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Abstract

It is well known that neural systems can suffer catastrophic
forgetting of previously learned patterns when trained on new
patterns, and that this renders many cognitive models
unrealistic.  However, through evolution, humans have
arrived at mechanisms which minimize this problem, and so
in this paper we aim to show how simulated evolution can be
used to generate neural network models with significantly less
catastrophic forgetting than traditionally formulated models.

Introduction

It is normal for humans to gradually forget what they have
previously learned, particularly during the learning of new
information.  However, in traditional artificial neural
networks, the forgetting is considerably more catastrophic,
and this proves to be a serious limitation of such cognitive
models (McCloskey & Cohen, 1989; Ratcliff, 1990; French,
1999).  Human brains have presumably evolved by natural
selection to minimize this problem.  The aim of this paper is
to show how simulated evolution can be used to minimize
the problem in artificial neural networks too.

We shall begin by describing the problem of catastrophic
forgetting in more detail, and outline the principal previous
approaches to reduce it.  We then discuss the possibilities
for evolving artificial neural networks, and explain the
particular approach that we have adopted for our study.
Then, in our largest section, we present a series of
simulation results, and compare each of our evolved systems
against the baseline of traditionally built systems.  We end
with some discussion and conclusions.

Catastrophic Forgetting

After a neural network has been trained on one set of
patterns, training on a new set can seriously disrupt, or
cause loss of, the previously learned patterns. This
‘catastrophic forgetting’ is a direct result of the stability/
plasticity dilemma which was first investigated by
McCloskey & Cohen (1989) and Ratcliff (1990).  Since
then, various approaches have been studied in an attempt to
reduce or eliminate it (French, 1999).

Several approaches were based on the idea that if some,
or all, of the previous information is re-learned together
with any new information, then the network will not forget
the old information. This process is called interleaved

learning (Ratcliff, 1990; McClelland, McNaughton &
O’Reilly, 1995).  The need to store the old patterns, which
may be impractical (and also rather implausible for
cognitive systems), can be avoided by ‘pseudo-rehearsal’
which involves creating pseudo-items (that approximate the
original items) to learn with the new items (Robins, 1995).
Of course, this still requires storage of the pseudo-items, and
it is far from obvious how best to create pseudo-items that
represent the old items sufficiently well.

Given that the main cause of catastrophic forgetting is
interference in the shared weights, many approaches have
attempted to reduce that interference.  For example, one can
restrict the way in which the hidden unit activations are
distributed, and hence the connection usage.  French (1991)
has used activation sharpening algorithms to reduce the
hidden unit activation overlaps.  The Sharkey & Sharkey
(1995) HARM model uses a neural network implementation
of a lookup table.  This divides the learning task into two
sub-tasks; first eliminating the overlap in the input patterns,
and then producing appropriate outputs from the hidden
nodes.  Other approaches have involved allowing two sets
of weighted connections between nodes.  Hinton & Plaut
(1987) used dual-additive weights, with fast weights to learn
new patterns and slow weights for long-term storage.

Related approaches have been based on the belief that
humans do not suffer from catastrophic forgetting because
their brains have evolved two distinct areas to deal with the
problem (McClelland, McNaughton & O’Reilly, 1995).
The hippocampal system deals with learning new
information, whilst the neocortical system slowly
consolidates that new information with the old for long-term
storage, using some form of interleaved learning.  Dual-
model architectures consisting of two distinct networks, one
for early processing and another for long-term storage of
previously learnt information, together with an interfacing
mechanism, have been developed to simulate this separation
(French, 1997; Ans & Rousset, 1997).

All these approaches have been based on variations of
traditional neural networks, with the designers themselves
deciding on the architecture, node activation functions,
learning algorithms, the various parameter values, and so
on.  In this paper, we aim to show how evolutionary
computation techniques can be used to evolve neural
systems that suffer less catastrophic interference than
traditionally built systems.

