"interval": [0.0, 1.5]

},

"bcs": {

"dirichlet": {

"displacement": [0.0, 0.0, 0.0, 0.0],

"regions": [INLET , OUTLET , YZ_PLANE , XZ_PLANE],

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 28

"components": ["z", "z", "x", "y"]

},

"neumann": {

"values": [p_expr],

"regions": [INNER_WALL],

"types": ["pressure"]

}

}

}

config = {

"material": material ,

"mesh": mesh ,

"formulation": formulation

}

fname_config = "results/config.log"

fname_hdf = "results/hdf/displacement.h5"

fname_disp = "results/vtk/displacement.pvd"

problem = fm.SolidMechanicsProblem(config)

problem.write_config(fname_config)

solver = fm.SolidMechanicsSolver(problem , fname_disp=fname_disp)

solver.set_parameters(newton_abstol=1e-6, newton_reltol=1e-8)

solver.full_solve ()

This deformation is simulated for 1.5 cycles of the loading function, which we will make
use of in Chapter 4. The resulting deformations at t = 0, 0.25, 0.5 s are shown in Figure
2.7a. Here, we can see the axial symmetry in the magnitude of the displacement. The
displacement vector was also evaluated at

r0 =

(
R1 +R2

2

)[
cos
(π

4

)
+ sin

(π
4

)]
, (2.75)

and the cartesian and cylindrical components are shown in Figure 2.7b and 2.7c, respectively.
This further confirms that the restrictions we specified in Equations (2.73b) and (2.73c)
helped maintain the axial symmetry by the fact that the ur component is the only one of
the cylindrical components that is non-zero for all t ∈ [0, 1.5].

2.4.3 Thick-walled Ellipsoids

Last but not least, we will consider two thick-walled ellipsoids, which are often considered to
be an idealized geometry of the human left ventricle [31]. As in the case of the thick-walled
cylinder, we will subject the body to a time-dependent loading function while assuming a
quasi-static formulation to avoid unwanted wave reflections. Thus, the variational form for
these two examples is the same as Equation (2.74) when D0 is replaced with the ellipsoidal
volume and SDinner is replaced by the inner surface of the thick-walled ellipsoid.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 29

t = 0.0 [s] t = 0.25 [s] t = 0.5 [s]
0.0

0.5

‖u
‖

[m
m

]

(a) Deformation of the thick-walled cylinder at z = 0

Displacement [mm]

0.0 0.5 1.0 1.5

Time [s]

0.00

0.25

0.50

(b) Cartesian components (u1, u2, u3)

0.0 0.5 1.0 1.5

Time [s]

0.00

0.25

0.50

(c) Cylindrical components (ur, uθ, uz)

u1, ur

u2, uθ

u3, uz

Figure 2.7: Displacement of the thick-walled cylinder.

The geometries for both cases that we consider are constructed in a similar fashion.
Thus, we will go through a general construction where the (i, j) pair will help us distinguish
between different entities used. Specifically, we will use i = 1 to identify an axisymmetric
thick-walled ellipsoid, and i = 2 to identify an eccentrically aligned one. Furthermore, j = 1
will identify the inner surface, while j = 2 will identify the outer surface, in both cases
(axisymmetric and eccentric).

To begin, let us define three sub-domains of E3. Namely,

Kij =
{

X ∈ E3

∣∣∣ X ·Ai
jX < 1

}
, (2.76a)

where Ai
j = Qi

jD
i
j

(
Qi
j

)T
, and

Di
j =

(
1

aij

)2 (
lij ⊗ lij

)
+

(
1

bij

)2 (
mi

j ⊗mi
j

)
+

(
1

cij

)2

(Ez ⊗ Ez) (2.76b)

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 30

Inner (j = 1) Outer (j = 2)

Type i aij bij cij θij (deg) aij bij cij θij (deg)

Axisymmetric 1 7 7 17 0 10 10 20 0

Eccentric 2 6 6.4 14 20 10 11 20 0

Table 2.2: Axes lengths and rotations used to construct the geometries for the axisymmetric
and eccentric cases.

is the tensor defining the quadric surface with respect to its principal directions,
{
lij,m

i
j,Ez

}
,

and

Qi
j = Ez ⊗ Ez + (Ex ⊗ Ex + Ey ⊗ Ey) cos θij − (Ex ⊗ Ey − Ey ⊗ Ex) sin θij (2.76c)

is a rotation of θij about the Z-axis. Additionally,

Z i =
{

X ∈ E3

∣∣∣ X · Ez = X3 < Zi
}
. (2.76d)

Note that Kij is a volume encompassed by an ellipsoidal surface, while Z i is anything below
the plane X3 = Zi. The volumetric domain of interest is then defined by

V i = Z i ∩
(
Ki2 −Ki1

)
. (2.77)

The boundary surfaces are given by

S iinner = ∂Ki1 ∩ Z̄ i, (2.78a)

and

S ibase = ∂Z i ∩
(
K̄i2 − K̄i1

)
, (2.78b)

where Z̄ i, K̄i1, and K̄i2 refer to the closure of the sets Z i, Ki1, and Ki2, respectively. The values
of the constants for each case are given in Table 2.2.

Furthermore, the BCs for both cases are

u (X, t) = 0 for X ∈ S ibase, (2.79a)

and

p̄(X, t) = −p̄(t)JF−TN for X ∈ Sinner, (2.79b)

where we will define p̄(t) for each case later.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 31

S1
base S1

inner

(a) Axisymmetric

S2
base

S2
inner

(b) Eccentric

Figure 2.8: Tetrahedral meshes used for the thick-walled ellipsoids. The axisymmetric mesh
contains 21,504 nodes and 108,738 tetrahedral cells, while the eccentric mesh contains 23,317
nodes and 119,360 tetrahedral cells.

Fibers

Sheets

Figure 2.9: Fibers and sheets

The meshes used for the axisymmetric and eccentric ellip-
soids are both shown in Figure 2.8. The material is modeled
using the Guccione model [19] for the axisymmetric case, and
as a neo-Hookean material for the eccentric case. Each case
is also subject to different traction BCs as well.

2.4.3.1 Axisymmetric Thick-walled Ellipsoid

Given that the model provided by Guccione et al. is a trans-
versely isotropic constitutive equation, we need fiber and
sheet directions. Both of these are shown in Figure 2.9. The
loading function for this case was set to

p̄(t) = 10t. (2.80)

Additionally, the material parameters were chosen to be
C = 10 kPa, bf = bt = bfs = 1, and the deformation was

simulated for t ∈ [0, 1], as can be seen in the Python script below:

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 32

Python code
import fenicsmechanics as fm

Material model and parameters

mat_dict = {

"const_eqn": "guccione",

"type": "elastic",

"incompressible": True ,

"density": 0.0,

"bt": 1.0, "bf": 1.0, "bfs": 1.0, "C": 10.0,

"fibers": {

"fiber_files": ["n1-p0.xml.gz",

"n2-p0.xml.gz"],

"fiber_names": ["n1", "n2"],

"element -wise": True}

}

Mesh file names

mesh_dict = {

"mesh_file": "mesh.xml.gz",

"boundaries": "boundaries.xml.gz"

}

Time integration parameters , BCs , and polynomial degree.

formulation_dict = {

"time": {

"dt": 0.01,

"interval": [0., 1.]

},

"element": "p2-p1",

"domain": "lagrangian",

"bcs":{

"dirichlet": {

"displacement": [[0., 0., 0.]],

"regions": [10], # Integer ID for base plane

},

"neumann": {

"regions": [20], # Integer ID for inner surface

"types": ["pressure"],

"values": ["10.0*t"]

}

}

}

Combine above dictionaries into one.

config = {"material": mat_dict , "mesh": mesh_dict ,

"formulation": formulation_dict}

Create problem and solver objects.

fname_disp="results/displacement_output.pvd"

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 33

Displacement [mm]

0.0 3.0 6.0 9.0

‖u‖ [mm]

(a) Reference configuration (b) Current configuration (c) Sliced view

Figure 2.10: Deformation of thick-walled axisymmetric ellipsoid.

problem = fm.SolidMechanicsProblem(config)

solver = fm.SolidMechanicsSolver(problem , fname_disp=fname_disp)

Numerically solve the problem.

solver.full_solve ()

The initial configuration, and the configuration at t = 1 s are both shown in Figure 2.10.
Additionally, a convergence study was performed and the locations of the apical endocardium
and epicardium were compared. These displacements for the different mesh refinements are
shown in Table 2.3, and can be directly compared to the results in Figure 6 in Land et
al. [31].

2.4.3.2 Eccentric Thick-walled Ellipsoid

Similar to the axisymmetric case, the pressure BC applied to the inner wall was linear for
t ∈ [0, 1) s. However, this case is simulated for t ∈ [0, 3] s, where the pressure applied from
t = 1 to t = 3 is given by a piecewise function with a period of T = 1 s, and depends both
on time, t, and on the relative position along its axis. Let us define

Ẑ =
Z − Zmin

Zmax − Zmin

, (2.81a)

and

τ = t− btc. (2.81b)

Note that Ẑ is the ratio of the distance between the apex of the inner surface and its base,
whereas τ is the decimal portion of the time; both of these variables will always be between

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 34

Final Apex Location (z, mm)

Mesh Size (µm) DOF (u) DOF (p) Endocardium Epicardium

2000 6264 362 -26.85 -28.09

1000 63630 3084 -26.68 -28.34

500 475176 21504 -26.67 -28.33

300 2156805 94622 -26.67 -28.33

Table 2.3: Convergence study results for the ellipsoid problem. P2-P1 elements were used
for all simulations. Endocardial and epicardial apex locations are in agreement with Figure
6 in Land et al. [31].

zero and one. Also, let

t̂1 = t̂1(Ẑ) = t10 + Ẑ (t11 − t10) , (2.81c)

and

t̂2 = t̂2(Ẑ) = t20 + Ẑ (t21 − t20) . (2.81d)

Now, let us define the piecewise function

g(τ, Ẑ) =

1
2

(
1− cos

(
πτ
t̂1

))
τ ∈ [0, t̂1)

1 τ ∈ [t̂1, t̂2)
1
2

(
1 + cos

(
π(τ−t̂2)

1−t̂2

))
τ ∈ [t̂2, 1]

. (2.82)

Note that, depending on the specific values of t10, t11, t20, and t21, g(τ, Ẑ) will resemble a
smoothed step function, where the cosine functions are used to smooth the increase from
zero to one.

Now with all of the preliminary variables and functions in place, let us define the pressure
applied on the inner surface, S2

inner, as

p̄(Ẑ, t) =

{
p̄0t t ∈ [0, 1)

p̄0

(
1− g(Ẑ, t)

)
t ∈ [1, 3]

. (2.83)

All of this combined results in a step-like increase of the pressure applied to the inner wall,
while ensuring that the reduction of pressure occurs faster at the base than at the apex. This
is shown in Figure 2.11. Note that the parameters were set to zmin = −15 mm, zmax = −1
mm, t10 = 0.4, t20 = 0.4, t11 = 0.3, t21 = 0.5, and p0 = 100 Pa.

The Python script to formulate and solve the eccentric case is shown below:

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 35

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

p̄(t)

p̄0

Scaled Pressure

Apex

Mid

Base

Figure 2.11: Pressure wave form applied at S2
inner.

Python code
import fenicsmechanics as fm

from pressure import create_pressure_expression

BASE = 10

ENDO = 20

mat_dict = {

"type": "elastic",

"incompressible": True ,

"const_eqn": "neo_hookean",

"density": 0.0, # g/mm^3

"mu": 1333.0/9.242 , # g/mm*s^2

"kappa": 1e6 , # g/mm*s^2

}

mesh_dict = {

"mesh_file": "mesh/ellipsoid -eccentric.h5",

"boundaries": "mesh/ellipsoid -eccentric.h5"

}

zmin = -15.0

zmax = -1.0

p0 = 50.0

p_inner = create_pressure_expression(p0 , zmin , zmax)

formulation_dict = {

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 36

’time’: {

’dt’: 0.01 ,

’interval ’: [0.0, 3.0]

},

’element ’: element ,

’domain ’: ’lagrangian ’,

’bcs’: {

’dirichlet ’: {

’displacement ’: [[0.0, 0.0, 0.0]],

’regions ’: [BASE]

},

’neumann ’: {

’regions ’: [ENDO],

’types’: [’pressure ’],

’values ’: [p_inner]

}

}

}

Note that there is additional Python and C++ code where the pressure wave form shown in
Figure 2.11 that is not shown here. This code can be found in Appendix A. The resulting
deformation is shown in Figure 2.12.

This chapter includes substantial portions (including but not limited to text, figures,
and simulation results) from [15] in collaboration with Christoph M. Augustin, and Shawn
C. Shadden.

CHAPTER 2. COMPUTATIONAL SOLID MECHANICS 37

t = 0.0 [s] t = 0.25 [s] t = 0.5 [s]

t = 0.75 [s] t = 1.0 [s] t = 2.0 [s]

t = 2.25 [s] t = 2.5 [s] t = 2.75 [s]

t = 3.0 [s]

0.0 2.5 5.0

‖u‖ [mm]

Figure 2.12: Deformation of the thick-walled eccentrically aligned ellipsoid for t ∈ [0, 1] ∪
[2, 3].

