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Abstract

Plants produce a diverse range of specialized metabolites that play pivotal roles in

mediating  environmental  interactions  and  stress  adaptation.  These  unique  chemical

compounds also hold significant agricultural,  medicinal,  and industrial  values. Despite

the expanding knowledge of their functions in plant stress interactions, understanding the

intricate biosynthetic pathways of these natural products remains challenging due to gene

and pathway redundancy, multifunctionality of proteins, and the activity of enzymes with

broad  substrate  specificity.  In  the  past  decade,  substantial  progress  in  genomics,

transcriptomics,  metabolomics,  and  proteomics  has  made  the  exploration  of  plant

specialized  metabolism  more  feasible  than  ever  before.  Notably,  recent  advances  in

integrative multi-omics and computational approaches, along with other technologies, are

accelerating the discovery of plant specialized metabolism. In this review, we present a

summary  of  the  recent  progress  in  the  discovery  of  plant  stress-related  specialized

metabolites. Emphasis is placed on the application of advanced omics-based approaches

and  other  techniques  in  studying  plant  stress-related  specialized  metabolism.

Additionally,  we  discuss  the  high-throughput  methods  for  gene  functional

characterization.  These  advances  hold  great  promise  for  harnessing  the  potential  of

specialized metabolites to enhance plant stress resilience in the future.
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1 Introduction

In  recent  years,  climate  change,  anthropogenic  activities,  and  natural  resource

depletion have emerged as critical global threats to agriculture (Zhao et al., 2017; Fadiji

et  al.,  2021).  Climate  change has  engendered severe abiotic  stresses such as salinity,

drought, and extremely high and low temperatures  (Fadiji et al.,  2021), which pose a

significant threat and drastically reduce plant productivity. It has been estimated that with

every 1°C increase in the world’s average temperature, plants, such as maize (Zea mays),

Sorghum (Sorghum bicolor), wheat (Triticum aestivum), rice (Oryza sativa), and soybean

(Glycine max), experienced yield losses 3- 8% over 29 years of warming trends (Zhao et

al., 2017). Particularly, drought and salinity caused by climate change pose a threat to

approximately 50% of the global cultivated and irrigated agricultural land  (Orimoloye,

2022; Singh, 2022). Climate change not only imposes abiotic stress on plants but also

exacerbates  the  occurrence  of  biotic  factors,  such  as  bacteria,  fungi,  herbivores,  and

insects. Research has shown that up to 40% of crop production is affected by pests and

diseases  that  are  exacerbated  by  climate  change  (Savary  et  al.,  2019).  Given  these

limiting factors, scientists are continuously making efforts to search for novel, safe, and

environmentally  friendly  approaches  to  enhance  plant  performance  under  stress

conditions, including those that harness plant specialized metabolites to mitigate biotic

and abiotic stresses.

 Extensive research has suggested that each biotic and abiotic stress perceived by

plants triggers systemic signaling and acclimation responses, leading to the accumulation

of  specialized  metabolites  (Marone  et  al.,  2022).  Despite  the  significant  energy

expenditure  involved in their  production,  these specialized  compounds provide  plants

with an effective defense mechanism to cope with biotic and abiotic stress challenges,

like protecting plants against herbivores, insects, and pathogens, as well as mitigating the

adverse  effects  of  environmental  factors  (D'Amelia  et  al.,  2021;  Ding  et  al.,  2021b;

Marone et al., 2022). Meanwhile, these unique defensive compounds have wide-ranging
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applications in industries such as food, pharmaceuticals, and chemicals, owing to their

nutritional  and  therapeutic  values.  For  example, artemisinin,  a  well-known

sesquiterpenoid produced by Artemisia annua, has been widely utilized in the treatment

of malaria, a life-threatening parasitic disease caused by Plasmodium parasites (Chen et

al.,  2021).  Accordingly,  understanding  the  genetic  basis  of  specialized  metabolite

biosynthesis and their ecological functions will contribute to fully exploring the potential

of these natural products and enable the innovation of novel strategies to improve plant

stress resilience.

Undoubtedly,  the  advancement  of  analytical  chemistry  has  equipped  diverse

research groups with the capability to explore the existence of both unknown and known

plant  specialized  metabolites  as  traits  in  various  biological  investigations.  However,

specialized metabolites are  typically  restricted to specific plant populations or lineages,

presenting  challenges  in  determining  their  exact  roles  in  ecological  interactions  and

understanding  the  genetic  mechanisms  responsible  for  their  biosynthesis  and

accumulation  (D'Amelia et al., 2021). Over the last decade, these limitations have been

increasingly  overcome  through  the  rapid  expansion  of  omics  technologies,  including

metabolomics, genomics, transcriptomics, and proteomics (Ding et al., 2019; Ding et al.,

2020; Jacobowitz and Weng, 2020; Ding et al.,  2021b).  While previous reviews have

covered  various  aspects  of  plant  specialized  metabolism  (Fang  and  Luo,  2019;

Jacobowitz and Weng, 2020; D'Amelia et al., 2021; Ding et al., 2021b; Singh, 2022), it

was  necessary  to  provide  an  overview  on  the  most  recent  research  and  advanced

methodologies for studying plant specialized metabolism, particularly in the context of

plant  stress responses.  Here, we review the recent  advancements  in the field of plant

specialized metabolism and discuss the application of omics-based approaches to study

the  genetic  mechanisms  underlying  the  biosynthesis,  accumulation,  and  biological

functions of plant stress-related specialized metabolites.

2 Biological roles of specialized metabolites in plant stress responses

Plant specialized metabolites play crucial roles in various physiological processes,

such as  plant  growth,  development,  and response to  diverse  biotic  and abiotic  stress
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(Marone et al.,  2022). Differing from primary metabolites, specialized metabolites are

typically produced in response to specific environmental stimuli or other signaling cues,

as well as during specific developmental stages (Jacobowitz and Weng, 2020; Garagounis

et  al.,  2021).  When plants  face  adverse  growth conditions,  the  production  of  various

specialized metabolites enhances their chances of survival (Figure 1).

One of the prominent functions of specialized metabolites in plants is to act as a

defense  mechanism against  biotic  stressors,  such as  pathogens,  herbivores,  and other

pests.

Defensive phytochemical  specialized  metabolites  can be categorized  into two groups:

phytoanticipins  and  phytoalexins  (VanEtten  et  al.,  1994;  Piasecka  et  al.,  2015).

Phytoanticipins  are  constitutively  present  or  synthesized  from  preexisting  precursors

(VanEtten  et  al.,  1994).  Notable  examples  of  phytoanticipins  include  saponins,

cyanogenic  glucoside,  glucosinolates,  and benzoxazinone  glucosides.  For  instance,  α-

tomatine, a major saponin in tomato (Solanum lycopersicum), has the capability to induce

programmed cell death in fungi (Piasecka et al., 2015). Dhurrin,a cyanogenic glucosides

present in sorghum (Sorghum bicolor), can undergo degradation, leading to the release of

toxic cyanide, thereby deterring pests (Laursen et al., 2016). In contrast, phytoalexins are

synthesized de novo when plants detect a pathogen or pest (Piasecka et al., 2015). Non-

volatile  terpenoids  are  well-documented  and  fascinating  examples  of  phytoalexins

(Schmelz  et  al.,  2014).  In  maize,  diterpenoid  phytoalexins  like  dolabralexins  and

kauralexins,  as  well  as  sesquiterpenoid  phytoalexins  such  as  α/β-costic  acids  and

zealexins,  have been identified as part  of the maize's  defense response against fungal

infections  (Ding et al., 2017; Mafu et al., 2018; Ding et al., 2019; Ding et al., 2020).

Likewise, rice plants are capable of producing various diterpenoid phytoalexins, known

as momilactones, phytocassanes, and oryzalexins, which have been shown to contribute

to the rice’s stable resistance against major fungal diseases (Wang et al., 2012; Schmelz

et  al.,  2014).  Additionally,  other  classes  of  specialized  metabolites,  such  as

benzoxazinoids and flavonoids, have also been reported to play similar defensive roles

(Singh et al.,  2023a; Valletta et al.,  2023). A rice-flavanone-type phytoalexin,  namely
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sakuranetin, is one such example, which inhibits the germination of the conidia of fungal

pathogens (Hasegawa et al., 2014). 

