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ABSTRACT OF THE DISSERTATION 

 

Proteomic allocation by E. coli during growth transitions, from strategy to mechanism 

 

by 

 

Chenhao Wu 

Doctor of Philosophy in Physics 

 

University of California San Diego, 2022 

 

Professor Terence Hwa, Chair 

 

In different environments, bacteria are known to allocate their proteome differently and 

achieve different growth rates. Extensive quantitative studies on proteomic allocations in steady 

states have been done. Yet it’s still not clear how bacteria manage to adjust their proteome 

responding to different environments through thousands of reactions and eventually reach different 

growth rates. In order to gain better understanding on the adaptation strategy and mechanism, in 

my dissertation, I studied the kinetic behavior of E.coli during various environmental changes. 



 xvii 

Mathematical modeling were used to quantitatively capture the proteomic re-allocation and growth 

rate adaptation during transitions. Further studies on the kinetics of Guanosine tetraphosphate 

(ppGpp) and translational elongation rate during growth transition revealed the molecular basis of 

well-known ribosomal ‘growth law’.  

In Chapter 2 and 3, we studied the growth transitions from ‘rich media’, a condition with 

ample amino acids or/and other nutrient supplies. We started with the case of methionine depletion 

in Chapter 2. MetE were found to be the major bottleneck in met downshift. By adapting the flux-

controlled regulatory model established for carbon shift, we quantitatively captured the 

relationship between pre-shift MetE reserves and lag time before growth recovery. In Chapter 3, 

we studied the proteomic allocation during all AAs depletion. Quantitative proteomic analysis 

revealed a linear relationship between the onset time of enzymes across AAs biosynthesis 

pathways and their fractional reserve in pre-shift condition, indicating a ‘as-needed’ gene 

expression strategy during all AAs downshift. Combining flux-controlled global regulation and 

pathway specific end-production inhibition, we successfully captured the proteome recovery 

kinetics using only data collected in the pre- and post-shift steady-states. 

Chapter 4 is focused on bacterial kinetic response to sub-lethal chloramphenicol (an 

antibiotic inhibiting translation) treatment. By using translational elongation rate as a flux sensor 

and the key signaling variable, we accurately predicted the kinetics of biomass accumulation and 

gene expressions. 

In Chapter 5, we show that translational elongation rate is inversely proportional to ppGpp, 

an essential molecule regulating translational machinery, during transient and steady-states. We 



 xviii 

established ppGpp rate-sensing strategy and thus closed a key regulatory circuit linking ppGpp, 

growth rate, ribosomal content and translational rate together. 
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Chapter 1 

Introduction 

Bacterial growth rate or reproduction rate is central to their fitness in all environment. 

The basic picture of bacterial growth can be described as Fig. 1.1 : Bacteria take in nutrient source 

from the environment and convert them into biomass (proteins, RNA, lipids, etc.) for reproduction. 

This process needs the coordination of transporters, ribosomes and many other proteins as shown 

in Fig. 1.1. It’s known that bacteria adjust their proteome composition according to the nutrient 

conditions, temperature, pH, etc. of the environment and achieve different growth rates 

accordingly. Previous studies have revealed various gene regulations involved in proteomic 

allocations at molecular level. However, the overall strategy and mechanism of how bacteria 

adapts its growth to different conditions remain unclear. This is also the major interest of this 

dissertation. In my dissertation, I focus on the growth of E.coli, which is one of the most well-

studied living species. Its natural habitats are closely related to the living space of human beings, 

including soil, guts, ocean, etc.. The fluctuations of these environments make it essential for E.coli 

to quickly respond to the external changes. Many studies has been done related to its proteomic 

allocation in steady-state and even in transient. 

1.1 Steady-state growth law 

When providing constant growing environment, E.coli can eventually grow exponentially 

with a constant rate for hundreds of cycles before dying, which is referred to as steady-state growth. 

During steady-state growth, at population level, every component of biomass (proteins, RNA, etc.) 

accumulated exponentially with the same exponential rate. To describe this behavior, we let 𝑀" 
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denote the abundance of X in a standard culture volume, e.g., 1ml of culture. X can be any specific 

molecule or any group of molecules in the cells. Then 

 𝑑𝑀"

𝑑𝑡 = 𝜆𝑀" , 
(1.1) 

where in steady-state growth, 𝜆 is constant, representing shared exponent accumulation 

rate by all components of cells. We called it growth rate in the following notes. Therefore all the 

intensive properties inside cells, such as concentration, are constant during steady-state growth. 

Here we introduce an important concept called protein mass fraction, which can be written as 

 𝜙" =
𝑀"

𝑀#$%
, (1.2) 

serves a good representation of the concentration of protein X in various growth conditions 

(1, 2). By simply changing nutrient conditions, e.x. carbon source, nitrogen source or add 

additional AAs, its doubling time can vary from more than 24 hrs to less than 30mins. As a result, 

even though steady-state growth is not common in E.coli’s natural habitat, it’s provide a great 

opportunity to understand the allocation of bacterial proteome across different conditions.  

Since 1950s, many studies on exponential phase showed macromolecular composition has 

strong correlation with steady-state growth rate. One of the most important findings associated 

with proteomic allocation strategy is the linear relationship between the ribosome contents and 

growth rates while changing nutrient source (Fig. 1.2a), which applies to many different species 

(3–5). This physiological observation can be written as 

 𝜙& = 𝜙&! + 𝜆/𝜅' (1.3) 

Here 𝜙& is the abundance of ribosomal related proteins in mass fraction and 𝜆 is the growth 

rate. 𝜅' and 𝜙&! represent the inverse of the slope and the offset in the observed linear relationship 

in Fig. 1.2a. The constant slope (𝜅') has been well accepted as the implication of constant saturated 
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translational rate across varies nutrient condition since Maaleo (6). In other words, in order to 

achieve higher growth rate 𝜆 in better nutrient source, cells need higher ribosomal concentration 

due to the saturated translational rate. However, in recent studies, many measurements shows that 

the translational rate drops significantly in slow growth region, indicating that the proteome 

allocation strategy behind Eq. (1.3) is not as simple as it looks. In Chapter 5, we looked into Eq. 

(1.3) from the perspective of the regulatory mechanism of ribosomes. Also, we took the growth 

rate (or nutrient) sensing into consideration and eventually reproduce the linear growth law (Eq. 

(1.3)) mechanistically. It turns out that the linear relationship in Fig. 1.2a actually comes out of a 

set of nonlinear signaling and regulation equations of Guanosine tetraphosphate (ppGpp) signaling 

system and it’s consistent with the drop of translational elongation rate in slow growth region. 

Besides Eq. (1.3), such a simple linear relationship has also been found between different 

proteome components with growth rate under various limitations-- under carbon limitation, most 

catabolic proteins increase linearly with the decrease of the growth rate (Fig. 1.2b); Under 

chloramphenicol treatment (an antibiotic inhibit translation), ribosomal contents decrease with 

growth rate linearly, as opposite to that in nutrient limitation (Fig. 1.2c); under resource limitation 

by over-expressing useless proteins, the growth rate linearly decrease with the abundance of OE 

proteins (Fig. 1.2d). Although many regulatory systems related to those proteins (e.x., cAMP-CRP 

on catabolic proteins and ppGpp on ribosomal synthesis) have been well studies at molecular level, 

it’s impossible to quantitatively describing those simple relationships based on molecular 

interactions due to numerous parameters involved. In 2010, Scotts et al (3) rationalized the set of 

linear relationships including Eq. (1.3) through a phenomenological coarse-grained flux-balance 

theory. To be detailed, the total protein content is coarse grained into three part (Fig. 1.3a)—growth 
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rate independent part (Q-sector), translational related sector (R-sector) and growth rate dependent 

non-translational enzymes (P-sector, e.x., catabolic proteins), which added up to be 1— 

 𝜙& + 𝜙( = 1 − 𝜙) = 𝜙*+, (1.4) 

Since the protein concentration is found to be constant across various conditions (1, 2), Eq. (1.4) 

form an actual constrain for the R-sector and P-sector proteins. The increase concentration of R 

protein means the drop of concentration in P protein and vice versa. Proteins in R sector contribute 

to protein synthesis flux via (𝜅' ∙ (𝜙& − 𝜙&,!)) according to Eq. (1.3) and proteins in P sector 

contribute to nutrient uptake flux via (𝜅. ∙ 𝜙( ) where 𝜅.  represents nutrient conditions. At 

balanced steady-state growth, the protein synthesis flux should balance with the nutrient uptake 

flux— 

 𝜅' ∙ G𝜙& − 𝜙&,!H = 𝜅. ∙ 𝜙( = 𝜆. (1.5) 

Using Eq. (1.4) and (1.5), we can then describe the set of linear relationships mentioned 

above. Intuitively, when E.coli grow in relative good nutrient condition (larger 𝜅.), in order to 

reach the flux balance under the constrain Eq. (1.5), cells need to increase 𝜙& and decrease 𝜙( 

comparing to the condition with poorer nutrient (smaller 𝜅. ) since 𝜅'  is constant (Comparing 

Fig. 1.3a to Fig. 1.3b). As a result, the growth rate increase. When chloramphenicol is added to 

repress translational capacity (decrease 𝜅'), cells also need to increase 𝜙& and decrease 𝜙( to keep 

the flux balance (Comparing Fig. 1.3c to Fig. 1.3a). But in this case, growth rate drops since 

𝜆 = 𝜅. ∙ 𝜙( and 𝜅. is constant (same nutrient). For the over-expression (OE) case, useless protein 

took away a portion on the pie chart (𝜙*+,) that R and P proteins can access (Comparing Fig. 1.3d 

to Fig. 1.3a). With constant 𝜅' and 𝜅., growth rate decrease proportionally with the decrease of 

𝜙( or 𝜙&, or with the increase of OE proteins. 
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This top-down flux balance model is very powerful in explaining proteomic allocation 

under various constrains. Starting with empirical results and without invoking the details of 

molecular interactions in E.coli, it facilitate quantitative understanding on the connection between 

bacterial growth and gene expression under various conditions. As a result, this method lays a 

great foundation for the proteomic studies that came out in the last ten years (2, 7, 8), including 

my dissertation also.  

Meanwhile, the limitation of the steady-state study is obvious. It is hard to give further 

insights on how E.coli coordinate their proteome to various growth conditions. In other words, the 

regulation strategy and mechanism of adapting to different conditions was not easily revealed in 

the steady-state studies. In my dissertation study, instead of steady-state, I focused on growth 

adaptation and proteomic reallocation process of E.coli while transfer from one condition to the 

other. In Chapter 2&3, we looked into cells’ responses to amino acid(s) downshift. In Chapter 4, 

we looked into the cellular adaptation while adding Cm. In Chapter 5, we dig further into bacterial 

regulation mechanism by studying carbon diauxic shift.  

1.2 Bacterial response to environmental change 

Due to the significance of quick adaptation to changing environment, bacterial behavior 

during various nutrient shifts, especially carbon shift, has been extensively studied (8–10). In the 

recent study on growth transition between co-utilized carbon sources, Erickson et al (8) extended 

the proteomic allocation model introduced above to kinetic regime and established a Flux-

Controlled Regulation (FCR) model capturing the gene expression and biomass accumulation 

during carbon shift. The key feature of their work was that they used dimension reduction to bypass 

the molecular details of gene regulations and had protein synthesis under the regulation of 

translational activity instead. 
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To be detailed, in FCR model, all the internal metabolites, including ketoacids and amino 

acids, are coarse-grained into a single ‘precursor’ pool 𝐾 . This precursor pool controls the 

synthesis of ribosomal proteins and catabolic proteins through cAMP-crp (11, 12), ppGpp (13–15) 

signaling system. Mathematically it was written as 

 𝑑𝑀&/

𝑑𝑡 = 𝜒&/(𝐾(𝑚0(𝑡),𝑚1(𝑡), … ,𝑚2(𝑡)))
𝑑𝑀#$%

𝑑𝑡 , 
(1.6) 

 𝑑𝑀3

𝑑𝑡 = 𝜒3(𝐾(𝑚0(𝑡),𝑚1(𝑡), … ,𝑚2(𝑡)))
𝑑𝑀#$%

𝑑𝑡 . 
(1.7) 

Here 𝜒&/  and 𝜒3  is called regulation function, representing the fraction of protein synthesis 

resources allocated to ribosomal and catabolic proteins. Their kinetics control the kinetics of 

transition process. When cells reach new steady-state, they should be the same as corresponding 

protein mass fractions due to ignorable degradation rate of proteins. At coarse-grained time scale, 

the influx of the precursor pool (nutrient uptake flux) was assumed to balance with the outflux of 

the precursor pool (protein synthesis flux) considering fast reactions between metabolites. Under 

the flux-balance constraint, the translational activity, defined as 𝜎 = 45!"#
4'

/𝑀&/, was set by the 

precursor pool. Using the idea of dimension reduction, 𝜎  is then used to set the regulation 

functions— 

 𝜒&/(𝐾(𝑚0(𝑡),𝑚1(𝑡), … ,𝑚2(𝑡))) = �̂�&/(𝜎) (1.8) 

 𝜒3(𝐾(𝑚0(𝑡),𝑚1(𝑡), … ,𝑚2(𝑡))) = �̂�3(𝜎). (1.9) 

The form of �̂�&/(𝜎) and �̂�3(𝜎) were determined by their steady-state relationships under carbon 

limitations, which is derived from the phenomenological growth law introduced above. Now by 

solving the kinetics of 𝜎, the kinetics of proteomic allocation and growth adaptation during carbon 

shift can then be predicted without involving molecular details on gene regulations. 
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Except the work introduced above, many other studies on different type of carbon transition 

(for example, shift between hierarchical carbon substrates or carbon runout) have together lead to 

novel understanding on carbon uptake system, central carbon pathway and the role of central 

metabolites. However, most of the quantitative studies mainly focused on the bacterial growth in 

minimal conditions where only necessary carbon and nitrogen source are supplied while E.coli’s 

natural habitat (e.x., human guts) commonly contains amino acids (AAs) and other nutrient 

supplies, at least transiently before they are exhausted. The condition with a multiple of amino 

acids (AAs) are called ‘rich condition’. Due to the complexity of the composition of rich media, 

quantitative proteomic study on growth on and growth transition from rich medium is lacking. 

Here in Chapter 2 and 3, we quantitatively studied the growth transitions of amino acid(s) 

downshift. In Chapter 2, we looked into single amino acid downshift from rich media–met 

downshift, which caused 1hr lag. We identified MetE to be the major bottleneck and established a 

coarse-grained model based on the flux balance assumption in FCR model. It successfully 

capturing the relationship between the pre-shift MetE reserve and the lag time without requiring 

any measurement of cellular response specific to methionine shortage, even at the steady state 

level. In Chapter 3, we systematically studied proteomic allocation strategy in various rich 

conditions and during all amino acids downshift. We found that the main strategy for E.coli to 

reach higher growth rate in rich medium is to allocate resource from amino acid biosynthesis (AAB) 

to protein translation, which in turn caused 2-hr lag when all amino acids were washed away. The 

proteomic study during all AAs downshift revealed a striking linear relationship between the onset 

time of the enzymes across AAB pathway and their fractional reserves in pre-shift condition. The 

strategy of sequentially prioritizing the expression of various bottlenecks was not observed in the 

previous study of carbon downshift (8). Expanding the model of single AA depletion in Chapter 2 
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and incorporating the on-off allocation strategy introduced by Pavlov et al (16) to implement the 

sequential recovery across AAB pathways, we were able to quantitatively capture the kinetics of 

proteome reallocation process with only steady-state measurements.  

With the success in quantitatively characterizing bacterial responses to nutrient changes by 

the top-down method, we further looked into other environmental changes. In Chapter 4, we 

studied the bacterial response to sub-lethal Chloramphenicol (Cm) treatment. Chloramphenicol, as 

introduced before, is an antibiotic inhibiting translational process. It’s used in treating a number of 

bacterial infections. Considering the significant role of antibiotics and increased threats of 

antibiotic resistance due to wild usage of antibiotics, it’s very important to quantitatively 

understanding the dynamic responses of bacteria to antibiotics like Cm. In our study, we quantified 

the dynamics of biomass accumulation and typical gene expressions while adding sub-lethal Cm 

in various nutrient conditions. We extended the FCR method to quantitatively capture the 

transition process and first used translational elongation rate as the central dynamic variable 

governing gene expressions. Compared to 𝜎 (translational activity per ribosome), translational 

elongation rate has a clear physiological meaning, leading us one step closer to understand the 

mechanism of growth rate control, which was the focus of Chapter 5.  

Inspired by the success of dimension reduction methods in capturing various transition 

processes, we suspected that the translational rate could be actually used by E.coli as an control 

signal in its regulatory scheme. By looking into the glucose to glycerol shift in Chapter 5, we 

revealed that Guanosine tetraphosphate (ppGpp, a key signaling molecule regulating hundreds of 

genes) responds inversely to the translational elongation rate. Furthermore, the same relationship 

was also found in steady state. Combined with the downstream regulation function of ppGpp, we 
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were able to close a circuit of growth rate control mechanism and reproduced the ribosomal growth 

law (Eq. 1.3) as we discussed above. 

