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OBJECTIVES: To evaluate whether different approaches in note text preparation 
(known as preprocessing) can impact machine learning model performance in the 
case of mortality prediction ICU.

DESIGN: Clinical note text was used to build machine learning models for adults 
admitted to the ICU. Preprocessing strategies studied were none (raw text), cleaning 
text, stemming, term frequency-inverse document frequency vectorization, and crea-
tion of n-grams. Model performance was assessed by the area under the receiver op-
erating characteristic curve. Models were trained and internally validated on University 
of California San Francisco data using 10-fold cross validation. These models were 
then externally validated on Beth Israel Deaconess Medical Center data.

SETTING: ICUs at University of California San Francisco and Beth Israel 
Deaconess Medical Center.

SUBJECTS: Ten thousand patients in the University of California San Francisco 
training and internal testing dataset and 27,058 patients in the external validation 
dataset, Beth Israel Deaconess Medical Center.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Mortality rate at Beth Israel 
Deaconess Medical Center and University of California San Francisco was 10.9% 
and 7.4%, respectively. Data are presented as area under the receiver operating 
characteristic curve (95% CI) for models validated at University of California San 
Francisco and area under the receiver operating characteristic curve for models 
validated at Beth Israel Deaconess Medical Center. Models built and trained on 
University of California San Francisco data for the prediction of inhospital mortality 
improved from the raw note text model (AUROC, 0.84; CI, 0.80–0.89) to the term 
frequency-inverse document frequency model (AUROC, 0.89; CI, 0.85–0.94). 
When applying the models developed at University of California San Francisco to 
Beth Israel Deaconess Medical Center data, there was a similar increase in model 
performance from raw note text (area under the receiver operating characteristic 
curve at Beth Israel Deaconess Medical Center: 0.72) to the term frequency-
inverse document frequency model (area under the receiver operating character-
istic curve at Beth Israel Deaconess Medical Center: 0.83).

CONCLUSIONS: Differences in preprocessing strategies for note text impacted 
model discrimination. Completing a preprocessing pathway including cleaning, 
stemming, and term frequency-inverse document frequency vectorization resulted 
in the preprocessing strategy with the greatest improvement in model perfor-
mance. Further study is needed, with particular emphasis on how to manage 
author implicit bias present in note text, before natural language processing algo-
rithms are implemented in the clinical setting.

KEY WORDS: clinical notes; critical care; machine learning; mortality; natural 
language processing
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Clinical note text contains valuable information 
that may not be fully captured anywhere else in 
the electronic health record (EHR) (1). Because 

reading note text and extracting information has been 
resource intensive, incorporating text into large clin-
ical studies has historically been challenging (2). Over 
the last 10 years, natural language processing (NLP) 
has increasingly been used to automate information 
extraction from note text (3). Incorporating note text 
from the EHR into statistical models has improved the 
prediction of some important clinical outcomes, in-
cluding in critical care (4–9). NLP is increasingly used 
in medicine to study clinical outcomes, augment clin-
ical decision support, and assist with clinical research 
(3, 10–12). Because NLP is more frequently being used 
in the clinical domain and because application of clin-
ical knowledge is integral to creating robust NLP mod-
els, it is important for clinicians to understand how 
NLP models are developed (1).

An important component of NLP model develop-
ment is preparation of text for analysis (referred to as 
“preprocessing”) (13). Preprocessing can include sev-
eral steps to transform raw note text data into data that 
is ready for inclusion in statistical models. However, 
how much or how little preprocessing is done is at 
the discretion of the investigator (14). Little is known 
about the impact of the choice among alternative pre-
processing strategies on model performance in the 
prediction of important critical care outcomes. The 
objective of this study is to evaluate whether different 
preprocessing strategies can impact machine learning 
model performance in the ICU. To demonstrate this, 
we show results for different preprocessing strategies 
when text is used to predict inhospital mortality. We 
do this first for penalized logistic regression models, 
but to give a sense of the robustness of these findings, 
also give summary results for two other artificial intel-
ligence analytic approaches, feed forward neural net-
works, and random forest classification.