Furthermore, it is increasingly evident that plants employ specialized metabolites to

attract  symbiotic  bacteria  and  arbuscular  mycorrhizal  fungi,  as  well  as  shape

microbiomes in the rhizosphere and phyllosphere  (Sasse et al., 2018; Garagounis et al.,

2021; Singh et al., 2023a). Among the well-studied models are the interactions between

legumes and their rhizosphere bacteria. The roots of legume plants release specialized

metabolites  such  as  isoflavones  and  saponins  into  the  rhizosphere  as  signaling

compounds  to  attract  symbiotic  bacteria,  such  as  Azorhizobium,  Rhizobium,  and

Pararhizobium  (Pang  et  al.,  2021).  In  addition,  many  root-derived  specialized

metabolites have been shown to have impacts on rhizosphere microbial compositions. For

example,  a  recent  study  revealed  that  daidzein,  a  specific  isoflavone  secreted  from

soybean roots, plays a role in regulating the assembly of bacterial communities in the

rhizosphere (Okutani et al., 2020). 

Specialized metabolites  in  plants  also serve another  important  function:  assisting

plants  in  alleviating  stresses caused by abiotic  factors,  such as extreme temperatures,

drought, salinity, and ultraviolet radiation. Under abiotic stress, plants generate harmful

reactive oxygen species (ROS), such as singlet oxygen (O2), reactive superoxide anion

radical (O2
•−), hydrogen peroxide (H2O2), and hydroxyl radical (•OH) (Agati and Tattini,

2010; Barnes et al., 2016; Piasecka et al., 2017). Disruption of the balance between ROS

generation and endogenous antioxidant defense mechanisms results in oxidative stress

(Chan et al., 2016). In cases where the production of antioxidant enzymes is insufficient

to  counteract  the  level  of  oxidation,  specialized  metabolites  with  antioxidant  activity

become  a  vital  tool  in  buffering  ROS accumulation,  mainly  flavonoids  and  phenolic

compounds (Agati and Tattini, 2010; Nakabayashi et al., 2014; Barnes et al., 2016). The

UV-B-responsive  flavonoids  function  as  quenchers  of  ROS  involved  in  the  UV-

protection  mechanism  (Agati  and  Tattini,  2010;  Barnes  et  al.,  2016).  The  excessive

accumulation  of  flavonoids  with  antioxidative  properties  has  been  found  to  enhance

drought stress tolerance in maize (Li et al., 2021).  Additionally, specialized metabolites

with antioxidant activity can also provide protection against biotic stress. For instance,
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metabolic  engineering of antioxidative  pigments,  like anthocyanins  and betalains,  can

enhance  plant  resistance  against  the  necrotrophic  fungal  pathogen,  Botrytis  cinerea

(Zhang et al., 2013; Polturak et al., 2017). 

3 Major classes of plant specialized metabolites

Plant specialized metabolites exhibit remarkable structural diversity surpassing that

of primary metabolites, with many originating from primary metabolic precursors (Ding

et al., 2021b). The exact number of plant specialized metabolites remains unknown, but it

has been estimated to range from 200,000 to 1,000,000 (Dixon and Strack, 2003; Afendi

et al., 2012). Here, we present a concise overview of the major classes of specialized

metabolites involved in plant-abiotic and biotic interactions (Figure 1). 

3.1 Phenylpropanoids 

Phenylpropanoids consist of a phenyl ring and a three-carbon side chain, which are

derived from phenylalanine through the shikimic acid pathway (Agati and Tattini, 2010;

Vogt,  2010).  The  diverse  substituents  on  the  benzene  ring  and  the  position  of  the

propenyl double bond, lead to the generation of a wide range of compounds with various

biological  activities  (Dong  and  Lin,  2021).  The  general  phenylpropanoid  pathway

involves  three  key  enzymes:  phenylalanine  ammonia-lyase  (PAL),  cinnamate  4-

hydroxylase (C4H), and 4-coumarate-CoA ligase (4CL), which provide precursors for the

synthesis of flavonoids and lignin (Agati and Tattini, 2010; Dong and Lin, 2021). Lignin

polymers  are typically  composed of three fundamental  monolignols:  p-hydroxyphenyl

(H),  guaiacyl  (G),  and  syringyl  (S),  which  are  derived  from  p-coumaryl  alcohols,

coniferyl alcohols, and sinapyl alcohols, respectively. The most recent advancements in

the lignin biosynthetic pathways and how flux through the pathway is regulated in plants

have been comprehensively reviewed (Vanholme et al., 2019; Yao et al., 2021).

3.1.1 Flavonoids

Flavonoid metabolism is another important branch of phenylpropanoid metabolism,

and research has identified over 8,000 different flavonoid compounds to date (Shomali et
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al., 2022). Flavonoids can act as antioxidants, signal molecules, pigments, phytoalexins,

and detoxifying agents (Agati and Tattini, 2010; Barnes et al., 2016; Zhang et al., 2023).

Moreover, flavonoids possess numerous medicinal benefits, including anti-inflammatory,

antidiabetic, anticancer, and antiviral properties (Dias et al., 2021; Shomali et al., 2022).

Almost all flavonoids possess a C6-C3-C6 structural backbone, which consists of

two benzene rings with phenolic hydroxyl groups (A and B rings) connected to a three-

carbon pyran ring (C) (Dias et al., 2021). The core skeleton of the flavonoid biosynthetic

pathway has been extensively studied in terms of the biochemical, molecular, and genetic

mechanisms of the enzymes involved. This synthesis involves two primary pathways: the

phenylpropanoid pathway, which generates the phenyl propanoid (C6-C3) skeleton, and

the polyketide pathway, which provides the building blocks for polymerized C2 units

(Dias et al., 2021; Shomali et al., 2022). The naturally occurring basic skeleton of C6-C3-

C6  commonly  undergoes  various  enzymatic  modifications,  including  hydroxylation,

glycosylation, methylation, and acylation (Liu et al., 2022b; Shomali et al., 2022). Based

on the oxidation level or the substitution patterns of the middle C-ring, flavonoids can be

classified into six major sub-classes: flavonols, flavones, isoflavones, flavanones, flavan-

3-ols, and anthocyanins (Tohge et al., 2018; Liu et al., 2022b; Shomali et al., 2022).

Chalcone  synthase  (CHS)  initiates  the  synthesis  by  utilizing  malonyl-CoA

molecules from the polyketide pathway and p-coumaroyl CoA from the phenylpropanoid

pathway  to  produce  naringenin  chalcone,  which  is  then  converted  into  flavanone

naringenin  by  chalcone  isomerase  (CHI)  (Tohge  et  al.,  2018;  Dias  et  al.,  2021).

Flavanone  naringenin  serves  as  a  biochemical  precursor  in  the  biosynthesis  of  other

flavonoids, such as flavones, flavonols and anthocyanins  (Tohge et al., 2018; Liu et al.,

2021). Basic hydroxylation is a common occurrence in naringenin at positions C4’, C5,

and C7, while additional hydroxyl groups can also be found at positions C3’, C3, C5’,

C6, and C8 (Liu et al., 2022b). Hydroxylases play an important role in the biosynthesis of

hydroxylated  flavonoids.  Flavanone  3-hydroxylase  (F3H)  is  a  key  enzyme  for  the

hydroxylation of the C ring, converting naringenin into dihydroquercetin,  which further

contributes  to  the  biosynthesis  of  flavonols  and  anthocyanidins  (Lara  et  al.,  2020).

Overexpression of  SbF3H1 in sorghum deficient in 3-hydroxylated flavonoids redirects
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carbon flow towards the production of 3-hydroxylated flavonoids, leading to an enriched

flavonoid  profile  in  various  tissues,  potentially  enhancing  defense  response  and

improving the nutraceutical value of sorghum grain/bran (Wang et al., 2020). Flavonoid

3'-hydroxylase  (F3'H)  and  flavonoid  3',5'-hydroxylase  (F3'5'H)  play  crucial  roles  as

enzymes facilitating the hydroxylation of the B ring. Dihydrokaempferol can be further

catalyzed  by  F3'H  and  F3'5'H,  respectively,  resulting  in  the  formation  of  either

dihydroquercetin or dihydromyricetin. Subsequently,  dihydroflavonol reductase (DFR),

an  enzyme relying  on NADPH,  facilitates  the  reduction  of  dihydroflavonols  such  as

dihydroquercetin  and  dihydromyricetin,  resulting  in  the  production  of  colorless

anthocyanins. These colorless anthocyanins are then converted into colored anthocyanins

through anthocyanidin  synthase  (ANS)  catalysis  before  being transformed  into  stable

anthocyanins (Liu et al., 2021).