38

Chapter 3

In vivo Myocardial Strain

As mentioned in Section 1.1, the overarching goal of this work is to enhance the diagnosing
of ESRD patients with heart disease using sequences of two-dimensional medical images ob-
tained through cardiac magnetic resonance (CMR) imaging. A description of the framework
developed in order to compute the planar deformation of the LV and its results when applied
to numerous subjects will follow.

3.1 Motivation

Images used for this study were acquired by M.H. Vandsburger and colleagues as a part
of earlier studies [9, 10]. The two-dimensional CMR images were acquired along a short-
axis plane of the heart, as can be seen in Figure 3.1. Multiple parallel sets of images were
obtained for each patient at different locations along the long axis. Due to the imaging
protocol and the varying anaerobic endurance between patients, the number of frames taken
is not guaranteed to be uniform at different short-axis planes for each patient. Furthermore,
the number of locations used along the long axis also varies from patient to patient.

Additionally, the number of frames per cardiac cycle reduces as the heart rate of the
subject increases. Because of this, there is no guarantee that the number of frames per
cycle at different short-axis planes will remain constant for a single patient, let alone across
multiple patients. This is both due to the effect of the varying fitness levels across patients
and the need for expedient results in some cases. While spatial and temporal interpolation
can be performed to reconstruct the time-resolved 3D geometry of the left ventricle, we
are interested in using data that is generally accessible in clinical settings to determine the
amount of strain undergone by the heart. Thus, we aim to study the deformation confined
to each image plane which we will denote Pm for m = 1, 2, . . . , Np, where p denotes a unique
patient identifier.

The human LV undergoes complex deformations which consists of contracting, twisting,
and translating motions [14]. Thus, there is no guarantee whatsoever that the part of the
myocardial LV tissue observed on one of the imaging planes, Pm, at some time ti will be

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 39

Left Atrium

Left Ventricle

Right Atrium

Right Ventricle

Short-Axis Planes

Figure 3.1: Cross section schematic of the four-chamber plane through the human heart
showing the cutting plane line of two short-axis planes. This schematic was derived from
[32].

the exact same part of the tissue at some other time tj, where i 6= j. Nevertheless, we can
identify the intersection of the inner and outer walls of the LV, named the endocardium and
epicardium respectively, and Pm with a higher degree of certainty. As a result, we perform
a segmentation of the LV for all of the available frames of the cardiac cycle. Our goal is
then to compute some metric of deformation for the region enclosed by the endocardium and
epicardium within said image plane.

While there has been extensive research in computing strain from medical images, many
approaches do not guarantee a smooth and differentiable map, and some are only applicable
to small deformations as mentioned by Beg et al. [33]. Hence, we turn to the large defor-
mation diffeomorphic metric mapping (LDDMM) algorithm that they propose as a result.
This algorithm requires that the solution to the shape matching problem simultaneously
be a solution to a differential equation, which leads to a diffeomorphism that transforms a
template shape into a target one. Having a diffeomorphism is specifically of interest here
because the map must represent a realistic and physiological deformation. For an extensive
discussion of the LDDMM algorithm, the reader is referred to Shapes and Diffeomorphisms
by Laurent Younes [34].

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 40

k = 0

k = 6

k = 12

Figure 3.2: Full image sequence at one location along the long axis for one patient.

3.2 Planar Deformation Framework

As previously mentioned, the full pipeline of computing LV deformation begins with a se-
quence of 2D medical images, which we denote by

(Ik)
Nps−1
k=0 , (3.1)

where Nps is the total number of images in the sequence for a given patient p, at a slice or
image plane s. An example of such an image sequence is shown in Figure 3.2. While it is
possible to apply registration techniques to the images themselves, we opted for applying it
to triangulated surfaces representing the left ventricular myocardium due to the previously
mentioned fact that there is no guarantee that the set of material points in one frame of
the image sequence will be present in the remaining frames. Thus, the only geometric enti-
ties of the LV that can be identified with confidence are the endocardium, epicardium, and
the myocardium within the two; with the exception of intra- and inter-operator variations.
Furthermore, reducing the input to the framework to only the segmentations of the endo-
cardium and epicardium makes the framework invariant to the imaging modality used so
long as segmentations can be obtained.

Each full sequence of images within a particular image plane, Pm, was used to identify
and segment the LV region. These segmentations were obtained with the segmentation ca-
pabilities of the free academic version of the Medviso Segment software [35, 36]. A full image
sequence, along with the resulting curve segmentations of the endocardium and epicardium,
denoted by Cendo(tk) and Cepi(tk) respectively for k = 0, 1, . . . , Nps − 1, are shown in Figure

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 41

3.3a. We have highlighted the frame k = 8 due to the fact that this segmentation has the
largest Hausdorff distance between the endocardium and epicardium over the entire cardiac
cycle imaged. The Hausdorff distance at time tk is given by

bmax(tk) = max

{
sup

x∈Cendo(tk)

d(x, Cepi(tk)), sup
y∈Cepi(tk)

d(Cendo(tk), y)

}
, (3.2)

where

d(x, C) = inf
y∈C

d(x, y) (3.3)

is the shortest distance between a point x and a curve C. Note that the distance between
two points, d(x, y), is taken to be the Euclidean norm in our case. The maximum Hausdorff
distance for a sequence on a given image plane is given by

b̂max = max {bmax(tk)}Nps−1
k=0 . (3.4)

Once all of the frames are segmented, a Delaunay triangulation of the interior is generated
to represent the myocardial region via the MeshPy package [37], which provides a Python
interface to the open source libraries Triangle [38, 39], Tetgen [40], and Gmsh [41]. Given
that we are using 2D triangular meshes, only the interface to Triangle was used. In order to
specify a mesh element size we define the unitless parameter

σmax =
b̂max

hmax

, (3.5)

where

Amax =
1

2
h2

max (3.6)

is the maximum area provided to MeshPy as the element size. The utility of the unitless
parameter σmax, which will be referred to as the mesh resolution, will be clear in Chapter 4.
Once a mesh element size is specified, a sequence of meshes is generated. Figure 3.3b shows
this sequence for the images shown in Figure 3.2 with σmax = 5 for illustration purposes only.
Note that the segmentation and mesh for the frame with the maximum Hausdorff distance,
t8, are again highlighted in Figure 3.3b.

These triangular meshes are now target surfaces for the registration algorithm, which we
refer to as Tk, for k = 0, 1, . . . , Nps − 1. Recall that a mesh T is uniquely identified by a
vertex set and a cell connectivity set, or edge set if preferred. All meshes in the sequence
are generated independently, and thus there is no guarantee that either the vertex or cell
connectvity sets will be the same and/or have a one-to-one correspondence with each other
for any given target pair. Thus, there is no straightforward way to compute displacements
at this stage. This is where the LDDMM algorithm comes in.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 42

k = 0

k = 6 k = 8

k = 12

k = 8

(a) Full image sequence on the left with segmentations. The thickest segmentation for this case is
shown again on the right.

T0

T6 T8

T12

T8

(b) The target meshes, Tk, is shown overlayed on the images and segmentations.

Figure 3.3: Schematic of the diffeomorphic registration framework used to compute planar
deformation.

We must designate one of the target meshes as the template mesh, which will be trans-
formed to fit the remaining targets. In order to prevent the mesh quality from deteriorating
too much, we choose the mesh corresponding to the segmentation with the largest Hausdorff
distance between the endo- and epicardium. This, in combination with the mesh element
size defined through Equations (3.5) and (3.6), also increases the number of elements across
the thickness on which the resulting deformation will be distributed. The larger number of
triangular elements for t8 can be seen in Figure 3.3b. We will refer to the template mesh as
Tk0 where k0 ∈ [0, Nps − 1] is now a fixed index dependent on p and s.

With the target meshes and a designated template mesh, we are now prepared to apply
the LDDMM algorithm to a sequence of template-target surface pairs through the Python
code made available by Laurent Younes [42]. The formulation used in this code base makes
extensive use of kernel functions to represent the solution to the LDDMM optimization

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 43

t0 t7 t8 t9 t17...

Figure 3.4: The template mesh surface and the target meshes to which it is mapped to.
Note that the maroon arrows indicate registration between two consecutive images, while
red indicates multiple registrations with intermediate images that are not shown.

problem. The user is allowed to specify the radii of kernel functions used. For more detailed
information, the reader is again referred to [34]. In light of our definition of the mesh
resolution, σmax, we similarly define a kernel radius ratio in terms of the largest thickness,
namely

γmax =
b̂max

σk
, (3.7)

where σk is the kernel radius itself.
Since the template is determined by the segmentation with the largest thickness (k = k0),

we will need to apply the algorithm to pairs of surfaces both backward and forward along
the ordered sequence. I.e., the algorithm will be applied to the surface pairs (Mk, Tk+1) for
k = k0, k0 + 1, . . . , Nps − 2, and to the surface pairs (Mk, Tk−1) for k = k0, k0 − 1, . . . , 1,
where Mk denotes the template deformed to match the shape of the target Tk. I.e.,

Mk = ϕ̂k0,k(Tk0) =

{
ϕ̂k−1,k(Mk−1) = ϕ̂k−1,k ◦ · · · ◦ ϕ̂k0,k0+1(Tk0) k ≥ k0

ϕ̂k+1,k(Mk+1) = ϕ̂k+1,k ◦ · · · ◦ ϕ̂k0,k0−1(Tk0) k < k0

, (3.8)

where we define Mk0 = ϕ̂k0,k0(Tk0) = Tk0 since ϕ̂k0,k0 is the identity map. Note that ϕ̂j,k
will be a composition of solutions to the LDDMM algorithm for |j−k|> 1. Figure 3.4 shows
a flow chart of the forward and backward directions of registration from the template mesh.
Three sequences result from this process:

1.
(
ϕ̂k,k+1

)Nps−2

k=k0
: the sequence of forward mappings,

2.
(
ϕ̂k,k−1

)k0
k=1

: the sequence of backward mappings, and

3. (Mk)
Nps−1
k=0 : the sequence of the deformed template mesh shown in Figure 3.5.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 44

M0

M6 M8

M12
0

2

4

6

8

10

‖u‖ [mm]

Figure 3.5: The deformed template mesh and the resulting displacement field with respect
to M0.

With these three sequences at our disposal, we are well posed to compute displacements
at the vertices of the template mesh, Tk0 , since now all Mk have the same mesh topology.
Furthermore, we can designate any of the deformed meshes to be our reference. Thus, we will
takeM0 to be our reference configuration to compute the displacement field, as well as any
subsequent strain measures. Specifically, we will use a linear finite element representation of
the displacement, û(tk), as discussed in Section 2.2 to represent the displacement field. The
resulting displacement fields for the example case are shown Figure 3.5. The computation
of the strain in order to quantify the myocardial tissue deformation will be discussed in the
following section.

3.3 Strain Computations in non-Circular Domains

As mentioned in Section 2.1.1.2, the square of the strain along a curve with tangent vector
M is given by

CMM = M ·CM,

where C = FTF is the right Cauchy-Green strain tensor. But first, we must specify the
curves that are of interest.

Given that the short-axis view of the LV is a near-circular region, strain measures of the
LV are often given in terms of radial and circumferential components, such as in [43, 44, 45].
While this is easy to do in an exactly circular domain by using the cylindrical orthonormal
basis (er, eθ, ez), it is less clear what is meant by the radial and circumferential directions

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 45

0.0 0.5 1.0

f

(a)

Tangent Normal

(b)

Figure 3.6: Solution to the BVP given in Equation 3.9, and the resulting unit tangent and
normal vectors. Note that the vectors have been scaled for improved visualization.

in an arbitrary LV geometry. For our purposes, we will define the circumferential directions
to be along the level sets of the solution to Laplace’s equation with constant Dirichlet BCs
applied at the endo- and epicardium. I.e., the level sets of f such that

∆f = 0, for X ∈M0, (3.9a)

f = 0, for X ∈ Cendo(t0), (3.9b)

f = 1, for X ∈ Cepi(t0), (3.9c)

where ∆ is the Laplacian differential operator here. This BVP is solved on the reference
meshM0, and not the template meshMk0 = Tk0 , using first-order continuous Galerkin finite
elements. While the solution is not linear, it still provides a systematic way of identifying
curves of interest.

The solution to the BVP given in Equation (3.9) for the deformed mesh M0 shown in
Figure 3.5 is shown in Figure 3.6a, and the resulting level sets,

Cj =
{

X ∈M0

∣∣∣ f(X) = 0.1j
}

(3.10)

for j = 1, 2, . . . , 9, extracted via the contour filter provided by VTK [46], are shown in Figure
3.6b. We will refer to the Cj as the interior curves of the domain. Once the curves have been
extracted, we can compute the Frenet-Serret apparatus while keeping in mind numerical

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 46

errors caused by interpolation or floating point arithmetic. Given a parameterization of a
curve, say x(s), the equations for the Frenet-Serret apparatus are

t(s) =
x′(s)

‖x′(s)‖
, b(s) =

y(s)

‖y(s)‖
, n(s) = b(s)× t(s), (3.11a)

κ(s) =
‖y(s)‖
‖x′(s)‖3

, τ(s) = x′′′(s) · y(s), (3.11b)

where y(s) = x′(s)× x′′(s), and

x′(s) =
dx

ds
, x′′(s) =

d2x

ds2
, x′′′(s) =

d3x

ds3
. (3.12)

Note that the parameterization does not need to be with respect to arc length for these
equations.