1.3 Figures 

 

 
 

Figure 1.1. Cartoon illustration of the bacterial growing process. The blue rod-shape structure 
represents the membrane of bacteria, dividing intra-cellular environment from external environment. 
Bacteria growth can be divided into two parts. In the first part, the Bacteria take in external nutrients (gray 
squares, gray circles) and convert it into internal metabolites (such as amino acids, nucleotides, etc.) by 
transporters and many metabolic enzymes (e.x., amino acid biosynthesis enzymes). In the second part, 
bacteria uses the pool of metabolites to synthesize macro-molecules like protein, DNA, lipids, etc. to gain 
biomass by various enzymes/machines such as ribosomes. 
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Figure 1.2. Steady-state relationship between gene expression and growth rate under various 
conditions. (a) Ribosomal contents (characterized by RNA/protein ratio) linearly increase with growth 
rates while changing nutrient conditions. (b) The relative expression levels of some cAMP-CRP regulated 
catabolic genes (rbsA, mglB, lacZ) increase while growth rates decrease under carbon limitation. Data came 
from (7). (c) when adding chloramphenicol (Cm), ribosomal content increase with the decrease of growth 
rate. Different symbols represent different nutrient conditions (RDM: rich defined medium from Teknova; 
the rest indicates the carbon sources in minimal media). Data in (a) and (c) come from (17). (d) Growth 
rates linearly decrease with the abundance of over-expressed useless protein (LacZ). Different symbols 
represent minimal media with different carbon sources. Data come from (18).  
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Figure 1.3. Illustration of proteome allocation under various condition based on the coarse-grained 
model in Scotts (3). (a) cellular proteome is coarse-grained in three-parts: Q—growth rate independent 
part (marked by gray), R—translational related part (marked by green), P—growth rate dependent and non-
translational enzymes, such as catabolic proteins (marked by orange). The area in the pie chart represents 
the mass fraction of corresponding protein groups. Since total protein concentration is relative constant in 
various conditions, the area in the pie chart also represent protein concentrations. Compared to the cells 
grow in poor nutrient condition (b), cells grow in relative better nutrient condition (a) allocate more 
resource from P sector to R sector under flux balance constrain. (c) Under chloramphenicol (Cm) treatment, 
cell increase R sector and lead to drop in P sector. (d) When over expressing useless proteins, whose mass 
fraction is labeled as OE (marked by purple), R and P sector are reduced as results. 
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Chapter 2 

MetE reserve shortens the lag time of met 

downshift 

2.1 Abstract 

Bacteria are known to experience nutrient fluctuation frequently in their nature habitat. 

While many extensively studies on how E.coli adapts to carbon changes have been done, 

quantitative understanding on how E.coli responds to amino acid depletion is lacking, despite 

amino acids are one of the most common nutrient source for E.coli in their natural habitat. In this 

work, we focus on met downshift from rich medium which lead to half the lag of all AA depletions. 

Consistent with the known inefficiency of MetE enzyme in met biosynthesis pathway (19, 20), we 

found that MetE is the major bottleneck in met downshift and the reserves of MetE in pre-shift 

condition strongly shortens the lag of met downshift. Adapting the top-down approach used in 

characterize carbon shift previous, we were able to quantitatively capture the dependence of lag 

time on pre-shift MetE reserve without invoking any fitting parameters. It gave an example on 

quantitatively characterizing transitions under rich conditions. 

2.2 Introduction 

Bacteria are known to grow in a broad range of conditions, and the rapidity of their 

adaptation to environmental fluctuation is an important component of their overall fitness. For 

enteric bacteria, a common nutrient environment both in the wild and in laboratory studies is the 

“rich medium” containing multiple amino acids (21). However, due to their more complex nature, 
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quantitative understanding of downshift from rich condition is lacking. In this study, we focus on 

methionine depletion from rich media which we found causing half of the lag of all AAs downshift.  

Our data identified MetE to be the major bottleneck of met downshift. Based on that, We further 

established a quantitative model to characterize the lag dependence on MetE pre-shift expression 

level (reserves).  

2.3 Results 

2.3.1 MetE is the major bottleneck in methionine downshift 

In order to characterize the kinetic of met downshift resembling the natural met depletion, 

we let the cells grew in the media with all AA supplies (18 AAs, no cysteine and tyrosine; see 

Methods) at the concentration the same as that in rich defined media (RDM, (22)) except 

methionine. Met concentration was lowered so that met was depleted in the middle of exponential 

growth (see Methods). Glycerol was always supplied as carbon source to ensure that cell only 

experience met shortage during the shift. Fig. 2.1a and 2.1b shows the growth curve during met 

downshift. Before the met depletion, cells grew exponentially with the growth rate the same as 

that measured in higher met concentration (same as RDM, the green bar in Fig. 2.1b). When met 

was depleted, cells experience an immediate growth halt as shown in Fig. 2.1a and 2.1b. The shift 

time (t=0) is determined by extrapolating the pre-shift growth curve to the 𝑂𝐷6!! where the growth 

pauses (the star in Fig. 2.1a). After about an hour, the growth started picking up and eventually 

reached the final steady-state. Here we defined ‘lag time’ as the lost time due to the adaptation to 

new condition as shown in Fig. 2.1a. The lag time of met downshift is about 1-hr, which is about 

half the lag time of all AA depletion (Fig. 2.2d) 
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Qualitatively, in response to met depletion, cells have to increase de novo met biosynthesis 

to make up for the missing met influx. However, in the pre-shift condition, the expression of met 

biosynthesis enzymes is largely repressed; see Fig. 2.1c which compares the expression levels of 

met biosynthesis enzymes measured in pre-shift rich media and minimal media. Therefore, in order 

to recover from met shortage, cells need to reallocate protein synthesis flux towards the synthesis 

of enzymes of the met pathway, mainly from ribosomal synthesis flux, which lead to the growth 

lag observed in Fig. 2.1a. 

Among all the enzymes needed for met biosynthesis, the one catalyzing the last step of the 

met pathway, MetE, displayed the largest fold change in mass fraction between rich media and 

minimal media, by more than 10-fold comparing to other enzymes according to Fig. 2.1c. Also, 

the absolute abundance of MetE in minimal media is about 100 times larger than other enzymes 

on met pathway (Fig. S1). It’s thus likely that MetE is the major bottleneck during met downshift. 

To validate that, we introduced a strain (HE588) with titratable expression of MetE in addition to 

the native metE gene (Fig. 2.2a, Methods). We pre-expressed MetE by supplying the inducer cTc 

in the pre-shift medium containing all AAs (same AA conc. as in Fig. 2.1a), and monitored the 

effect of pre-expression on the lag time upon met downshift (Methods). Figure 2.2b and 2.2c show 

the resulting growth curves and instantaneous growth rates at several cTc levels. Without cTc, the 

growth curve of HE588 (circles) was the same as that of the wild type strain (blue diamonds, see 

Fig. S2 for repeatability), indicating low background expression of MetE in HE588. For increasing 

cTc levels (squares and triangles), the lag time of met downshift clearly shortened, reaching < 20 

mins at 50ng/ml cTc (Fig. 2.2d). These results thus validate our hypothesis that MetE is the major 

bottleneck for met downshift. In other words, met biosynthesis flux is limited by MetE during the 
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shift and cells need to direct protein synthesis flux from ribosomal synthesis to MetE synthesis to 

recover growth. 

2.3.2 Model of methionine recovery kinetics in met downshift 

Based on this qualitative picture, we adapted a mathematical modeling approach 

introduced recently by Erickson et al. in the context of carbon diauxie shift (23) to describe the 

kinetics of growth recovery during met downshift. This approach allows us to quantitatively 

characterize the proteomic reallocation process without getting bogged down by unknown details 

of the regulations of the met enzymes; see illustration in Fig. 2.3a and elaboration below. 

We focused on the flux of protein synthesis 𝐽&(𝑡) (defined by Eq. (2.1) in Fig. 2.3a), 

measured in the number of AA polymerized per time, with 𝑀#(𝑡) being the total protein mass (in 

unit of AA residues) in a fixed culture volume. After growth arrest abruptly set in due to met 

shortage (at 𝑡 = 0), we let 𝐽&(𝑡)  be limited by the flux of methionine biosynthesis, 𝑗*7'(𝑡) , 

according to Eq. (2.2) in Fig. 2.3a where 𝑓*7' represents the met frequency in the proteome. Since 

MetE is the major bottleneck in met synthesis, we can express 𝑗*7'(𝑡) as the product of the mass 

of MetE (𝑀57'8(𝑡)) and its specific catalytic rate 𝑘57'8 . We note that while in principle catalytic 

rates can be time dependent due to, e.g., allosteric regulation when the end-product is in surplus, 

we expect 𝑘57'8  to be at its maximum value, 𝑘57'8∗  through the shift as MetE is the growth 

bottleneck. Thus,  𝑗*7'(𝑡) is written as Eq. (2.3) in Fig. 2.3a. 

Combining Eqs. (2.2) and (2.3), we obtain 

 𝐽&(𝑡) = 𝑘57'8∗ 𝑀57'8(𝑡)/𝑓*7' (2.9) 
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as the dynamic relationship between protein synthesis flux and MetE abundance, throughout the 

duration of the shift and including the post-shift steady-state. In terms of “intensive variables”, the 

instantaneous growth rate 𝜆(𝑡) and the proteome fraction 𝜙(𝑡) defined as  

 
𝜙,(𝑡) ≡

𝑀,(𝑡)
𝑀#(𝑡)

, 
(2.10) 

 
𝜆(𝑡) ≡

𝑑
𝑑𝑡 ln𝑀#(𝑡) =

𝐽&(𝑡)
𝑀#(𝑡)

, 
(2.11) 

where Eq. (2.1) was used in the last equality. Eq. (2.9) can then be rewritten as  

 
𝜆(𝑡) =

𝑘57'8∗ 𝜙57'8(𝑡)
𝑓*7'

. 
(2.12) 

Applying Eq. (2.12) to the post-shift steady state (i.e., exponential growth in minimal media) where 

𝜆(𝑡) ≡ 𝜆∗ is the final growth rate and 𝜙57'8(𝑡) = 𝜙57'8∗  is the final abundance of MetE, these 

relations predict a linear relation between 𝜙57'8∗   and 𝜆∗, with slope given by 𝑘57'8∗ /𝑓*7'. Fig. S1 

shows that indeed the abundance of MetE in minimal media, 𝜙57'8∗ , is linearly proportional to 𝜆∗, 

allowing us to fix the value of 𝑘57'8∗ /𝑓*7'; see Appendix 2.9.1. 

Next, the rate of MetE synthesis and ribosomal proteins synthesis can be written as 

Eqs. (2.4) and (2.5) in Fig. 2.3a, based on the definitions of 𝜒57'8(𝑡) and 𝜒&/(𝑡), which are the 

fraction of protein synthesis flux directed to synthesizing MetE and ribosomal proteins at time 𝑡, 

respectively. These functions are dictated by gene regulatory process. Molecularly, MetE 

expression is down-regulated by the met pool via the transcriptional activator MetR and repressor 

MetJ (24). Ribosome synthesis is regulated by ppGpp, which can sense single AA shortage (here, 

met) (14, 25–27). However, quantitative details of both regulatory processes are lacking.  
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To overcome the lack of regulatory details, we adapted the coarse-grained scheme of Flux-

Controlled regulation (FCR) previously introduced (23). Translational activity of the ribosomes, 

𝜎(𝑡), defined by Eq. (2.6) in Fig. 3.2a where 𝜙&/, the mass fraction of the ribosomal proteins, is 

taken to be the signal driving the regulation functions. For the carbon diauxie shifts studied in (23), 

FCR scheme was justified because the allocation of synthesis of ribosomal and carbon catabolic 

proteins are both regulated by the precursor pool (amino acids and keto-acids, which are in 

equilibrium with each other and activates ppGpp signaling system (14, 25–27) and cAMP-CRP 

signaling system (11, 12), respectively); and the same precursor pool sets 𝜎(𝑡) at coarse-grained 

time scale. In met downshift, since the protein synthesis flux 𝐽&(𝑡) is limited by 𝑗*7'(𝑡), 𝜎(𝑡) 

serves to represent the effect of the met pool, which controls the expression of ribosomal proteins 

by affecting ppGpp signaling and the expression of MetE through MetR/MetJ as mentioned above. 

Therefore, we let 𝜒57'8(𝑡) and 𝜒&/(𝑡) be set by 𝜎(𝑡), through regulation functions �̂�57'8(𝜎(𝑡)) 

and �̂�&/(𝜎(𝑡)); see Eqs. (2.7) and (2.8) in Fig. 2.3a.  

The form of these two regulation functions can in principle be obtained through their 

steady-state relationship 𝜒!"∗ (𝜎∗) and 𝜒$%&'∗ (𝜎∗) under met limitation assuming quasi-steady state 

during shift (23). Since in steady state the abundance of a protein x as measured in proteome 

fraction is equal to the fraction of flux synthesizing the protein, i.e., 𝜙,∗ = 𝜒,∗ , the form of the 

regulation functions can thus be obtained through the steady-state relationship between 𝜙,∗ and 𝜎∗, 

with the latter determined by steady-state growth rate 𝜆∗ and ribosomal protein abundance 𝜙&/∗  as 

shown in Eq. (2.8). Therefore from the empirical steady-state relationship between 𝜙&/∗  and 𝜆∗ 

under general nutrient limitation (met limitation is a special case of nutrient limitation), we can 

obtain the relationship between 𝜙&/∗ 	(𝜒𝑅𝑏
∗ ) and 𝜎∗, and hence �̂�!"(𝜎) = 𝜒!"∗ (𝜎∗) as detailed Fig. S2 

and shown as the grey line in Fig. 2.3b. 
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The process of obtaining the form of �̂�57'8(𝜎) is not as straight forward. Following the 

idea used to construct �̂�&/(𝜎)  (Fig. S2), ideally we can construct �̂�57'8(𝜎)  based on the 

relationship between growth rate 𝜆∗ and 𝜙57'8∗  under steady-state met limitations since growth 

rate is directly linked with 𝜎 from above (𝜆∗ = 𝜎∗𝜒𝑅𝑏
∗ (𝜎∗)). However, it is difficult to maintain a 

steady met limitation experimentally. And even if this could be done, this approach would only 

provide data over a narrow growth-rate range since the complete exclusion of met from the rich 

media only caused 20% growth reduction. Estimate of �̂�57'8(𝜎) obtained from data over a narrow 

range would not be very reliable when extended to the kinetic region where much lower growth 

rate is reached.  

To overcome this problem, we exploited an idea introduced by Li et al (20) where the effect 

of growth reduction due to protein (mainly MetE) over-expression (3) was used to explain the 

change in steady-state growth rate 𝜆∗  and 𝜙57'8∗  while growing in the media without met (as 

compared to the media with met). Fig. S3 shows that 𝜆∗ and 𝜙57'8∗  in ‘all-but-met’ condition can 

be successfully captured by over-expression (OE) relationship. In that case, the question of 

obtaining 𝜆∗ and 𝜙57'8∗  relationship under met limitation is converted to the question of obtaining 

𝜆∗ and 𝜙57'8∗  relationship under protein over-expression, which has been established before. Also, 

since the cost of protein over-expression applies across a wide growth range (3), we can extend 

the OE relationship between 𝜙57'8∗  and 𝜆∗ (thus 𝜒57'8∗  and 𝜎∗) to the very slow growth rate region 

encountered during met downshift. The final form of �̂�57'8(𝜎) is shown as the orange line in 

Fig. 2.3b. The resulting forms of the regulatory functions �̂�&/(𝜎)  and �̂�57'8(𝜎)  match our 

intuitive expectations that MetE is up-regulated and ribosomal proteins are down-regulated during 

met starvation when the translational activity 𝜎 drops.  
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Combining all the equations in Fig. 2.3a, we obtained the key differential equation 

describing the kinetics of 𝜎 (Appendix 2.9.3): 

 𝑑𝜎(𝑡)
𝑑𝑡 = 𝜎(𝑡) Y

𝑘57'8∗

𝑓*7'
�̂�57'8G𝜎(𝑡)H − 𝜎(𝑡)�̂�&/G𝜎(𝑡)HZ, 

(2.13) 

which can be solved analytically after substituting the regulation functions of �̂�57'8(𝜎) 

and �̂�&/(𝜎) shown in Fig. 3.2b (see Appendix 2.9.3). We can further solve the time course of 

ribosomal protein abundance 𝑀&/(𝑡)  by Eq. (2.5) and (2.6), protein synthesis flux 𝐽&(𝑡)  by 

Eq. (2.6), MetE abundance 𝑀57'8(𝑡)  and met synthesis flux 𝑗*7'(𝑡)  by Eq. (2.2) and (2.3), 

biomass 𝑀#(𝑡) by Eq. (2.1). With Eq. (2.10) and (2.11), we can then obtain the expression of 

instantaneous growth rate 𝜆(𝑡) and the mass fractions of ribosomal proteins and MetE (Appendix 

2.9.3). Their expressions depends on the pre- and post-shift steady-state growth rates and the 

abundance of the pre-expressed MetE. Using the pre- and post-shift steady-state growth rates 

obtained from met downshift experiments of WT strain (Table 2.1), we can predict the dependence 

of lag time on pre-expressed MetE abundance (Fig. 2.3c). (The effect of MetE pre-expression on 

pre-shift growth rate doesn’t affect the prediction on lag time; see Fig. 2.8.) To directly test the 

prediction, we measured the pre-expressed 𝜙57'8  of the metE titratable strain in Fig. 2.2a by mass 

spectrometry (Methods) under the same cTc concentration as used in Fig. 2.2. Plotting measured 

lag times and 𝜙57'8  (symbols in Fig. 2.3c), we see excellent agreements with model prediction 

which contained no fitting parameters. Using the pre-expressed MetE corresponding to the 

measured lag times (Table 2.2), the model can then quantitatively explain the growth curve, 

instantaneous growth rate and other quantities as mentioned above through the course of met 

downshifts (solid lines in Fig. 2.2b, 2.2c, Fig. 2.9) without invoking any other fitting parameters. 
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2.4 Discussion 

In this work, we studied methionine downshift from rich media which exhibited 1-hr lag. 

MetE are found to be the major bottleneck in met downshift since pre-expression of MetE 

dramatically shortened the lag time (Fig. 2.2). Based on that, we developed a coarse-grained model 

to quantitatively capture the enzyme and growth recovery kinetics during methionine downshifts. 

Different from the bottom-up approach starting from molecular interactions, our approach required 

only limited information on steady state proteome allocation, allowing us to overcome the 

challenge of obtaining the molecular interaction parameters.  