In addition, flavone synthase (FNS) enzymes, including two distinct types known as

FNS-I  and  FNS-II,  are  responsible  for  catalyzing  the  conversion  of  flavanones  into

flavones.  FNS-I  belongs  to  the  Fe2+/2-oxoglutarate-dependent  dioxygenase  (2-OGDD)

family. Previous studies have identified OsFNS in rice and ZmFNSI-1 in maize as FNS-I

enzymes that catalyze the conversion of naringenin to apigenin,  a major plant flavone

(Kim et al., 2008; Falcone Ferreyra et al., 2015). On the other hand, FNS-II is a member

of cytochrome P450 enzymes derived from the CYP93B subfamily in dicots and the

CYP93G  subfamily  in  monocots  (Lam  et  al.,  2014;  Lam  et  al.,  2017).  In  rice,

OsCYP93G2  converts  eriodictyol  and  naringenin  into  the  corresponding  2-

hydroxyflavanones, which are essential components required for the biosynthesis of C-

glycosylflavones  (Du et  al.,  2010).  In  the  monocot  family  Poaceae,  tricin,  a  notably

prevalent flavonoid form, is commonly observed as an O-linked conjugate in vegetative

tissues. The biosynthesis of tricin conjugates involves the conversion of naringenin to

apigenin by FNSII, followed by sequential hydroxylation and O-methylation of tricin to

generate various downstream tricin derivatives (Lam et al., 2017). 

Besides  hydroxylation,  glycosylation  is  commonly  found  in  flavonoids.

Glycosylated anthocyanidins are a common type of flavonoid derivatives responsible for

the  colors  in  most  flowers  and  fruits  (Rinaldo  et  al.,  2015).  In  dicots  crops,  O-
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glycosylated flavonols/isoflavones are predominantly accumulated as the major type of

flavonoids, while monocot crops primarily produce C-glycosylated flavones (Tohge et al.,

2018).  O-glycosyltransferases utilize oxygen to link the sugar moiety to the flavonoid

skeleton  in  O-glycosyl  flavones,  whereas  the  glucose  moiety  in  C-glycosyl  flavones

directly  binds  to  the  flavone  backbone  (Funaki  et  al.,  2015;  Sun  et  al.,  2022).  For

instance,  in  soybean,  daidzein  (4’,7-dihydroxyisoflavone)  and  genistein  (4’,5,7-

trihydroxyisoflavone)  undergo  enzymatically  glycosylated  by  7-O-glycosyltransferase,

resulting in the production of genistin and daidzin, respectively (Funaki et al., 2015). In

rice  and  maize,  C-glucosyltransferases,  including  OsCGT,  ZmUGT708A6,  and

ZmCGT1,  catalyze  flavone  C-glycosylation  at  either  the  C-8  or  C-6  position  of  2-

hydroxyflavanone,  leading  to  the  formation  of  flavone-C-glycosides  after  dehydration

(Brazier-Hicks et al.,  2009; Sun et al.,  2022). The flavone glycosides, especially C/O-

glycosyl flavones, play a positive role in plant UV-B protection  (Brazier-Hicks et al.,

2009;  Peng et al.,  2017).  More importantly,  C-glycosyl  flavones have been shown to

potentially enhance crops responses to abiotic and biotic stress like nitrogen limitation

(Zhang  et  al.,  2017),  defense  against  pests  (Casas  et  al.,  2014),  and  fungal  diseases

(McNally et al., 2003).

 

3.1.2 Hydroxycinnamate amides

Other  phenylpropanoid  metabolites  include  hydroxycinnamate  amides  (HCAAs),

phenylpropanoid esters, lignans, and sporopollenin (Agati and Tattini, 2010; Vogt, 2010).

HCAAs, alternatively known as phenylamides or phenolamides, are also a broad array of

plant specialized phenylpropanoid metabolites, serving important roles in stress tolerance

(Liu et al., 2022a). In particular, the accumulation of HCAAs in plants has been linked to

enhanced resistance against various plant pathogens (Muroi et al., 2009; Seybold et al.,

2020;  Ding et  al.,  2021b).  These HCAAs are synthesized through the conjugation  of

hydroxycinnamic  acids  (HCAs)  such  as  cinnamic,  p-coumaric,  caffeic,  ferulic,  and

benzoic acids with amines such as serotonin, tryptamine, putrescine, and agmatine (Zeiss

et al., 2021). Recent studies have identified several HCAAs that function as phytoalexins

in Poaceae. For instance, in rice,  these HCAAs  exhibited inducibility and antimicrobial
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activity  against  the  pathogen  X.  oryzae (Morimoto  et  al.,  2018).  In  barley  (Hordeum

vulgare),  the accumulation of HCAAs, specifically 9-hydroxy-8-oxotryptamine and 8-

oxotryptamine,  has  been  observed  in  response  to  Fusarium  infection,  which  are

synthesized  through the  oxidation  of  N-cinnamoyl tryptamine  (Ube et  al.,  2019b).  In

wheat, the accumulation of  N-cinnamoyl-8-oxotryptamine and  N-cinnamoyl-9-hydroxy-

8-oxotryptamine has been shown to act as phytoalexins against pathogen infection caused

by Bipolaris sorokiniana (Ube et al., 2019a).

During HCAA syntheisis, the condensation of hydroxycinnamoyl-CoA esters and

amines is mediated by various hydroxycinnamoyl transferases (HCTs), which catalyze

the transfer of hydroxycinnamoyl moieties from CoA esters to acceptor molecules. (Ube

et al.,  2019b; Zeiss et al.,  2021; Liu et al.,  2022b). The HCT family includes various

isoforms and members with distinct substrate specificities,  allowing them to acylate  a

wide  variety  of  acceptor  molecules,  such  as  shikimate,  quinate,  and  other  related

compounds. This diversity in substrate specificity enables HCTs to participate in different

biosynthetic pathways, such as HCAAs, lignins, lignans, and flavonoids, contributing to

the complexity and diversity of specialized metabolism in plants.

 

3.2 Terpenes 

Terpenes, with over 65,000 known structures, constitute the largest and most diverse

class of plant natural products, playing crucial roles in plants, such as defense against

herbivores and attraction of pollinators (Schmelz et al., 2014; Zi et al., 2014; Shahi and

Mafu,  2021).  These  compounds  are  derived  from  the  five-carbon  units,  isopentenyl

diphosphate  (IPP)  and  dimethylallyl  diphosphate  (DMAPP),  generated  through  the

mevalonate (MVA) or the 2-C-methylerythritol-4-phosphate (MEP) pathway (Jacobowitz

and  Weng,  2020;  Ding  et  al.,  2021b).  Farnesyl  diphosphate  (FPP,  C15)  is  typically

synthesized via the MVA pathway and serves as the precursor for sesquiterpenes (C15),

triterpenes (C30), and sterols. In contrast, within the MEP pathway, IPP and DMAPP,

derived from pyruvate and glyceraldehyde-3-phosphate, undergo condensation catalyzed

by geranyl diphosphate synthase (GPS) to yield geranyl diphosphate (GPP, C10), serving

as  the  direct  precursor  for  monoterpenes  (C10),  or  by  geranylgeranyl  diphosphate
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synthase (GGPPS) to generate geranylgeranyl diphosphate (GGPP, C20), which acts as a

precursor  for  diterpenes  (C20) and tetraterpenes  (C40)  (Jacobowitz  and Weng,  2020;

Ding et al.,  2021b).  Terpene synthases (TPSs) catalyze  the cyclization  of each class-

specific  building  block,  acting  as  gatekeepers  in  terpenoid  production  by  converting

prenyl diphosphates with different chain lengths or distinct cis/trans configurations into

diverse terpenoid skeletons  (Ding et al., 2021b; Zhan et al., 2022). The P450 enzymes,

frequently  belonging  to  the  CYP71,  CYP76,  CYP81,  CYP99,  and  CYP701 families,

further enhance the structural complexity and bioactivity of plant terpenoids (Hussain et

al., 2018; Ding et al., 2021b).