METHODS

Study Cohort

We analyzed note text of patients greater than or equal 
to 18 years with an ICU length of stay greater than 4 
hours who were admitted to the ICU at the University 
of California San Francisco (UCSF) between December 
22, 2011, and May 29, 2017, or the ICU at Beth Israel 

Deaconess Medical Center (BIDMC) between June 9, 
2100, and October 25, 2205. BIDMC dates appear to 
be in the future because they are masked for de-iden-
tification purposes. Note text data were extracted from 
BIDMC via the Medical Information Mart for Intensive 
Care III database and from the EHR at UCSF (15). Only 
the first admission to the ICU during the study period 
for each patient was included. Note text for 12 hours 
prior to ICU admission to 24 hours after ICU admis-
sion were included. Clinical notes written in the ICU 
by physicians, nurse practitioners, physician assistants, 
or registered nurses were included. For each patient, we 
combined all notes in the time frame to form a single 
document, or corpus, for the patient. To improve pro-
cessing times, a random selection of 10,000 patients 
(from all patients admitted to the adult ICU at UCSF 
during the study period) was included. All patients 
from the study population at BIDMC were included 
during model validation. This study was approved by 
the UCSF Institutional Review Board (No. 12-08609), 
which waived the requirement for informed consent.

Preprocessing

We describe commonly used methods to preprocess 
note text data (Fig. 1). Text cleaning, stemming, term 
frequency-inverse document frequency (TF-IDF) vec-
torization, and creation of n-grams are all forms of 
preprocessing. All preprocessing was done using the 
Python Version 3 Natural Language Toolkit (NLTK) 
package, version 3.4.5, a commonly used program for 
NLP (16, 17).

Cleaning Text

We first transformed raw text to clean text. In NLP, 
“text cleaning” usually refers to removal of punctuation 
and numerical values from notes, as well as removal of 
words that are expected to have little predictive value be-
cause they are so common (these words are called “stop 
words”) (14). Examples of stop words are “a,” “an,” “and,” 
“for,” “it,” and “the” (18). Because the NLTK package is 
commonly used, we initially used the default list of stop 
words in the package. Supplemental Table 1 (http://
links.lww.com/CCX/A656) contains the full list of the 
NLTK stop words. Numerical values in notes reflect a 
wide variety of concepts from vital signs to phone num-
bers. Numerical values may be removed because num-
bers on their own do not provide meaning. For example, 

http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
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the number 60 has very different meaning when it is 
preceded by “heart rate” versus “systolic blood pressure” 
versus followed by “days in the hospital.” Additionally, 
other numbers such as phone numbers can be associ-
ated with inappropriate significance. For example, a 
phone number could be highly associated with inhospi-
tal mortality if the number was for the coroner’s office, 
but one would not want to include that number in a 
model to predict mortality.

Stemming

We then transformed the cleaned text by stemming it. 
The goal of stemming is to consolidate words that have 
the same meaning to their stem or root base, so that all 
the predictive power of the underlying concept is cap-
tured in a single predictor variable, rather than being 
spread across multiple predictors (14). Without stem-
ming, words such as “ventilator,” “ventilating,” and “ven-
tilated” would be considered as three discrete terms that 
are not related to each other. With stemming, all three 
words could be truncated to a stem such as “ventil,” and 
the predictive power of the concept “the patient needs 
mechanical ventilation” can all be assigned to the single 
stem, rather than spread out across different terms that 
mean the same thing clinically.

Count Vectorization

Count vectorization is a method used to transform text 
into numeric outputs (19). Count vectorization counts 

the number of times a particular term is written in a 
given document. We restricted the terms counted in 
each document to the 1,000 terms that were most com-
monly used across the text of all UCSF patients.