1991



Evolving Neural Network Models

Evolutionary algorithms are a class of non-deterministic
optimization techniques that apply the basic principles of
evolution by natural selection to find high performance
solutions. They maintain a population of individuals, each
encoding a potential solution to the problem at hand, and
use some form of fitness function to determine which
solutions to discard and which to keep to form the next
generation.  Cross-overs and random mutations are applied
to the remaining solutions to create new individuals, and the
process continues, with increasingly fit populations.  This
approach has been combined with artificial neural networks
in a number of ways to create highly successful learning
systems.  It has been used to select optimal network
topologies, choices of input features, numbers of hidden
units, node transfer functions, learning algorithms and
parameters, and even the connection weights themselves,
with results reported as being superior to traditionally built
systems (e.g. Yao, 1999; Bullinaria, 2003).

In this study, the underlying network architecture and
learning algorithm are fixed to be Multi-Layer Perceptrons
with one hidden layer, trained by gradient descent weight
updating (back-propagation) with the Cross Entropy error
measure (Bullinaria 2003).  The aim is to evolve the various
other neural network topology and learning parameters to
produce systems that suffer minimal catastrophic forgetting.
Evolution is simulated by using populations of individual
neural networks, each initialized with random weights from
their own innately specified ranges.  The initial population
has random innate parameters.  At each generation, each
network is trained on the same set of initial patterns until it
has learnt all those patterns (i.e. has all its output activations
within a particular tolerance of their target outputs) or until
a maximum number of epochs of training is reached.  They
are then trained on a new set of patterns in the same manner.
After the new patterns have been learned, each network is
tested again to see how well the original patterns are still
remembered, that is, the number of output units ‘correct’
(within a particular tolerance) over all of the initial patterns.
The fittest individuals are naturally those with the highest
number remembered.  The least fit half of the population is
then removed, and each of the remaining individuals
randomly select a mating partner to produce one child, thus
restoring the population size.  The children inherit innate
characteristics (i.e. parameter values) from the range
spanned by both parents, with random Gaussian mutations
added to allow values outside that range (Bullinaria, 2003).
For each new generation, a new global random set of
training/remembering data is generated, and all the networks
are started with new random initial weights according to
their innately specified ranges.

The following Section will make these ideas more
concrete by specifying our simulations in more detail, and
presenting the results from a systematic sequence of
experiments that explore the issues involved.

Simulation Results

To begin we need to fix a convenient training set that is
small enough for the simulations to run reasonably quickly,
yet large enough to be representative.  Consistency with
earlier work led us to a variation of that used by Hinton &
Plaut (1987), namely random associations of 12 bit random
binary patterns with 6 bits ‘on’.  New random data sets of
this specification were generated for each generation.  Each
network was trained on 20 such patterns until the error on
each output bit was less than 0.1, or the maximum of 1000
epochs was reached.  It was then trained on a different set of
4 such patterns, and the number remembered correctly from
the original 20 was measured using a tolerance of 0.2.  All
our populations consisted of 100 networks.

It is appropriate to start by establishing the baseline
performance levels obtained for standard neural network
training parameters.  Figure 1 shows the mean percentages
remembered over 2500 populations with different random
training data sets, trained using traditional back-propagation
learning rates of 0.2 and random initial weights uniformly
distributed in the range [–1, +1].  We see the extent of the
variance due to some data sets being ‘easier’ than others,
and that the performance increases with the number of
hidden units.  The first test of our simulated evolution was
therefore to allow the number of hidden units NHid to evolve,
and on the right of Figure 1 we see that there is a steady rise
towards the maximum allowed (10,000 in this case).  We
shall return to this issue again later, but for the bulk of our
simulations we keep the number of hidden units fixed at the
more computationally feasible number of 50, for which the
baseline remembering performance is 68.7%.

The next thing we wanted to explore was the suggestion
of French (1991) that hidden unit activation sharpening
could reduce the forgetting by developing semi-distributed
representations in the hidden layer.  The idea is that, at each
epoch of training, the input to hidden weights are modified
to bring the NH highest activation hidden units closer to one,
and the NL lowest activations closer to zero, by some
‘sharpening factor’ of α times the difference.  There are two
variations to consider.  First, when we force NH + NL = NHid

so that all hidden activations get changed, the sharpening
factor invariably evolves to zero, leaving us with our
standard network.  If we let NH and NL evolve freely, they
both evolve very quickly to zero, again leaving us with our
standard network.  It seems that node sharpening does not
really help with catastrophic forgetting, at least for our class
of training data.  As a check, these parameters were left free
to evolve in all our subsequent simulations, but in each case
node sharpening was quickly ‘turned off’.