Qualitatively, MetE synthesis is down-regulated by the met pool via the transcriptional 

regulators MetR and MetJ (24, 28). To directly model the regulation of MetE synthesis, we would 

need all the binding constants connecting the intracellular concentrations of met (and other 

metabolites of the met synthesis pathway) to MetR and MetJ, their effects on MetE expression and 

on the expressions of these regulators themselves. Besides MetE, the expression of many other 

proteins, particularly the translational proteins are also changed during met downshift, and direct 

modeling would require quantitative information regarding how tRNA charging and the ppGpp 

signaling pathway (14, 25–27) respond to the met shortage. In our approach, instead of describing 

the details of these molecular interactions, we let the translational capacity 𝜎, set by the condition 

of flux balance, to represent the met pool and the kinetic signal governing the allocations of protein 

synthesis flux to MetE and to the translational machinery (𝜒57'8 , 𝜒&/). Steady-state relationships 

between growth rates and proteomic allocations are used to obtain the forms of the regulatory 

functions, which can subsequently be extended to the kinetic regime through the time dependence 

of 𝜎(𝑡). In this way, we can quantitatively predict the growth transition kinetics during met 

downshift using only steady-state information.  
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While the flux-based approach was originally developed in the context of carbon diauxie 

shift (23), the fact that we can modify it to quantitatively capture the very different AA downshifts 

reflect the generality of the approach. First, it shows that our approach is not limited to the simpler 

and extensively studied growth on carbon substrates. Second, the key metabolites involved in met 

downshift and the associated signaling and regulatory pathways are completely different from the 

ones involved in carbon shifts (keto-acids and cAMP (11, 12, 23)). Despite these differences, 

proteome allocation can be described by the same dynamic control variable—the translational 

capacity 𝜎(𝑡). Thus, our approach is not dependent on details of the signaling systems involved 

when describing growth transition kinetics, leading us to expect that it can be applied more 

generally to other growth shifts without needing detailed knowledge of molecular signaling. 

From both MetE pre-expression experiments (Fig. 2.2) and model predictions (Fig. 2.8), 

the cost of shortening the lag to 20mins is minor. It’s corresponding to about 0.4% MetE over-

expression in pre-shift condition and less than 5% drop in pre-shift growth rate. Considering that 

the natural habitat of E.coli (such as gut) usually have unstable nutrient supply, it seems more 

beneficial to the cells to have small amount of MetE (~0.4%) expressed all the time. However, it’s 

not the strategy E.coli takes from our observation and the reason of keeping little MetE while met 

is supplied may be beyond the scope of protein cost. Considering met is the first amino acid needed 

for translation, it could be meaningful for cells to ensure lower met availability than other AAs in 

any conditions in order to avoid translational abortion. In our experiments, we only deplete 

methionine, while in nature,  it’s likely that met depletion happen together with other AAs’ 

depletions (e.x., due to flux). In that case, it could be beneficial for cells keep little MetE when not 

needed. Further studies are needed to test that hypothesis, which is beyond the scope of this study. 
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2.5 Materials and Methods 

2.5.1 Strain construction 

The strain used in this study are either wild type E.coli K-12 NCM3722 strain (29, 30) or 

its derivative HE588 (metE titratable strain).  

2.5.1.1 Construction of HE588 

The metE structure gene was PCR amplified from NCM3722 genomic DNA using oligos 

Ptet-metE-F and metE-R (Table 2.3).  The kanamycin resistance gene (km) plus its promoter 

(without flanked FRT scars) was amplified from pKD13 (PMID10829079) using oligos metKm-

F ans Z-km-R. Note that the 33 nucleotides at the 3’ end of the “metE” fragment are the same as 

the first 33 nucleotides at the 5’ end of the km fragment. After gel purification, these two fragments 

were fused together by standard fusion PCR using both amplified products in equal ratios as 

templates and Ptet-metE-F and Z-km-R as primers. Using the Lamada-Red method as described 

in Datsenko and Wanner (2000. PMID10829079), the resultant fused product, “metE:km” (both 

genes transcribed in the same direction), was electroporated into the cells of strain EQ37 

(PMID20064380; expressing the λ-Red recombinase) to replace the sequences from the +1 

nucleotide to the +2389th nucleotide relative to the translational start point of lacZ. Note strain 

EQ37 carries Ptet driving lacZ at the lacZ locus and the lacY gene deletion. After electroporation, 

several Km resistant colonies were confirmed by PCR and DNA sequencing. The “rrnBT:Ptet-

metE:km” cassette at the lacZ locus in the resultant strain was transferred to strain NCM3722-1R 

(carrying Ptet-tetR at the ycaD locus, (9)) by P1 transduction, yielding the metE titratable strain 

HE588. In this resultant strain, the metE expression is repressed by the auto-regulated TetR and 

the repression is released by a TetR inducer such as chlorotetracycline (cl-Tc). The more inducer 

added the greater the level of metE expression. 
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2.5.2 Growth medium 

All the growth media used in this study were based on MOPS buffered media described in 

Cayley et al (31) with 50mM NaCl, 1.32mM KH2PO4, 0.4% glycerol and 10mM NH4Cl.  

The pre-shift rich media used in this work are based on the above media and with additions 

of 18 AAs (Cysteine is excluded because it oxidizes to cystine in aerobic growth. Tyrosine is 

excluded because of its small solubility). For simplicity, we refer it as ‘all AA’ condition. If not 

specified, amino acid concentrations are the same as those listed in the rich defined medium (22). 

In met downshift experiment, the met conc. in the batch is lowered to 10uM so that met can run 

out around 𝑂𝐷6!!=0.14 to trigger the shift.  

2.5.3 Cell growth and medium shift 

All the medium shift experiments were performed in a 37℃ water bath shaker shaking at 

240 rpm. Shifts always start after cells reaching steady-state in pre-shift medium. To grow cells to 

exponential phase, we followed a standard cell growth round: seed culture, pre-culture and 

experimental culture. For seed culture, cells were inoculated to LB broth from fresh LB plate and 

grew for about 7hrs. Then cells were washed with corresponding Mops medium once and diluted 

to the same Mops medium (pre-culture) with starting OD6!! around 10^-3. If chlortetracycline 

(cTc) is needed in this experiments, it was added to pre-culture too. After overnight pre-culture, 

cells were diluted to the same Mops medium (experimental culture) with starting 𝑂𝐷6!! below 

0.01. For exponential growth measurements, we let cells grow to 𝑂𝐷6!! 0.5. More than 5 𝑂𝐷6!! 

points were taken within the range of 𝑂𝐷6!! 0.05~0.5 for growth rate calculation.  

In met downshift experiment, 200uM of met was used in the pre-culture and 10uM of met 

was used in experimental culture. While diluting cells from pre-culture to experimental culture, 

we first washed cells by centrifuging and resuspending cells with the experimental culture media.  
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The staring 𝑂𝐷6!! was also below 0.01. With 10uM met, the shift happens around 𝑂𝐷6!! = 0.14. 

Time 0 was determined by extrapolating the pre-shift growth curve to the 𝑂𝐷6!! of the first point 

after shift. Since for met downshift, growth ceases abruptly set in when met run out and 𝑂𝐷6!! 

was measured every 3 mins near met depletion, the uncertainty of time 0 is within 2 mins.  

2.5.4 Growth rate calculation 

For steady-state exponent growth rate, we simply fitted growth curve exponentially. If 

𝑅1 < 0.999, we didn’t take it as reliable results. 

To get instantaneous growth rate, we applied Savitzky-Golay filter (32) to N 

b𝑡2 , 𝐿𝑛G𝑂𝐷6!!,2He data set. Recall that because of medium switch, 𝑂𝐷6!! was not continuously at 

t=0. Therefore we scaled the data in post-shift region before calculating growth rate to make the 

first 𝑂𝐷6!! after shift (𝑡 < 5𝑚𝑖𝑛𝑠) equal to the value exponentially extrapolated from pre-shift 

data.  

The window size we used includes 3 data points. First, we fitted the first 3 data points to 

the 2nd polynomial and substituted 𝑡 of middle data point (𝑡1) into fitted equation to get its slope. 

Then we moved the window to the right and did the same thing for the 2nd to 4th data points to 

get the slope at 𝑡: . Repeating moving windows and calculating slope, we got slopes at 

𝑡1, 𝑡:, … 𝑡;<0 . Since we already did 𝐿𝑛  operation on 𝑂𝐷6!! , the slopes we got are exponent 

instantaneous growth rates at 𝑡1, 𝑡:, … 𝑡;<0. Cells are in steady-state at 𝑡0 and 𝑡; according to our 

experimental setting, so we only plotted data points from 𝑡1 to 𝑡;<0 for instantaneous growth rate 

figures.  
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2.5.5 Mass spectrometry protocol 

We used quantitative mass spectrometry to measure the MetE pre-expression levels under 

various cTc inductions. For each cTc concentration, at least 1𝑂𝐷6!! ∙ 𝑚𝑙 sample was taken during 

steady-state growth in all AA condition (18 AAs) by centrifuging at max speed for 2mins. Samples 

were resuspended by pure water to 1ug/ul protein concentration and mixed with 15N labeled 

reference (MOPS glycerol minimal condition) with 1:1 mass ratio. Subsequent sample processing, 

including TCA precipitation, cysteine reduction, alkylation, tryptic digestion, and desalting 

procedures, was performed as previously described (17). Sciex 5600 TripleTOF were used to 

generate MS data. Following the data conversion and analysis steps described before (17, 23), we 

obtained the absolute MetE abundance, which is shown in Fig. 2.3c. 
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2.7 Figures 

 

Figure 2.1. Growth kinetic of methionine downshift and methionine synthesis pathway. (a) growth 
curve and (b) instantaneous growth rate measured in methionine (met) downshift (blue diamonds; see 
Methods). The time when the shift starts (t=0) was determined by extrapolating the pre-shift growth curve 
to the 𝑂𝐷*++ where the growth pauses (the red star in (a)). Lag time is defined as the time lost in the 
transition, calculated by extrapolating exponential post-shift growth curve to the initial OD600 when the 
transition starts (purple lines in (a)). The green bar in (b) shows the steady-state growth rate (with 95% 
confidence interval) under the same nutrient condition as the pre-shift but with higher met conc. (0.2mM; 
same as that in rich defined media). The pink bar in (b) shows the steady-state growth rate (with 95% 
confidence interval) measured under the post-shift nutrient condition (‘all-but-met’). (c) Met synthesis 
pathway and enzymes involved in each step are shown on the left side. The bar plot on the right shows the 
fold increase in steady-state mass fraction of each enzyme(s) from the pre-shift rich condition (glycerol 
with 18 AAs; see Methods) to the minimal condition without AA (glucose only). The proteomic data used 
to calculate the fold changes were reported in the rich condition proteomic study in Chapter 3. We can see 
that the fold change for the met enzymes were all larger than 1, indicating that met enzymes are repressed 
when met was supplied. Notice that the post-shift steady-state of met downshift has a higher growth rate 
than the glucose minimal condition. It’s thus expected that cells need even more met enzymes in post-shift 
condition than in glucose minimal condition in order to support higher growth rate. Among all the met 
enzymes, MetE shows the largest fold change between rich and minimal condition. 
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Figure 2.2. Met downshift with various MetE pre-expression. (a) Ptet-metE construction allows titrate 
MetE expression level with various cTc concentrations. (b) Growth curves and (c) instantaneous growth 
rates of met downshifts under different cTc conc. (open triangles: 50ng/ml cTc; open squares: 10ng/ml cTc; 
open circles: no cTc; blue diamond: wild type strain as shown in Fig. 2.1). Solid lines in (b) and (c) are 
model predictions under the corresponding cTc conc. (same color coding as the symbols). In the model, the 
pre-expressed MetE mass fractions was determined by the measured lag time according to predicted MetE-
lag relationship (Fig. 2.3b). (d) shows the lag times (calculated according to Fig. 2.1a) of the met 
downshifts shown in (b) (same symbol as in (b)) and the lag time of all AAs downshift (grey bar, Chapter 
3). 
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Figure 2.3. Model description of met downshift. (a) shows the schematic of cells’ response to methionine 
shortage in the model. When methionine is depleted, methionine synthesis is required for growth, of which 
the biosynthesis flux 𝑗,%& is limited by enzyme MetE (Eq. (2.3)). Under flux balance assumption at coarse-
grained time scale (Eq. (2.2)), protein synthesis rate 𝐽! (Eq. (2.1), or growth rate) is limited by MetE also 
as shown in Eq. (2.9) and Eq. (2.12). In other words, with given number of ribosomes (𝑀!"), translation 
capacity 𝜎 drops as a response to methionine shortage by its definition (Eq. (2.6)). Regulation function 
𝜒,%&'  and 𝜒!", determining the allocation of 𝐽! to MetE and ribosome synthesis respectively (Eq. (2.4) & 
Eq. (2.5)), respond to methionine pool via gene regulations. With 𝜎 being a reporter of methionine pool, 
𝜒,%&'  and 𝜒!" can be written as a function of 𝜎 (Eq. (2.7) & Eq. (2.8)) based on steady-state relationships. 
The functions of �̂�!"(𝜎) and �̂�$%&'(𝜎) are constructed from steady-state relationship between protein 
abundance and growth rate (Fig. S3 and Fig. S4) and are plotted in (b). (c) Model prediction of the 
dependence of the lag time on the pre-expressed MetE abundance (blue line). This prediction only rely on 
some phenomenological parameters describing steady-state growth laws (shown in Fig. S3 and Fig. S4) 
and the steady-state growth rates in the pre-shift and post-shift condition (shown in Fig. 2.1b as green and 
pink bar).  No adjustable parameters are needed. The uncertainty of model prediction (shaded area: 68% 
and 95% confidence range) comes from the uncertainty in growth rates. Here we assumed the same pre-
shift growth rate for different MetE pre-expression level. Fig. S5 shows that the effect of MetE over 
expression on growth rate is indeed negligible for the range we showed. The measured lag times and pre-
expressed MetE mass fractions in various cTc conditions are shown in (c) as solid symbols. They were well 
captured by the model..  
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Figure 2.4. Steady-state mass fractions of enzymes on methionine synthesis pathway in minimal medium. 
Data points are from M1-M4, P1, P8-P10 conditions in (Chapter 3). Lines are linear fit of data.  
 

 
Figure 2.5.  Met downshift growth curves (a) and instantaneous growth rates (b) of wild type (blue) and 
MetE titratable strain w/o cTc (red). Different symbols represent independent experiments. Lines here are 
guide of eyes.  
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Figure 2.6: Construction of the regulatory function for ribosome synthesis, 𝝌-𝑹𝒃(𝝈). (a) shows the 
abundance 𝜙!"∗  of ribosomal proteins at different growth rate (𝜆∗) for cultures growing exponentially in 
different nutrient sources. [Same data as that shown in Fig. 3.6a.] The data is well-captured by a linear fit 
(dashed line), i.e., 𝜙!"∗ = 𝜙!",+ + 𝜆∗/𝛾, with 𝜙!",+ = 4.12% and slope 𝛾 = 8.43	ℎ01. In steady state, we 
have 𝜒!"∗ ≡ 𝜙!"∗ , obtained by setting !!"𝜙!" = 0 using Eq. (2.1), (2.5) and (2.10) of the main text. Using 
the definition of 𝜎 in Eq. (2.6),  
 

𝜎∗ =
𝜆∗

𝜙!"∗
=

𝜆∗

𝜙!",+ + 𝜆∗/𝛾
 (2.14) 

 
we can invert Eq. (2.14) to obtain 𝜆∗(𝜎∗),  and obtain the regulatory function as 
 

�̂�!"(𝜎) = 𝜒!"∗ (𝜎) = 𝜙!"∗ ?𝜆∗(𝜎)@ =
𝜙!",+
1 − 𝜎/𝛾

. (2.15) 

 
The function obtained is sketched as the gray line in panel (b) and in Fig. 2.3.  
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Figure 2.7: 𝝌-𝒎𝒆𝒕𝑬(𝝈)   construction. Similar as obtaining �̂�!"(𝜎)  (Fig. 2.6), we first try to find the 
relationship between 𝜆 and 𝜙$%&' under steady-state met limitation. As explained in the main text, to obtain 
the relationship, we convert the condition of met limitation to the condition of met enzyme over-expression 
as illustrated below.  
Growth rate dependence on over-expressed proteins is established in Scotts 2010 (3). Over-expression (OE) 
growth law stated that OE limits resources for the synthesis of useful proteins, especially ribosomal proteins, 
leading to a growth rate drop (2). The relationship can be written as 
 𝜙6'∗ = 𝜙,78(1 −

9∗

9$
)  (2.16) 

(black line in (a)), where 𝜙6'∗  is the abundance of over-expressed proteins, 𝜆+	is the growth rate (GR) 
without OE and 𝜙,78	 is a phenomenological parameter representing the maximum fraction that over-
expressed protein can take (𝜙,78 here is adjusted for NCM strains, see Appendix 2.9.2 for details). Li et 
al (20) applied it to the condition lacking met supply in the media (referred as ‘all-but-met’ condition): the 
steady-state relationship between 𝜙$%&'∗  and 𝜆∗ in ‘all-but-met’ condition follows 
 

𝜙$%&'∗ + 𝜙,%&:&;%<∗ = 𝜙,78(1 −
𝜆∗

𝜆,%&
) (2.17) 

where 𝜆,%& is the growth rate with met supply (‘all AA’ condition), 𝜙,%&:&;%<∗  is the mass fraction of other 
enzymes (except MetE) involved in met biosynthesis (basal expressions in ‘all AA’ condition are excluded 
in 𝜙,%&:&;%<∗ ). Considering enzymes in met biosynthesis pathway are co-regulated, we can absorb 
𝜙,%&:&;%<∗  (10% of 𝜙$%&'∗ , see Appendix 2.9.2) into 𝜙,78 and Eq. (2.17) becomes  
 

𝜙$%&'∗ = 𝜙′,78(1 −
𝜆∗

𝜆,%&
) (2.18) 

which is the orange dash line in (a). Comparing Eq. (2.18) to Eq. (2.16), MetE are considered as OE and 
the GR in ‘all AA’ condition is taken to be the growth rate without OE (MetE abundance in ‘all AA’ 
condition is negligible). In other words, Eq. (2.18) attributes the drop in steady-state growth rate when 
removing met from the media (create met limitation) to the burden of synthesizing MetE and linked the 
steady-state without met limitation (when met is supplied) and the steady-state with the most met limitation 
(no met supply). Thus, the relationship between 𝜆 and 𝜙$%&'  under met limitation is equivalent to the 
relationship between 𝜆 and 𝜙$%&' under met enzyme over-expression, which is Eq. (2.18). 