Term Frequency-Inverse Document Frequency 
Vectorization

TF-IDF vectorization is a method to adjust for how com-
monly a term is found in note text. TF-IDF is a calcu-
lated numerical weight. Term frequency is calculated as 
how often a term appears in the entire corpus for an in-
dividual patient divided by how much was written about 
the patient (measured by how many terms there are in 
the corpus for that patient) (20). In NLP, term frequency 
is usually multiplied by inverse document frequency 
(IDF). IDF represents how commonly a particular term 
is found across all patients and is calculated in this case 
as the log of the number of patients (since each patient 
has a single document, their corpus), divided by the 
number of patients with the term. Therefore, if every 
patient has the term (an example in the ICU might be 
“IV,” since nearly all ICU patients have an IV catheter), 
then the ratio of all patients to all patients with the term 
is near 1. Because the log of 1 is 0, the term IV would 
be zeroed out and would not be included as a predictor 
in the statistical model. Rare terms that are present in 
few documents will have an IDF closer to 1 (21). When 
the TF and IDF are multiplied together, the numerical 
weight for a particular term is generated. The mathe-
matical equations used to calculate TF-IDF are shown 

Figure 1. Preprocessing note text pathway. TF-IDF = term frequency-inverse document frequency.
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in Supplemental Figure 1 (http://links.lww.com/CCX/
A655). The numerical weight for each term is then in-
corporated into statistical models. Once text is trans-
formed into numeric outputs, the text is referred to as 
“featurized data.”

N-Grams

N-grams represent a string of n words. For example, 
single words are unigrams and two words are bigrams 
(5). Investigators may consider use of n-grams for a va-
riety of reasons. For instance, it may be expected that 
two- or three-word phrases may capture important risk 
factors or differences among risk factors. For example, 
“liver failure” may be more predictive than “liver” and 
“failure” when treated as separate entities. Alternatively, 
“acute lymphocytic leukemia” may carry different risk 
of inhospital mortality than “chronic lymphocytic leu-
kemia,” and the investigators may be concerned that 
such distinctions would get lost treating each word sep-
arately (in which case there would be a single coefficient 
generated by the model for the word “leukemia” that 
would merge the risk of acute and chronic leukemias). 
In addition, using n-grams allows for incorporation of 
negation terms such as (“not septic”) into a model (5, 
22). The default list of stop words in the NLTK pack-
age included words such as “don’t” and “weren’t.” For 
our n-grams analysis, we did not remove stop words 
that implied negation in medical text even though they 
were on the NLTK list of usual stop words. Thus, we in-
cluded terms such as “no” and “wasn’t” in text. The list of 
negation words that we included for the n-grams anal-
ysis, even though they are on the NLTK stop word list, is 
shown in Supplemental Table 2 (http://links.lww.com/
CCX/A656).

Statistical Analysis

We developed mortality prediction models using note 
text that had undergone different types of preprocess-
ing. The “Raw Text” model used note text directly 
extracted from the EHR as predictors of inhospital 
mortality. The “Clean Text” model removed punctu-
ation, stop words, and numerical values from notes. 
The “Stemming” model used clean text that underwent 
stemming. The “TF-IDF” model used Clean Text that 
underwent stemming and TF-IDF vectorization. Last, 
the n-gram model used note text that used clean text 
(with a modified stop word list), underwent stemming, 

and TF-IDF vectorization that used unigram, bi-gram, 
and tri-gram term combinations (Fig. 1).