Given that we are treating all deformations as planar within Pm, the binormal vector
and torsion are given by b(s) = ez, and τ(s) = 0 for every interior curve across all cases,
respectively. Figure 3.6b shows the unit vectors that are tangent (orange) and normal (blue)
to the interior curves (indigo). With FE representations of the Frenet-Serret apparatus, we
have everything we need to compute the strain components along the interior curves.

First, we compute the left Cauchy-Green strain tensor, C, on the full triangular mesh
M0 for each û(tk), k = 0, 1, . . . , Nps − 1. Then, we evaluate the tensor on the curve meshes
and compute its three components (the tensor is symmetric and 2D)

Ctt = t ·Ct, Cnn = n ·Cn, Cnt = n ·Ct, (3.13)

which we will refer to as the circumferential, radial, and shear components along the curves,
respectively. Note that

Cbt = Ctb = Cbn = Cnb = 0, and Cbb = 1 (3.14)

for all cases due to our assumption of planar motion.
The curve strain components for the example case are shown in Figures 3.7a-3.7c. We

can see that as the LV constricts, the circumferential component of strain, Ctt, is less than 1.
This indicates that the material curve is decreasing in length (at least locally), which makes
physical sense since the overall circumference of each curve decreases during this phase of
the cardiac cycle. However, the radial component, Cnn, increases by a factor of 8. This is
due to the fact that the distance between the endocardium and epicardium increases as the
LV constricts, thus elongating (or thickening) the tissue in the radial direction. Lastly, the
shear component of strain gives a measure of the amount of twist produced by the LDDMM
solution.

The convergence and accuracy of the displacement, ureg, and the strain C resulting from
the framework is studied in Chapter 4. Specifically, the variation in the error of the resulting
displacement and strain fields are examined as a function of σmax and γmax. It was concluded
that σmax = 10 and γmax = 2 will be used for studying patient data.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 47

M0

M6 M8

M12

0.5

1.0

1.5

Ctt

(a) The circumferential component of the right Cauchy-Green strain, Ctt = t ·Ct.

M0

M6 M8

M12

2

4

6

8
Cnn

(b) The radial component of the right Cauchy-Green strain, Cnn = n ·Cn.

M0

M6 M8

M12

−0.5

0.0

0.5

Cnt

(c) The off-diagonal component of the right Cauchy-Green strain, Cnt = n ·Ct.

Figure 3.7: The three components of the 2D right Cauchy-Green tensor.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 48

Sex No. Patients Range Mean Median

All 35 32-79 54 54

Female 18 37-79 53.9 51.5

Male 17 32-78 54.1 56

Table 3.1: Age demographics of patients used for statistical testing.

3.4 Population Study

The CMR image data sets that we used for this study are a subset of those used in [10]. The
age demographics of the subpopulation used for this study are shown in Table 3.1. Given the
reduced accuracy of the framework when applied closer to the apex of the ellipsoid, discussed
in Sections 4.3.1.3 and 4.3.2.3, image sequences closer to the middle of the heart were chosen
for all patients. Image planes too close to the base and showing too much of the aortic arch
were neglected due to the inability to confidently identify the myocardium throughout the
entire cardiac cycle. This led to a reduction in useable image sequences for some patients.
For consistency, the image sequence closest to the middle was used. The image slices are
numbered from 1-8, for example, with 1 being the closest to the base and 8 being the closest
to the apex. Thus, the slice chosen for each patient was between 3-5, depending on the
specific patient and the usability of the image sequences.

The registration framework was applied to each image sequence; beginning with the
segmentation and ending with the computation of curve strains. The end goal here is to
identify if there are statistically significant differences in the strain components obtained
through this framework between the control patients and those with CKD.

3.4.1 Statistical analysis

Here, a rudimentary statistical analysis is performed. First, a t-test is applied to check if
there is a significant difference between the subjects known to be control patients and those
with CKD. Second, a k-means cluster analysis is performed using various quantities to test
the viability of this framework as a diagnostic tool.

3.4.1.1 Student t-test of Control vs. CKD

Given that it is known which are the control patients and which have CKD, a t-test was
performed to determine which parameters, if any, are significantly different between the two
groups of patients. There are n1 = 20 control patients, and n2 = 15 patients with CKD.
Further, let X̄1, X̄2 denote the sample means, and s1, s2 the unbiased sample variances. SciPy

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 49

provides a function to perform a t-test with equal or unequal sample sizes, as well as equal
or unequal sample variances [47].

The t-statistic for unequal sample sizes with 1
2
< s1/s2 < 2 is given by

t =
X̄1 − X̄2

sp
√

1
n1

+ 1
n2

, (3.15a)

where

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(3.15b)

is the pooled standard deviation. On the other hand, the t-statistic is given by

t =
X̄1 − X̄2

s∆̄

, (3.16a)

with

s∆̄ =

√
s2

1

n1

+
s2

2

n2

(3.16b)

when s1 > 2s2 or s2 > 2s1. The choice between Equations (3.15) and (3.16) were made by
comparing the sample unbiased variances at runtime.

The full framework has afforded an extensive list of values that can be subject to the
t-test; the choice of spatial and temporal metrics used also extend this list. One anecdo-
tal observation made during visual inspection of the registration results was the increased
dispersion of the strain component values for a control patient vs. one with CKD. This dis-
persion of values at any given time can be quantified by computing the second moment of
the strain with respect to the spatial variables or, similarly, the standard deviation of the
strain values throughout the spatial domain at any given time step.

As will be discussed in Section 4.3, a metric was decided for both the spatial and temporal
dimensions. Specifically, the mean and standard deviations throughout the spatial domain
of the strain components were considered as a function of time. Then, three metrics over
the temporal domain were used: (1) the mean value over time, (2) the maximum value over
time, and (3) the value at the time point with the thickest segmentation (denoted by k0

above) which is referred to as the n-max value. The results of the Student t-test for the
values mentioned above are shown in Table 3.2. In addition to categorizing the spatial and
temporal evaluations for each component of strain, it is reported whether the population
unbiased standard deviation was found to be similar as discussed above. If this entry is
True, Equation (3.15) was used, while Equation (3.16) was used when it is False. In addition
to the t-statistic and p values shown in Table 3.2, box plots for the spatial means and spatial
standard deviations of the strain components are shown in Figures 3.8 and 3.9, respectively.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 50

Spatial
Evaluation

Component Temporal
Evaluation

Similar
Variance

t-statistic p-val

Mean

n ·Cn

mean True 0.3868 0.7014

max False -0.4991 0.6211

n-max False -0.4894 0.6278

n ·Ct

mean False -1.8361 0.0798

max True -0.0445 0.9648

n-max False -0.0771 0.9393

t ·Ct

mean True -1.1958 0.2403

max True 0.5102 0.6133

n-max False -1.1003 0.2825

Standard
Deviation

n ·Cn

mean False 0.2801 0.7819

max True 0.0519 0.9589

n-max True 0.4615 0.6475

n ·Ct

mean True 0.5237 0.6040

max False -0.3068 0.7609

n-max False -1.1258 0.2687

t ·Ct

mean False 2.9882 0.0079

max False 3.0113 0.0069

n-max True 3.1301 0.0036

Table 3.2: Student t-test performed on the mean and standard deviation over spatial variable
of the three strain components.

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 51

2.0

3.0

Mean

2.5

5.0

7.5

Max

2.5

5.0

7.5

n-max

−0.05

0.00

0.05

0.0

0.1

−0.05

0.00

0.05

C
on

tr
ol

C
K

D

0.7

0.8

0.9

C
on

tr
ol

C
K

D

1.00

1.05

C
on

tr
ol

C
K

D

0.6

0.8

n ·Cn

n ·Ct

t ·Ct

Spatial Mean

Figure 3.8: Box plots for the spatial mean of the strain components for control and CKD
patients.

The results summarized in Table 3.2 clearly indicate that the null hypothesis—differences
in two groups are due to chance alone—cannot be rejected for any of the strain components
when the spatial mean is used. Furthermore, the null hypothesis can only be rejected for
the circumferential component, t ·Ct, using the spatial standard deviation. This can also be
seen in the box plots. The range of strain component values for the control vs. CKD patients
exhibit significant overlap for all except the spatial standard deviation of the circumferential
component; specifically evaluated at n-max. Thus, it can be said that with this framework,
the circumferential component of strain is the most reliable when differentiating between
control and CKD patients based on these subjects.

3.4.1.2 Cluster Analysis

In addition to the Student t-test, a k-means algorithm was applied to the resulting strain
evaluations discussed above. The k-means algorithm is a clustering algorithm designed to
group an arbitrary set of data points into k subgroups, or clusters, by iteratively computing
the means of the subgroups and updating the clusters until convergence is reached [48].

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 52

0.5

1.0
Mean

1.0

2.0

3.0
Max

1.0

2.0

3.0
n-max

0.05

0.10

0.1

0.2

0.05

0.10

0.15

C
on

tr
ol

C
K

D

0.05

0.10

C
on

tr
ol

C
K

D
0.1

0.2

C
on

tr
ol

C
K

D

0.10

0.15

n ·Cn

n ·Ct

t ·Ct

Spatial Standard Deviation

Figure 3.9: Box plots for the spatial standard deviation of the strain components for control
and CKD patients.

Convergence is reached when the members of the subgroups no longer change. Thus, an
initial guess of the mean values for each cluster is required in order to initially assign data
points to clusters.

Recall that the circumferential strain component was shown to have the largest statis-
tically significant difference between control patients and those with CKD when using the
n-max of the spatial standard deviation. Nevertheless, the k-means algorithm was applied
to 1-3 components at a time in order to provide a complete comparison.

The patient classifications resulting from the cluster analysis when using different compo-
nents of the strain are shown in Table 3.3. The largest number of correct classifications—true
positive and true negative—for any of the combinations is 24. However, it can be argued
that the best results in a clinical scenario are those that produce the least number of false
negative classifications. This is due to the fact that when a test results in a negative clas-
sification when it is truly positive, there is more potential for the patient to be neglected
when they are in need of treatment. On the other hand, a false positive will tag a patient as
needing treatment, likely subjecting them to further studies to confirm or reject the initial

CHAPTER 3. IN VIVO MYOCARDIAL STRAIN 53

Component Used True False

Spatial
Evaluation

n ·Cn n ·Ct t ·Ct Positive Negative Positive Negative

Mean

Yes No No 0 18 2 15

No Yes No 8 9 10 8

No No Yes 2 12 13 8

Yes Yes No 0 18 2 15

Yes No Yes 0 18 2 15

No Yes Yes 7 17 3 8

Yes Yes Yes 0 18 2 15

Standard
Deviation

Yes No No 7 17 3 8

No Yes No 14 0 9 12

No No Yes 12 12 8 3

Yes Yes No 7 17 3 8

Yes No Yes 7 17 3 8

No Yes Yes 14 0 9 12

Yes Yes Yes 7 17 3 8

Table 3.3: Classification of patients using the k-means algorithm on the n-max temporal
evaluation of the strain components, with the most ideal scenario highlighted.

diagnosis. With this in mind, the cluster analysis performed on the n-max spatial standard
deviation of the circumferential component of strain, t · Ct, is the most ideal out of all of
the combinations presented and is highlighted in Table 3.3.

The framework presented in this chapter allowed us to compute strains from planar images
by applying a registration framework to triangular surfaces used to represent myocardial
regions; all while being agnostic to the imaging modality. Moreover, the components of
strain were extracted through a systematic procedure applicable to generic LV geometries.
It was found that the circumferential component of strain resulted in the largest statistically
significant difference between control patients and those with CKD. While the population
size considered here is relatively low, it serves as a provisional study ready for further devel-
opment.

54

Chapter 4

Validation of Planar Strain
Computations

As mentioned in Section 3.2, the values for the mesh resolution and the kernel sigma ratio
were chosen to be σmax = 10 and γmax = 2 for the patient data. In this chapter, the analysis
that led to this choice of parameters is presented.

Note that it is impossible to know what the true deformation of the myocardium in any
patient is. Thus, it is impossible for us to perform a conclusive analysis of the accuracy and
precision of the registration framework developed in Chapter 3 using patient data. Therefore,
we will use the simulation results presented in Section 2.4 as the ground truth, and run this
data through our registration framework to validate its utility. Specifically, we will use the
results from (1) the 3D box, (2) the thick-walled cylinder, and (3) the eccentric thick-walled
ellipsoid. All of these three examples use the same material model, but differ in geometry
and BCs. The three combined will give us insight into how the accuracy of the registration
framework depends on the mesh resolution and the kernel sigma ratio, as well as the effect
that out-of-plane motion has on the results.