To double check whether the OE growth law can successfully capture the ‘all-but-met’ steady-state, 
we also plotted post-shift growth rate (measured) and MetE mass fraction (estimated by extrapolating the 
MetE-GR relationship in minimal media in Fig. 2.4 to the measured GR in ‘all-but-met’ condition) in (a) 
(solid square). It is right on top of the orange line, meaning the post-shift ‘all-but-met’ steady-state is well 
described by OE growth law.  

Substituting 𝜆∗ by 𝜎𝜙!"∗ , 𝜙!"∗  by 𝜒!"∗ (𝜎) (𝜒!"∗ = 𝜙!"∗  under steady states) to Eq. (2.18), we then 
obtained the steady-state relationship between 𝜒$%&'∗  and 𝜎 for met limitation. Extending the form to the 
kinetic region (Eq. (2.19)), we got �̂�$%&'(𝜎) shown in (b) and Fig. 2.3b. 
 

�̂�$%&'(𝜎) = 𝜒$%&'∗ (σ) = 𝜙′,78(1 −
𝜎�̂�!"(𝜎)
𝜆,%&

) (2.19) 
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Figure 2.8: Model prediction when considering the effect of pre-expressed MetE on pre-shift growth 
rate. The blue line in (a) is the same as that shown in Fig. 2.3c where we assumed the same pre-shift growth 
rate for different MetE pre-expression levels. According to the over-expression growth law in (3), inducing 
MetE expression in the pre-shift condition will cause growth rate drop in pre-shift condition since MetE 
expression limited the resource for useful protein synthesis. Here we took it into consideration and let the 
pre-shift growth rate depend on the MetE pre-expression abundance. The relationship between pre-shift 
growth rate and MetE pre-expressed abundance is described by the OE growth law (the black line in Fig. 
2.7a) with the maximum growth rate (no MetE pre-expression) being the measured WT growth rate in pre-
shift condition. The model predictions are shown as orange lines in (a) and (b). Notice that for the MetE 
range between 0 to 5‰, the predicted change in pre-shift growth rate is very small ((b), less than 5%), while 
the predicted change lag time is significant. Due to the very small effect on growth rate, the prediction of 
lag time vs MetE stays the same (compare the orange line and the blue line in (a)).   
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Figure 2.9: Model predictions of met downshift under various cTc concentrations. With measured pre-
shift and post-shift steady-state growth rate and pre-expressed MetE abundance fitted to the lag time, our 
model can predict the kinetics of protein synthesis flux, ribosomal protein abundance and mass fraction, 
MetE abundance and mass fraction during met downshift at various cTc concentrations. 
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2.8 Tables 

Table 2.1: parameter table for lag time vs MetE pre-expressed abundance (Fig. 2.3c) prediction. 
1*. 𝜆+ by definition is the growth rate without MetE expression. Since the expression level of MetE is very 
low in wild type strain under pre-shift ‘all AA’ condition, 𝜆+ is taken to be the measured wild-type growth 
rate under ‘all AA’ condition. The error comes from growth rate measurements (95% confidence interval). 
2*. 𝜆= and 𝜆> are measured pre-shift and post-shift steady-state growth rate of wild-type strain respectively. 
Here we assume that MetE pre-expression do not affect pre-shift growth rate 𝜆=. The error comes from 
growth rate measurements (95% confidence interval). 

𝛾(1/ℎ𝑟) 𝜙&/,! 𝜙′*+, 𝜆+1∗(1/ℎ𝑟) 𝜆21∗(1/ℎ𝑟) 𝜆=1∗(1/ℎ𝑟) 
8.43 0.0412 0.29 1.4 ± 0.03 1.4 ± 0.03 1.15 ± 0.03 

 
 
Table 2.2: parameter table of met downshift under various cTc concentration. 
1*. 𝜙$%&'(𝑡 = 0) is the MetE pre-expression level in mass fraction. It’s fitted to the lag time of each shift. 
2*. 𝜆= and 𝜆> are measured pre-shift and post-shift growth rate of MetE titratable strain (HE588) under 
various cTc conc., obtained from the growth curves in Fig. 2.2b.  
3*. Since the pre-shift growth rate listed here is a little different from that of wild-type strain (Table 2.1), 
we adjust the 𝜆+ to make sure it’s not smaller than the pre-shift growth rates in any cTc conc.. 

cTc conc. (ng/ml) 0 10 50 
𝜙*7'80∗ (𝑡 = 0) 0.00029 0.00095 0.0039 
𝜆21∗(/ℎ𝑟) 1.45 1.45 1.392 
𝜆=1∗(/ℎ𝑟) 1.11 1.182 1.194 
𝜆!:∗(/ℎ𝑟) 1.45 1.45 1.45 
𝜙&/,! 0.0412 0.0412 0.0412 
𝛾(/ℎ𝑟) 8.43 8.43 8.43 
𝜙*+, 0.29 0.29 0.29 

 
Table 2.3: Oligonucleotides used in this study. 
Name Sequence Use 
Ptet-metE-F    gcacatcagcaggacgcactgaccgaattcattaaagaggagaaaggtaccatgacaatattgaatcac

accctcg 
 Amplification of metE 

metE-R ctgtccattacccccgacgcaagttctgcg  Amplification of metE 

metKm-F gtgcaggcggcgcagaacttgcgtcgggggtaatggacagcaagcgaaccggaattgc  Amplification of km 

z-Km-R cgccttccagcgttcgacccaggcgttagggtcaatgcgggtcgcttcacttagaagaactcgtcaaga
aggcgatag 

 Amplification of km 

metE-ver-F1 tggcgctgggccacaaggtgaaacc  Verification of metE 
at the lacZ locus   

metE-ver-R ttcatcaatctgtacccactcgatg  Verification of metE 
at the lacZ locus   

metE-ver-F2 tacaaaaatgccatgaactggcactg  Verification of metE 
at the lacZ locus   

metE-ver-F3 atgctgacggggccggtgaccatac  Verification of metE 
at the lacZ locus   
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Table 2.4: Estimating the mass fraction change in MetE and other enzymes on met biosynthesis 
pathway from pre-shift ‘all AA’ condition to post-shift ‘all-but-met’ condition. 
1*.   Cys group include enzymes on cysteine biosynthesis pathway encoded by cysC, cysD, cysE, cysH, 
cysI, cysJ, cysK, cysM, cysN. 
2*.   𝜙+ and 𝜈' are offset and inversed slope from linear fit of Fig. 2.4.  
3*.   If not specified,  𝜙=7?? is measured mass fraction of each enzyme(s) in the pre-shift ‘all AA’ condition, 
and 𝜙>7??0"@&0,%& is estimated by (𝜆> 𝜈'⁄ + 𝜙+) for each enzyme(s) with 𝜆> = 1.15/hr (the growth rate in 
‘all-but-met’ condition) 
4*.   Asd is need for methionine, lysine, threonine and isoleucine biosynthesis in minimal medium. But in 
‘all-but-met’ condition, lys, thr and ile are provided in the medium. So we calculated 𝜙>7??0"@&0,%& of Asd 

by (𝜆> 𝜈'⁄ × L A%&"
A%&"BA'()BA"*+BA,'&

M + 𝜙+), where	𝜂 is amino acid molar composition of cells reported in 

Gene-wei Li et al (Table 2.4; (20)). Since the differences of 𝜂 across various medium is small (Table 2.4; 
(20)). We used the 𝜂 in glucose minimal medium for calculation. 
5*.   ∆𝜙 report the net change of mass fraction from ‘all AA’ condition to ‘all-but-met’ condition. From 
pre-shift to post-shift condition, the increase in MetE is 5.75% while the total increase in other met enzymes 
is 0.618%, which is about 10% of the MetE abundance. 

Enzymes 
2*𝜙! 

(× 10<:) 
2*𝜈8 

(× 10<:) 
3*𝜙2+>> 

(× 10<:) 
3*𝜙=+>></?'<*7' 
(× 10<:) 

5*∆𝜙 
(× 10<:) 

1*cys group 5 1.56 7.8 12.3 

6.18 

MetL 0.18 32.4 0.183 0.53 
Asd 0.5 6.38 0.452 4*0.74 

MetA 0.45 150 0 0.52 
MetB 0.19 196 0.035 0.25 
MetC 0.28 120 0.064 0.37 
MetE -5 0.18 0.104 57.6 57.5 
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Table 2.5: Proteome amino acid molar compositions. Analyzed from data in Gene-wei Li et al.(20). 

Composition Rich defined medium 
w/ glucose (%) 

Glucose minimal 
medium (%) Genome (%) 

Alanine 10.13 10.15 9.478 
Cysteine 0.7192 0.8365 1.162 
Aspartate 5.691 5.991 5.149 
Glutamate 7.004 6.611 5.766 

Phenylamine 3.382 3.398 3.902 
Glycine 8.249 8.099 7.356 

Histidine 1.919 1.950 2.267 
Isoleucine 5.802 5.706 5.994 

Lysine 6.830 6.325 4.421 
Leucine 8.155 8.725 10.63 

Methionine 2.725 2.632 2.818 
Asparagine 3.972 4.213 3.970 

Proline 3.664 3.778 4.415 
Glutamine 3.726 3.973 4.442 
Arginine 5.990 5.385 5.537 
Serine 4.871 5.088 5.838 

Threonine 5.481 5.511 5.408 
Valine 8.256 7.782 7.057 

Tryptophan 0.7947 0.9808 1.531 
Tyrosine 2.638 2.864 2.859 

 

2.9 Appendix 

2.9.1 Obtain MetE catalytic rate 𝒌𝑴𝒆𝒕𝑬∗  

According to the Eq. (2.12) in the main text, growth rate is the production of D$%&'
∗

=)%&
 and 

MetE abundance 𝜙57'8  during the whole shift. Therefore the value of D$%&'
∗

=)%&
 can be fixed by the 

post-shift steady-state via 

 𝑘57'8∗

𝑓*7'
=

𝜆=∗

𝜙57'8,=∗ , (2.20) 
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where 𝜆=∗  is the steady-state growth rate in the post-shift media and 𝜙57'8,=∗  is the steady-state mass 

fraction of MetE under the post-shift media. The value of 𝜙57'8,=∗  is calculated by Eq. (2.18) in 

Fig. 2.7 via 𝜆=∗ . So  

 𝑘57'8∗

𝑓*7'
=

𝜆=∗

𝜙E*+,(1 −
𝜆=∗

𝜆!
)
, (2.21) 

which only depend on the steady-state growth rates. 

2.9.2. Estimation of 𝝓′𝒎𝒂𝒙 in 𝝌q𝑴𝒆𝒕𝑬(𝝈) construction 

As explained in Fig. 2.7, 𝜙′*+, was defined as 𝜙*+, absorbing the ratio of 𝜙57'8∗  over 

(𝜙57'8∗ + 𝜙*7'%'I7$∗ ), where 𝜙*+, is a phenomenological parameter representing the maximum 

fraction that over-expressed protein can take, 𝜙57'8∗  and 𝜙*7'%'I7$∗  are the steady-state abundance 

of MetE and other enzymes in ‘all-but-met’ condition respectively. (Basal expressions in ‘all AA’ 

condition are excluded in 𝜙57'8∗  and 𝜙*7'%'I7$∗ . For MetE, this value is almost zero). One 

important assumption behind this definition is that the change of 𝜙57'8  and 𝜙*7'%'I7$  are 

proportional to each other during the shift. Considering that in met pathway, enzymes are co-

regulated by met pool directly or indirectly, it is reasonable to assume 𝜙*7'%'I7$ = 𝑞 ∙ 𝜙57'8  

during the shift with 𝑞 being a constant. Thus, 𝜙′*+, can be calculated by 𝜙*+, and 𝑞 following 

the equation below. 

 𝜙′*+, =
𝜙*+,
1 + 𝑞 (2.22) 

In Scott et al (3), 𝜙*+, is calculated to be 0.48 from the measurements of MG1655 strain. 

Since we used NCM3722 strain in this work, we estimated 𝜙*+, ≅ 0.32 following the same way 

in Scott et al (3) but using the measurements of NCM3722 strain in Dai et al (17). It is qualitatively 

agreed with the quantification from LacZ over-expression measurements in Basan et al (18). 
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Since 𝑞 is assumed to be constant through the shift, to estimate 𝑞, we only need to get 

𝜙57'8∗  and 𝜙*7'%'I7$∗ , which is the steady-state mass fractions of MetE and other enzymes 

involved in met biosynthesis (including cysteine biosynthesis enzymes since cysteine provide 

sulfate for met biosynthesis) in the post shift ‘all-but-met’ condition subtracting their mass fraction 

in the pre-shift ‘all AA’ condition (to exclude basal expressions since the basal expression of other 

enzymes are significant). Table 2.3 listed measured mass fraction in ‘all AA’ condition 

(𝜙2+>> ,	Chapter 3) and estimated mass fraction in ‘all-but-met’ condition (𝜙=+>></?'<*7'). The mass 

fractions in the post-shift condition (‘all-but-met’ condition) are estimated by extrapolating each 

enzyme’s steady-state growth rate dependence (Figure 2.4) to the steady-state growth rate in the 

‘all-but-met’ condition (around 1.15/hr). In other words, we linearly fitted steady-state relation 

between enzyme mass fraction 𝜙 and growth rate 𝜆 under minimal media (Fig. 2.4) to 

 𝜙 = 𝜙! + 𝜆 𝜈8⁄  (2.23) 

with 𝜙! and 𝜈8 listed in Table 2.3 and substitute the post-shift growth rate to get the post-shift 

mass fraction 𝜙=+>></?'<*7'. One special case is 𝜙=+>></?'<*7' of enzyme Asd. Asd is an enzyme 

necessary for methionine, lysine, threonine and isoleucine synthesis in the minimal medium. But 

in the post-shift condition (‘all-but-met’), lysine, threonine and isoleucine are already provided. 

Here we assumed that Asd expression level will be smartly adjusted to match the actual 

requirements. Referring to the cellular AA composition (Table 2.4, (20)), 𝜙=+>></?'<*7' of Asd is 

approximated by (𝜆=+>></?'<*7' 𝜈8,+J4x × y K)%&
K)%&LK*+,LK&-"LK.*%

z + 𝜙!,+J4) , where 𝜆2+>></?'<*7'  is 

the pre-shift growth rate, 𝜈8,+J4 and 𝜙!,+J4 are 𝜈8 and 𝜙! in Eq. (2.23) for enzyme Asd, 𝜂, is the 

cellular composition of AA 𝑥. With estimated mass fractions of pre-shift and post-shift steady-
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states listed in Table 2.3, we can get the estimated increase of other enzymes (𝜙*7'%'I7$∗ ) is about 

10% of that of 𝜙57'8∗  (last column in Table 2.3), that is 𝑞 = 10%. Thus 𝜙*+,E = M)/0
0LN

= 0.29. 

2.9.3 Analytical solution of growth kinetics during met downshift 

In our model, 𝜎 is the signaling variable. Once we solve the kinetics of 𝜎(𝑡), we can solve 

the time dependence of other variables since they solely depend on the change of 𝜎(𝑡). From the 

definition of growth rate 𝜆(𝑡) (Eq. (2.11)) and mass fraction 𝜙 (Eq. (2.10)), the definition of  𝜎 

(Eq. (2.6)) can also be written as 

 
𝜎(𝑡) =

𝐽&(𝑡)
𝑀&/(𝑡)

.	 (2.24) 

By taking the time derivative on both sides of Eq. (2.24), we can write the time differential equation 

of 𝜎: 

 𝑑𝜎(𝑡)
𝑑𝑡 =

𝑑
𝑑𝑡 ~

𝐽&(𝑡)
𝑀&/(𝑡)

� =
1

𝑀&/(𝑡)
𝑑𝐽&(𝑡)
𝑑𝑡 −

𝐽&(𝑡)
𝑀&/
1 (𝑡)

𝑑𝑀&/(𝑡)
𝑑𝑡 . 

(2.25) 

Here we let 𝑡 ≥ 0 , since we are only interested in the kinetics of 𝜎(𝑡)  after the shift starts. 

Substituting the flux balance constrain with 𝐽&  limited by MetE (Eq. (2.9)) and expressing the 

protein synthesis kinetics via regulation functions (Eq. (2.4) and Eq. (2.5)), we got 

 𝑑𝜎(𝑡)
𝑑𝑡 =

𝑘57'8∗

𝑓*7'
𝐽&(𝑡)
𝑀&/(𝑡)

�̂�57'8(𝜎(𝑡)) −
𝐽&1(𝑡)
𝑀&/
1 (𝑡)

�̂�&/(𝜎(𝑡)). 
(2.26) 

Replacing O1(')
512(')

 with 𝜎(𝑡), Eq. (2.26) then becomes 

 𝑑𝜎(𝑡)
𝑑𝑡 = 𝜎(𝑡) Y

𝑘57'8∗

𝑓*7'
�̂�57'8G𝜎(𝑡)H − 𝜎(𝑡)�̂�&/G𝜎(𝑡)HZ, 

(2.27) 

which is the Eq. (2.13) in the main text. 
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From Eq. (2.27), we can see that the change of translational capacity 𝜎 is determined by 

the regulation functions of MetE and ribosomal proteins. The increase in the flux allocation 

towards MetE synthesis makes 𝜎 rises, while the increase in the flux allocation towards ribosomal 

proteins makes 𝜎  drops. It can be understood considering MetE supplies the met pool for 

translation process while ribosomes drains the met pool.  