Model Development and Validation

We used penalized logistic regression (L1 
penalized/“Least Absolute Shrinkage and Selection 
Operator” and L2 penalized/“Ridge”) to model the asso-
ciation between inhospital mortality and different types 
of preprocessed note text. Penalized logistic regression 
was used because current widely accepted mortality 
prediction models use logistic regression and because 
logistic regression allows easy interpretation of the as-
sociation of individual terms or stems with the outcome 
(4, 23). Count vectorization was used to associate a nu-
merical value with terms in the Raw Text, Clean Text, 
and Stemming models. TF-IDF vectorization was used 
in the TF-IDF and n-gram models. We included the top 
1,000 features with the highest count vectorization or 
TF-IDF vectorization values calculated in each model. 
Beta-coefficients for each term were calculated. Because 
current literature has demonstrated that machine learn-
ing models may perform better than standard statistical 
methods in predicting mortality, we also used random 
forests and feed forward neural networks to model 
inhospital mortality using different types of prepro-
cessed note text (8).

Models were trained on UCSF data and then vali-
dated on both UCSF and BIDMC data. This was done 
so that models developed at UCSF could be exter-
nally validated on unseen data from another institu-
tion (BIDMC). Using data from another hospital not 
involved in training the models is a robust method to 
demonstrate that changes in model performance are 
not due to noise or chance alone and also shows that the 
model is generalizable to patients at other institutions 
(Supplemental Fig. 2, http://links.lww.com/CCX/
A655). We assessed model performance by calculating 
the area under the receiver operating characteristic 
curve (AUROC) to determine discrimination for each 
model. We expected model performance to decrease 
when models developed at UCSF were validated on 
BIDMC data because model overfitting is common for 
models trained and validated on the same data and be-
cause BIDMC was hypothesized to have different pat-
terns of clinical documentation than UCSF.

Ten-fold cross validation on the UCSF data was 
used to determine CIs for the AUROC. Ten-fold 
cross validation is used to train and validate machine 

http://links.lww.com/CCX/A655
http://links.lww.com/CCX/A655
http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A655
http://links.lww.com/CCX/A655
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learning models. The dataset is randomly divided into 
10 equal parts. Nine of the subsets are used to train the 
data and the 10th subset is used to validate the data. 
The subsets are then reshuffled and the subset that was 
used for validation is incorporated into the training 
data and one of the subsets used for training is used as 
the new validation dataset. This reshuffling occurs 10 
times until all subsets have been used for both training 
and validation. Once the cross validation is complete, 
the AUROC is averaged and the CI is computed (24). 
Models were also trained using 10-fold cross valida-
tion for hyper-parameter estimation in both UCSF and 
BIDMC datasets.

We assessed model calibration with calibration 
curves for all statistical models. Samples were divided 
in ten deciles for calibration according to their pre-
dicted mortality probabilities. For each decile, means 
of predicted and observed death were obtained. For 
each observed mean, the 95% CI was also computed. 
Models developed on UCSF data were calibrated on 
BIDMC data.

Programming

The Scikit-Learn package in Python Version 3 was 
used to create the logistic regression, random forests, 
the feedforward neural network (multilayer percep-
tron) models, and the calibration curves.

RESULTS

There were 27,058 patients admitted to BIDMC and 
10,000 patients sampled from UCSF. Inhospital mor-
tality rate at BIDMC and UCSF was 10.9% and 7.4%, 
respectively. The average number of notes written 

per patient was 3.5 and 7.7 at BIDMC and UCSF, re-
spectively. Table  1 describes note characteristics and 
Table 2 describes demographic characteristics.

Each step with preprocessing note text resulted in 
small improvements in model performance when test-
ing models built at UCSF on BIDMC data (Table  3). 
Models built and tested on UCSF data for the predic-
tion of inhospital mortality improved from the raw note 
text model (AUROC, 0.84; CI, 0.80–0.89) to the TF-IDF 
model (AUROC, 0.89; CI, 0.85–0.94). Models validated 

TABLE 1. 
Note Demographics

Variable
University of California  

San Francisco
Beth Israel Deaconess  

Medical Center

Number of notes per patient 7 (5–9), 7.7 3 (2–4), 3.5

Number of words per note in raw note text 235 (60–748), 496 194 (96–345), 285

Number of words per note after text cleaning 141 (36–443), 294 117 (57–198), 165

Number of unique words per note after text cleaning 107 (32–285), 178 96 (50–155), 125

Total number of unique words across all patient 
notes after text cleaning

100,509 145,675

Ranges are median (interquartile range), mean.