Recall that the framework consists of the following steps:

1. Segment image data (Figure 3.3a)

2. Generate triangulations of the template surfaces (Figure 3.3b)

3. Apply LDDMM to the target-template pairs in the forward and backward directions
(Figure 3.4)

4. Compute displacement field (Figure 3.5)

5. Compute curve strains (Figure 3.7)

Now, the framework was developed in order for it to effectively be invariant to the imaging
modality used to identify the LV myocardium. I.e., the only step that really depends on
the imaging modality used is step 1. Thus, the biggest change that we will have to make

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 55

for the synthetically generated data is the way in which segmentations are extracted from
the geometry. Once this is done, the rest of the framework remains the same. The same
procedure for computing curve strains will be followed to examine both the displacement
and the resulting strain computed by the framework.

After discussing how the framework is adapted to these synthetic cases, we will study the
convergence and accuracy of the results when compared to the solid mechanics simulation
results. We will refer to this as the refinement study.

4.1 Planar Deformation Framework Applied to

Synthetic Data

Given that the BCs for all of the cases mentioned above are periodic with respect to time
(after the initial ramping of pressure in the eccentric ellipsoid case), we will only be using a
subset of the time interval. Specifically, we will use t ∈ [0, 1] for the box, t ∈ [1/2, 3/2] for
the cylinder, and t ∈ [2, 3] for the ellipsoid.

Also, recall that the images obtained from patient data are those of a LV contracting
rather than expanding. Thus, we want to make sure that the synthetic data provides us with
a scenario as close to that observed in patients whenever possible. Therefore, the reference
configuration was changed for the thick-walled cylinder and eccentric ellipsoid cases. The
reference configuration was taken to be the configuration of the body at t = 1/2 [s] for the
cylinder, and at t = 2 [s] for the ellipsoid. We will denote these new reference configurations
by D̂0 and V̂2

0 for the cylinder and ellipsoid, respectively. Likewise, the current configurations
with respect to these new references will be denoted by D̂ and V̂2 for the cylinder and
ellipsoid, respectively.

This approach was taken in order to achieve an expansion of the geometry while avoiding
buckling phenomena that can occur when negative pressures are applied to inner walls of
thick-walled bodies without the presence of residual stress. Also, note that the framework
developed in Chapter 3 is only concerned with the kinematics of the deformation and is thus
oblivious to the existence of non-zero stress at this new reference configuration.

At this point, we will discuss the different steps of the framework as they pertain to the
synthetic cases.

4.1.1 Synthetic Segmentation

As previously mentioned, the starting point for the synthetic cases differs due to the fact
that there are no images. However, we must still mimic the segmentation process as best as
we can. For this, we will need a set of imaging planes, Pm for m = 1, 2, . . . , Np, where p is
also a unique patient identifier, which we will refer to as a case identifier for synthetic cases
to avoid confusion with actual patient data. Table 4.1 lists the domain variables, description
of the domains, and 6 or 7 imaging planes defined in terms of an origin and a unit normal
vector.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 56

Domain Description Plane ID Origin (X, Y, Z) Normal

R̂0 3D Box

1
(5,1,2)

N = Ez

2 N = Ey

3 (2, 1, 2)

N = Ex

4 (4, 1, 2)

5 (6, 1, 2)

6 (8, 1, 2)

7 (9.99, 1, 2)

D̂0
Thick-walled

cylinder

1

(0, 0, 0)

N = Ez

2 N = − sin 2◦ Ey + cos 2◦ Ez

3 N = − sin 4◦ Ey + cos 4◦ Ez

4 N = − sin 6◦ Ey + cos 6◦ Ez

5 N = − sin 8◦ Ey + cos 8◦ Ez

6 N = − sin 10◦ Ey + cos 10◦ Ez

V̂2

Eccentric
thick-walled

ellipsoid

1 (0, 0,−2.8)

N = Ez

2 (0, 0,−4.6)

3 (0, 0,−6.4)

4 (0, 0,−8.2)

5 (0, 0,−10)

6 (0, 0,−11.8)

7 (0, 0,−13.6)

Table 4.1: The unique identifiers for synthetic cases, as well as their imaging planes given in
terms of an origin and unit normal vector.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 57

Note that the segmentations shown in Figure 3.3a are sequences of curves delineating the
boundaries of the LV geometry within Pm. Thus, we use VTK [46] to extract the boundary
curves within each image plane. Specifically, we extract the surface of the 3D tetrahedral
mesh, and then slice it using each of the planes given in Table 4.1 for each case. The
tetrahedral meshes along with the image planes for each case are shown on the left panel of
Figure 4.1, while the resulting segmentations are shown on the right panel. Note that the
configuration shown both on the right and left is the configuration used as reference in the
solid mechanics problem, instead of the new references mentioned above.

The segmentations were extracted at every ∆t = 0.1 [s], which corresponds to every 10
time steps in the solid mechanics simulation. Furthermore, the LDDMM algorithm was set
to use 10 time steps when solving for the map between the template and the target. This
not only causes the number of segmentations per cycle to be on the same order of magnitude
as those for patient data, but it also allows the direct comparison of the LDDMM results at
every single stage with solid mechanics simulation results if necessary.

In addition, each set of image planes was chosen to analyze different contributions to the
error in the results, as will now be described.

4.1.1.1 Three-dimensional Box

As can be seen from Table 4.1 and in Figure 4.1a, the image planes P1 and P2 are both
planes of symmetry that are parallel to the XY and XZ planes, respectively. Note that the
symmetry applies both to the geometry and the BCs. Therefore, the deformation evaluated
on P1 and P2 should be fully contained within each plane, within numerical errors. Thus,
these two planes will allow us to examine the accuracy of the registration framework when
our assumption of planar motion coincides with reality.

On the other hand, the image planes Pm for m = 3, . . . , 7 are all parallel to the Y Z plane,
with P3 being the closest to the surface on which a zero Dirichlet BC is imposed, and P7

being the farthest. Note that the X coordinate of the latter plane was set to 9.99 instead of
10 in order to prevent the slicing of the mesh surface from producing an empty segmentation
due to numerical errors that might stem from floating point arithmetic. The deformation
evaluated on Pm for m = 3, . . . , 7 will primarily be out of plane. This allows us to quantify
how well the algorithm does at capturing the in-plane components of deformation when it is
primarilyo ut-of-plane. If the in-plane deformation calculated by the LDDMM algorithm is
satisfactory within some user-specified tolerance, we may be able to infer the nature of the
out-of-plane deformation through other means. An example of this will be discussed later
as a potential for future work.

4.1.1.2 Thick-walled Cylinder

Recall that the mesh of the thick-walled cylinder was designed to achieve a solution that
is as symmetric with respect to its axis as possible. Thus, deformation on the image plane
P1 for the thick-walled cylinder will be planar within numerical errors, as was true for the

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 58

(a) Box mesh (R0) (b) Box segmentations

(c) Cylinder mesh (D0) (d) Cylinder segmentations

(e) Ellipsoid mesh (V2) (f) Ellipsoid segmentations

Figure 4.1: Imaging planes shown alongside of 3D tetrahedral meshes, as well as the resulting
segmentations within each plane.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 59

first two image planes in the previous case; again allowing us to examine the accuracy of
the registration when the deformation is truly planar, but now in a thick-walled geometry.
Unlike the previous case, we decided to incrementally rotate the image plane with respect
to the X-axis in order to study how misalignments between the image plane and the object
of interest will affect the results. Hence the components of the unit normals shown in Table
4.1 vary while the origin of the plane remains the same.

4.1.1.3 Eccentric Thick-walled Ellipsoid

Last but not least, the image planes for the ellipsoid are considered. In this case, all im-
age planes are parallel to the XY -plane, just like the base on which a zero Dirichlet BC is
imposed. The difference between the image planes is their location along the long axis of
the ellipsoid; similar to the long axis of the LV. Each image plane will see varying amounts
of out-of-plane deformation based on its proximity to the base. Given the nature of the
geometry and the BCs applied, this is the closest to knowing the true deformation of an
LV-like analytical geometry possible from the examples considered in Section 2.4.

Now that the segmentations have been extracted for all of the synthetic cases, it is time to
generate triangular meshes representing the region enclosed by them.

4.1.2 Triangular Mesh Generation

Unlike the segmentations generated from patient images, the synthetic segmentations gen-
erated in the previous section are not restricted to the XY -plane, with the exception of the
P1 plane for the cylinder. As a result, we must transform their coordinates with rotations
and translations in order to have them all lie within the XY -plane. This is due to the
fact that only the X and Y components of points along a 2D boundary must be passed
to MeshPy when generating a 2D triangular mesh [37]. Inspecting the unit normals for all
image planes in all cases, one can see that the necessary rotations and translations can be
determined relatively easily, e.g. using simple orthogonal tensors to represent the rotation
and its inverse.

Once the segmentations have been transformed to the XY -plane, they are passed to
MeshPy to generate a triangular mesh. Then, the inverse transformation is applied in order
to bring the mesh back to the image plane that the segmentations originally came from. This
gives us a set of target meshes on which the LDDMM algorithm is then applied in order to
solve for the ϕi,j maps, as discussed in Section 3.2.

4.1.3 Surface Matching

The surface matching algorithm applied to the target meshes generated in the previous
section is the same as was discussed for the patient data. However, the mesh resolu-
tion, σmax, and the kernel sigma ratio, γmax, were varied in order to study their effects

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 60

on the convergence and accuracy of the resulting deformation. Namely, the combina-
tions of mesh resolutions and kernel sigma ratios tested were all possible combinations of
σmax = 3.5, 4, 4.5, 5, 6, 7, 8, 10, 15, 20, and γmax = 1, 2, 5, 10, 20. We will show the error of the
displacement and curve strain fields with these various combinations to validate our choice of
σmax and γmax used in Chapter 3. However, we must first discuss how the error is computed.

4.2 Computing Errors

Another challenging aspect in this problem is deciding the best way to compare the displace-
ment field obtained through the LDDMM algorithm, ureg, with the field from the original
solid mechanics simulation, uW , where W is a subset of the body of interest. Specifically,
the challenge lies in the fact that the subdomain seen within an image plane at any given
time t, is in fact a subset of the current configuration at time t. We consider two options
for comparing ureg and uW :

1. Lagrangian error: here, we evaluate uW at

W = Pm ∩ B0. (4.1)

I.e., we evaluate the displacement at the set of material points that initially coincided
with the image plane. We will use the subscript l (instead of W) to denote this form
of evaluation.

2. Eulerian error: here, we evaluate uW at

W = Pm ∩ϕ (B0, t) = Pm ∩ B. (4.2)

I.e., we evaluate the displacement at the set of material points that lie in the image
plane at time t, which is not guaranteed to be a constant set of points. We will use
the subscript e (instead of W) to denote this form of evaluation.

Note that the Eulerian point of view is a closer representation of reality when inferring dis-
placement from medical images. Though the Lagrangian point of view is the more ideal of
the two since this is the true displacement, rather than an impression of what the displace-
ment might be. We will present both interpretations for the displacement side by side only
to illustrate how these error computations differ from one another in different contexts.

From here on out, we will denote the difference of the two displacement fields and the
magnitude of the difference by

da(u) = ureg − ua, (4.3)

and

da(u) = ‖da(u)‖, (4.4)

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 61

respectively, where a is either e or l, and the specific norm used will be given later. Further-
more, we can decompose the difference of the vectors, referred to as the error vector from
here on out, into the two components

da(u) = dap(u) + dan(u), (4.5a)

where

dan = (N · d) N, (4.5b)

and

dap = d− dan = d− (N · d) N = (I−N⊗N) d (4.5c)

are the components normal and parallel to the plane with normal vector N, respectively.
Keep in mind that

‖da‖2= ‖dap‖2+‖dan‖2, (4.6)

but

‖da‖6= ‖dap‖+‖dan‖ (4.7)

as we investigate the components in the error for all three synthetic cases.
While the time steps used for the registration framework are identical to those in the solid

mechanics simulation, we only use the time steps at which the segmentations were extracted
(∆t = 0.1 [s]). We have noticed that, in some cases, the mapped template mesh does not
match the true shape of the domain within the image plane in between these sampled time
steps, and thus seems like an unfair comparison.

In addition to the error in displacement, we are interested in the error of strain measures.
The right Cauchy-Green strain tensor, C, was used to study the myocardial deformation in
patients. Thus, we perform a similar analysis in which we evaluate C in the Eulerian manner,
discussed in Equation (4.2), and compare the strains obtained from the solid mechanics
displacement, as well as registration, and compute their difference. Note that all derivatives
with respect to spatial variables must be taken with respect to the reference configuration.
This is due to the fact that

C = FTF = [I + Grad(u)]T [I + Grad(u)] , (4.8)

where Grad is the gradient with respect to the reference configuration. Deforming the body
and then computing the gradient is akin to computing the gradient of the displacement with
respect to the spatial frame. Once C has been computed for all X ∈ B0 and t ∈ [t0, tf], the
evaluation domain, W , can be determined.