3.2.1 Monoterpenes and sesquiterpenes 

Despite  the  distinct  biosynthetic  pathways  of  monoterpenes  and  sesquiterpenes,

these two classes of compounds collectively contribute to a significant  portion of the

volatile  organic compounds (VOCs) emitted  by plants,  and have been reported to  be

involved in plant defense through their pesticidal and antibacterial activity, as well as

repellent  properties  (Lanier  et  al.,  2023).  For  example,  γ-terpinene  (monoterpene)

exhibits significant antibacterial activity against the rice pathogen  Xanthomonas oryzae

(Yoshitomi et  al.,  2016);  α-pinene (monoterpene)  demonstrates  toxicity  against  maize

weevil (Sitophilus zeamais) (Langsi et al., 2020); α-farnesene (sesquiterpene) acts as an

insecticide (Lin et al., 2017), and other monoterpenes such as α-terpinene, p-cymene, and

β-phellandrene,  have  been  identified  as  repellent  compounds  (Bleeker  et  al.,  2009).

Furthermore, monoterpenes and sesquiterpenes are frequently utilized by plants to attract

pollinators  or  repel  florivores,  as  exemplified  by  linalool,  limonene,  and  β-pinene

(Boncan et al., 2020; Lanier et al., 2023). In addition, certain non-volatile sesquiterpenes

act as phytoalexins, providing direct protection against fungal and bacterial pathogens in

plants (Köllner et al., 2013; Schmelz et al., 2014; Ding et al., 2020).

To date, numerous monoterpene synthases and sesquiterpene synthases have been

functionally characterized in plants. For instance, in rice, OsTPS24 and OsTPS19 have

been  identified  as  monoterpene  synthases,  producing  γ-terpinene  and  (S)-limonene,

respectively  (Yoshitomi  et  al.,  2016;  Chen et  al.,  2018).  In  maize,  four  monoterpene
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synthases  and thirteen  sesquiterpene  synthases  have been characterized  (Block et  al.,

2019; Saldivar et al., 2023). In tomatoes, TPS5 and TPS39 are involved in the production

of the monoterpene linalool (Cao et al., 2014), while TPS9 and TPS12 synthesize several

sesquiterpenes,  including germacrene  C and β-caryophyllene/α-humulene,  respectively

(Schilmiller  et  al.,  2010).  In  grapevine  (Vitis  vinifera),  specific  TPSs,  namely

VvPNLinNer1, VvPNLinNer2, and VvCSLinNer, have been found to possess the ability

to produce linalool  (Martin et al., 2010). Indeed, recent studies have provided insights

into the synthesis of certain monoterpenes by multi-substrate sesquiterpene synthases in

the cytosol (Mercke et al., 2004; Pazouki and Niinemets, 2016). In the case of TPS from

cucumber  (Cucumis  sativus),  it  exhibits  C10/C15  multi-substrate  characteristic  that

utilizes  GPP as  a  substrate  to  produce (E)-β-ocimene,  while  employing  FPP to form

(E,E)-α-farnesene (Mercke et al., 2004). This multi-substrate utilization capacity offers an

alternative mechanism for regulating the production of monoterpenes and sesquiterpenes

by  modifying  the  sizes  of  different  substrate  pools  in  the  cytosol,  especially  under

stressful conditions (Pazouki and Niinemets, 2016).

After the initial biosynthesis of terpenes by TPSs, their backbone undergoes various

modifications, including oxidation, hydroxylation, or glycosylation. These modifications

can lead to the formation of a wide range of structurally diverse terpenoid compounds. A

well-studied  example  is  linalool,  where  CYP76F14  from  grapevine  catalyzes  the

oxygenation of linalool, forming (E)-8-carboxylinalool (Bosman and Lashbrooke, 2023).

Additionally,  CYP76F14  is  involved  in  the  synthesis  of  wine  lactone.  In  another

intriguing  case,  three  tandemly  duplicated  genes  of  the  CYP71Z subfamily  in  maize

encode enzymes that catalyze various oxidation reactions on sesquiterpenes, resulting in

the formation of zealexin antibiotics (Ding et al., 2020).

3.2.2 Diterpenes and triterpenes

Plants produce a series of diterpenoid compounds, including the widely distributed

gibberellin  phytohormones  and specialized  diterpenoids  that  are  exclusively  found in

specific  plant  species  or  families  (Hedden and Thomas,  2012;  Zerbe  and Bohlmann,

2015;  Ding et al.,  2019).  To date,  over 7,000 labdane-related  diterpenoids  have been
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identified  in  plants,  and  they  play  diverse  physiological  roles  in  plant  development,

defense,  and ecological  adaptation  (Zerbe  and Bohlmann,  2015).  In  angiosperms,  the

biosynthesis of labdane-related diterpenoids follows a modular process initiated by the

carbocation-driven cyclization of the diterpene skeleton through the sequential activity of

class II and class I diterpene synthases (di-TPSs) and subsequently enriched by P450-

mediated  backbone  decoration  (Ding  et  al.,  2019;  Ding  et  al.,  2021b).  Firstly,  the

precursor GGPP undergoes proton-initiated cyclization by class II di-TPSs, resulting in

the  production  of  dicyclic  ent-copalyl  diphosphate  (ent-CPP),  (+)-CPP  and  syn-CPP

(Ding  et  al.,  2021b).  In  maize,  the  class  II  di-TPSs,  ZmAN1  and  ZmAN2,  are

catalytically  redundant  CPP  synthases,  with  ZmAN1  essential  for  gibberellin

phytohormone biosynthesis, whereas ZmAN2 for the formation of defensive dolabralexin

and kauralexin diterpenoids  (Mafu et al.,  2018; Ding et al., 2019). Other examples of

class  II  di-TPS  include  maize  ZmCPS3  and  foxtail  millet  (Setaria  italica)  SiTPS9

functioning as (+)-CPP synthases, foxtail millet SiTPS6 and rice OsCPS4 acting as syn-

CPP synthases, and rice OsCPS2 and maize ZmCPS4 serving as ent-CPP synthases and

8,13-CPP synthase, respectively  (Otomo et al., 2004; Prisic et al., 2004; Murphy et al.,

2018; Karunanithi et al., 2020). Subsequently, class I di-TPSs convert these intermediates

through ionization-dependent cyclization and rearrangement, leading to the formation of

a series of distinct labdane scaffolds (Zerbe and Bohlmann, 2015; Ding et al., 2021b). For

instance, ZmKSL2 and ZmKSL4 sequentially convert the  ent-CPP into  ent-isokaurene

and dolabradiene, respectively (Mafu et al., 2018; Ding et al., 2019). Likewise, OsKSL4

catalyzes the product from OsCPS4, forming the tricyclic momilactone scaffold, while

OsKSL7 contributes to the formation of the phytocassane scaffold from the product of

OsCPS2 (Otomo et al., 2004). Finally, diterpene backbones are functionalized by other

enzyme classes,  with the CYP71 clan of cytochrome P450s being the most common,

through  oxidation  and  subsequent  conjugation  processes  to  enhance  their  bioactivity

(Zerbe  and  Bohlmann,  2015;  Ding  et  al.,  2021b).  For  example,  ZmCYP71Z16  and

ZmCYP71Z18  are  involved  in  the  oxygenation  of  ent-kaurene,  ent-isokaurene,  and

dolabradiene, playing a crucial role in the formation of antibiotics crucial for  Fusarium

stalk rot resistance (Mafu et al., 2018; Ding et al., 2019). 
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Triterpenoids  are  also  common  natural  plant  defense  compounds  with  potential

applications as pesticides, pharmaceuticals, and other high-value products  (Singh et al.,

2023b). Saponins, for instance, play a key role in promoting plant defense against a wide

range  of  pathogens,  insect  pests,  and  herbivores  (Hussain  et  al.,  2019).  The  carbon

skeletons of triterpenoids  are derived from the common precursor,  2,3-oxidosqualene,

through  cyclization  reactions  catalyzed  by  enzymes  such  as  oxidosqualene  cyclases

(OSC), including cycloartenol synthases and β-amyrin synthases (Cárdenas et al., 2019).

The oxidation of these skeletons is mediated by P450s, contributing to their structural

diversity.  Subsequent  modifications  involving  UDP-glycosyltransferases  (UGTs)  and

acyltransferases  (ATs)  further  enhance  the  complexity  of  triterpenoid  structures

(Miettinen et al., 2017; Cárdenas et al., 2019).

3.3 Alkaloids 

Alkaloids are a class of natural  nitrogen-containing products,  often derived from

amino acids such as tyrosine, lysine, ornithine, and phenylalanine  (Glenn et al., 2013).