TABLE 2. 
Patient Cohort Characteristics

Variable

University  
of California  

San Francisco  
(n = 10,000)

Beth Israel  
Deaconess  

Medical  
Center  

(n = 27,058)

Male (%) 52.5 58

Age (yr) 60 (47–69) 64 (51–76)

Mortality (%) 7.4 10.9

Length of ICU stay  
in survivors (d)

2 (1–3) 2 (1–4)

Length of ICU stay in  
patients that died

2.6 (1.1–6.1) 3.3 (1.4–7.7)

Type of ICU (%)

  Combined medical  
and surgical

7.9 NA

  Medical 17.8 33.9

  Surgical 18.1 29.1

  Neurologic 39.6 NA

  Cardiac 16.6 37

NA = not available.
Ranges are median (interquartile range).
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on BIDMC data had a similar increase in model perfor-
mance from raw note text (AUROC at BIDMC: 0.72) to 
the TF-IDF model (AUROC at BIDMC: 0.83) but an ex-
pected decrease in model performance overall (Table 3). 
Creation of n-grams did not improve model perfor-
mance (AUROC at BIDMC: 0.80).

Preprocessing resulted in increases in AUROC not 
just for penalized logistic regression but also for feed 
forward neural network and random forest analyses 
(Supplemental Tables 3 and 4, http://links.lww.com/
CCX/A656). Feed forward neural network models 
had the best model dis-
crimination using raw text 
(AUROC at BIDMC: 0.76). 
Penalized logistic regres-
sion models experienced 
the greatest gain in model 
performance on text that 
underwent TF-IDF vec-
torization when com-
pared with raw text. For 
all models built at UCSF, 
AUROC decreased when 
applied to BIDMC data 
(Table 3 and Supplemental 
Table 3, http://links.lww.
com/CCX/A656), but the 
decline in AUROC was 
smaller for TF-IDF models 
than raw text models.

Calibration curves for the 
penalized logistic regression 
models showed that mod-
els using TF-IDF vectori-
zation had the best model 

calibration. The TF-IDF model had the best calibration for 
patients with low predicted mortalities, while the n-grams 
model had the best model calibration for patients with 
higher predicted mortality (Supplemental Fig. 3, http://
links.lww.com/CCX/A655). Models using the feed for-
ward neural network had the poorest model calibration 
when compared with models developed using penalized 
logistic regression and random forest (Supplemental 
Figs. 4 and 5, http://links.lww.com/CCX/A655).

Terms most strongly associated with inhospital 
mortality and survival are shown in Figure 2 and 

TABLE 3. 
Impact of Preprocessing Strategies on Logistic Regression Model Performance

Variable
AUROC (95th% CI) for UCSF 

Model Validated on UCSF Data
AUROC for UCSF Model Validated on  
Beth Israel Deaconess Medical Center

Raw text 0.84 (0.80–0.89) 0.72

Cleaned text 0.85 (0.79–0.91) 0.75

Cleaned and stemmed text 0.84 (0.79–0.90) 0.77

Term frequency-inverse document  
frequency

0.89 (0.85–0.94) 0.83

1–3 n-grams 0.90 (0.86–0.93) 0.80

AUROC = area under the receiver operating characteristic curve, UCSF = University of California San Francisco.