We will only consider the radial and circumferential components as defined in Section
3.3. In the case of the box domain, R0, curves parallel to coordinate planes are considered
as the interior curves. Selected interior curves for the three domains are shown in Figure
4.2.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 62

(a) Interior curves for the box domain (R0) (b) Interior curves for the cylindrical domain (D0)

(c) Interior curves for the ellipsoidal domain (V2)

Figure 4.2: Selected interior curves used for computing the strain tensor components for the
synthetic cases.

Similar to Equation (4.3), we will consider the error of the tensor components given by

Dnn,a(Creg) = |n · (Creg −Ca) n| , (4.9a)

Dnt,a(Creg) = |n · (Creg −Ca) t| , (4.9b)

and

Dtt,a(Creg) = |t · (Creg −Ca) t| . (4.9c)

In practice, we first compute the components of Creg and Ca separately, and then their
difference.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 63

4.3 Accuracy of Framework in Synthetic Cases

The error reported for all cases is the maximum magnitude of the error vector and tensor
components throughout space and sampled time. I.e.,

‖da‖= max
k∈I

(
max
x∈W

√
da(tk) · da(tk)

)
, (4.10)

and

‖Dij,a‖= max
k∈I

(
max
x∈W

Dij,a(tk)

)
, (4.11)

where ij denotes the tensor components, a is either e or l, and I = {0, 10, . . . , 100}. In
addition to this norm, the reader is also encouraged to keep the image planes for each case
as described in Section 4.1.1, and summarized in Table 4.1, in mind.

4.3.1 Displacement Errors

4.3.1.1 Three-dimensional Box

First, we consider the error for the box domain, R0. It will be helpful to keep in mind
that the maximum displacement obtained from the 3D solid mechanics simulation for all
of t is 2.2 mm, as can be seen in Figure 2.5. Additionally, recall that the first two planes,
P1 and P2, are planes of symmetry, while Pm for m = 3, . . . , 7 are planes perpendicular
to the loading vector and are thus expected to only capture a small component of the true
displacement. As can be seen in Figure 4.3, the Lagrangian error will be shown on the left,
and the Eulerian error on the right. In this case, we can see that, overall, the Eulerian
error has a smaller magnitude than the Lagrangian error. Furthermore, we see that the
displacement error—both Lagrangian and Eulerian—increases as the value of γmax increases
(including the zoomed-in portion for m = 5 on the last row). However, the distance from
the Dirichlet boundary seems to play a more prominent role on the error for m = 3, . . . , 7
than γmax.

The near-invariance to the choice of γmax form = 3, . . . , 7 is also apparent when inspecting
the perpendicular component of the error vector, dan for a = e, l, as shown in Figure 4.4. We
see that all of the curves are essentially the same for any given slice, except for the Eulerian
error computed on P1 and P2. Though, even then, the variation with respect to γmax is
small in comparison to the magnitude of the full error vector shown in Figure 4.3. This
is not too surprising since the template-target pairs throughout all of t remain planar for
any given image plane, and thus the LDDMM algorithm does not result in any out-of-plane
component to the displacement ureg. Thus, it is unreasonable to expect a good estimation
of out-of-plane motion when our framework is not provided with even the slightest hint of
what might be happening outside of the image plane.

A more fair comparison is the parallel component of the error vector, dap for a = e, l, as
shown in Figure 4.5. Here, we see that the parallel component of the error, dap, is the main

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 64

0.1

1.0
2.0

Lagrangian Error (Pm ∩R0) Eulerian Error (Pm ∩R)

0.1

1.0
2.0

102 103 104

0.4

1.0

2.0

102 103 104

F
u
ll

E
rr

or

Number of DOFs

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

Figure 4.3: Full Lagrangian and Eulerian displacement error for the box domain, R0.

contributor to the full error for m = 1, 2. The opposite is true for m = 3, . . . , 7. Furthermore,
we can see that, for the most part, the error also increases with increasing γmax for the latter
set of image planes.

Overall, the displacement error does not change drastically when holding the image plane
and γmax constant while changing σmax, i.e. only changing the degrees of freedom (DOF). It
is also clear that, for this domain, choosing γmax = 1 provides the most accurate results for
all image planes.

4.3.1.2 Thick-walled Cylinder

Next, we consider the thick-walled cylinder, D̂0, which was loaded with a time-varying inter-
nal pressure. While a different configuration was chosen for testing the registration frame-
work, the maximum displacement magnitude remains the same. This is due to the fact the
new reference was chosen to be the configuration in which the maximum displacement with
respect to D0 occurs. Thus, the maximum displacement with respect to the new configura-

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 65

0.5

1.0

2.0

Lagrangian Error (Pm ∩R0) Eulerian Error (Pm ∩R)

102 103 104
0.0001

0.0005

102 103 104

Number of DOFs

P
er

p
en

d
ic

u
la

r

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

Figure 4.4: The perpendicular component of the Lagrangian and Eulerian error for the box
domain, R0.

tion, D̂0, is the one that takes us back to D0. The maximum displacement obtained from
this 3D deformation is 0.72 mm, as shown in Figure 2.7.

As with the box domain, we see that overall, the Eulerian error is smaller in magnitude
than the Lagrangian error for all cases, as can be seen in Figure 4.6. Likewise, we see that
the error increases when γmax increases. Cases for which the registration results produced
negative Jacobian values at any point in the cycle were marked with a hollow dimmed circular
marker, as well as dimmed connecting line segments.

The perpendicular component of the error, shown in Figure 4.7, exhibits a similar pattern
to what we saw for the box domain. However, recall that the image planes are incrementally
rotated with respect to the x-axis to mimic a misalignment of the imaging device with a plane
of symmetry. Nevertheless, we expect the out-of-plane component of motion to increase with
increasing m as before. This manifests in a larger error as m increases. Furthermore, the
contribution of the perpendicular error for m = 1 is about three orders of magnitude smaller,
which is expected due to the fact that it is a plane of symmetry.

The parallel component of the error is shown in Figure 4.8. We can see that the error
curves remain relatively closer to each other across image planes when the perpendicular
component of error is excluded. Thus, our registration framework seems to do a fair job of

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 66

1.0

2.0

P1

0.01

0.1

P3

0.01

0.1

P5

102 103 104

0.01

0.1

P7

P1

P3

P5

102 103 104

P7

P
ar

al
le

l

Number of DOFs Number of DOFs

Lagrangian Error (Pm ∩R0) Eulerian Error (Pm ∩R)

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

Figure 4.5: Parallel component of the Lagrangian and Eulerian error for the box domain,
R0.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 67

0.1

0.3

0.05

P1

0.1

0.3

0.05

P3

103 104

0.1

0.3

0.05

P5

103 104

P1

P3

103 104

P5

103 104

Number of DOFs

Lagrangian Error (Pm ∩ D̂0) Eulerian Error (Pm ∩ D̂)

γmax = 1.0 γmax = 2.0 γmax = 5.0 γmax = 10.0 γmax = 20.0

Figure 4.6: Full Lagrangian and Eulerian error for the cylinder domain, D̂0.

capturing the in-plane motion in this case. Note that we also see an increase in parallel error
when m increases for m = 1, . . . , 4, and for high enough number DOFs when γmax = 5 and
10. The error is most consistent for γmax = 1 and γmax = 2.

Overall, the error does not change drastically when only varying the number of DOFs
for γmax = 1, 2. However, we do see fluctuations in the parallel component of the error with
respect to the number of DOFs for γmax = 5, 10. Thus, the top contenders in this case are
γmax = 1, 2.

4.3.1.3 Eccentric Thick-walled Ellipsoid

Similar to the cylinder, the new configuration for the ellipsoid, V̂2
0 , was chosen such that the

maximum displacement remains the same. The maximum displacement obtained from this

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 68

0.1

0.05

Lagrangian Error (Pm ∩ D̂0) Eulerian Error (Pm ∩ D̂)

103 104

0.0001

0.00005

103 104

Number of DOFs

P
er

p
en

d
ic

u
la

r

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

Figure 4.7: The perpendicular component of the Lagrangian and Eulerian error for the
cylinder domain, D̂0.

3D deformation is 5.5 mm, as can be seen in Figure 2.12.
The magnitude of the full error vector for the ellipsoid is shown in Figure 4.9. Markers for

cases whose results produced negative Jacobian values were omitted and the connecting line
segments were dimmed. The markers were omitted in this case due to the fact that a total
of 88 out of the 385 cases exhibited a negative Jacobian value at some point in the cycle.
Unlike the previous two cases, the Eulerian error is larger in magnitude than the Lagrangian
error for all cases. It is also clear from this figure that the error does not vary as much when
γmax is varied for a given image plane once a certain number of DOFs is reached. Previously,
we only saw this in cases where the perpendicular component of the error dominated over
the parallel one. In fact, the higher values of γmax seem to thrive over their counterparts
for lower values of σmax in some cases. More astounding is the magnitude in error seen for
m = 5, 6, 7—the error for m = 7 with σmax = 3.5 and γmax = 1 exceeds 20 mm, which is
more than 360% of the maximum displacement.

Figure 4.10 shows the perpendicular components of the error. The pattern is the same as
the two previous cases. To elaborate, the perpendicular component of error depends more on
the location of the image plane rather than σmax or γmax; except for the two outliers shown
in the plot of the Lagrangian error. The reader should note that these results show that
the perpendicular component of the error is not solely responsible for the excessively large
magnitude in error seen for m = 5, 6, 7.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 69

0.1

0.3

0.05

P1

0.1

0.3

0.05

P3

103 104

0.1

0.3

0.05

P5

103 104

P1

P3

103 104

P5

103 104

Number of DOFs

P
ar

al
le

l

Lagrangian Error (Pm ∩ D̂0) Eulerian Error (Pm ∩ D̂)

γmax = 1.0 γmax = 2.0 γmax = 5.0 γmax = 10.0 γmax = 20.0

Figure 4.8: The parallel component of the Lagrangian and Eulerian error for the cylinder
domain, D̂0.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 70

0.5

1.0

4.0 P1(Base)

2.0

4.0
P3

3.0

6.0 P5

103 104

5.0

10.0

20.0

30.0 P7(Apex)

P1(Base)

P3

P5

103 104

P7(Apex)

Number of DOFs Number of DOFs

Lagrangian Error (Pm ∩ V̂2
0) Eulerian Error (Pm ∩ V̂2)

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

Figure 4.9: Full Lagrangian and Eulerian error for the ellipsoid domain, V̂2
0 .

The contribution from the parallel component to the full error can be seen in Figure
4.11. We see that, while still more than desired, the parallel error mostly remains below 4
mm for m = 1, . . . , 4. However, the error grows dramatically the further the image plane
is from the base and closer to the apex of the geometry. This is crucial to keep in mind
when deciding which parameters and image planes to use when applying the registration
framework to patient data.

While the results obtained with γmax = 1 excelled for the box and cylinder domains,
that was not the case for the ellipsoid. Nor were the error magnitudes near-invariant to
the change in number of DOFs within each image plane as before. Looking at the parallel
component specifically, results obtained with γmax = 10 surpassed the rest in accuracy for
m = 1, . . . , 4.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 71

30.0
Lagrangian Error (Pm ∩ V̂2

0) Eulerian Error (Pm ∩ V̂2)

103 104

1.0

4.0

P
er

p
en

d
ic

u
la

r

103 104

Number of DOFs

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

m = 1

m = 2

m = 3

m = 4

m = 5

m = 6

m = 7

Figure 4.10: The perpendicular component of the Lagrangian and Eulerian error for the
ellipsoid domain, V̂2

0 .

Overall, the lowest full Lagrangian error was obtained on the image plane closest to the
base of the geometry, P1, with σmax = 20 and γmax = 20; a maximum of 0.50 mm was
obtained. On the other hand, the lower parallel component of the Lagrangian error was
obtained on the same image plane, but with σmax = 10 and γmax = 10; a maximum error of
0.29 mm was obtained. The lowest full Eulerian error, 0.76 mm, was obtained on P1, with
σmax = 8 and γmax = 1. This combination of σmax and γmax also gave the lowest parallel
component of the Eulerian error, coming in at 0.34 mm. This makes the combination of
σmax = 8 and γmax = 1 the top contenders for this synthetic case—when looking at the
displacement error—since the Eulerian error is of higher interest.

Overall, the performance of the registration framework when selecting γmax = 1, 2 seem
to be the most favorable when considering the Eulerian error of the parallel component of
displacement. A summary of the minimum values of the norm defined in Equation (4.10) is
given in Table 4.2. This summary will be discussed in more depth later. The error of the
curve strain components will be discussed next.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 72

0.5

1.0

4.0 P1(Base)

0.5

1.0

4.0 P3

3.0

6.0 P5

103 104

5.0

10.0

20.0 P7(Apex)

P1(Base)

P3

P5

103 104

P7(Apex)

Number of DOFs Number of DOFs

P
ar

al
le

l

Lagrangian Error (Pm ∩ V̂2
0) Eulerian Error (Pm ∩ V̂2)

γmax = 1.0

γmax = 2.0

γmax = 5.0

γmax = 10.0

γmax = 20.0

Figure 4.11: The parallel component of the Lagrangian and Eulerian error for the ellipsoid
domain, V̂2

0 .