Based  on  their  heterocyclic  ring  system  and  biosynthetic  precursors,  alkaloids  are

classified into diverse categories, including tropane, piperidine, indole, purine, imidazole,

pyrrolizidine, isoquinoline, quinolizidine, pyrrolidine, and steroidal alkaloids (Yan et al.,

2021). Most alkaloids function as nitrogen storage reservoirs, protective agents against

both biotic and abiotic stress, and/or growth regulators (Glenn et al., 2013). For example,

α-tomatine,  a  steroidal  alkaloid  extracted  from  various  organs  of  tomato,  exhibits

antimicrobial and antinutritional activities (You and van Kan, 2021).

Nicotine,  the  predominant  alkaloid  found in  Nicotiana species  (Shimasaki  et  al.,

2021).  It  exhibits  strong  toxicity  and  plays  a  role  in  plant  defense  against  insects.

Additionally, it functions as a potent allelopathic substance, exerting significant growth

effects  on  other  plants  (Cheng  et  al.,  2021). Nicotine  itself  comprises  heterocyclic

pyrrolidine  and pyridine rings,  with the pyrrolidine ring forming through consecutive

reactions catalyzed by Orn decarboxylase (ODC), putrescine N-methyltransferase (PMT),

and  N-methylputrescine  oxidase  (MPO),  while  the  pyridine  ring  results  from  the

involvement  of  enzymes  such  as  Asp  oxidase  (AO),  quinolinate  synthase  (QS),  and
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quinolinate phosphoribosyl transferase (QPT)  (Kajikawa et al., 2017). The coupling of

these two rings is believed to be catalyzed by Berberine Bridge Enzyme-Like Proteins

(BBLs)  (Kajikawa et al.,  2017; Schachtsiek and Stehle, 2019). Recently,  CRISPR/Cas

editing  of  genes  encoding  BBL has  been used to  obtain  nicotine-free  non-transgenic

tobacco (Schachtsiek and Stehle, 2019).

Another well-known example is Benzoxazinoids (BXs),  which are indole alkaloids

found in several monocot crop species, such as wheat, maize, and rye (Secale cereale)

(Ding et al., 2021b; Stahl, 2022). BXs are involved in plant defense against herbivorous

arthropods,  demonstrating  direct  insecticidal  activity  by  inhibiting  insect  digestive

proteases through their breakdown products (Zhang et al., 2021). Additionally, BXs play

vital roles in plant-microbe interactions and have regulatory effects on various biological

processes,  including  flowering  time,  auxin  metabolism,  iron  uptake,  and  potentially

aluminum  tolerance  (Zhou  et  al.,  2018).  Given  the  extensive  availability  of  genetic

resources in maize,  significant progress in BXs research has been achieved.  The core

maize BX biosynthesis  pathway has been extensively studied and involves seven BX

enzymes (BX1–BX5, BX8, and BX9) that catalyze the formation of DIMBOA-Glc from

indole-3-glycerol  phosphate  (IGP)  (Meihls  et  al.,  2013;  Zhang  et  al.,  2021).  These

compounds  can be further  hydroxylated  by  O-methyltransferases  (BX10 to BX12) to

form  2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one  glucoside  (HDMBOA-Glc).

Moreover,  DIMBOA-Glc  can  be  converted  to  2,4-dihydroxy-7,8-dimethoxy-1,4-

benzoxazin-3-one-O-glucoside (DIM2BOA-Glc) by BX13 and BX7, while DIM2BOA-

Glc can be further methylated to form 2-hydroxy-4,7,8-trimethoxy-1,4-benzoxazin-3-one

glucoside (HDM2BOA-Glc) by BX14 (Handrick et al., 2016). In rye, the genes ScBx1-

ScBx7, Scglu, and ScGT have been experimentally confirmed to regulate the majority of

BX biosynthesis reactions (Tanwir et al., 2017).

3.4 Other specialized metabolites

There is no doubt that numerous other structural types of specialized metabolites

exist that may not fit into the categories discussed above. For instance, oxylipins, derived

from the oxidation of unsaturated fatty acids such as α-linolenic acid and linoleic acid,
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play critical roles in plant defense mechanisms (Muñoz and Munné-Bosch, 2020). Plant

oxylipins are initiated through enzymatic pathways by 9- and 13-lipoxygenases (LOXs),

which oxidize polyunsaturated fatty acids. Among them, the jasmonates (JAs) branch is

initiated by 13-lipoxygenase (LOX), leading to the formation of 13-hydroperoxyliolenic

acid  (13-HPOT),  which is  further  converted to  12-oxo-phytodienoic  acid  (OPDA) by

allene oxide synthase (AOS) and allene oxide cyclase (AOC)  (Wasternack and Song,

2017). OPDA is then reduced by OPDA reductase (OPR) and undergoes β-oxidation to

generate JA. The JAs are a vital class of plant hormones necessary for regulating plant

growth, development, specialized metabolism, defense against insect attack and pathogen

infection, and tolerance to abiotic stress. A similar pathway involving 9-LOX activity on

linolenic  and  linoleic  acid  leads  to  the  12-OPDA  positional  isomers,  10-oxo-11-

phytoenoic acid (10-OPEA) and 10-oxo-11-phytodienoic acid (10-OPDA), respectively

(Christensen et al., 2015). Notably, 10-OPEA exhibits broad toxicity to insects and fungi,

likely through the activation of cysteine proteases (Ding et al., 2021b) 

Additionally, sulfur-containing metabolites have also been identified in plants. For

example,  glucosinolates  are  found  in  cruciferous  plants  with  defensive  roles  against

insects,  (Halkier and Gershenzon, 2006). A recent review has listed up to 137 natural

glucosinolates,  describing  their  variability  in  the  R  group  (Blažević  et  al.,  2020).

Moreover, small molecules such as halogenated compounds and peptides also contribute

to the formation of numerous functional specialized metabolites (Jacobowitz and Weng,

2020).

4 Omics-based approaches for specialized metabolism discovery in plants

Although  our  understanding  of  the  functions  of  these  specialized  metabolites  is

growing, there is still much to explore in terms of biosynthesis and regulation of these

natural  products,  owing  to  gene  and  pathway  redundancy,  the  multifunctionality  of

proteins, or the activity of enzymes with broad substrate specificity (Ding et al., 2021b;

Garagounis et al., 2021). In the past decade, omics approaches, such as metabolomics,

genomics,  transcriptomics,  and  proteomics,  as  well  as  integrative  multi-omics

approaches, have had an increasing impact on plant specialized metabolism discovery
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(Figure  2),  enabling  researchers  to  uncover  the  intricate  mechanisms  underlying  the

biosynthesis,  regulation,  and biological  functions of diverse specialized metabolites in

plants.

4.1 Metabolomics

Metabolites are often regarded as the bridges between genotypes and phenotypes,

and  changes  in  metabolite  levels  could  directly  reflect  gene  function,  revealing

biochemical  and molecular  mechanisms underlying phenotypes and facilitating related

breeding procedures (Fiehn, 2002). Metabolomics analysis typically relies on a variety of

analytical  chemistry techniques,  such as gas chromatography-mass spectrometry (GC-

MS),  liquid  chromatography-mass  spectrometry  (LC-MS),  and  nuclear  magnetic

resonance (NMR) spectroscopy  (Salem et  al.,  2020).  GC-MS is an ideal  tool  for the

identification and quantification of small metabolites with a molecular weight below 650

daltons,  which  are  either  volatile  metabolites  or  metabolites  easily  to  volatilize  after

derivatization,  including alcohols,  hydroxy acids,  fatty acids,  and sterols  (Ding et al.,

2021b; Ma and Qi,  2021).  Compared to GC-MS, LC-MS analysis  does not require a

derivatization  step  and can  measure  a  broader  range  of  analytes,  making  it  a  highly

powerful and comprehensive analytical tool. Nowadays,  LC-MS has become the most

commonly  used  analytical  tool  for  identifying  plant  metabolites,  including

phenylpropanoids,  terpenoids,  and  alkaloids  (Lisec  et  al.,  2006;  Ma  and  Qi,  2021).

Complementing MS-based analyses, NMR spectroscopy is a fundamental  and reliable

method  for  structure  elucidation  in  plant  metabolism  research,  providing  valuable

insights into the chemical composition and connectivity of plant metabolites (Ma and Qi,

2021).  Historically,  effectively  reducing  false-positive  peaks,  analyzing  large-scale

metabolic data, and the lack of a comprehensive database for annotating plant metabolites

have posed significant challenges in metabolomics. 