We can further simplify Eq. (2.27) via the expression of �̂�57'8G𝜎(𝑡)H (Eq. (2.19)) and 

D$%&'
∗

=)%&
 (Eq. (2.21)): 

 𝑑𝜎(𝑡)
𝑑𝑡 = 𝜎(𝑡)(

𝜆=∗

(1 − 𝜆=∗ 𝜆*7'⁄ ) ~1 −
𝜎(𝑡)�̂�&/(𝜎(𝑡))

𝜆!
� − 𝜎(𝑡)�̂�&/G𝜎(𝑡)H). (2.28) 

Eq. (2.28) can be rearranged to 

 𝑑𝜎(𝑡)
𝑑𝑡 = 𝜎(𝑡)

𝜆=∗

(1 − 𝜆=∗ 𝜆*7'⁄ ) ~1 −
𝜎(𝑡)�̂�&/(𝜎(𝑡))

𝜆=∗
�. (2.29) 

We can see that 𝜙*+,E = M)/0
0LN

 in the expression of �̂�57'8G𝜎(𝑡)H and D$%&'
=)%&

 canceled each other. 

The kinetics of 𝜎 is thus independent of the value of 𝜙*+,E , the maximum proteomic allocation 

MetE can reach.  

Now we write out the dependence of �̂�&/ on 𝜎 (Eq. (2.15)) and let 𝜇= =
R3
∗

(0<R3
∗ R)%&⁄ )

 for 

simplification. After rearranging the differential equation of 𝜎 in order to separate 𝑑𝜎 and 𝑑𝑡, we 

got 

 𝑑𝜎
𝜎

(1 − 𝜎 𝛾⁄ )
1 − 𝜎G1 𝛾⁄ + 𝜙&/,! 𝜆=∗⁄ H

= 𝜇=𝑑𝑡. (2.30) 

From the ribosomal growth law (Fig. 2.6a), G1 𝛾⁄ + 𝜙&/,! 𝜆=∗⁄ H is actually 1/𝜎=∗, where 𝜎=∗ is the 

translational capacity in the post-shift steady-state. Then we rewrote Eq. (2.30) into 
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 𝑑𝜎
𝜎
(1 − 𝜎 𝛾⁄ )
1 − 𝜎 𝜎=∗⁄ = 𝜇=𝑑𝑡. (2.31) 

Integrating both side, we got 

 
ln �

𝜎

G1 − 𝜎 𝜎=∗⁄ H0<T3
∗ U⁄ � �

𝜎(𝑡)
𝜎(0) = (𝜇=𝑡)|!' . (2.32) 

Therefore, 

 
ln �

𝜎(𝑡)
𝜎(0) ~

1 − 𝜎(0) 𝜎=∗⁄
1 − 𝜎(𝑡) 𝜎=∗x

�
0<T3

∗/U

� = 𝜇=𝑡. (2.33) 

So far, the kinetics of the key signaling variable 𝜎 has been solved analytically. It only 

depends on post-shift steady-state growth rate (through 𝜇=  and 𝜎=∗ ), some phenomenological 

parameter 𝛾, 𝜙&/,! , 𝜆*7'  that describe steady-state growth laws and the initial condition 𝜎(0) 

right after the shift. 𝜎(0) is determined by the pre-shift expression of MetE through Eq. (2.6) and 

Eq. (2.12): 

 
𝜎(0) =

𝜆(𝑡 = 0 +)
𝜙&/(𝑡 = 0) =

𝑘57'8∗ 𝜙57'8(𝑡 = 0)
𝑓*7'𝜙&/(𝑡 = 0) , (2.34) 

where 𝜙&/(𝑡 = 0) is calculated through Eq. (2.14) given pre-shift growth rate. 𝜙57'8(𝑡 = 0) is 

taken as a variable in the prediction in Fig. 2.3c. 

With 𝜎(𝑡), we can predict the time dependence of protein synthesis and flux during the 

shift. Let us start from ribosomal proteins.  

The protein synthesis process of ribosomal proteins are regulated by �̂�&/(𝜎(𝑡)) through 

Eq. (2.5). We substituted 𝐽& with 𝜎𝑀&/, 𝑑𝑡 with 𝑑𝜎/�̇� and rearranged Eq. (2.5) into 

 𝑑𝑀&/

𝑀&/
=
�̂�&/(𝜎)𝜎

�̇� 𝑑𝜎. (2.35) 

Substituting Eq. (2.15) for �̂�&/(𝜎) and Eq. (2.31) for �̇�, we got 
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 𝑑𝑀&/

𝑀&/
=

𝜙&/,!
𝜇=G1 − 𝜎 𝜎=∗⁄ H

𝑑𝜎. (2.36) 

The time dependence of 𝑀&/ is then solved by integrating both sides of Eq. (2.36). It is shown as 

 

𝑀&/(𝑡) = 𝑀&/(0) ~
1 − 𝜎(0) 𝜎=∗⁄
1 − 𝜎(𝑡) 𝜎=∗x

�

W0<T3
∗ U⁄ XR3

∗

Y3
, (2.37) 

where 𝜙&/,!  is replaced by (𝜆=∗ 𝜎=∗⁄ − 𝜆=∗ 𝛾⁄ )  for consistency. 𝑀&/(0)  is the pre-expressed 

ribosomal protein abundance calculated from 𝑀#(0) ∙ 𝜙&/(𝑡 = 0) . We can further simplify 

Eq. (2.37) by substituting Eq. (2.33) into Eq. (2.37): 

 

𝑀&/(𝑡) = 𝑀&/(0) ~
𝜎(0)
𝜎(𝑡)�

R3
∗

Y3
exp	(𝜆=∗𝑡). 

(2.38) 

Eq. (2.38) shows the short term and long term time dependence of ribosomal proteins. In short 

term, the change of 𝑀&/ relies on the change of 𝜎(𝑡) through �T(!)
T(')

�
43
∗

53. While 𝜎 settles to the post-

shift steady-state, ribosomal proteins increase exponentially with the exponent 𝜆=∗  for a long term. 

With 𝑀&/(𝑡), protein synthesis flux 𝐽&(𝑡) can be derived through  𝜎(𝑡)𝑀&/(𝑡)— 

 

𝐽&(𝑡) = 𝐽&(0) ~
𝜎(𝑡)
𝜎(0)�

R3
∗

R6
expG𝜆=∗𝑡H. 

(2.39) 

And met biosynthesis flux is fixed through 𝐽&(𝑡)𝑓*7' as 

 

𝑗*7'(𝑡) = 𝑗*7'(0) ~
𝜎(𝑡)
𝜎(0)�

R3
∗

R6
expG𝜆=∗𝑡H. 

(2.40) 

Here the initial condition of 𝐽&(0) and 𝑗*7'(0) are also dependent on the pre-expressed MetE 

abundance 𝜙57'8(𝑡 = 0). 
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Eq. (2.9) connected 𝐽&(𝑡) and 𝑀57'8(𝑡) via D$%&'
∗

=)%&
. Combining Eq. (2.39) and Eq. (2.9), we 

can get the time dependence of 𝑀57'8(𝑡) through 

 

𝑀57'8(𝑡) = 𝑀57'8(0) ~
𝜎(𝑡)
𝜎(0)�

R3
∗

R6
expG𝜆=∗𝑡H. 

(2.41) 

 

In the end we solve the time dependence of total protein abundance 𝑀#(𝑡), whose time 

derivative is 𝐽&(𝑡) = 𝜎(𝑡)𝑀&/(𝑡). We substituted the non-simplified form of 𝑀&/(𝑡) (Eq. (2.37)) 

and changed 𝑑𝑡  to 𝑑𝜎  through Eq. (2.31). Then 𝑀#(𝑡)  can be calculated by integrating the 

equation below: 

 
𝜇=

𝑀&/(0)
𝑑𝑀# =

1 − 𝜎𝛾
1 − 𝜎

𝜎=∗
~
1 − 𝜎(0) 𝜎=∗⁄
1 − 𝜎 𝜎=∗⁄ �

W0<T3
∗ U⁄ XR3

∗

Y3
𝑑𝜎. (2.42) 

Replacing 𝑀&/(0) with 𝑀#(0)𝜙&/(0) where 𝜙&/(0) is determined by pre-shift growth 

rate 𝜆2∗ via ribosomal growth law (Fig. 2.6a) and using the definition of 𝜎 and 𝜇=, we can do the 

integral of Eq. (2.42) and get 
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 𝑀#(𝑡)

= 𝑀#(0)

⎣
⎢
⎢
⎢
⎡
1 −

𝜆2∗𝜎=∗

𝜆=∗𝜎2∗

1 + ~𝜆*7'𝜆=∗
− 1�𝜎(0)𝛾

1 + ~𝜆*7'𝜆=∗
− 1�

𝜎=∗
𝛾 ⎦
⎥
⎥
⎥
⎤

+ 𝑀#(0)
𝜆2∗𝜎=∗

𝜆=∗𝜎2∗

1 + ~𝜆*7'𝜆=∗
− 1�𝜎(𝑡)𝛾

1 + ~𝜆*7'𝜆=∗
− 1�

𝜎=∗
𝛾

~
1 − 𝜎(𝑡) 𝜎=∗⁄
1 − 𝜎(0) 𝜎=∗x

�
(0<T3

∗ U⁄ )(R3
∗ R)%&⁄ <0)

= 𝑀#(0)

⎣
⎢
⎢
⎢
⎡
1 −

𝜆2∗𝜎=∗

𝜆=∗𝜎2∗

1 + ~𝜆*7'𝜆=∗
− 1�𝜎(0)𝛾

1 + ~𝜆*7'𝜆=∗
− 1�

𝜎=∗
𝛾 ⎦
⎥
⎥
⎥
⎤

+ 𝑀#(0)
𝜆2∗𝜎=∗

𝜆=∗𝜎2∗

1 + ~𝜆*7'𝜆=∗
− 1�𝜎(𝑡)𝛾

1 + ~𝜆*7'𝜆=∗
− 1�

𝜎=∗
𝛾

y
𝜎(𝑡)
𝜎(0)z

(R3
∗ R)%&⁄ <0)

expG𝜆=∗𝑡H. 

(2.43) 

The form of 𝑀#(𝑡) looks complicated, but we can tell that for the long term 𝑀#(𝑡) is dominated 

by expG𝜆=∗𝑡H and increase exponentially. 

With mass of proteins and fluxes calculated above, other intensive properties, such as 

instantaneously growth rate 𝜆(𝑡) and mass fraction 𝜙(𝑡) can be calculated from their definitions 

by divisions. The lag time 𝑇>+Z can be calculated from the instantaneously growth rate via  

 
𝑇>+Z = � (1 − 𝜆(𝑡)

[

!
/𝜆=∗)𝑑𝑡. (2.44) 

So that 𝑒\*/7∙R3
∗
= lim

'→[
𝑒'∙R3

∗
/𝑀#(𝑡), representing the lost fold changes in biomass due to transition. 
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Chapter 3  

Proteome reserves define the onset of enzyme 

recovery across biosynthesis pathways 

3.1 Abstract 

Bacteria can grow in many different nutrient environments, and the rapidity of their 

adaptation is central to the overall fitness. Escherichia coli growing in “rich medium” primarily 

direct gene expression resources to ribosome biogenesis and cell growth. Upon transition to “poor 

medium”, a large number of biosynthesis genes must be turned on before growth can resume.  

Quantitative proteomic analysis reveals a continuous spectrum of growth bottlenecks in amino 

acid biosynthesis. A striking linear relation is revealed between the onset time of many enzymes 

across biosynthesis pathways and the fractional “reserve” of the corresponding enzymes kept by 

cells during growth in rich media when they are not needed. A coarse-grained kinetic model 

quantitatively captures the observed recovery kinetics of these enzymes across many pathways, as 

well as the adaptation of ribosome biogenesis and cell growth, based solely on snapshots of the 

proteome right before and long after the transition, without invoking any ad-hoc fitting parameters. 

Our results establish the coordinated adoption of an as-needed gene expression program across 

biosynthetic pathways, and elucidate the implementation of this program by flux-controlled global 

regulation and end-product inhibition.    
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3.2 Introduction 

In different nutrient environments, bacteria are known to allocate their proteome differently 

(3). Previous proteomic research has focused on growth in minimal media with one or a few carbon 

and nitrogen sources (2, 7, 20, 33–35), and on transitions between these minimal media (9, 10, 23, 

36). Much less is known for bacterial growth in different ‘rich media’ containing a multitude of 

amino acids and other nutrients, even though such nutrient conditions may be more common in 

natural habitats (e.g., the gut for enteric bacteria (37, 38)) than minimal medium, at least transiently 

until their exhaustion.  

In this study, we characterized the proteome of E. coli cells growing in a number of ‘rich 

media’ as well as during growth transition from rich to minimal media, using a recently developed 

high-accuracy method of quantitative protein mass spectrometry (2). Our data reveals the 

reallocation of proteome between amino acid biosynthesis (AAB) enzymes and protein synthesis 

machineries as essential for attaining increased growth rate in rich media. As a consequence of 

this reallocation, E. coli suffers substantial growth lag when downshifting from rich media to 

minimal media. Detailed, quantitative experiments and mathematical modeling were performed to 

establish the origin of the growth lags, and to characterize the recovery kinetics of the individual 

AAB pathways.    

3.3 Results 

3.3.1 Proteome allocation for steady state growth in rich media 

We characterized the proteome of exponentially growing E. coli K-12 cells in a number of 

‘rich media’ using a recently developed method for quantitative protein mass spectrometry (2). 

This method combines accurate relative quantification provided by DIA/SWATH (39, 40) and a 
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new protein inference algorithm (xTop), together with the excellent absolute quantification 

provided by ribosome profiling (20), to yield accurate fractional abundances for about 2000 

proteins in each condition. For comparison, we also characterized the proteome of the same cells 

growing on the same MOPS-based minimal medium with glucose as the sole carbon source, as 

well as for cells subjected to reduced glucose uptake; see Table 3.1 for strain and Table 3.2 for 

medium conditions.  

The legend table in Fig. 3.1 shows the growth rate in rich media and minimal glucose 

medium. As expected, the  addition of casamino acid (CAA, containing mostly amino acid 

monomers) or rich-defined medium (RDM, containing amino acids, nucleotides, and vitamins (22)) 

to glucose minimal medium increased the steady-state growth rate, from ~1/hr to 1.6/hr and 1.8/hr 

respectively. Interestingly however, while the growth on CAA alone (1.3/h) well exceeded that on 

glucose alone (1/h), further addition of glucose (1.6/h) boosted the growth more than the addition 

of nucleotides and vitamins (RDM alone, 1.4/h). This underscores the dominant roles amino acids 

and additional carbon supplies play in rapid bacterial growth, with the supply of nucleotides and 

vitamins exerting relatively minor effects. 

In Fig. 3.1a, we show the total abundances of the proteins in several key functional groups 

(41, 42) for wild type cells grown in glucose minimal medium (xxx bars) and in glucose 

supplemented by RDM (yyy bars).  Here and throughout the text, the abundance of a protein X is 

reported as the mass fraction of that protein among the total cellular protein mass, denoted as 𝜙", 

and the abundance of a functional group is the sum of the mass fraction of all proteins in that group 

(as specified in Table 3.3). The result in Fig. 3.1a shows the clear dominance of translation-related 

proteins for growth in rich medium and the co-dominance of amino-acid biosynthesis (AAB) 

enzymes in minimal medium. Looking into the data more closely by plotting abundances against 
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the growth rate of each culture, Fig. 3.1b shows a linear increase in the abundance of translation-

related proteins with increasing growth rates, by ~14%-proteome from glucose alone (black circle) 

to glucose supplemented by RDM (green square), with similar increases across the board for 

ribosomal proteins and auxiliary proteins such as elongation factors, and for tRNA synthetases 

(Fig. 3.6). Since translational capacity is nearly saturated in these growth conditions (17), the 

observed increase in the abundance of translational machinery is necessary to support the increase 

in protein synthesis flux in rich media.  

Since the total cellular protein content changes in unison with cell volume for cells grown 

in different media (1, 2), the abundance measured in mass fraction is proportional to cellular 

protein concentration (with mass fraction of 1% corresponding to ~3 × 10_ proteins per 𝜇𝑚: of 

cell volume for typical proteins 250aa in length). Thus, the increased concentration of translational 

proteins in rich media must be accompanied by decreased concentration of other proteins. Our data 

shows that this was mostly achieved by decreases in the allocation of AAB enzymes, which 

dropped from ~14% to < 4% of total protein mass when supplied with either CAA or RDM 

(Fig. 3.1c). The effect of nucleotide synthesis involves <1% proteome (Fig. 3.1d) and is negligible 

compared to AAB enzymes. Although a part of the proteome devoted to TCA cycle and 

glycolysis/gluconeogenesis (~2%-proteome total) were relieved when RDM was supplied in the 

media due to the reduced demand of carbons for AAB, their effect was offset by the increase in 

enzymes allocated to acetate overflow (2%-proteome) for ATP generations (Fig. 3.1e-g). 

Additionally, the ~20% difference in growth rate due to glucose supplementation to CAA or RDM, 

reflected in the reallocation of proteome between translational proteins and enzymes of TCA cycle, 

gluconeogenesis, etc. (compare open and filled symbols, Fig. 3.1f-i, Fig. 3.7), can be rationalized 

by the need to degrade amino acids (AA) for energy biogenesis in rich medium lacking a carbon 
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source, since pyruvate and TCA intermediates are the common products resulting from AA 

degradation (Fig. 3.2a-b).   

3.3.2 AA downshift from rich to minimal media leads to long lags 

Data in Fig. 3.1 indicate that the reallocation of the proteome from AA biosynthesis to 

translational machineries is a primary requirement for cells to gain fast growth in rich media. 

However, removal of AAB enzymes from the proteome makes it more difficult for cells to 

maintain growth once the supply of AA is exhausted, where de novo AA biosynthesis is needed 

(Fig. 3.2a). This could give rise to a substantial lag in growth recovery in growth transition from 

rich to minimal media.    

To substantiate this growth-lag tradeoff, we characterized AA downshift kinetics by first 

growing cells in media with AAs (same concentration as in RDM, see Table 3.4) supplemented 

by glucose, and abruptly shifting the exponentially growing culture to the same medium but 

without any AAs (Fig. 3.2b; see details in Methods). A 2-hour lag was observed before growth 

recovery for a pre-shift mix of all 20 AAs, as well as for a mix of 18 AAs (Table 3.4) with cysteine 

and tyrosine excluded (Fig. 3.8a). Due to the instability of cysteine and poor solubility tyrosine, 

we exclude these two minor amino acids in the remainder of this study.  