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 73

103

0.1

1.0

S
tr

ai
n

E
rr

or

‖Dnn,e‖

103

‖Dnt,e‖

103

‖Dtt,e‖

Number of DOFs

Box Domain (R0)

γmax = 1

γmax = 2

γmax = 5

m = 1

m = 7

Figure 4.12: In-plane Lagrangian and Eulerian strain error for the box domain, R0.

4.3.2 Strain Error

In order to compute the error of the strain tensor components, we must first determine the
interior curves for each image plane as was done in Section 3.3 for the patient data. The same
procedure is followed for each case. Some resulting interior curves for all three cases with
σmax = 10 and γmax = 1 are shown in Figure 4.2. Unlike the presentation of the displacement
error, only the Eulerian error of the curve strain components will be presented here. This
is due to the fact that the Lagrangian and Eulerian errors exhibits the same qualitative
features.

4.3.2.1 Three-dimensional Box

Here, only the errors on the image planes P1 and P7 since P1 is a plane of symmetry like
P2, and the displacement errors evaluated on P7 provide an upper bound for those on planes
m = 3, . . . , 6, as seen in Figure 4.4. Furthermore, only the γmax = 1, 2, 5 are presented
since it is clear from Section 4.3.1.1 that these choices outperform γmax = 10, 20. The three
components of the strain error, radial (nn), shear (nt), and circumferential (tt) can be seen
in Figure 4.12.

The errors of all three components evaluated on P1 are larger than their counterparts
evaluated on P7. This is partly due to the fact that the deformation on P1 is more substantial
than that on P7. Within each plane, the radial components of the right Cauchy-Green tensor
produce a smaller error than the other two components when the same σmax and γmax values
are used. In addition, setting γmax = 1 produces the lowest and most consistent error with
respect to σmax as was the case with the displacement error.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 74

104 2× 104

3.0

4.0

S
tr

ai
n

E
rr

or

‖Dnn,e‖

104 2× 104

0.1

0.06

‖Dnt,e‖

104 2× 104

0.02

0.04

‖Dtt,e‖

Number of DOFs

Cylinder Domain (D̂0)

γmax = 1

γmax = 2

γmax = 5

m = 1

m = 6

Figure 4.13: In-plane Lagrangian and Eulerian strain error for the cylindrical domain, D̂0.

4.3.2.2 Thick-walled Cylinder

Similar to above, the curve strain errors presented here are limited to those evaluated on
P1, a plane of symmetry, and P6, which is the plane most misaligned with P1. Thus the
curve strain errors for the remaining planes are bounded by the results shown in Figure 4.13.
Additionally, only σmax = 7, 8, 10, 15, 20, and γmax = 1, 2, 5 are shown. The mesh resolution
was limited to the higher values since it is where a larger variation of error was observed for
the displacement error in Figure 4.6. The higher values of γmax were omitted due to their
poor performance, including producing negative values of the Jacobian in some cases.

Unlike the results for the box domain, these are not as uniform for all three components
of the curve strain. Most notable is the fact that the errors of the radial component (nn) are
clustered based on the value of γmax. Furthermore, the errors of the shear component (nt)
appear completely unstructured—the value of γmax that produces the lowest error in this
component changes with the choice of σmax. On the other hand, it is clear that γmax = 1 and
γmax = 2 give the lowest error for the circumferential component (tt) when evaluated on P1

and P6, respectively. For the case of the thick-walled cylinder, the better choice is between
γmax = 1 or 2.

4.3.2.3 Eccentric Thick-walled Ellipsoid

Similar to the cylinder case, only the errors pertaining to σmax = 7, 8, 10, 15, 20 are presented
here. The values γmax = 1, 2, 5, 10 are shown, and the imaging planes used are P1 and P4.
These errors are shown in Figure 4.14. The lower mesh resolutions were omitted along with
γmax = 20 due to the extensive amount of cases that exhibited negative Jacobian values for
this range, while γmax = 10 was added to the cases presented here due to its unexpectedly
good performance shown in Figure 4.11.

It can be seen that γmax = 10 outperforms the other cases for all mesh resolutions when
computing the radial component of error on P1. However, γmax = 2 outperforms the rest on

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 75

1046× 103

10.0

2.0S
tr

ai
n

E
rr

or

‖Dnn,e‖

1046× 103

0.1

0.5

‖Dnt,e‖

1046× 103

0.1

0.3

‖Dtt,e‖

Number of DOFs

Ellipsoidal Domain (V̂2
0)

γmax = 1

γmax = 2

γmax = 5

γmax = 10

m = 1

m = 4

Figure 4.14: In-plane Lagrangian and Eulerian strain error for the ellipsoidal domain, V̂2
0 .

P4. For the shear component, γmax = 10 produces the lowest error for σmax = 15 and 20,
but exhibits the highest error for all other values of σmax on P1. On P4 γmax = 5 performs
the best for all values of σmax except σmax = 7, which γmax = 2 swapping places with it.
Similar behavior is observed in the circumferential component of the error; the lowest error
is produced either by γmax = 2 or 5.

It is important to keep in mind the the goal is to compute the myocardial strain in a
clinical settings, and thus computational cost should be considered. A summary of the best
performing parameters will now be provided with this consideration.

4.4 Discussion

In this chapter, results from solid mechanics simulations were used as synthetic data to
test the registration framework developed in Chapter 3. This provided a means to directly
compare the deformation computed through the registration framework with the deformation
it was meant to reproduce. The main difference between the patient and synthetic cases is
how the input to the framework was obtained—input from patient data requires segmentation
of medical images, while computational geometric algorithms provided by VTK were used
for the synthetic cases. After this, the framework is nearly identical, except for the rotations
of segmentations that were required for some image planes. Throughout this chapter, errors
of displacement and curve strain components as evaluated from a Lagrangian and Eulerian
point of view were reported. This was done to understand how the choice of mesh resolution,
σmax, the kernel radius ratio, γmax, and the location of the image planes, Pm, affect the
accuracy of results.

From this analysis, it is clear that a secret combination of σmax and γmax values that
performs the best for all image planes in all cases does not exist. A summary of the minimum

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 76

Plane σmax γmax Mininum

Domain Field Component L E L E L E L E

Box

Disp. (×10−3

mm)

Full 1 1 3.5 3.5 1 1 148.3 120.7

Perp. 1 1 3.5 4.5 1 10 0.1688 0.1835

Parallel 5 5 8 8 1 1 10.44 11.26

Curve Str.
(×10−2)

Radial 7 7 4.5 4.5 1 1 1.357 1.366

Shear 3 3 5 8 1 1 1.038 0.9571

Circum. 4 4 6 6 1 1 2.059 1.997

Cylinder

Disp. (×10−4

mm)

Full 1 1 15 5.5 2 2 380.1 356.0

Perp. 1 1 3.5 4 1 2 0.207 0.3346

Parallel 1 3 15 5.5 2 2 380.1 344.3

Curve Str.
(×1)

Radial 5 6 4.5 5 1 1 2.296 2.299

Shear 5 4 20 8 1 2 0.0432 0.0451

Circum. 3 3 5.5 5.5 2 2 0.0500 0.498

Ellipsoid

Disp.
(×1 mm)

Full 1 1 20 8 20 1 0.5024 0.7615

Perp. 1 1 3.5 5.5 1 1 0.4660 0.6890

Parallel 1 1 10 8 10 1 0.2920 0.3354

Curve Str.
(×1)

Radial 1 1 10 10 10 10 0.8765 1.296

Shear 1 1 20 20 1 10 0.04828 0.04381

Circum. 1 1 20 20 10 1 0.06781 0.04886

Table 4.2: Summary of the Lagrangian (L) and Eulerian (E) errors for all components of
displacement and curve strain considered.

values obtained for the error norms defined in Equations (4.11) and (4.10) is given in Table
4.2. It is clear that γmax = 1 and 2 produce the lowest error most often, as observed in
previous sections. Though γmax = 10 performs very well when considering the radial and
shear components of the curve strain for the ellipsoid. A higher value of γmax generally
leads to a larger range of strain, while a lower value spreads the deformation throughout the
domain in a more uniform manner. In order to obtain the best of both worlds, a value of
γmax = 2 was chosen when studying patient data.

CHAPTER 4. VALIDATION OF PLANAR STRAIN COMPUTATIONS 77

Additionally, the errors obtained for the lower values of γmax was mostly agnostic to the
choice of mesh resolution, σmax. Thus, the more important factors to consider when choosing
σmax are the computational cost and the level of spatial granularity desired. With these two
factors in mind, σmax was set to 10 in order to provide enough spatial detail when computing
strain fields as well as to lower the computational cost required by higher values, σmax = 15
and 20. This rise in computational cost is caused by the increase in triangular elements used
to represent the domain within the image planes.

Furthermore, the image planes used to study myocardial strain were limited to those
closest to the base of the left ventricle. The thick-walled ellipsoid case clearly showed that
the error increases unacceptably as the image plane used to compute strain moves away
from the ventricular base. This is believed to be caused by the increase in the amount of
out-of-plane deformation.

This analysis with synthetic cases permitted a more intelligent choice of parameters for the
registration framework when applied to patient data. It can also serve as a template for
studying algorithms designed to analyze patient data. While medical images provide a lot of
information about the physiology of a patient, there is still no ethical way of determining the
true deformation. Thus, algorithms, such as the framework discussed here, must be vetted
with due diligence to ensure their efficacy before relying on them to determine treatment.

78

Chapter 5

Summary

The major contributions of this work include the development of (1) a registration framework
for computing the LV myocardial strain from planar images, and (2) validation tests using
synthetic data to which results can be directly compared. The full registration framework
consisted of segmenting, or delineating, the endo- and epicardium from 2D CMR image se-
quences. These segmentations were then used to create a 2D triangular mesh to represent the
LV myocardium, which were then used as target-template pairs for the LDDMM registration
algorithm. The LDDMM algorithm provided diffeomorphic maps for the full sequence of pla-
nar triangular meshes for each patient, allowing the computation of the right Cauchy-Green
strain tensor. The solution to the Laplace equation was used to programmatically define the
circumferential and radial directions in general LV geometries. Throughout this framework,
it was assumed that the deformation of the myocardium fully remained within each given
image plane. This led to the development of validation tests to understand the effect of such
an assumption on the accuracy of the results.

In order to validate the registration framework, synthetic displacement data was gener-
ated through three-dimensional solid mechanics simulations of a box, thick-walled cylinder,
and a thick-walled eccentric ellipsoid. These results were then used to generate segmenta-
tions that served as input to the registration framework. Generating the segmentations from
simulations allowed the direct comparison of the true results, so to speak, with the results
from the registration algorithm while varying mesh resolution and the kernel function radii
used to represent the deformation maps. Once the mesh resolution and kernel function ra-
dius that produced the most accurate registration results were determined, they were used
to apply the registration framework to patient images. In this study, it was found that
the circumferential components of the right Cauchy-Green strain tensor showed the most
statistically significant difference between control patients and those with CKD.

As with all research, there are several shortcomings with the approaches presented here.
For one, the assumption of planar motion is physically inaccurate and hence cannot be ex-
pected to capture all of the information. With that said, further studies on the effect of
out-of-plane motion and whether any inference can be made on its nature from planar im-
ages can greatly improve the framework. Furthermore, it would be worthwhile to investigate

CHAPTER 5. SUMMARY 79

and compare the utility of other registration algorithms for this framework—it is possible
that different algorithms will capture different modes of cardiac deformation. It is also im-
portant to keep in mind that the statistical analysis performed in Chapter 3 was rudimentary
in nature, thus a larger population is necessary to obtain more conclusive clinical results.
Additionally, the data per patient was limited to one image plane, though it is possible that
using multiple may provide a more comprehensive quantification of myocardial strain for any
given patient.

In terms of the validation tests, the non-linear neo-Hookean model used to generate
synthetic data adheres more to the behavior of rubber as opposed to LV tissue for which
various anisotropic models have been developed [19, 28]. The simpler model was used in
order to reduce the amount of variables in the overall system, though future tests should also
consider constitutive equations specifically designed to describe the LV. Other assumptions
include the use of quasi-steady formulations to circumvent wave reflections with Dirichlet
boundary conditions, as well as the pre-loading and reassigning of the reference configuration
done to avoid buckling of solutions and the need to compute residual stresses.

Despite the shortcomings of this work, we believe it provides a foundation for further de-
velopment of tools to compute myocardial strain along with validation tests. The validation
tests can be further authenticated by accounting for the physics between the tissue motion
and the acquiring of images; either through simulation of the data acquisition process, or
the use of phantoms. Once satisfactory validation of such myocardial strain-computing tools
has been performed, further investigation of the correlation between the 2D deformation
captured and the true 3D deformation can be studied to potentially infer the full range of
motion. E.g., through the use of incompressibility constraints. Such an accomplishment will
provide a more complete understanding of LV kinematics and in turn improve diagnostics in
clinical settings.