In recent years, the study of plant metabolites has significantly been supported by

the  availability  of  numerous  databases,  advanced  analytical  techniques,  and

computational tools. Databases like NIST, MoNA, and METLIN provide comprehensive

resources for accurate and reliable metabolite identification. Meanwhile, the emergence
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of  more  sensitive,  accurate,  and  versatile  instruments  has  dramatically  improved  our

ability to identify and quantify low-abundance compounds, even from highly complex

mixtures  (Fang and Luo,  2019;  Jacobowitz  and Weng,  2020).  In  addition,  numerous

computational tools, such as CANOPUS and GNPS, have been developed, employing

MS fragmentation spectra and deep neural networks to accurately assign annotations to

unknown metabolites in sample extracts, and construct molecular networks of detected

features (Wang et al., 2016; Dührkop et al., 2021; Ma and Qi, 2021). With the continuous

advancement  in  analytical  techniques,  mass-spectra  databases,  and  computational

approaches, metabolomics has emerged as a valuable tool in plant research, providing

plant  scientists  an  exceptional  opportunity  to  comprehensively  explore  specialized

metabolism in plants  (Yang et al., 2021). The utilization of metabolomics as a tool for

monitoring the dynamics of plant metabolites is gaining increasing interest in identifying

crucial metabolites associated with tolerance to both biotic and abiotic stresses (Zhang et

al., 2017; Christ et al., 2018; Billet et al., 2020). For instance, UPLC-DAD-MS-based

metabolomics  enabled  the  analysis  of  downy  mildew  symptomatic  grapes  leaves,

revealing certain stilbenoids as significant biomarkers of the infection (Billet et al., 2020).

Similarly, utilizing UPLC-QTOF to assess the effects of low nitrogen stress on wheat flag

leaves during two crucial growth periods, the study revealed that flavonoids likely serve

as biomarkers of low nitrogen stress (Zhang et al., 2017). 

Other new technologies,  such as flavoromics,  have been also developed to study

specific  groups  of  metabolites.  Metabolomics  utilizes  both  targeted  and  untargeted

methodologies to identify and characterize a diverse range of small molecule metabolites.

In  contrast,  flavoromics  is  specialized  in  pinpointing  metabolic  components  directly

linked  to  flavors.  Flavoromics  represents  an  extensive  interdisciplinary  domain  that

integrates analytical chemistry, bioinformatics, and sensory science. Its primary aim is to

comprehensively explore flavor compounds found in various substances, particularly in

food  and  beverages.  This  field  encompasses  intricate  processes  involved  in  the

identification,  quantification,  and  understanding  of  the  complex  composition  of  both

volatile and non-volatile compounds that influence sensory perceptions associated with

taste and aroma (Pérez-Jiménez et al., 2021; Keawkim and Na Jom, 2022).
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4.2 Genomics

With the increasing speed and decreasing costs of sequencing and genome assembly

platforms,  a  large  number  of  high-quality  plant  genomes  have  been  assembled  and

released  (Kress  et  al.,  2022),  providing  a  powerful  foundation  for  studying  plant

specialized  metabolism.  Unlike  metabolic  pathway  genes  forming  biosynthetic  gene

clusters (BGCs) in prokaryotes, genes involved in plant specialized metabolism are often

randomly  distributed  across  the  plant  genome.  However,  studies  have  revealed  the

existence  of  operon-like  clusters  of  specialized  metabolic  pathway  genes  in  plants,

providing a strategy to identify genes involved in plant specialized metabolism in the

post-genomic era (Jacobowitz and Weng, 2020; Zhan et al., 2022). To date, the majority

of plant BGC-encoded products that have been characterized demonstrate activity against

a wide range of pests, pathogens, and competing plants (Polturak and Osbourn, 2021). 

Phylogenetic  analysis  can offer  valuable  insights to  enhance the prioritization  of

candidate genes. The combined use of genomic sequence and phylogenetic-based gene

discovery has been successfully applied to identify genes involved in plant specialized

metabolism, such as terpenoid metabolism. In the study on the foxtail millet  TPS gene

family, a total of 39 genes were identified by mining available genomic data using the

BLAST against a curated protein database of known plant TPSs, with 32 of these genes

having  full-length  sequences.  Next,  functional  classification  of  these  TPS genes  was

conducted through analysis of signature sequence motifs and phylogenetic analysis to

further narrow down the number of candidates, revealing that SiTPS6, SiTPS9, SiTPS34,

and SiTPS35 belong to class II di-TPS enzymes, SiTPS28 and SiTPS29 show similarity

to ent-kaurene synthase activity, and SiTPS5, SiTPS8, and SiTPS13 are closely related to

class I  di-TPSs  (Karunanithi et al., 2020). Similarly, in the bioenergy crop switchgrass

(Panicum virgatum), mining of genome and transcriptome inventories suggested a large

TPS gene family with over 70 members, consisting of 44 mono- and sesqui-TPS genes

and 30 di-TPS genes,  and phylogenetic  analyses confirmed that 35 of these members

belong to the TPS type-a clade (Muchlinski et al., 2019). Such approaches have also been

applied  in  studying P450-catalyzed biosynthesis  of  furanoditerpenoids  in  switchgrass.

Through systematic phylogenetic analysis of the switchgrass P450 CYP71Z subfamily
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gene,  CYP71Z25-CYP71Z29  were  identified  as  candidate  enzymes  for  subsequent

biochemical analysis (Muchlinski et al., 2021).

4.3 Transcriptomics

Transcriptomics provides direct insights into real-time gene expression profiles and

is one of the most commonly  used types of omics.  RNA sequencing (RNA-Seq) has

emerged as a powerful and effective method for conducting large-scale transcriptomic

research, particularly in most non-model plants that lack a high-quality reference genome

(Yang et al., 2021; Wang and Huo, 2022). The expression of functionally related genes

involved  in  specialized  metabolic  pathways  is  often  highly  correlated  in  spatial  and

temporal dimensions (Schmelz et al., 2014; Ding et al., 2020). Therefore, gene expression

can facilitate the discovery of metabolic pathways by mining organ-specific genes, gene

expression clusters, and performing coexpression analysis. Transcriptional coexpression

analysis,  which  is  based  on the  premise  that  a  set  of  genes  involved  in  a  biological

process are co-regulated and co-expressed under given conditions, has been successfully

employed to identify genes involved in plant specialized metabolism, such as terpenoids,

glucosides,  benzoxazinoids,  flavonoids  and others  (Ding et  al.,  2021b).  For  example,

gene  coexpression  analysis  identified  three  CYP71  family  P450s  in  maize  terpenoid

biosynthesis, which were not identified by extensive forward genetic studies (Ding et al.,

2021b).  To  accurately  measure  the  relationship  among  genes,  an  unbiased  RNAseq

database  is  essential.  With  increasingly  affordable  next-generation  sequencing

technologies,  large-scale  transcriptomic  datasets  are  routinely  generated  and  are

becoming publicly available. Various statistical correlation-based approaches are used for

coexpression  analysis,  such  as  Spearman  Correlation  Coefficient  (SCC)  and  Pearson

Correlation Coefficient (PCC). Mutual Rank (MR), the geometric mean of the ranked

PCCs between two genes, has been used to measure gene coexpression  (Poretsky and

Huffaker,  2020).  When using  coexpression  analysis  to  identify  unknown biosynthetic

genes in a target pathway, a key bait gene with a known function is often required for the

analysis (Singh et al., 2022). The cutoff scores used to identify candidate pathway genes

or construct coexpression networks are often selected arbitrarily.     
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Additionally, coexpression analysis plays a unique role in identifying non-enzymatic

components,  such  as  transcription  factors  and  transporters,  which  are  crucial  for  the

efficient functioning of metabolic pathways. In the context of investigating the molecular

mechanisms underlying  apple  (Malus  × domestica)  color  formation,  the utilization  of

pairwise comparisons and weighted gene coexpression network analysis (WGCNA) led

to  the  identification  of  MdMYB28 as  a  key  regulatory  gene that  negatively  regulates

anthocyanin biosynthesis (Ding et al., 2021a). Similarly, employing the same method, a

pepper  MYB  transcription  factor,  CaMYB48,  was  identified  as  a  critical  regulatory

component in capsaicinoid biosynthesis (Sun et al., 2020). 