In principle, the lag observed could arise from a combination of bottlenecks involving de 

novo AA biosynthesis and the uptake of carbon substrate. We thus tested the effect of different 

carbon supplement on AA downshift kinetics. For a variety of carbon substrates which enter 

central metabolism from upper glycolysis by a variety of mechanisms (Table 3.5), the lag time 

were all ~2h (Fig. 3.2c and Fig. 3.8b) despite the boost in pre-shift GRs they provided (Fig. 3.2d). 

It is thus unlikely that the uptake of glycolytic carbon sources is strongly repressed before the shift. 
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We eliminated this possibility using AA downshift with glycerol, whose uptake system is well 

characterized (10): By repeating the AA downshift experiment with glycerol supplement using a 

mutant NQ399 (Table 3.1) harboring full unregulated expression of the glycerol uptake proteins 

GlpFK (43), we found these cells still exhibited the same 2h lag (Fig. 3.8c-e). Thus, the common 

2h lag arose from internal growth bottleneck(s) related to abrupt AA removal from rich media. 

Below, we investigate this common 2hr lag for the downshift from 18AA to none using glycerol 

as the carbon supplement and refer to it generally as “AA downshift”.  

3.3.3 Proteomic analysis during AA downshift 

To gain a more quantitative look at the cellular recovery kinetics during AA downshift, we 

characterized the proteome after the shift using the DIA/SWATH method as for the steady-state 

measurements (2). Fig. 3.9a-l show the time courses of protein groups with panels a-h being the 

same groups shown in Fig. 3.1. The instantaneous growth rate is plotted in Fig. 3.9m for reference. 

As expected, large increase in AAB enzymes occurred during the shift (Fig. 3.9b). Translational 

proteins and nucleotide synthesis enzyme started decreasing after 1-hr (Fig. 3.9a, c) when growth 

recovery started, indicating their decrease mainly came from dilution rather than degradation. 

Somewhat surprisingly, glycerol uptake enzymes along with other transporters increased 

significantly (Fig. 3.9i-k), by about 3-fold, similar to the total of AAB enzymes, even though 

glycerol uptake was shown to be not a bottleneck during AA downshift (Fig. 3.8d).  

The reason that the AAB enzymes did not show a larger increase is that the total abundance 

plotted in Fig. 3.9b masks the behavior of the enzymes in individual pathways, some of which can 

have much larger fold change than others and each AA is needed for growth in the post-shift 

minimal medium. We next plotted the abundances of individual AAB enzymes, grouped by the 



 51 

pathways (Fig. 3.10). The responses exhibited across these pathways were quite diverse, both in 

terms of fold changes and recovery kinetics: MetE showed >100-fold change (Fig. 3.10a) while 

enzymes in threonine synthesis pathway showed no more than two-fold change (Fig. 3.10j). Some 

enzymes started increasing in the early stage of the shift, see e.g., the methionine and arginine 

pathways (Fig. 3.10a,b), while other enzymes did not increase until 100 mins after the shift, see 

e.g., the serine and threonine pathways (Fig. 3.10i, j).  

As the enzymes in the same pathway (shown in the same panel of Fig. 3.10) exhibited 

similar kinetics, attributed at least in part to the operon structure (e.g., for trp, his, leu), we summed 

up the abundances of enzymes in the same pathway to obtain a coarser grained view of the kinetic 

response (triangles in Fig. 3.3a-n). The time courses of the 14 enzyme groups were ordered 

according to their fold changes during the shift. Interestingly, a systematic change in the recovery 

kinetics can be seen from the plots: The groups at the top exhibited the largest fold change and 

increased the earliest (before 50 mins), while the groups at the bottom, with only 2x change, 

showed the slowest response (started increasing after 100 min). To quantitatively characterize the 

recovery kinetics, we estimated the onset time of each group (defined as the time when the 

abundance of each group increased by 25% above the pre-shift value; see Fig. 3.11a). The onset 

time clearly decreased with fold change in enzyme abundance (Fig. 3.11b). Plotting against the 

reciprocal of the fold change, describing the pre-shift enzyme abundance level relative to the final, 

we obtained a striking linear relation passing through the origin (Fig. 3.3o). This linear relation is 

robust to the precise definition of the onset time (Fig. 3.11c), and is moreover seen not only at the 

pathway level, but also for individual AAB enzymes (crosses in Fig. 3.3p, Fig. 3.11d-e). 

Correlations between the onset time and the pre- and post- shift abundances themselves or their 

differences are much weaker (Fig. 3.11f-k). Since the pre-shift enzyme abundance relative to the 
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final represents the adequacy of enzyme reserve during pre-shift growth in rich medium (referred 

to below as “pre-shift reserve”), our data reveals a simple rule that the recovery onset time of AAB 

enzymes is set linearly by their pre-shift reserves .  

3.3.4 Coarse-grained model of AA downshift kinetics 

The correlation observed between the enzyme onset time and pre-shift reserve is 

reminiscent of qualitative predictions made in a theoretical study by Pavlov and Ehrenberg (PE) 

(16), who posited that allocating protein synthesis preferentially to enzyme groups with the 

smallest reserve would provide the fastest recovery. However, it is difficult to obtain concrete 

predictions on enzyme onset times from the PE model in order to compare to the data, since the 

PE model was assumed to be globally applicable to all enzymes, while the relationship observed 

between onset time and pre-shift reserve was specific for AAB enzymes, but not for the majority 

of other detected proteins (circles vs crosses, Fig. 3.3p). Below, we incorporated elements of the 

PE model into a coarse-grained model of flux-controlled proteome allocation (23) to examine 

quantitatively the onset of AAB enzymes, as well as their effect on the overall growth recovery. 

Qualitatively, the problem cells face right after AA downshift can be described as follows: 

Cells need to make AAB enzymes to supply the missing AA influx. However, the overall protein 

synthesis flux is limited due to the lack of AAs. Therefore, it is necessary to reallocate the limited 

protein synthesis flux towards AAB enzymes right after the shift, away from the synthesis of 

ribosomal proteins which dominated before the shift (Fig. 3.2a). The generic kinetic equations for 

the 𝑛'I AAB enzyme group (of proteomic mass fraction 𝜙`,.(𝑡)) and ribosomal proteins (mass 

fraction 𝜙&/(𝑡)) can be written as (Appendix in Chapter 3) 
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𝑑𝜙`,.
𝑑𝑡 = 𝜆(𝑡) ⋅ �𝜒`,.(𝑡) − 𝜙`,.(𝑡)�, (3.1) 

 𝑑𝜙&/
𝑑𝑡 = 𝜆(𝑡) ⋅ G𝜒&/(𝑡) − 𝜙&/(𝑡)H. (3.2) 

Here 𝜆(𝑡) ≡ 8
8& ab5('), is the instantaneous growth rate during the shift, with 𝑀(𝑡) being the total 

protein mass. It describes the magnitude of protein synthesis flux (𝑑𝑀/𝑑𝑡) normalized by the total 

protein mass. 𝜒`,.(𝑡)  and 𝜒&/(𝑡)  are “allocation functions” describing the fraction of protein 

synthesis flux directed towards synthesizing the 𝑛'I AAB enzyme group and ribosomal proteins, 

respectively. In order to solve the recovery kinetics, it is necessary to specify the time dependence 

of growth rate 𝜆(𝑡)  and the allocation functions 𝜒`,.(𝑡) , 𝜒&/(𝑡)  in terms of the dynamical 

variables, 𝜙`,.(𝑡), 𝜙&/(𝑡). 

We adopted the PE model (16), setting the instantaneous growth rate in terms of the 

abundances of the rate-limiting enzyme group(s), in this case, the AAB enzyme groups 𝜙`,.(𝑡), 

as 

 𝜆(𝑡)
𝜆∗ 	= min

.
~
𝜙`,.(𝑡)
𝜙`,.∗

� = min
.
𝑞.(𝑡). (3.3) 

Here 𝜆∗ and 𝜙`,.∗  represent the growth rate and the abundance of the 𝑛'I AAB enzyme group in 

the post-shift steady-state, respectively, and 𝑞.(𝑡) ≡ 𝜙`,.(𝑡)/𝜙`,.∗  is the enzyme abundance 

relative to the final abundance, i.e., the fractional enzyme reserve. As elaborated in Fig. 3.12, Eq. 

(3) is simply a statement that the protein synthesis flux (proportional to 𝜆(𝑡)) is governed by the 

abundance of the most bottlenecked enzyme group(s), a result which follows straightforwardly 

from the assumption that the catalytic rates of the rate-limiting enzyme groups are at maximum 
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(i.e., uninhibited) as are the catalytic rates in the post-shift steady-state, and is consistent with 

allosteric inhibition of non-limiting AAB enzymes (44).  

Specifying the time-dependent allocation functions 𝜒`,.(𝑡), 𝜒&/(𝑡) is more challenging. 

Molecularly, the synthesis of different enzyme groups are regulated by their corresponding AA 

products (Fig. 3.4a). According to the well-known mechanisms of end-products inhibition (44), 

the synthesis of growth-limiting AAB enzyme group(s) are expected to be up-regulated due to the 

low concentration of their AA products, while synthesis of non-growth limiting group(s) are 

expected to be repressed due to the accumulation of their corresponding AA products. To 

determine the protein synthesis flux allocated to each AAB group without requiring molecular 

details (which are mostly unknown at the quantitative level), we developed a two-stage allocation 

scheme as illustrated in Fig. 3.4a: In the first stage, we extended the scheme of flux-controlled 

regulation (FCR) introduced by Erickson et al (23) to describe the allocation between ribosome 

synthesis 𝜒&/(𝑡)  and total AAB enzyme synthesis 𝜒`,'%'(𝑡) , which is based molecularly on 

ppGpp-mediated regulation (45). Then in the second stage, we describe more refined sub-

allocation of the AAB enzymes to each group, i.e., from 𝜒`,'%'(𝑡) to 𝜒`,.(𝑡), which is based on 

end-product inhibition.  

In the FCR scheme, the translational activity, defined as  

 𝜎(𝑡) ≡ 𝜆(𝑡)/𝜙&/(𝑡), (3.4) 

is taken to represent the overall abundance of the AA pools while growth is limited by AA 

synthesis (Eq. (3)). Using 𝜎(𝑡), we can express the allocation functions  𝜒`,'%'(𝑡) and 𝜒&/(𝑡) in 

terms of the regulatory functions  �̂�`,'%'(𝜎) and �̂�&/(𝜎), as 
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 𝜒`,'%'(𝑡) = �̂�`,.G𝜎(𝑡)H, (3.5) 

 𝜒&/(𝑡) = �̂�&/G𝜎(𝑡)H. (3.6) 

The forms of these regulatory functions, shown in Fig. 3.4b, can be determined from steady-state 

measurements as detailed in Fig. 3.13 and Fig. 3.14. We see that under limited growth (small 𝜎), 

ribosomal synthesis is repressed while AAB enzyme synthesis is induced as may be expected 

intuitively. Molecularly, the translational activity 𝜎(𝑡) is represented (inversely) by the ppGpp 

signaling system, during growth transition and in steady-state (45, 46). Down-regulation of 

ribosomal synthesis by high ppGpp (small 𝜎) is well documented (14, 25–27). Our model also 

expects up-regulation of AAB enzyme synthesis by ppGpp (Fig. 3.4b), which is supported by 

recent studies characterizing the transient effect of ppGpp on AAB synthesis (47). 

In the second stage of our regulatory scheme, we specified the allocation of AAB enzyme 

synthesis towards the individual groups using another set of allocation functions: 

 𝜒`,.(𝑡) ≡ 𝜂.(𝑡) ⋅ 𝜒`,'%'(𝑡). (3.7) 

The allocation functions 𝜂.(𝑡)  were chosen in accordance to the outcome of end-product 

inhibition (44), which has a simple mathematical implementation as described by Pavlov and 

Ehrenberg (16) and detailed in Fig. 3.15: At a given time 𝑡, the AAB groups can be divided into 

two classes based on whether a group limited protein synthesis. The non-limiting group (with 

𝑞.(𝑡) > 𝜆(𝑡)/𝜆∗) received no allocation, i.e., 𝜂.(𝑡) = 0, while the limiting groups were allocated 

in proportional to their final abundance, 𝜙`,.∗ . If one orders the enzyme groups according to their 

relative pre-shift abundance level 𝑞.(0) such that 𝑞0(0) < 𝑞1(0) < ⋯,  then the group-specific 

allocation imposed by end-product inhibition can be expressed as  
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 𝜂.(𝑡) = �

0 𝑛 > 𝑛�(𝑡)
𝜙`,.∗ ∑ 𝜙`,*∗

.c(')
*d0⁄ 		 𝑛 ≤ 𝑛�(𝑡)

	 (3.8) 

where 𝑛�(𝑡) is the number of enzyme groups being synthesized at time 𝑡, so that the groups with 

𝑛 ≤ 𝑛�(𝑡) are equally growth-limiting while those with 𝑛 > 𝑛�(𝑡) are not limiting.  

3.3.5 Enzyme and growth kinetics of the two-stage model 

Eqs. (1)-(8) completely specify our model of the recovery kinetics during AA downshift. 

With the initial and final enzyme abundance values 𝜙`,.(0) and 𝜙`,.∗  fixed by the proteomic data 

(Fig. 3.3), the model predicts the kinetics of the ribosomes, each AAB enzyme groups, as well as 

the overall growth dynamics without any adjustable parameters. First of all, the allocation for 

ribosomal synthesis 𝜒&/(𝑡)  is predicted to be repressed right after the shift, while the total 

allocation for AAB enzymes 𝜒`,'%'(𝑡) is upregulated as shown in Fig. 3.5a. The resulting changes 

in the abundances of these two groups of proteins, plotted as the black and green curves in 

Fig. 3.5b, capture the data (triangles) very well.  The predicted allocation functions 𝜒`,.(𝑡) for 

each of the 14 AAB groups are shown in Fig. 3.5c: Right after the shift, only the Met group (orange) 

was synthesized since methionine was most growth limiting (based on the pre-shift reserve of the 

Met enzymes shown in Fig. 3.3a). After ~20 minutes when methionine was no longer the only 

growth-limiting AA, the synthesis of other AAB enzymes would turn on one after another, in a 

multi-step recovery process. The resulting dynamics for each enzyme group is plotted in Fig. 3.5d 

for the relative abundance 𝑞.(𝑡) using the same color scheme.  Predictions of the time courses of 

the abundance of each enzyme group also capture the data well (Fig. 3.3a-n, lines and symbols), 

again without resorting to any adjustable parameters. From these solutions, we computed the onset 
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time for each enzyme group. The results (Fig. 3.5e, crosses) are in very good agreement with the 

observed onset time (circles).   

In addition to the kinetics of each enzyme group, our model also gave prediction on the 

growth kinetics itself during the shift (Fig. 3.5f), again without adjustable parameters. Interestingly, 

although our model captured the AAB enzyme onset time very well, it predicted a growth lag (blue 

line) which was about only half of the 2-hr lag observed (grey circles). To understand this 

discrepancy, we looked more closely into the recovery kinetics of each enzyme group (Fig. 3.3a-

n) and noted that the group of Ser enzymes (Fig. 3.3i) was the first to show significant difference 

between measurements and model predictions. This can also be seen from the comparison of onset 

times (purple color, Fig. 3.5e). This “serine problem” turns out to be an artifact of the common 

recipe for “rich medium” whose composition has 10x higher serine content compared to the 

composition of typical proteins (Fig. 3.16). With normal AA composition, serine is depleted well 

before other AAs (48, 49). Indeed, using “casamino acid” (obtained as the hydrolysis product of 

the protein casein (50)) as the source of amino acid in pre-shift, we see that the growth kinetics is 

better captured by the model (Fig. 3.5f).     

3.4 Discussion 

In this study, we investigated the allocation of the proteome of E. coli grown in rich and 

minimal media, in steady state growth and during transition. The most significant changes are the 

tradeoff between AAB enzymes and the translational machinery, which allows cells to achieve 

higher protein synthesis flux, hence growth rate, in rich media where de novo AA biosynthesis is 

relieved (Fig. 3.1). However, drastically reducing the AAB enzymes causes problems when AA 
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supply is abruptly depleted, manifested by a lag during AA downshift even when a separate carbon 

source is provided throughout the shift (Fig. 3.2).  

Quantitative proteomic measurements during AA downshift revealed a diversity of time 

scales in the recovery kinetics of AAB enzymes (Fig. 3.3, Fig. 3.10). A linear relationship was 

established between the onset time and the fractional pre-shift reserve of AAB enzymes across 

pathways (Fig. 3.3o). The observed relationship is a manifestation of aa as-needed strategy of gene 

regulation for AAB enzymes, where those involved in the biosynthesis of the amino acid most 

needed for protein synthesis, methionine, were expressed first, followed by the enzymes for the 

next most needed AA, arginine, etc. In this context, we recall that a related ‘just-in-time’ gene 

expression strategy was proposed long ago for AA downshift (51), and was claimed as the optimal 

strategy for minimizing the amino acid recovery time while minimizing enzyme production cost 

(51). That strategy posits that within an unbranched pathway, the closer an enzyme is to the 

beginning of the pathway, the earlier its expression is turned on and the higher is its maximal 

expression level during AA downshift (Fig. 3.17). We examined four unbranched pathway 

segments for which the enzymes are not encoded in the same operon, three of which were claimed 

to follow the optimal strategy of Zaslaver et al (51) based on the expression kinetics of plasmid-

borne GFP reporters. However, our proteomic data clearly refuted the adoption of such a strategy 

within a pathway (Fig. 3.17c-f). Instead, E. coli adopts just-in-time strategies across AAB 

pathways.   

To quantitatively understand the linear recovery kinetics during AA downshift, we 

constructed a coarse-grained model with proteome allocation specified in two stages (Fig. 3.4a). 