80

Bibliography

[1] Surgery: Medicine. July 2022. url: https : / / www . britannica . com / science /

surgery-medicine (visited on 07/24/2022).

[2] Jared Ortaliza Ortaliza, Krutika Amin Twitter, and Cynthia Cox Twitter. Covid-19
leading cause of death ranking. June 2022. url: https://www.healthsystemtracker.
org/brief/covid-19-leading-cause-of-death-ranking/.

[3] Rajiv Saran et al. “US Renal Data System 2016 Annual Data Report: Epidemiology
of Kidney Disease in the United States”. In: Am. J. Kidney Dis. 69.3 (Mar. 2017),
Suppl. issn: 1523-6838. doi: 10.1053/j.ajkd.2016.12.004. eprint: 28236831.

[4] Walter J. Rogers Jr. et al. “Early Contrast-Enhanced MRI Predicts Late Functional
Recovery After Reperfused Myocardial Infarction”. In: Circulation (Feb. 1999). doi:
10.1161/01.CIR.99.6.744.

[5] David Bello et al. “Gadolinium Cardiovascular Magnetic Resonance Predicts Reversible
Myocardial Dysfunction and Remodeling in Patients With Heart Failure Undergoing
β-Blocker Therapy”. In: Circulation (Oct. 2003). url: https://www.ahajournals.
org/doi/full/10.1161/01.CIR.0000095029.57483.60.

[6] David Bello et al. “Infarct morphology identifies patients with substrate for sustained
ventricular tachycardia”. In: J. Am. Coll. Cardiol. (Apr. 2005). url: https://www.
jacc.org/doi/abs/10.1016/j.jacc.2004.12.057.

[7] FDA Drug Safety Communication: New warnings for using gadolinium-based contrast
agents in patients with kidney dysfunction. June 2018. url: https://www.fda.gov/
drugs/drug-safety-and-availability/fda-drug-safety-communication-new-

warnings-using-gadolinium-based-contrast-agents-patients-kidney (visited
on 07/24/2022).

[8] Katherine C. Wu et al. “Late Gadolinium Enhancement by Cardiovascular Magnetic
Resonance Heralds an Adverse Prognosis in Nonischemic Cardiomyopathy”. In: J. Am.
Coll. Cardiol. (June 2008). url: https://www.jacc.org/doi/abs/10.1016/j.jacc.
2008.03.018.

[9] Tori A. Stromp et al. “Gadolinium free cardiovascular magnetic resonance with 2-point
Cine balanced steady state free precession”. In: J. Cardiovasc. Magn. Reson. 17.1 (Dec.
2015), pp. 1–11. issn: 1532-429X. doi: 10.1186/s12968-015-0194-1.

https://www.britannica.com/science/surgery-medicine
https://www.britannica.com/science/surgery-medicine
https://www.healthsystemtracker.org/brief/covid-19-leading-cause-of-death-ranking/
https://www.healthsystemtracker.org/brief/covid-19-leading-cause-of-death-ranking/
https://doi.org/10.1053/j.ajkd.2016.12.004
28236831
https://doi.org/10.1161/01.CIR.99.6.744
https://www.ahajournals.org/doi/full/10.1161/01.CIR.0000095029.57483.60
https://www.ahajournals.org/doi/full/10.1161/01.CIR.0000095029.57483.60
https://www.jacc.org/doi/abs/10.1016/j.jacc.2004.12.057
https://www.jacc.org/doi/abs/10.1016/j.jacc.2004.12.057
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-warnings-using-gadolinium-based-contrast-agents-patients-kidney
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-warnings-using-gadolinium-based-contrast-agents-patients-kidney
https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-warnings-using-gadolinium-based-contrast-agents-patients-kidney
https://www.jacc.org/doi/abs/10.1016/j.jacc.2008.03.018
https://www.jacc.org/doi/abs/10.1016/j.jacc.2008.03.018
https://doi.org/10.1186/s12968-015-0194-1

BIBLIOGRAPHY 81

[10] Tori A. Stromp et al. “Quantitative Gadolinium-Free Cardiac Fibrosis Imaging in End
Stage Renal Disease Patients Reveals A Longitudinal Correlation with Structural and
Functional Decline”. In: Sci. Rep. 8.16972 (Nov. 2018), pp. 1–10. issn: 2045-2322. doi:
10.1038/s41598-018-35394-4.

[11] M. S. Amzulescu et al. “Myocardial strain imaging: review of general principles, valida-
tion, and sources of discrepancies”. In: Eur. Heart J. Cardiovasc. Imaging 20.6 (June
2019), pp. 605–619. issn: 2047-2404. doi: 10.1093/ehjci/jez041.

[12] Yuichi Notomi et al. “Measurement of Ventricular Torsion by Two-Dimensional Ultra-
sound Speckle Tracking Imaging”. In: J. Am. Coll. Cardiol. (June 2005). url: https:
//www.jacc.org/doi/abs/10.1016/j.jacc.2005.02.082.

[13] Ruta Jasaityte, Brecht Heyde, and Jan D’hooge. “Current State of Three-Dimensional
Myocardial Strain Estimation Using Echocardiography”. In: J. Am. Soc. Echocardiogr.
26.1 (Jan. 2013), pp. 15–28. issn: 0894-7317. doi: 10.1016/j.echo.2012.10.005.

[14] E. A. Zerhouni et al. “Human heart: tagging with MR imaging–a method for nonin-
vasive assessment of myocardial motion.” In: Radiology (Oct. 1988). doi: 10.1148/
radiology.169.1.3420283.

[15] Miguel A. Rodriguez, Christoph M. Augustin, and Shawn C. Shadden. “FEniCS me-
chanics: A package for continuum mechanics simulations”. In: SoftwareX 9 (Jan. 2019),
pp. 107–111. issn: 2352-7110. doi: 10.1016/j.softx.2018.10.005.

[16] Peter Chadwick. Continuum mechanics: concise theory and problems. Dover Publica-
tions, 1999.

[17] Thomas J. R. Hughes. The finite element method: linear static and dynamic finite
element analysis. Dover publication, Inc, 2007.

[18] L. R. G. Treloar. “The elasticity of a network of long-chain molecules—II”. In: Trans.
Faraday Soc. 39.0 (Jan. 1943), pp. 241–246. issn: 0014-7672. doi: 10.1039/TF9433900241.

[19] Julius M. Guccione, Kevin D. Costa, and Andrew D. Mcculloch. “Finite element stress
analysis of left ventricular mechanics in the beating dog heart”. In: Journal of Biome-
chanics 28.10 (1995), pp. 1167–1177. doi: 10.1016/0021-9290(94)00174-3.

[20] Christoph M. Augustin et al. “Anatomically accurate high resolution modeling of
human whole heart electromechanics: A strongly scalable algebraic multigrid solver
method for nonlinear deformation”. In: J. Comput. Phys. 305 (Jan. 2016), pp. 622–
646. issn: 0021-9991. doi: 10.1016/j.jcp.2015.10.045.

[21] Minliang Liu, Liang Liang, and Wei Sun. “A new inverse method for estimation of in
vivo mechanical properties of the aortic wall”. In: J. Mech. Behav. Biomed. Mater. 72
(Aug. 2017), pp. 148–158. issn: 1751-6161. doi: 10.1016/j.jmbbm.2017.05.001.

https://doi.org/10.1038/s41598-018-35394-4
https://doi.org/10.1093/ehjci/jez041
https://www.jacc.org/doi/abs/10.1016/j.jacc.2005.02.082
https://www.jacc.org/doi/abs/10.1016/j.jacc.2005.02.082
https://doi.org/10.1016/j.echo.2012.10.005
https://doi.org/10.1148/radiology.169.1.3420283
https://doi.org/10.1148/radiology.169.1.3420283
https://doi.org/10.1016/j.softx.2018.10.005
https://doi.org/10.1039/TF9433900241
https://doi.org/10.1016/0021-9290(94)00174-3
https://doi.org/10.1016/j.jcp.2015.10.045
https://doi.org/10.1016/j.jmbbm.2017.05.001

BIBLIOGRAPHY 82

[22] Kevin L. Sack et al. “Construction and Validation of Subject-Specific Biventricular
Finite-Element Models of Healthy and Failing Swine Hearts From High-Resolution
DT-MRI”. In: Front. Physiol. 0 (May 2018). issn: 1664-042X. doi: 10.3389/fphys.
2018.00539.

[23] P. J. Flory. “Thermodynamic relations for high elastic materials”. In: Trans. Faraday
Soc. 57.0 (Jan. 1961), pp. 829–838. issn: 0014-7672. doi: 10.1039/TF9615700829.

[24] Nathan M. Newmark. “A Method of Computation for Structural Dynamics”. In: Jour-
nal of the Engineering Mechanics Division 85.3 (July 1959), pp. 67–94. doi: 10.1061/
JMCEA3.0000098.

[25] FEniCS Project. https://fenicsproject.org/. (Visited on 11/01/2016).

[26] Wikipedia. List of finite element software packages. url: https://en.wikipedia.
org/wiki/List_of_finite_element_software_packages.

[27] FEniCS Mechanics Documentation. Nov. 2020. url: https://shaddenlab.gitlab.
io/fenicsmechanics (visited on 01/01/2020).

[28] Jay D. Humphrey. “Mechanics Of The Arterial Wall: Review And Directions”. In:
Critical Reviews in Biomedical Engineering 23.1-2 (1995), pp. 1–162. doi: 10.1615/
critrevbiomedeng.v23.i1-2.10.

[29] CBC Block. July 2022. url: https://bitbucket.org/fenics-apps/cbc.block/
src/master (visited on 07/24/2022).

[30] Alexandra G. Gheorghe et al. “Cardiac left ventricular myocardial tissue density, evalu-
ated by computed tomography and autopsy”. In: BMC Med. Imaging 19.1 (Dec. 2019),
pp. 1–9. issn: 1471-2342. doi: 10.1186/s12880-019-0326-4.

[31] Sander Land et al. “Verification of cardiac mechanics software: benchmark problems
and solutions for testing active and passive material behaviour”. In: Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Science 471.2184 (Aug.
2015), p. 20150641. doi: 10.1098/rspa.2015.0641.

[32] Eric Pierce. Diagram of the human heart. June 2006. url: https://commons.wikimedia.
org / wiki / File : Diagram _ of _ the _ human _ heart _ (cropped) .svg (visited on
07/27/2022).

[33] M. Faisal Beg et al. “Computing Large Deformation Metric Mappings via Geodesic
Flows of Diffeomorphisms”. In: Int. J. Comput. Vision 61.2 (Feb. 2005), pp. 139–157.
issn: 1573-1405. doi: 10.1023/B:VISI.0000043755.93987.aa.

[34] Laurent Younes. Shapes and Diffeomorphisms. Berlin, Germany: Springer, 2010. isbn:
978-3-642-12055-8. url: https://link.springer.com/book/10.1007/978-3-642-
12055-8.

[35] Einar Heiberg et al. “Design and validation of Segment - freely available software for
cardiovascular image analysis”. In: BMC Med. Imaging 10.1 (Dec. 2010), pp. 1–13.
issn: 1471-2342. doi: 10.1186/1471-2342-10-1.

https://doi.org/10.3389/fphys.2018.00539
https://doi.org/10.3389/fphys.2018.00539
https://doi.org/10.1039/TF9615700829
https://doi.org/10.1061/JMCEA3.0000098
https://doi.org/10.1061/JMCEA3.0000098
https://fenicsproject.org/
https://en.wikipedia.org/wiki/List_of_finite_element_software_packages
https://en.wikipedia.org/wiki/List_of_finite_element_software_packages
https://shaddenlab.gitlab.io/fenicsmechanics
https://shaddenlab.gitlab.io/fenicsmechanics
https://doi.org/10.1615/critrevbiomedeng.v23.i1-2.10
https://doi.org/10.1615/critrevbiomedeng.v23.i1-2.10
https://bitbucket.org/fenics-apps/cbc.block/src/master
https://bitbucket.org/fenics-apps/cbc.block/src/master
https://doi.org/10.1186/s12880-019-0326-4
https://doi.org/10.1098/rspa.2015.0641
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
https://doi.org/10.1023/B:VISI.0000043755.93987.aa
https://link.springer.com/book/10.1007/978-3-642-12055-8
https://link.springer.com/book/10.1007/978-3-642-12055-8
https://doi.org/10.1186/1471-2342-10-1

BIBLIOGRAPHY 83

[36] Jane Tufvesson et al. “Validation and Development of a New Automatic Algorithm for
Time-Resolved Segmentation of the Left Ventricle in Magnetic Resonance Imaging”.
In: Biomed Res. Int. 2015 (June 2015), p. 970357. issn: 2314-6133. doi: 10.1155/
2015/970357.

[37] MeshPy 2020.1 documentation. Dec. 2021. url: https://documen.tician.de/meshpy
(visited on 01/15/2020).

[38] Jonathan Richard Shewchuk. “Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator”. In: Applied Computational Geometry: Towards Geomet-
ric Engineering. Ed. by Ming C. Lin and Dinesh Manocha. Vol. 1148. Lecture Notes
in Computer Science. From the First ACM Workshop on Applied Computational Ge-
ometry. Springer-Verlag, May 1996, pp. 203–222.