There are several traditional network parameters that one
can evolve with the hope of improving performance.  To get
a feel for which were most effective, we considered each
one in turn before evolving them all at once.  First we tried
evolving the learning rates.  It is now well established that
allowing separate gradient descent step sizes ηL for each
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layer and bias set L is more efficient than a single parameter
to control them all (Bullinaria, 2003).  Evolving the four
ηL resulted in a significant improvement in remembering
performance from the baseline 68.7% up to around 79%.

Associated with each learning rate is a random initial
weight distribution.  There are several options for specifying

these, such as means and standard deviations of Gaussian
distributions (µL, σ L), or as the lower and upper limits of
uniform distributions (–lL, uL).  Evolving the upper and
lower limits resulted in an improvement in remembering
from the 68.7% baseline up to around 76%.

A major advantage of evolutionary approaches is their
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Figure 1: Remembering performance improves with the number of hidden units (left), and simulated evolution consequently
causes the number of hidden units to increase to the maximum allowed (right).
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 Figure 2: Simultaneous evolution of the learning rates and initial weight distributions (top), and the associated improvements
in remembering performance and learning speed (bottom).

1993



ability to evolve simultaneously a number of parameters that
have highly complex interactions.  Allowing the learning
rates and initial weight distributions to evolve together leads
to a rather different patterns of results from when they are
evolved separately.  Figure 2 shows what happens.  By
coordinating their values, our system has now improved its
remembering performance up to around 88%.  Note the
large differences in size between the four learning rates, and
how far removed they are from the values traditionally used.
It is clear that the sudden improvement in performance
corresponds to a ten-fold widening of the input to hidden
initial weight distributions, and the thousand fold increase in
learning rate for the hidden to output connections.

It is interesting to note that the improved remembering
automatically brings with it faster learning, so there is no
need to build that explicitly into the evolutionary fitness
function.  However, as can be seen in the final graph of
Figure 2, during the evolutionary history there can be
periods of very slow learning.  These can be avoided, if
necessary,  by including the number of epochs of learning in
the fitness sorting.  For example, instead of taking for
breeding the 50% of the population that remembers best, we
can take the best 60% and then reduce that to 50% by
removing the slowest learners.

Two more learning parameters that one might expect to
affect our results are the Sigmoid Prime Offset which
prevents saturation and poor learning at the hidden layer,
and weight decay regularization which prevents over-fitting
of the training data (Bullinaria, 2003).  However, if we
allow these to evolve, their parameters both take on values
that are so low that they have no significant effect on the
learning or remembering performance.

Another factor that could be expected to influence the
interference that causes forgetting is the connectivity
between layers.  We can evolve parameters that specify the
proportion of possible connections that are used by the
network, and find that proportions significantly less than
one do emerge as seen on the left of Figure 3.  There is

almost full connectivity between the hidden and output
layer, but only about one third of the input to hidden layer
connections are used.  However, this only resulted in about
one percent improvement in the remembering performance
over the evolved fully connected networks.  As a check, we
tried evolving just the connectivities, with all the other
parameters held at the baseline values used for Figure 1, but
there was a similarly small remembering improvement.

Two final parameters that could affect our results are the
output error tolerances that determine when a particular
output activation is deemed ‘correct’.  Previously, these
allowed an error on the binary targets of up to 0.1 for
training, and 0.2 for testing/remembering, but other values
could conceivably give better performance.  We see on the
right of Figure 3 what happens if we let these parameters
evolve, in addition to those already considered above.  The
remembering tolerance comes out at just under 0.5, meaning
that almost any output on the right side of 0.5 is deemed
correct.  This makes sense, as it renders the remembering as
easy as possible without affecting the learning.  The training
tolerance is very erratic and fails to settle down, with no
noticeable effect on the remembering performance.  With
the original and new patterns trained to the same tolerance,
it seems to make little difference what that tolerance
actually is.  It turns out that evolving these parameters only
produces a marginal improvement in performance (about
0.5%), and closer investigation reveals some unwanted side-
effects, such as learning times which are as erratic as the
training tolerances, and this can cause the learning rates to
drift with an eventual deterioration in performance.