Successful coexpression analysis depends on the  correlation of biosynthetic genes

with their  respective metabolites  in planta.  This approach will  not be useful in some

cases  if  the site of biosynthesis  is  different  from the site of metabolite  accumulation.

Also, this approach may not be applicable in situations where biosynthetic intermediates

are  produced  in  one  part  of  the  plant  and  then  transported  to  another  part,  where

biosynthesis is completed.

As  multicellular  organisms,  plants  have  evolved  different  cell  types  for  cellular

responses uniquely to different environmental cues. Single-cell sequencing technologies

are being employed to explore cell-type-specific responses to stresses in plants (Cole et

al.,  2021).  In  addition  to  elucidating  the  spatiotemporal  distribution  of  metabolic

pathways  at  single-cell  resolution,  these  technologies  offer  a  valuable  strategy  for

identifying candidate pathway genes. For example, Sun et al. utilized single-cell RNA

sequencing to localize the transcripts of 20 MIA (monoterpenoid indole alkaloids) genes

in  different  cell  compartments  and  predicted  several  candidate  transporters  likely

involved in shuttling MIA intermediates between inter- and intracellular compartments

(Sun et al., 2023).      

4.4 Proteomics

        The  development  of  high-quality  sequenced  genomes  enables  proteomics  to

effectively  facilitate  the  prioritization  of  candidate  biosynthetic  enzymes  in  plant

specialized metabolic pathways (Ding et al., 2021b). High-throughput protein sequencing
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technology includes iTRAQ (isobaric tags for relative and absolute quantification) and

DIA (data-independent acquisition). Recent advances in mass spectrometry (MS)-based

proteomics technologies have enabled the comprehensive identification,  quantification,

validation, and characterization of a diverse range of proteins in specific organs, tissues,

and  cells  (Champagne  and Boutry,  2016).  For  example,  untargeted  proteomics  using

data-dependent  acquisition  (DDA)  with  a  quadrupole  time-of-flight  (Q-TOF)  tandem

mass  spectrometer  allows  the  quantification  of  thousands  of  detectable  proteins  in

samples  (Hart-Smith  et  al.,  2017).  A  comparative  proteomic  analysis  using  mass

spectrometry  (MALDI-TOF/TOF)  was  conducted  on  resistant  cotton  (Gossypium

barbadense)  infected  with  Verticillium dahliae,  revealing  188 differentially  expressed

proteins  and  identifying  several  genes  involved  in  secondary  metabolism,  reactive

oxygen burst, and phytohormone signaling pathways (Gao et al., 2013). However, owing

to higher costs and lower sensitivity,  proteomics is being utilized less frequently than

other omics techniques for metabolic pathway gene discovery. 

4.5 Integrative multi-omics approaches 

Metabolites are interconnected and form a complex and tightly regulated metabolic

network,  making the  use  of  a  single-omics  technique  prone to  inherent  biases.  With

technological advances in profiling metabolites, genes, and proteins, the application of

combined multi-omics technologies provides new strategies and opportunities to discover

stress-related metabolic pathways in plants. 

Metabolite-based genome-wide association studies (mGWASs), which make use of

both  genomics  and  metabolomics  data,  have  emerged  as  a  powerful  tool  for  linking

metabolites with biosynthetic and regulatory genes  (Fang and Luo, 2019; Ding et al.,

2021b).  mGWASs  greatly  facilitate  large-scale  gene–metabolite  annotation  and

identification in plants, offering valuable insights into the genetic and biochemical basis

of the plant metabolome. For example, mGWASs have been successfully performed to

identify  biosynthetic  genes  involved  in  maize  specialized  metabolisms,  such  as

benzoxazinoids, terpenoids, and flavonoids (Zhou et al., 2019; Ding et al., 2021b; Förster

et al.,  2022). For mGWASs, increasing the number and diversity of accessions in the
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panel is prioritized over having multiple replicates of the same accession since a larger

diversity panel can provide a broader representation of genetic variation and increase the

power to identify significant associations between metabolites and genes across different

accessions (Zhou et al., 2019).   

In addition to mGWASs, metabolite-based quantitative trait locus analysis (mQTL)

based on bi-parental populations has also been employed for pathway gene discovery in

plants.  For  instance,  mQTL analysis  was  performed  and  successfully  identified  three

P450s,  ZmCYP81A37,  ZmCYP81A38,  and  ZmCYP81A39,  for  the  biosynthesis  of

sesquiterpenoid antibiotics zealexins in maize  (Ding et al., 2020). mQTL and mGWAS

are  two  complementary  forward  genetic  approaches,  and  their  combination  provides

effective information for candidate gene mining. These metabolite-based genetic mapping

approaches  also  complement  other  methods  in  metabolite  identification,  including

coelution tests with known compounds and feature network analysis.

Using  metabolite  concentration  ratios  (metabolite  ratios)  as  mapping  traits  in

mGWASs has been found to reduce overall biological variability in population datasets

and improve statistical associations  (Petersen et al.,  2012). The nature of a metabolite

ratio may directly reflect the biochemical function of an enzyme or transporter associated

with the pair of metabolites. This approach is particularly useful when prior knowledge of

the  biosynthetic  pathway  is  available.  By  employing  metabolite  ratios  as  traits  in

mGWASs, researchers have successfully identified biosynthetic genes involved in plant

specialized  metabolism.  For  example, in  a  maize  flavonoid  biosynthesis  study,  an

additional  FOMT (flavonoid  O-methyltransferase)-encoding gene was identified by an

mGWAS using the apigenin/genkwanin ratio as a trait. This gene was not detected by

mGWASs directly using the concentrations of either apigenin or genkwanin  (Förster et

al., 2022). 

Due  to  linkage  disequilibrium  (LD),  genetic  markers  (e.g.,  SNPs)  identified  by

mGWASs often reside outside the candidate genes and can sometimes be relatively far

away from them, making it challenging to select the candidate genes. Transcriptomics, in

combination with mGWASs, offers an efficient approach to prioritize the candidate genes

at mGWAS loci. For example, we recently used this approach to prioritize a reductase
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catalyzing A-series kauralexin biosynthesis at an mGWAS locus, which spans ~800 kb

containing  58  predicted  genes  (Ding  et  al.,  2019).  In  addition,  transcriptome-wide

association studies (TWASs) in combination with mGWASs have been proven to be very

helpful in prioritizing causal genes at mGWAS loci in humans (Ndungu et al., 2020). Its

potential in prioritizing candidate biosynthetic genes in plants is also promising. 

In addition to the integration of omics approaches discussed above, other integrative

multi-omics  analyses  are  also  highly  valuable  in  discovering  plant  specialized

metabolism. For example, the mechanism of light-induced anthocyanin biosynthesis in

eggplant was analyzed using a combination of transcriptomics and proteomics, revealing

a  regulatory  model  for  light-induced  anthocyanin  biosynthesis  (Li  et  al.,  2017).

Moreover,  the  integration  analysis  of  transcriptomics  and  metabolomics  data  enables

mutual  validation,  facilitates  the  discovery  of  key  genes,  metabolites,  and  metabolic

pathways  from  extensive  datasets,  and  provides  a  comprehensive  understanding  of

complex biological processes. 

Single-cell transcriptomics and single-cell metabolomics are also valuable tools in

the study of plant specialized metabolism. These techniques allow researchers to examine

the molecular profiles of individual cells, providing insights into cellular heterogeneity

and revealing rare or transient metabolic states that might be overlooked in bulk analyses

(Vandereyken et al., 2023). For example, the combination of single-cell transcriptomics

and  single-cell  metabolomics  allowed  the  identification  of  a  reductase  for

anhydrovinblastine biosynthesis in the MIA pathway (Li et al., 2023).

Collective analyses of the transcriptome, proteome, and metabolome can uncover

metabolic pathway inter-conversions and drive gene discoveries in plants, by associating

temporal and spatial expression levels of genes and enzymes with metabolite abundance

across different samples. (Ding et al., 2021b). For example, a time-course experiment was

conducted on maize stem tissues to study zealexin biosynthesis  in response to fungal

elicitors, and the data clearly showed that genes, enzymes, and metabolites involved in

the zealexin pathway had a similar expression pattern (Ding et al., 2020), providing a

valuable strategy for studying plant specialized metabolism. 
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Integrative  multi-omics  approaches  hold  great  promise  for  advancing  our

understanding of plant specialized metabolism. By combining data from various omics

techniques,  researchers  can  overcome  individual  technique  limitations,  gain  a  more

holistic  view of  metabolic  networks,  and identify  key genes  and metabolic  pathways

involved in plant stress responses.