[39] Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
July 2022. url: http://www.cs.cmu.edu/~quake/triangle.html (visited on
07/24/2022).

[40] TetGen - Tetraedrischen Netze generieren - Software Download. July 2022. url: https:
//www.berlios.de/software/tetgen (visited on 07/24/2022).

[41] Christophe Geuzaine and Jean-François Remacle. “Gmsh: A 3-D finite element mesh
generator with built-in pre- and post-processing facilities”. In: Int. J. Numer. Methods
Eng. 79.11 (Sept. 2009), pp. 1309–1331. issn: 0029-5981. doi: 10.1002/nme.2579.

[42] Laurent Younes. Registration. https://bitbucket.org/laurent_younes/registration/
src/master/. 2012. (Visited on 06/27/2019).

[43] Claudio de Lucia et al. “Echocardiographic Strain Analysis for the Early Detection of
Left Ventricular Systolic/Diastolic Dysfunction and Dyssynchrony in a Mouse Model
of Physiological Aging”. In: J. Gerontol. A Biol. Sci. Med. Sci. 74.4 (Mar. 2019),
pp. 455–461. issn: 1079-5006. doi: 10.1093/gerona/gly139.

[44] Chun-mei Li et al. “Value of Three-Dimensional Speckle-Tracking in Detecting Left
Ventricular Dysfunction in Patients with Aortic Valvular Diseases”. In: J. Am. Soc.
Echocardiogr. 26.11 (Nov. 2013), pp. 1245–1252. issn: 0894-7317. doi: 10.1016/j.
echo.2013.07.018.

[45] Yolanda Vives-Gilabert et al. “Left ventricular myocardial dysfunction in arrhyth-
mogenic cardiomyopathy with left ventricular involvement: A door to improving di-
agnosis”. In: Int. J. Cardiol. 274 (Jan. 2019), pp. 237–244. issn: 0167-5273. doi:
10.1016/j.ijcard.2018.09.024.

[46] VTK - The Visualization Toolkit. July 2022. url: www.vtk.org (visited on 07/22/2022).

[47] scipy.stats.ttest ind — SciPy v1.8.1 Manual. May 2022. url: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html (visited on
07/02/2022).

https://doi.org/10.1155/2015/970357
https://doi.org/10.1155/2015/970357
https://documen.tician.de/meshpy
http://www.cs.cmu.edu/~quake/triangle.html
https://www.berlios.de/software/tetgen
https://www.berlios.de/software/tetgen
https://doi.org/10.1002/nme.2579
https://bitbucket.org/laurent_younes/registration/src/master/
https://bitbucket.org/laurent_younes/registration/src/master/
https://doi.org/10.1093/gerona/gly139
https://doi.org/10.1016/j.echo.2013.07.018
https://doi.org/10.1016/j.echo.2013.07.018
https://doi.org/10.1016/j.ijcard.2018.09.024
www.vtk.org
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

BIBLIOGRAPHY 84

[48] J. MacQueen. “Some methods for classification and analysis of multivariate observa-
tions”. In: Project Euclid 5.1 (Jan. 1967), pp. 281–298.

85

Appendix A

Inner Wall Pressure

Two versions of C++ code were used due to differences in compatibility.

Version for FEniCS 2019.1 and later.

C++ code

#define _USE_MATH_DEFINES

#include<math.h>

#include<algorithm>

#include<iostream>

#include<stdexcept>

#include <pybind11/pybind11.h>

#include <pybind11/eigen.h>

#include <dolfin/function/Expression.h>

#include <dolfin/function/Constant.h>

namespace py = pybind11;

class InnerPressure : public dolfin::Expression

{

public:

double t;

double p0;

double lz;

double zmin;

Eigen::Vector3d step_interval;

Eigen::VectorXd jumps;

// Create a sub -class of Expression (scalar -valued).

APPENDIX A. INNER WALL PRESSURE 86

InnerPressure () : dolfin::Expression () {}

// Function to evaluate the pressure on the endocardium.

void eval(Eigen::Ref<Eigen::VectorXd> values ,

Eigen::Ref<const Eigen::VectorXd> x) const override

{

// First ramp up to p0, then apply a "negative" pressure ,

// relative to p0.

if (t < 1.0) {

values[0] = p0*t;

}

else{

double z_hat;

double k_val;

z_hat = (x[2] - zmin)/lz;

double time_function = eval_time_function(t, z_hat);

values[0] = p0*(1.0 - time_function);

}

}

double eval_time_function(double a_t , double a_z_hat) const

{

// Compute decimal portion first since the period of the function

// from [n, n+1] where n is an integer.

double floor_val = floor(a_t);

double tt = a_t - floor_val;

double val = 0.0;

double t0 = step_interval[0];

double t1 = compute_t1(a_z_hat);

double t2 = compute_t2(a_z_hat);

double t3 = step_interval[1];

if ((tt < 0.0) || (tt > 1.0)) {

throw std::runtime_error("Shifted time value is outside of [0.0,

1.0].");

}

if (tt >= t3) {

val = 0.0;

}

else if (tt >= t2) {

val = func2(tt , a_z_hat);

}

else if (tt >= t1) {

val = 1.0;

}

else if (tt >= t0) {

APPENDIX A. INNER WALL PRESSURE 87

val = func1(tt , a_z_hat);

}

else {

val = 0.0;

}

if (val <= 1E-10) {

val = 0.0;

}

return val;

}

private:

double func1(double tt , double z_hat) const

{

// Extract the start and end for this specific function of the whole

// piecewise function.

double t0 = step_interval[0];

double t1 = compute_t1(z_hat);

double numerator = M_PI*(tt - t0);

double denominator = t1 - t0;

return 0.5*(1 - cos(numerator/denominator));

}

double func2(double tt , double z_hat) const

{

// Extract the start and end for this specific function of the whole

// piecewise function.

double t2 = compute_t2(z_hat);

double t3 = step_interval[1];

double numerator = M_PI*(tt - t2);

double denominator = t3 - t2;

return 0.5*(1 + cos(numerator/denominator));

}

double compute_t1(double z_hat) const

{

double t10 = jumps[0];

double t11 = jumps[2];

return t10 + z_hat*(t11 - t10);

}

double compute_t2(double z_hat) const

{

double t21 = jumps[1];

double t20 = jumps[3];

APPENDIX A. INNER WALL PRESSURE 88

return t21 + z_hat*(t20 - t21);

}

};

PYBIND11_MODULE(SIGNATURE , m)

{

py::class_<InnerPressure , std::shared_ptr<InnerPressure>,

dolfin::Expression>

(m, "InnerPressure")

.def(py::init<>())

.def_readwrite("t", &InnerPressure::t)

.def_readwrite("p0", &InnerPressure::p0)

.def_readwrite("lz", &InnerPressure::lz)

.def_readwrite("zmin", &InnerPressure::zmin)

.def_readwrite("step_interval", &InnerPressure::step_interval)

.def_readwrite("jumps", &InnerPressure::jumps);

}

Version for FEniCS before 2019.1.

C++ code

#define _USE_MATH_DEFINES

#include<math.h>

#include<algorithm>

#include<iostream>

#include<stdexcept>

#include<vector>

#include <dolfin/function/Expression.h>

class InnerPressure : public dolfin::Expression

{

public:

double t;

double p0;

double lz;

double zmin;

// Create a sub -class of Expression (scalar -valued).

InnerPressure () : dolfin::Expression () {}

// Function to evaluate the pressure on the endocardium.

void eval(Array<double>& values , const Array<double>& x) const

{

// First ramp up to p0, then apply a "negative" pressure ,

APPENDIX A. INNER WALL PRESSURE 89

// relative to p0.

if (t < 1.0) {

values[0] = p0*t;

}

else{

double z_hat;

double k_val;

z_hat = (x[2] - zmin)/lz;

double time_function = eval_time_function(t, z_hat);

values[0] = p0*(1.0 - time_function);

}

}

double eval_time_function(double a_t , double a_z_hat) const

{

// Compute decimal portion first since the period of the function

// from [n, n+1] where n is an integer.

double floor_val = floor(a_t);

double tt = a_t - floor_val;

double val = 0.0;

double t1 = compute_t1(a_z_hat);

double t2 = compute_t2(a_z_hat);

double t0 = 0.0;

double t3 = 0.5;

if ((tt < 0.0) || (tt > 1.0)) {

throw std::runtime_error("Shifted time value is outside of [0.0,

1.0].");

}

if (tt >= t3) {

val = 0.0;

}

else if (tt >= t2) {

val = func2(tt , a_z_hat);

}

else if (tt >= t1) {

val = 1.0;

}

else if (tt >= t0) {

val = func1(tt , a_z_hat);

}

else {

val = 0.0;

}

APPENDIX A. INNER WALL PRESSURE 90

if (val <= 1E-10) {

val = 0.0;

}

return val;

}

// private:

double func1(double tt , double z_hat) const

{

// Extract the start and end for this specific function of the whole

// piecewise function.

double t1 = compute_t1(z_hat);

double t0 = 0.0;

double numerator = M_PI*(tt - t0);

double denominator = t1 - t0;

return 0.5*(1 - cos(numerator/denominator));

}

double func2(double tt , double z_hat) const

{

// Extract the start and end for this specific function of the whole

// piecewise function.

double t2 = compute_t2(z_hat);

double t3 = 0.5;

double numerator = M_PI*(tt - t2);

double denominator = t3 - t2;

return 0.5*(1 + cos(numerator/denominator));

}

double compute_t1(double z_hat) const

{

double t10 = 0.05;

double t11 = 0.1;

return t10 + z_hat*(t11 - t10);

}

double compute_t2(double z_hat) const

{

double t21 = 0.4;

double t20 = 0.45;

return t21 + z_hat*(t20 - t21);

}

};

APPENDIX A. INNER WALL PRESSURE 91

Python module with some testing code.

Python code
import os

import dolfin as dlf

import fenicsmechanics as fm

from fenicsmechanics.dolfincompat import DOLFIN_VERSION_INFO

ENDO = 20

Discontinuities for step function.

step_interval = [0.0, 1.0, 1.0]

Discontinuities for smoothing of step function (t10 , t20 , t11 , t21).

jumps = [0.4, 0.4, 0.3, 0.5]

if DOLFIN_VERSION_INFO < (2019 , 1):

cfile = "./ pressure_expression -v2.cc"

else:

cfile = "./ pressure_expression.cc"

with open(cfile , "r") as f:

p_cpp = f.read()

def create_pressure_expression(p0 , zmin , zmax):

lz = zmax - zmin

if DOLFIN_VERSION_INFO < (2019 , 1):

p_expr = dlf.Expression(p_cpp)

p_expr.t = 0.0

p_expr.p0 = p0

p_expr.lz = lz

p_expr.zmin = zmin

p_expr.degree = 1

else:

cpp_module = dlf.compile_cpp_code(p_cpp)

p_expr = dlf.CompiledExpression(cpp_module.InnerPressure (),

t=0.0, p0=p0,

lz=lz, zmin=zmin , degree=1,

jumps=jumps ,

step_interval=step_interval)

return p_expr

if __name__ == "__main__":

APPENDIX A. INNER WALL PRESSURE 92

import numpy as np

import fenicsmechanics as fm

p0 = 100.0

zmin = -14.0

zmax = -1.0

meshfile = "meshfile.h5"

mesh = fm.load_mesh(meshfile)

facets = fm.load_mesh_function(meshfile , mesh)

fcts_array = facets.array ()

bmesh = dlf.BoundaryMesh(mesh , "exterior")

if DOLFIN_VERSION_INFO < (2019 , 1):

Vp = dlf.FunctionSpace(bmesh , "CG", 1)

else:

c2f = bmesh.entity_map(2).array()

bcells = dlf.MeshFunction("size_t", bmesh ,

bmesh.topology ().dim())

bcells.set_values(fcts_array[c2f])

endomesh = dlf.SubMesh(bmesh , bcells , ENDO)

Vp = dlf.FunctionSpace(endomesh , "CG", 1)

p_func = dlf.Function(Vp , name="p_inner")

fname = os.path.join(dirname , "TEST", "ECCENTRIC",

"TEST -presure -wave.pvd")

f = dlf.File(fname)

tspan = np.linspace(0, 3.0, 401)

p_expr = create_pressure_expression(p0 , zmin , zmax)

for t in tspan:

print("Working on t = {0}".format(t))

p_expr.t = t

p_func.interpolate(p_expr)

f << (p_func , t)

fm.fmio.fmio.rewrite_vtk_files(fname)

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Dissertation Outline

	Computational Solid Mechanics
	Continuum Mechanics
	Discretizing the governing equations
	FEniCS Mechanics
	Applications and examples

	In vivo Myocardial Strain
	Motivation
	Planar Deformation Framework
	Strain Computations in non-Circular Domains
	Population Study

	Validation of Planar Strain Computations
	Planar Deformation Framework Applied to Synthetic Data
	Computing Errors
	Accuracy of Framework in Synthetic Cases
	Discussion

	Summary
	Bibliography
	Inner Wall Pressure