In the first stage, we extended the framework of flux-controlled regulation introduced in Erickson 

et al (23) to AA biosynthesis, using the translational activity 𝜎 to represent the collective effect of 



 59 

AA pools and to direct the dynamic allocation of protein synthesis flux between the AAB enzymes 

and ribosomal proteins. In the second stage, we allocated the synthesis of AAB enzymes into 

individual pathways, using the on-off strategy formulated by Pavlov & Ehrenberg (16) to capture 

the effect of end-product regulation of individual AAB pathways (44). With the only input 

parameters in the model being the growth rates and the proteomic data in the pre- and post-shift 

steady-states, our model was able to quantitatively capture the onset time of AAB enzyme groups 

during AA downshift (Fig. 3.5e) together with the actual kinetic profile (Fig. 3.3a-n), without 

invoking any adjustable parameters. 

The overall success of our model raises the question of whether E. coli cells might have 

been configured to minimize the recovery time, since the on-off strategy employed in our model 

was shown theoretically by Pavlov and Ehrenberg (PE) to give the fastest recovery kinetics given 

an overall proteomic resource constraint. Using our model, we investigated the dependence of the 

expected recovery time on the allocation of AAB enzyme reserves to the different pathways in the 

pre-shift state (i.e., 𝑞.(0)) for a fixed total abundance of AAB enzymes before the shift. The 

distribution of lag times obtained for 1000 randomly chosen sets of 𝑞.(0) values (Fig. 3.18a, blue 

bars) shows that that the mode of the distribution is nearly twice as long as the lag time with 

uniform 𝑞.(0) (dashed red line), where the AAB enzyme reserves are allocated in proportion to 

their final abundances. In fact, the lag time for the measured pre-shift reserve (Fig. 3.18b) falls on 

the long side of the mode of the lag-time distribution (solid red line). These results suggest that 

minimizing the recovery time of downshift to minimal media is not the primary concern for E. coli 

cells growing in rich media.   

Additionally, in our model the allocation for ribosome synthesis (𝜒&/(𝑡)) was gradually 

turned on as AAB enzyme synthesis (𝜒`,'%'(𝑡) ) was reduced (Fig. 3.5a, 3.5b), not abruptly 
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switched on as prescribed by the on-off model. The portion of the proteome allocated to the 

ribosomes and AAB enzymes, which is the focus of this study, comprised < 30% of the total 

proteome (dashed line, Fig. 3.4b). The remainder of the proteome was allocated to such functions 

as carbon and AA transport, and general stress response (Fig. 3.9j-l), as well as other housekeeping 

functions carrying no metabolic fluxes in the growth conditions we studied. Many of these proteins 

are turned on before the AAB enzymes (grey circles, Fig. 3.3p). If we applied the PE model to all 

these proteins beyond the AAB enzymes, the cells would adapt much faster. Clearly, such a 

strategy is not adopted by E. coli. Instead, E. coli casts its response broadly, underscoring the 

importance of anticipating different nutrient types when AA supplies are exhausted in the native 

habitat. The kinetic responses exhibited by the various protein groups reflect the interplay of their 

respective regulatory mechanisms which are set by a variety of physiological and ecological 

reasons. The coarse-grained framework described in this work can be used to quantitatively 

capture the regulatory functions, and from them, quantitatively predict the recovery kinetics, based 

merely on proteome allocation in the pre- and post-shift steady state.  

 

3.5 Methods 

3.5.1 Strain construction 

The strain used in this study are either wild type E.coli K-12 NCM3722 strain or its 

derivative, see Table 3.1 for details.  

3.5.2 Growth medium 

Unless stated otherwise, all the growth media used in this study were based on MOPS 

buffered media described in Cayley et al (31). The medium contains 40mM Mops and 4mM 
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Tricine (adjust to pH 7.4 by NaOH), 0.1mM FeSO4, 0.276 mM Na2SO4, 0.5 μM CaCl2, 0.523 mM 

MgCl2, and also micronutrients mixtures used in Neidhardt et al (22). 

If not specified, the media used in steady-state proteomic measurements are MOPS 

buffered media with 50mM NaCl, 1.32mM KH2PO4, plus carbon source, nitrogen source and other 

nutrients shown on Table 3.2. Rich defined medium kit is obtained from Teknova M2105 which 

is based on Neidhardt et al (22). 

For the proteomic measurements in AA downshift (18AA to none shift), the post-shift 

medium (referred as ‘none’) was MOPS buffered media with 50mM NaCl, 1.32mM KH2PO4, 

carbon source (0.4% glycerol) and nitrogen source (10mM ammonia chloride). The pre-shift 

medium was based on ‘none’ medium with additions of 18 amino acids (except cysteine and 

tyrosine). Amino acid concentrations are the same as those listed in the rich defined medium (22); 

see Supplementary Table 4. Cysteine is excluded because it oxidizes to cystine in aerobic growth. 

Tyrosine is excluded because of its small solubility. Among these 18 amino acids, asparagine and 

glutamine are prepared freshly for every experiments in case of fast degradation. Through this 

work, ‘18AA to none’ shift has also been done with the carbon source other than 0.4% glycerol, 

e.x., 0.2% glucose, 0.2% lactose, 0.2% xylose or 0.2% fructose. If not specified, glycerol is taken 

to be the default carbon source for all the shift experiments shown in this work. 

In some AA downshifts starts from less than 18AA (Fig. 3.16b), the post-shift medium 

was still ‘none’ medium. The pre-shift medium (usually referred as ‘18AA-but-xxx’ with xxx 

being amino acid(s)) was based on the ‘none’ medium with the same 18 amino acids stated above 

except xxx (Table 3.4). The casamino acid (CAA) medium used in Fig. 3.5f was also based on 

‘none’ medium, but with addition of 0.2% casamino acids (Table 3.4). 
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In the experiments requires cysteine and tyrosine, cysteine solution was prepared and added 

to the medium right before inoculating cells, and tyrosine was freshly dissolved in 0.1M KOH 

before added to the medium. The PH of the medium with tyrosine was still around 7.4. 

3.5.3 Cell growth and medium shift 

All the steady-state measurements and medium shift experiments were performed in a 37℃ 

water bath shaker shaking at 240 rpm. Shifts always started after cells reaching steady-state in pre-

shift medium. To grow cells to exponential phase, we followed a standard cell growth round: seed 

culture, pre-culture and experimental culture. For seed culture, cells were inoculated to LB broth 

from fresh LB plate and grew for about 7hrs. Then cells were washed with corresponding Mops 

medium once and diluted to the same Mops medium (pre-culture) with starting OD6!! around 10^-

3. If inductions (e.x., 3-methylbenzyl alcohol, IPTG) were needed in this experiments, they were 

added to pre-culture too. After overnight pre-culture, cells were diluted to the same MOPS medium 

(experimental culture) with starting 𝑂𝐷6!! below 0.01. For exponential growth measurements, we 

let cells grow to 𝑂𝐷6!!  0.5. More than 5 𝑂𝐷6!!  points were taken within the range of 𝑂𝐷6!! 

0.05~0.5 for growth rate calculation. For medium shift experiments, we let cells grow to about 

𝑂𝐷6!! 0.3, then washed cells twice with pre-warmed post-shift medium and diluted it to 𝑂𝐷6!! 

0.1 in pre-warmed post-shift medium. Whole medium transition process was kept within 5mins 

and we called it time 0 when cells were transferred to post-shift medium. A control shift from 

18AA w/ glycerol to the same media was done and no lag or growth rate change was observed in 

the control shift. We took at least 5 𝑂𝐷6!! points in pre-shift medium starting from 𝑂𝐷6!! 0.05. 

After medium transition, we took 𝑂𝐷6!! points every 5-20mins according to lag time until 𝑂𝐷6!! 

reached 0.5.  
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3.5.4 Growth rate calculation 

For steady-state exponent growth rate, we simply fitted growth curve exponentially. If 

𝑅1 < 0.999, we didn’t take it as reliable results. 

To get instantaneous growth rate, we applied Savitzky-Golay filter (32) to N 

b𝑡2 , 𝐿𝑛(𝑂𝐷6!!,2)e data set. Recall that because of medium switch, 𝑂𝐷6!! was not continuously at 

t=0. Therefore we scaled the data in post-shift region before calculating growth rate to make the 

first 𝑂𝐷6!! after shift (𝑡 < 5𝑚𝑖𝑛𝑠) equal to the value exponentially extrapolated from pre-shift 

data.  

The window size we used includes 3 data points. First, we fitted the first 3 data points to 

the 2nd polynomial and substituted 𝑡 of middle data point (𝑡1) into fitted equation to get its slope. 

Then we moved the window to the right and did the same thing for the 2nd to 4th data points to get 

the slope at 𝑡:. Repeating moving windows and calculating slope, we got slopes at 𝑡1, 𝑡:, … 𝑡;<0. 

Since we already did 𝐿𝑛 operation on 𝑂𝐷6!!, the slopes we got are exponent instantaneous growth 

rates at 𝑡1, 𝑡:, … 𝑡;<0. Cells were in steady-state at 𝑡0 and 𝑡; according to our experimental setting, 

so we only plotted data points from 𝑡1 to 𝑡;<0 for instantaneous growth rate figures.  

3.5.5 Measurements of proteins using mass spectrometry 

We used quantitative mass spectrometry to characterize the abundance of E. coli proteomes 

at various growth conditions (Table 3.2).  

For steady-state growing cells (sample ID M1-M4, P1, P8-P10, N5-N8), we followed the 

cell growth protocol stated above and took samples around 𝑂𝐷6!! = 0.4. For AA downshift 

experiments (sample ID S1-S5) executed following the protocol above, we took one sample (S1) 
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at pre-shift steady-state around 𝑂𝐷6!! = 0.3. During the shift, we took samples at 15, 50,100, 

200mins after the shift started. We collected at least 1 𝑂𝐷6!! ∙ 𝑚𝑙  cells for each sample by 

centrifuging at 13200 RPM for 2mins.  

Quantitative measurements of E. coli proteomes and determination of protein mass 

fractions (Table_proteomicdata.xls) were carried out as described previously (2). Briefly, E. coli 

cell pellets were lysed with 2% sodium deoxycholate and digested with LysC and trypsin. An iRT 

peptide mix (Biognosys) was added to all samples for retention time alignment. Tryptic peptides 

were measured in SWATH mode (64 variable windows) on a TripleTOF 5600 mass spectrometer 

(Sciex). The DIA/SWATH data was analyzed using OpenSWATH (www.openswath.org). Protein 

mass fractions were computed from the detected peptide intensities using the xTop algorithm and 

a final scaling of xTop protein intensities with ribosome profiling data (2) 

(http://www.ebi.ac.uk/pride/archive/projects/PXD028559).  

3.6 Data availability 

The proteomic raw and data analysis files are publicly accessible through the 

ProteomeXchange Consortium via the PRIDE partner 

repository: http://www.ebi.ac.uk/pride/archive/projects/PXD028559 (reviewer 

username: reviewer_pxd028559@ebi.ac.uk; password: Q5KSl2Ry). The E. coli spectral library 

used for DIA/SWATH data analysis has been published previously (2) and is available via 

SWATHAtlas: http://www.peptideatlas.org/PASS/PASS01421. 
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3.8 Figures and Figure legends  

 

Figure 3.1: Steady-state protein abundance vs growth rates. The legend table indicates symbols used 
for the different growth conditions studied (see Table 3.2): Rich-defined medium (RDM) with glucose 
(open green square) and without glucose (filled green square), casamino acid (CAA) with glucose (open 
green circle) and without glucose (filled green circle), and minimal medium with glucose as the sole carbon 
source for wild type cells and mutants (open black circle) with limited expression of glucose uptake protein 
PtsG (10, 17); see Table 3.1 for strain details. The values in each table entry indicates the steady-state 
growth rate of that culture. (a) Proteomic allocation comparison of WT strain between glucose minimal 
media (black bars) and glucose w/ RDM (green bars). The mass fraction changes in translational machinery 
and AAB enzymes are dominant compare to others. (b)-(i) Total abundance of proteins in various protein 
groups, as obtained from mass spectrometry (Methods) and reported as fraction of total protein mass 
(“proteome fraction”), is plotted against the growth rate of each culture. Classification of proteins into 
groups are specified in Table 3.3 according to Refs. (41, 42).  



 67 

 

Figure 3.2: (a) Remodeling of the proteome needed during AA downshift. Pie charts shows the steady-
state proteomic allocation in glucose minimal media and in CAA supplemented with glucose. Grey sector 
represents translational proteins, green sector represents AA biosynthesis (AAB) enzymes, and the white 
sector represents other proteins. In minimal media, cells need to synthesize AAs using AAB enzymes, 
which are expressed at low levels in rich media. When the environments suddenly change from rich media 
to minimal media (dash line), cells suffer from the shortage of both AAs and AAB enzymes. Limited AAB 
enzymes provide limited AA fluxes, which limit the synthesis of all proteins including the AAB enzymes. 
(b) shows a schematic diagram of the medium shift performed in this study, with the entire duration of the 
shift taking < 5 min. (c) Growth curves for transition from 18AA (Table 3.4) to none, for WT strain, while 
maintaining one of the carbon sources: glucose, lactose, fructose, xylose, glycerol throughout the shift. 
Time 0 is the downshift time. “Lag time” is defined by extrapolating the exponential growth of post-shift 
steady state to the OD of the culture at the time of shift. The open squares shows the results for control 
experiment from 18AA w/ glycerol to the same medium, showing that the filter-wash process in (b) does 
not affect cell growth. (d)-(e) scatter plots of lag times against pre-shift and post-shift steady-state growth 
rates for the shifts shown in (c) using the same color scheme. The dash line in panel d shows the growth 
rate of the culture on 18AA without additional carbon source.  
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Figure 3.3: AAB enzymes are sorted into fourteen groups according to the pathways they are in. The total 
abundance of each group, expressed in term of the fraction of total protein mass, is plotted as triangles in 
panels (a)-(n) at time t=0, 15 min, 50 min, 100 min, 200 min after shift. See Fig. 3.10 for the abundances 
of individual enzymes in each group. The data are plotted in log scales, with the color of the axis 
representing the fold-change from the minimal to maximal values on the y-axis (orange: 64 ×, yellow: 
16 ×, blue: 8 ×, green: 3 ×). The total abundance  before the shift is plotted at time 0. Panel (o) shows the 
onset time of each enzyme group, as defined in Fig. 3.12a, plotted against the pre-shift abundance level 
relative to final post-shift level (the reciprocal of the fold change), referred to as the “pre-shift reserve”. 
The gray line is the linear fit and the correlation coefficient is 0.994. The marker color in (o) matches the 
axis colors used in panels (a)-(n). Panel (p) shows the onset time vs “pre-shift reserve” for all the up-
regulated genes during the shift (circles), in which AAB genes are marked by crosses. The correlation 
coefficient of AAB genes between onset time and “pre-shift reserve” is 0.904. Panel (p) shows that the 
AAB enzymes have among the longest onset time, suggesting that they are expressed as needed while many 
other proteins are pre-programmed to increase in expression soon after the shift, regardless of the need. The 
blue lines in (a)-(n) are the predicted enzyme kinetics according to the model described in the text. For 
some enzyme groups arising later (e.g., cys, aro), model predicted a dip during recovery due to the dilution 
from cell growth. Note that tyrosine and cysteine were provided in the pre-shift growth medium in the 
experiment.    
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Figure 3.4: Model of dynamic proteome allocation for AA downshift.  (a) Upon removal of AAs from 
the medium, cells synthesize AAs de novo from carbon, nitrogen substrates using AA biosynthesis (AAB) 
enzymes, indicated as A.1, A.2, etc. The AAs synthesized (indicated as circles, triangles, and diamonds) 
are consumed by ribosomes (Rb) for protein synthesis. Limited AAs synthesis fluxes lead to limited AAs 
pool and reduced ribosome activity, denoted by 𝜎(𝑡) and defined mathematically by Eq. (4). 𝜎(𝑡) serves 
here as a “signal” reflecting the AA pools, analogous to the role played by the (inverse of) the alarmone 
ppGpp (23), and directs the allocation of protein synthesis flux to AAB enzymes and ribosomal proteins, 
indicated by the thick green and grey arrows, respectively. The latter are described by the allocation 
functions, 𝜒C,&:&(𝑡) and 𝜒!"(𝑡), respectively, and set by the regulatory functions �̂�!"(𝜎) and �̂�C,&:&(𝜎) 
according to Eqs. (5) and (6). The protein synthesis flux directed to AAB enzymes is further allocated to 
the enzymes on each pathways by the pathway-specific allocation function 𝜂D(𝑡) through Eq. (7). As 
explained in detail in Fig. 3.15, 𝜂D(𝑡) is set according to the end-product inhibition so that the protein 
synthesis flux is directed to the enzyme groups limiting growth at the current time. (b) shows the forms of 
the regulatory functions �̂�!"(𝜎) and �̂�C,&:&(𝜎), solid gray and dotted green lines, respectively, constructed 
through the relation between the steady-state growth rate and the abundances of the corresponding protein 
sectors as detailed in Fig. 3.13 and Fig. 3.14. Note that the sum of �̂�!"(𝜎) and �̂�C,&:&(𝜎), shown as the red 
dash line, is only 20~25% of the total proteome. Substantial flux is also directed to the synthesis of other 
proteins such as stationary phase proteins and generic transporters; see Fig. 3.9j-l. However, these other 
proteins do not carry AA flux and therefore need not be included in our model.     
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Figure 3.5: (a) Time courses of the allocation functions 𝜒!"(𝑡) (solid grey line) and 𝜒C,&:&(𝑡) (dotted green 
line), obtained according to the solution of the complete model defined by Eqs. (1)-(8). (b) Time courses 
of ribosomal protein abundance and total AAB enzyme abundance for model predictions (lines) and 
experimental data (triangles). Green represents AAB enzyme, while gray represents ribosomal proteins.  (c) 
Time courses of the predicted regulatory functions (stacked) for each AAB group. The areas with different 
colors represent the allocation functions for the different AAB groups as described by the legend on the 
right, ordered from the smallest to the largest relative pre-expression level 𝑞D(0). The top curve represent 
the time course of 𝜒C,&:& (same as the green curve in panel d) since it’s the sum of 𝜒C,D. (d) Time courses 
of the relative abundance 𝑞D(𝑡) = 𝜙C,D(𝑡)/𝜙C,D∗  for each AAB group 𝑛. Eventually all the 𝑞D(𝑡) reach one, 
indicating cells reach the final steady-state expression levels. (e) compares the model prediction of onset 
time (circles) with experimental data (crosses). The color scheme used in (d) and (e) is the same as that in 
(c). (f) Model predicted ‘18AA-to-none’ growth curve (blue line) is compared with measured ‘18AA-to-
none’ growth curve (filled gray circles) and measured  0.2% casamino acid to none growth curve (open red 
circles). Model prediction better captured the lag time of 0.2% casamino acid to none shift. 
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Figure 3.6: Translational machinery in Fig. 3.1 is composed of (a) ribosomal proteins, (b) affiliated 
translational apparatus, and (c) tRNA synthetase, whose abundances are plotted against the growth rate 
under carbon limitations (black open circles) and four rich conditions (green symbols as shown in the legend 
table). See Table 3.2 for the details of growth conditions and Table 3.3 for gene classifications. The same 
symbols are used in Fig. 3.1 and Fig. 3.7.  
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Figure 3.7: Metabolic pathways related to growth on amino acids.  (a) Enzymes and metabolites 
involved in Central Carbon Metabolism (CCM). Metabolites are boxed, with yellow background indicating 
those which can be produced from AA degradation. Reactions are represented by colored arrows with the 
genes encoding the corresponding enzymes written next to it in Italic. The color of the arrows corresponds 
to the box color panel (c), with gray indicating reversible reactions involved in both glycolysis and 
gluconeogenesis, red indicating gluconeogenesis only, blue indicating glycolysis only, orange indicating 
TCA cycle, pink indicating glyoxylate shunt, and green indicating pyruvate fermentation to acetate. (b) AA 
degradation pathways, including those producing CCM metabolites such as pyruvate (Group1), and 
metabolites in TCA cycle (Group2). (c) The abundances of CCM enzymes in steady state growth, plotted 
against the growth rate. The symbols are the same as those used in Fig. 3.6. The gene names shown with a 
black background (in both (a) and (c)) are enzymes that increased by more than 2-fold or by more than 3‰ 
in CAA or RDM without glucose supplement compared to those with glucose supplement (i.e., increased 
in filled green symbols compared to open green symbols). As can be seen from panel (a), these genes with 
increased enzyme levels in the absence of glucose supplement are mostly adjacent to the metabolite that 
are products of AA degradation (those with yellow background). This suggests that the AA degradation 
products are funneled through CCM to supply the cell’s non-AA carbon needs (e.g., energy biogenesis and 
the biosynthesis of lipids and cell wall components) via gluconeogenesis (enzymes encoded by ppsA and 
pck) and via TCA (enzymes encoded by gltA, acnAB, sucABCD). 
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Figure 3.8: Amino acid downshifts with supplement of various carbon sources. (a) Comparison of  
‘20AA-to-none’ shift to ’18AA-to-none’ shift (excluding cysteine and tyrosine due to poor solubility; see 
Methods and Table 3.4), both supplemented by 0.2% glucose before and after the shift, shows minor 
effects due to exclusion of cysteine and tyrosine. (b) Instantaneous growth rate of ‘18AA-to-none’ shift 
supplemented by various carbon sources shows nearly identical temporal profile. These carbon sources 
enter upper glycolysis at various points and use a variety of different uptake mechanisms (see Table 3.5). 
(c) AA downshift experiments of panel (a) is repeated with glucose replaced by 0.4% glycerol as the carbon 
supplement. The growth transition is nearly the same for both 20AA-to-none and 18AA-to-none shifts. (d) 
Comparison of the growth curve of ’18AA-to-none’ transition supplemented by 0.4% glycerol between WT 
strain and a mutant (NQ399, see Table 3.1) harboring the full expression of glycerol uptake proteins GlpFK. 
1mM IPTG and 1mM 3MBA is added to the medium before and after the shift for the shift by NQ399 so 
that glpFK expression is fully induced throughout the shift. The observed lag time of NQ399 is the same as 
the lag time of WT strain, meaning that glycerol uptake is not the bottleneck during ‘18AA-to-none’ shift. 
(e) Repeatability of ’18AA-to-none’ shift supplemented by glycerol. Symbols of different colors represent 
results of independent experimental runs. 
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Figure 3.9: The total abundance of proteins from individual pathways or functional groups during the 
‘18AA-to-none’ shift supplemented by glycerol are shown in panels (a)-(l). (m) Instantaneous growth rate 
following the shift.  Membership of each protein group is shown in Table 3.3. All protein abundances are 
reported in mass fraction (%-proteome). Samples were collected at 15 min, 50 min, 100 min, 200 min after 
the shift. The pre-shift data points are shown at time 0. 