5 Functional validation of candidate pathway genes

Following candidate gene identification, the verification of enzyme function requires

robust biochemical and genetic approaches. Compared to traditional molecular cloning,

which requires a considerable amount of time and human resources, DNA synthesis is

becoming  a  cost-effective  approach  for  the  rapid  assembly  of  candidate  genes  into

expression vectors for functional  analysis  (Blaby and Cheng, 2020).   DNA synthesis,

along  with  synthetic  biology  and  genetic  engineering  tools,  allows  for  larger-scale

enzyme  biochemical  analyses  and  metabolic  pathway  reconstruction  in  heterologous

hosts like yeast,  E. coli,  and  N. benthamiana (Figure 3).  Biochemical  approaches  for

functional validation may face challenges such as low protein expression, low enzymatic

activity, and requirements for co-enzymes and substrates. To overcome these issues,  in

vivo expression systems through combinatorial  enzyme expression in  microorganisms

and  plants  have  been  developed.  Among  them,  Agrobacterium-mediated  transient

expression  in  N.  benthamiana has  become  a  routine  system  for  plant  specialized

metabolism research (Bach et al., 2014; Tiedge et al., 2020). This plant expression system

has expanded our understanding of biosynthetic pathways, facilitated the identification of

novel enzymes, and provided a platform for efficient production of valuable metabolites.

This system offers several advantages, including the ease of coexpressing multiple genes

in a combinatorial manner, the presence of endogenous biosynthetic pathway precursors,

and the ability to interrogate enzyme activity without the need for protein purification

(Ding et al., 2021b). Coexpression of multiple genes using the Agrobacterium-mediated

transient  expression  system  in  N.  benthamiana is  typically  accomplished  by  co-

infiltration of multiple Agrobacterium strains that each contains one target gene. Recent

advances  in  specialized  metabolism  discovery  using  this  approach  include  the
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demonstration of the 10-gene maize zealexin pathway, the large-scale production of rice

momilactones, and other valuable plant natural products (Ding et al., 2019; Ding et al.,

2020;  De La Peña and Sattely,  2021).  Despite  the benefits  of  N. benthamiana as  an

expression system, the presence of endogenous enzymes and similar pathways in this

plant  species  could  potentially  interfere  with  introduced  pathways.  For  example,

endogenous  glycosyltransferases  in  N.  benthamiana could  derivatize  the  early  MIA

pathway intermediates, and the removal of these endogenous enzymes could facilitate the

production of the early MIA pathway product, strictosidine, in N. benthamiana (Dudley

et al., 2022).  

Coexpression  of  multiple  genes  using  the  Agrobacterium-mediated  transient

expression  system  in  N.  benthamiana is  typically  accomplished  by  co-infiltration  of

multiple  Agrobacterium strains  that  each  contains  one  target  gene.  To  improve  the

efficiency  of  co-expressing  multiple  genes,  researchers  have  explored  the  use  of  2A

peptides, which enable the expression of multiple proteins under the control of a single

promoter  (Sharma et  al.,  2012;  Liu et  al.,  2017).  For  example,  the  F2A peptide  was

successfully  used  to  express  three  betalain  biosynthetic  genes  under  the  control  of

Cauliflower  Mosaic  Virus  (CaMV) 35S promoter  in  Arabidopsis (He  et  al.,  2020).

Potentially,  2A-containing  peptides  could  be  utilized  to  co-express  multiple  pathway

genes  in  the  Agrobacterium-mediated  transient  expression  system,  enhancing  the

likelihood  of  plant  cells  co-expressing  multiple  biosynthetic  genes  to  increase  the

production  of  target  metabolites  while  reducing  the  formation  of  intermediate

metabolites.  

Gene function  can  also  be  validated  by  using  genetic  mutants  obtained  through

various  methods,  including  genome-wide  variation  mining,  classical  ethyl  methane

sulfonate-induced mutations, T-DNA insertion lines, or expanding transposon-insertion

mutant  collections  (Ding  et  al.,  2021b).  For  plant  species  with  available  genetic

resources, these mutant lines can be valuable tools to study the effects of gene disruption

on specialized metabolism and the resulting phenotypes. To precisely create mutations in

candidate  pathway genes,  CRISPR/Cas9 genome editing approaches  and RNA-guided

gene  silencing  techniques  are  commonly  used  in  plant  research.  These  tools  allow
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researchers to create stable and transient gene modifications for functional studies  (Mei

and Whitham, 2018; Zhu et al., 2020). For example, we recently developed a maize zx1

zx2 zx3  zx4 quadruple  mutant  using  a  CRISPR/Cas9 approach,  which  lacks  zealexin

production and has a changed root microbiome (Ding et al., 2020). The combination of

biochemical  and  genetic  approaches,  along  with  advancements  in  DNA  synthesis,

synthetic biology, and gene editing technologies, has significantly enhanced our ability to

validate the function of candidate pathway genes in specialized metabolism. In addition,

cell-free  systems have been used to  characterize  candidate  pathway  genes  and study

complex,  modular  pathways  of  plant  specialized  metabolism  in  vitro (Tiedge  et  al.,

2020). These tools and techniques discussed here will continue to play a vital  role in

advancing  our  understanding  of  plant  stress-related  specialized  metabolism  and  in

harnessing these specialized pathways for improving plant stress resilience.

6 Conclusion and future perspectives

The advancements in genomics, metabolomics, transcriptomics, and proteomics, as

well  as  integrative  multi-omics,  have  significantly  enhanced  our  understanding  of

specialized metabolism in plants  (Singh et al., 2022).  Other omics, such as flavoromics

and  lipidomics,  also  contribute  to  the  study  of  plant  specialized  metabolites. These

approaches have paved the way for studying pathway genes and their biological functions

more  efficiently,  leading  to  a  better  understanding  of  the  production  of  specialized

metabolites and their roles in plant defense and stress resilience. Additionally, with the

continuous  improvements  in  high-throughput  metabolic  profiling  and  sequencing

technologies,  mGWAS has  become a  potent  forward genetics  strategy to  unravel  the

genetic  and biochemical  basis  of specialized metabolism in plants.  Moreover,  genetic

engineering and synthetic biology offer exciting possibilities for developing plants with

modified metabolic  traits.  By manipulating  or  introducing  novel  metabolic  pathways,

scientists can create plants with enhanced stress resilience and other desirable traits in the

coming years. Techniques like CRISPR/Cas9 have revolutionized gene editing and made

it easier to engineer specific traits in plants. 
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The integration of multi-omics approaches, such as combining data from genomics,

metabolomics,  transcriptomics,  and  proteomics,  will  be  crucial  in  furthering  our

understanding of plant specialized metabolism. These data-driven approaches, coupled

with advanced computational methods, biochemical techniques,  synthetic biology, and

genetic approaches, can provide valuable insights into complex metabolic and biological

processes. Additionally, the development of efficient plant transformation methods will

play a vital role in applying the knowledge gained from specialized metabolism research

to crop improvement. Faster and more reliable transformation techniques will enable the

practical implementation of genetically modified plants with desired traits, such as stress

tolerance.

The future of specialized metabolism research in plants looks promising, driven by

advances in various scientific disciplines and technologies. By leveraging the knowledge

obtained  through  omics-based  approaches  and  genetic  engineering  as  well  as  other

techniques, we expect to see the emergence of more stress-resistant plants with modified

metabolic traits, which will contribute to sustainable agriculture and global food security

in the future. 
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Figure Legends

Figure 1 Major classes of plant specialized metabolites and their biological functions.
The major classes of plant specialized metabolites, including phenylpropanoids, terpenes,
alkaloids, and other specialized metabolites are displayed. Specialized metabolites play
crucial roles in protecting plants against both abiotic stresses (e.g., light, heat, drought,
cold, flood, salinity, and metals) and biotic stresses (e.g., pests and pathogens). 
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Figure 2 Overview of omics-based approaches for specialized metabolism discovery in 
plants. Single and combination of omics approaches, including metabolomics, genomics, 
transcriptomics, and proteomics as well as integrative multi-omics, greatly accelerate the 
discovery of plant specialized metabolism. mGWAS, metabolite-based genome-wide 
association analysis; TWAS, transcriptome-wide association analysis. 

Figure 3. Schematic overview of high throughput approaches for characterization of 
candidate biosynthetic genes. The figure was created with BioRender.com.
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