Figure 2. Top beta-coefficients associated with mortality and survival in the term frequency-
inverse document frequency model. Beta-coefficients less than 0 are associated with survival and 
coefficients greater than 0 are associated with mortality.

http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A655
http://links.lww.com/CCX/A655
http://links.lww.com/CCX/A655
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Supplemental Table 5 (http://links.lww.com/CCX/
A656). The following terms are stems of words. The 
terms “Pupils” and “Famili” were strongly associated 
with inhospital mortality in all models TF-IDF beta-
coefficient 2.89 and 2.77, respectively). “Extub” and 
“Anesthesia” were strongly associated with survival in 
all models (beta-coefficient –1.72 and –1.67, respec-
tively) (Fig. 2). “Death” was present in all models but 
was most strongly associated with inhospital mortality 
in the raw text model (beta-coefficient 0.67). “IV prn” 
was the bi-gram most strongly associated with inhos-
pital mortality, while “IV continuous” was the bi-gram 
most strongly associated with survival.

DISCUSSION

Preprocessing note text improved model discrim-
ination for the prediction of inhospital mortality for 
adults admitted to the ICU. Each step in preprocess-
ing note text resulted in small improvements in model 
performance when testing models built at UCSF on 
BIDMC data. After preprocessing of text, models de-
veloped using single institution note text data using 
TF-IDF vectorization had AUROCs of 0.79–0.83 when 
applied at another academic institution.

As measured by AUROC, model discrimination in 
this study is only slightly inferior to reported perfor-
mance of models that used structured data (e.g., lab-
oratory values and vital signs) in their predictions as 
well (4, 25). We hypothesize that this is because clini-
cians’ words in their notes capture much of the predic-
tive information in structured data. For example, we 
found the presence of the stem “pupil” was predictive 
of inhospital mortality, and this likely correlates highly 
with having a low Glasgow Coma Score (because cli-
nicians do not check or report pupillary reflexes on 
patients unless their Glasgow Coma Score is very low).

Given terms like “pupil” and “hemorrhag” are 
strongly associated with mortality in the clinical litera-
ture, we expected the finding that these stems were as-
sociated with inhospital mortality in all of the models 
(26, 27). Extubation was strongly associated with sur-
vival, which reflects that patients who are able to sepa-
rate from mechanical ventilation have a higher odds of 
survival (28). “Anesthesia” and “resect” were strongly 
associated with survival, and these terms may select for 
a cohort of patients stable enough to receive anesthesia 
for an operation. However, association of these terms 

with mortality cannot be generalized to other datas-
ets. This is because documentation styles may vary in 
ways that are associated with outcome. For example, 
if clinicians at another institute wrote out the phrase 
"pupils equal round and reactive" instead of "PERRL," 
(the abbreviation of the above phrase), pupils would 
be associated with survival rather than with mortality.

The purpose of the study was to understand the meth-
odologic impact of preprocessing strategies on model 
development. Because these models were intended only 
for research, factors associated with bias in note text 
were not explored. Development of fair, unbiased NLP 
models is critical when the intention is to apply models 
in the clinical setting. Models that use NLP on note text 
in the clinical setting without consideration of potential 
implicit bias among clinicians pose significant ethical 
concerns. Using clinical insights and opinions in note 
text as the only basis for a prediction algorithm may 
inadvertently create a self-affirming algorithm where 
verbiage from note writers may unintentionally perpet-
uate or worsen disparities. Consideration should also 
be given to determine whether particular terms should 
be excluded from note text prior to model develop-
ment. For example, further investigation is needed to 
assess the impact of social determinants of health on 
mortality prediction and whether such factors should 
be included in mortality prediction models (29).

Several terms that represent clinician recognition 
of likelihood of inhospital mortality in notes (such 
as “death” and “famili”) were found in every model 
(30, 31). This raises the question of whether terms 
that suggest clinician concern for inhospital mortality 
risk should be treated as stop words (i.e., should be 
removed) in mortality prediction models. Removal 
of these words may decrease model performance. 
However, since including those words leads to some of 
the risk patients face being attributed to those words, 
keeping them in may lower the risk attributed to other 
relevant clinical factors.