We now move on to the evolution of more sophisticated
networks, allowing them to have two sets of additive
weights along the lines of Hinton & Plaut (1987), with one
standard set as above, and one set of ‘fast weights’ that has
learning rates larger by some scale factor and a weight
decay rate that prevents them having long term memory.
Evolving the scale factor and decay rate, along with all the
other details described above, results in a further level of
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Figure 3: Evolution of the connectivity proportions between layers results in significantly reduced connectivity between the
input and hidden layer (left), and evolution of better training and remembering tolerances (right).
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performance improvement up to 94.8%.  Figure 4 shows the
evolving parameter values that achieve this.  Interestingly,
the evolved training tolerance takes on a much lower value
than before (around 0.01), with an associated large increase
in the number of epochs training required (around 500 rather
than 70).  Of course, the importance of slow consolidation is
not a new idea to memory modelling.

Finally, we return to the matter of the number of hidden
units.  Evolving all the other network parameters, with the
number of hidden units fixed at 50, has led to improvements
far superior to the improvement achievable by simply
increasing the number of hidden units by a factor of 100.
We now need to check whether allowing more hidden units
can improve our evolved performance even further, or if we
have reached a performance ceiling.  Figure 5 shows that,
even with all the other parameters evolved at the same time,
the population still takes on increasing numbers of hidden
units, though noticeably slower than before.  Now the
remembering performance rises to 98.5%, compared to the

10,000 hidden unit baseline of 78.8%, and the 94.8%
maximum achieved with only 50 hidden units.  Fortunately,
large parameter interactions are relatively rare, though we
do frequently find complex interactions with significant
effects that are automatically resolved by evolutionary
approaches, but are very difficult to get right ‘by hand’.

So far our study was based on how many of 20 original
patterns were remembered after training on 4 new patterns.
Now we need to explore the extent to which the number of
new patterns affects the results.  Figure 6 shows what
happens for our fixed 50 hidden unit case (left graph), and
when the number of hidden units is free to evolve up to
10,000 (right graph).  Not surprisingly, the baseline degree
of forgetting as a percentage (left bar of each triple)
increases with the number of new patterns.  Also, consistent
with our earlier results, for each number of new patterns, the
baseline decreases with the number of hidden units.  The
important result is that for every case, evolving the network
parameters, as described above, leads to a massive reduction
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Figure 5: The final run evolving everything including the number of hidden units: the number of hidden units rising towards
the maximum allowed (left), and the associated proportion remembered (right).
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in the amount of forgetting (middle bars), with even further
reductions for evolved dual weight systems (right bars).

Discussion and Conclusions

We have taken ideas from natural evolution and shown,
through a series of simulations, how they can significantly
reduce the well known problem of catastrophic forgetting in
artificial neural network systems trained on simple pattern
association memory tasks.  Simply evolving the traditional
neural network parameters (such as numbers of hidden
units, degrees of connectivity, initial weight distributions,
learning rates and tolerances) leads to big improvements in
remembering performance, and allowing dual weight
architectures provides even further increases.

It is always difficult to relate simplified cognitive models
to real brain processes.  However, our results are robust
across numbers of hidden units and problem complexity (i.e.
number of new patterns learned), so we can expect them to
scale up well.  Reliably extrapolating up to human type
memory tasks and brain like numbers of hidden units is very
difficult, of course, but it does seems that the problem of
catastrophic forgetting in neural networks may not be quite
as problematic as previously thought.

The next stage will be to extend our models to include
more esoteric factors, such as the dual model architectures
of French (1997) and Ans & Rousset (1997), and let
evolution decide on the solution it prefers.  Our models
already contain the necessary factors to prevent over-fitting,
and preliminary results indicate that we are able to evolve
appropriate parameters for networks to work as well on
generalization tasks as they have here on memory tasks.
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