Identifying optimal parameters needed to preprocess 
note text is needed to develop the best predictive mod-
els. The largest improvement in model performance 
occurred between use of raw text and text that under-
went TF-IDF vectorization. TF-IDF vectorization may 
be particularly important in preprocessing clinical 
note in contexts where institutions or individual cli-
nicians routinely use templates, smart phrases, or cut 
and paste technology when writing notes (32). Clusters 

http://links.lww.com/CCX/A656
http://links.lww.com/CCX/A656
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of note text with near duplication are common. These 
clusters of notes can influence term frequency calcula-
tions, but this effect may be mitigated by multiplying 
by the inverse of document frequency (33).

Addition of word combinations (n-grams) that cap-
ture risk factors expressed as a phrase (“acute lympho-
cytic leukemia”) or that reflect negation (“not septic”) 
did not meaningfully improve model performance. 
This may be because single words or stems capture 
most of the risk. For example, the risk difference be-
tween “acute lymphocytic leukemia” and “chronic lym-
phocytic leukemia” may already be captured in a model 
that only uses “leukemia” because the treatments are 
different. That is, the model may interpret “vincristine” 
used to treat acute lymphocytic leukemia to convey 
higher risk than “fludarabine” used to treat chronic 
lymphocytic leukemia, so the difference in risk by type 
of leukemia may be captured by treatment terms in the 
text. Alternatively, the risk may be captured in part by 
complications, such as “aspergillus,” that are more com-
mon in the course of acute lymphocytic leukemia.

There may also be reasons identifying negation 
through n-grams is not a very important determinant 
of AUROC using TF-IDF. In general, terms that are 
negated will only be negated once or a small number 
of times, while conditions that are present will be 
mentioned many times. Thus, negated terms usually 
will have low term frequency even if they are negated 
once. Therefore, failing to capture the negation will not 
change that the term is not a prominent feature of the 
patient’s presentation.

Our study has important limitations. Because we 
validated our data with eight ICU’s in only two institu-
tions, we cannot know how those models would per-
form on note text from other ICUs. We also had to 
restrict our sample size to 10,000 patients because of 
the limited computing time available to analyze note 
text. In addition, methodologies that improved model 
prediction of inhospital mortality in adults admitted to 
the ICU cannot be assumed to improve the prediction 
of other outcomes, such as length of stay or illness se-
verity. Structured data (such as laboratory values and 
vital signs) were not included in model development 
because we did not aim to build a superior mortality 
prediction model to those that have been published. 
Instead, the focus of the study was to demonstrate the 
methodological impact of text preprocessing strate-
gies on inhospital mortality model performance alone. 

Because patients who died within the first 24 hours 
of admission were not excluded from the study, re-
ported model performance may be better than if these 
patients were excluded from the study. However, be-
cause improvement in model performance was shown 
with addition of preprocessing techniques in all sta-
tistical models, exclusion of this subpopulation would 
likely not have changed the observed findings that 
preprocessing algorithms matter in the prediction of 
inhospital mortality.

CONCLUSIONS

Differences in preprocessing algorithms applied to 
note text impacted model discrimination in the pre-
diction of inhospital mortality for adults admitted 
to the ICU. Completing a preprocessing pathway in-
cluding cleaning, stemming, and TF-IDF vectorization 
resulted in the preprocessing method with the great-
est improvement in model performance. N-grams 
did not meaningfully improve model performance. 
Consideration of how to manage implicit bias present 
in note text prior to clinical implementation of NLP 
algorithms is important. Further study is needed to de-
velop fair NLP algorithms before they can be applied 
in the clinical setting. Additionally, consideration 
should be given to how personal clinician sentiment 
may drive model prediction. For example, if clinician 
charting is optimistic with respect to outcome, the sen-
timent clinicians express may be captured in the model 
and thus create a “self-fulfilling prophecy” of note text 
generating a probability of survival that could be mis-
interpreted as solely objective. Helping clinicians un-
derstand preprocessing strategies may facilitate their 
participation in the development and eventual clinical 
integration of NLP-based predictive models.
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California San Francisco is not publicly available as it contains 
protected health information.
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