 77 

 
 
  



 78 

Figure 3.10: The abundance time courses for individual AA biosynthesis enzymes during ‘18AA-to-none’ 
shift supplemented by glycerol. The enzymes in the same pathway are plotted in the same plot. For those 
enzymes not detected at some time points, we used abundance values 10x smaller than the lowest abundance 
detected among all enzymes in the pathway. Most of these replacements are in the arginine pathway (b). In 
each panel, the lines in the legend box next to the gene name indicates the operon structure. The same line 
style means the genes are on the same operon. E.x., for panel (m), cysC and cysN are on the same operon, 
cysHIJ are on the same operon, while cysDEKM are each on different operons. The genes in different 
groups don’t share operons except serC-aroA and aroF-tyrA. In each panel, the similar color of the recovery 
curves indicating similar kinetic behavior. E.x., in (i), serA and serC (both in red) have similar kinetics, 
while serB (in blue) is different from them.  
Generally, we can see that the similar kinetic behavior in (c-d,f,j) are all attributed to operon structure. 
Similar kinetic behavior are also seen in panel (g,i,m-n) although the genes are not on the same operon. To 
be detail, in the met group (a), changes in the abundance of MetE dominated the entire group. In the arg 
group (b), most enzymes showed large increase between 15 min and 50 min after the shift, except ArgA, 
ArgD, ArgH (show in bluish colors). The total abundance of this group was mainly determined by the 
abundance of ArgG and ArgI. In the ilv group (e), four enzymes (in red) exhibited moderate increase in the 
first 50 min, while the rest (in blue) increased only after 50 min. Since IlvC is much more abundant than 
other enzymes, the group kinetics was largely determined by this enzyme alone. In the lys group (h), three 
enzymes (in blue, DapA, DapE, DapF) were approximately constant throughout the shift. The rest (in red) 
started increasing after 50 min, most of which showed only small increases during the shift, except for LysC, 
with a big jump between 50 min and 100 mins. But since LysC is not the most abundant enzyme in the lys 
group, it did not significantly affect the group kinetics itself. In the aro group (k), most of the enzymes (in 
blue) stayed constant or dropped during the shift. Three enzymes (in red) clearly increased during the shift, 
among which AroG was the most significant. In the phetyr group (l), decrease in TyrA could likely be 
attributed to the fact that tyrosine was not provided in the pre-shift medium, so that TyrA was fully 
expressed before the shift and was then shutoff (with abundance decreasing due to dilution) during the 
growth recovery phase. 
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Figure 3.11: Relation between onset time and expression levels. (a) The total abundance of the trp group 
relative to the pre-shift total abundance is plotted at different times after the shift (same data as Fig. 3.3d. 
Between the measured data points, we used linear interpolation (gray dash lines) to connect the data points. 
The green arrow shows the fold-change in enzyme abundance at the final time point (200 min) from the 
pre-shift level for the trp pathway. The red arrow indicates the onset time, defined as the time when the 
enzyme abundance exceeds the pre-shift value by 25%. (b) The onset time is plotted against the fold change 
for each pathway. The marker color is the same as the axis color used in Fig. 3.3, grouped according to the 
fold-change. (c) The onset time is plotted against the inverse of fold change, which is the pre-expression 
abundance relative to the final abundance of each enzyme group. The crosses in green are the same as the 
data in panel (b). The others are results obtained by using different thresholds for the definition of onset 
time, blue crosses for 10% increase over pre-shift value, and red crosses for 50% increase. Approximately 
linear relations are seen between the plotted quantities regardless of the threshold value used in the 
definition of the onset time. (d) Same plot as panel (b), but for individual AAB enzymes. (e) Same plot as 
panel (c) (25%), for individual AAB enzymes. The correlation coefficient is label as R. (f-h) show plots of 
the onset time against the pre-shift, the post-shift abundances and the increase from pre- to post- shift for 
individual AAB enzymes, respectively. The correlation coefficient between the onset time and the pre-shift 
abundance (or the log of abundance) is 0.48 (or 0.62). The correlation coefficient between the onset time 
and the post-shift abundance (or the log of abundance) is -0.12 (or -0.02). The correlation coefficient 
between the onset time and the increase abundance from pre- to post-shift (or the log of abundance) is -0.21 
(or -0.33). They are all much weaker compared to panels (e). Due to the definition of the onset time in (a), 
the enzymes with fold change less than 1.25 or undetected in the pre-shift condition do not have defined 
onset times, and are thus excluded in panels (d)-(g). (i-k) show plots of the onset time with the pre-shift, 
the post-shift abundance and the increase abundance from pre- to post- shift for all enzymes of each pathway, 
respectively. The marker color in (i-k) are the same as those used in panel (b).  
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Figure 3.12. Growth rate during AA downshift. If 𝑓D represents the frequency of the nth AA, then the 
consumption flux of this AA by protein synthesis is given by 𝑓D!-!" , where 𝑀(𝑡) is the total protein mass. 
The synthesis flux of this AA is given by 𝑘D(𝑡)𝑀C,D(𝑡), where 𝑘D  is the specific catalytic rate of the 
pathway and 𝑀C,D is the total enzyme mass associated with the synthesis of this AA. The condition of flux 
balanced, obtained by equating the two fluxes, can be written as 
 

𝜆(𝑡)𝑓D = 𝑘D(𝑡)𝜙C,D(𝑡), (3.9) 
 
using the definition of the instantaneous growth rate 𝜆(𝑡) ≡ !

!" ln𝑀  and proteome fraction 𝜙C,D(𝑡) ≡
𝑀C,D(𝑡)/𝑀(𝑡) introduced in the main text. In steady-state growth, Eq. (3.9) can be written as  
 

𝜆∗𝑓D = 𝑘D∗𝜙C,D∗ , (3.10) 
 
where the asterisks indicate the steady-state values of the variables. We take 𝑓D	to be constant and the 
catalytic rates  𝑘C,D∗ ≥ 𝑘C,D(𝑡) to be the maximum catalytic rate, since during the period of growth recovery, 
some of the rates could be reduced due to allosteric inhibition.   
 
In the illustration above, we plotted the quantity 𝑘D∗𝜙C,D(𝑡)/𝑓D , which is a measure of the maximum 
synthesis flux of the nth AA weighted by the frequency of this AA. These weighted frequencies allow flux 
comparisons across different AA groups.  In steady state where 𝜙C,D(𝑡) = 𝜙C,D∗ , the weighted flux must be 
the same for all AAs according to Eq. (3.10). This is indicted by the black line. During the transition period 
after shift, the enzyme abundances 𝜙C,D(𝑡) are below the steady state level by different amounts, resulting 
in differences in the maximum fluxes as illustrated by the dashed purple line at some time 𝑡.  The overall 
flux of protein synthesis is limited by the lowest flux among these groups (here it is group 3 in the figure, 
with 𝑘E(𝑡) = 𝑘E∗), indicated by the green line. This can be written mathematically as  
 

𝜆(𝑡) = min
F
[𝑘D∗𝜙C,D(𝑡)/𝑓D\, (3.11) 

 
which reduces to  
 

𝜆(𝑡) = 𝜆∗min
F
[𝜙C,D(𝑡)/𝜙D∗\ (3.12) 

 
using Eq. (3.10). Eq. (3.12) is Eq. (3.3) of the main text. 
 
Note that in order for all AA groups to have the same weighted flux at all time during the recovery period, 
the catalytic rates of the non-growth limiting groups (here 𝑘1(𝑡), 𝑘G(𝑡)) must be reduced from their 
maximum values 𝑘1∗, 𝑘G∗, respectively. This is expected to occur via end-product inhibition since those AAs 
with maximum synthesis flux above the minimum would synthesize more AAs than needed and those AAs 
in surplus are known to inhibit their own synthesis allosterically (44).  
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Figure 3.13: Construction of the regulatory function for ribosome synthesis, 𝝌-𝑹𝒃(𝝈). (a) shows the 
abundance 𝜙!"∗  of ribosomal proteins at different growth rate (𝜆∗) for cultures growing exponentially in 
different nutrient sources. [Same data as that shown in Fig. 3.6a.] The data is well-captured by a linear fit 
(dashed line), i.e., 𝜙!"∗ = 𝜙!",+ + 𝜆∗/𝛾, with 𝜙!",+ = 4.12% and slope 𝛾 = 8.43	ℎ01. In steady state, we 
have 𝜒!"∗ ≡ 𝜙!"∗ , obtained by setting !!"𝜙!" = 0 in Eq. (3.2) of the main text. Using the definition of 𝜎 in 
Eq. (3.4),  
 

𝜎∗ =
𝜆∗

𝜙!"∗
=

𝜆∗

𝜙!",+ + 𝜆∗/𝛾
 (3.13) 

 
we can invert Eq. (3.13) to obtain 𝜆∗(𝜎∗),  and obtain the regulatory function as 
 

�̂�!"(𝜎) = 𝜒!"∗ (𝜎) = 𝜙!"∗ ?𝜆∗(𝜎)@ =
𝜙!",+
1 − 𝜎/𝛾

. (3.14) 

 
The function obtained is sketched as the gray line in panel (b) and in Fig. 3.4b.  
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Figure 3.14: Construction of the global regulatory function for AAB enzymes, 𝝌-𝑨,𝒕𝒐𝒕(𝝈). The form of 
�̂�C,&:&(𝜎) is constructed similarly to that described in Fig. 3.13 for �̂�!"(𝜎). (a) Total abundance of AAB 
enzymes. We started with the steady state abundance 𝜙C,&:&∗  of the AAB enzymes in different growth 
conditions: the value in the pre-shift steady-state is indicated by the open circle, and that of the post-shift 
steady-state is indicated by the filled square. We connected these two points by a straight line (green dash 
line), which can be written as 𝜙C,&:&∗ = 𝜙C,&:&,78 − 𝛼C𝜆∗ with 𝜙C,&:&,78 = 16.5% and 𝛼C = 0.95	ℎ. Using Eq. 
(3.13) in Fig. 3.13 to relate 𝜆∗ to 𝜎∗, we obtain  
 

�̂�C,&:&(𝜎) = 𝜙C,&:&∗ ?𝜆∗(𝜎)@ = 𝜙C,&:&,78 − 𝛼C ∙ 𝜎�̂�!"(𝜎), (3.15) 
 
where �̂�!"(𝜎) is given by Eq. (3.14). The resulting function is plotted as the dotted line in panel (b). 
From (b), we see that when the translational activity 𝜎 is low (reflecting limitation by the shortage of AAs), 
AAB enzymes are expected to be up-regulated. This is consistent with our qualitative expectation that due 
to the global regulation of ppGpp, cells allocate more protein synthesis to AAB enzymes after AA downshift. 
Quantitatively, the expression for �̂�C,&:&(𝜎) arise from the hypothesized linear relation between 𝜙C,&:&∗  and 
𝜆∗ shown in (a). This linear relation can be rationalized in two ways: First, it can be taken as a result of 
passive regulation from ribosomal protein synthesis regulations, i.e., as ribosomal protein abundance 
decrease for decreasing growth rate (Fig. 3.13a), other protein sectors including AAB enzymes increase in 
abundance. Alternatively, panel (a) can be viewed as describing the expected reduction in growth rate if 
the total abundance of the AAB enzymes are dialed up. A linear relation between these two quantities is 
justified by earlier findings that the growth rate declined linearly upon increases in the over-expression of 
“useless” proteins (3, 7).    
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Figure 3.15: On-off allocation strategy. To allocate protein synthesis to the growth bottlenecks, Pavlov 
and Ehrenberg (16) formulated an “on-off strategy” which is easy to implement mathematically: Consider 
enzyme groups whose indices 𝑛  are ordered by their relative pre-expression abundances 𝑞D(0) =
𝜙C,D(0)/𝜙C,D∗ , so that 𝑞1(0) < 𝑞G(0) < 𝑞E(0) < ⋯. Define 𝑛a(𝑡) to be the number of enzyme groups that 
are limiting growth and are hence being synthesized at time 𝑡 . (a) shows several key time points 𝑡D 
indicating the time when the 𝑛&J  enzyme group becomes growth-limiting, as defined by the condition 
𝑞D	(𝑡) = 𝑞D01(𝑡) for 𝑛 > 1. At such a time 𝑡D, the value of 𝑛a(𝑡) is incremented by 1. Specifically, in the 
first stage (𝑡1 < 𝑡 < 𝑡G with 𝑡1 = 0), 𝑞1(𝑡) is the minimum and only enzyme group 1 is growth-limiting, 
thus 𝑛a = 1. Here all the available protein synthesis flux are used to synthesize group 1 enzymes. Thus the 
allocation function is 𝜂1 = 1, 𝜂DL1 = 0. As a result 𝑞1(𝑡) increases in time. It reaches the value 𝑞G(𝑡) at 
𝑡 = 𝑡G. For 𝑡G < 𝑡 < 𝑡E, enzyme groups 1 and 2 are both growth-limiting. 𝑛a = 2, and protein synthesis flux 
is allocated to both group 1 and 2. The partition between 𝜂1 and 𝜂G is proportional to the mass fractions of 
these two groups in final steady-state, i.e.. 𝜙1∗ and 𝜙G∗, so that 𝑞1(𝑡) = 𝑞G(𝑡) holds throughout this time 
period. Similarly, when 𝑞1(𝑡) and 𝑞G(𝑡) reach 𝑞E(𝑡) at 𝑡 = 𝑡E, cells start synthesizing group 3 (𝑛a = 3), 
with protein synthesis flux allocated in proportional to 𝜙1∗: 𝜙G∗: 𝜙E∗.  In general, 𝜂D(𝑡) is given by Eq. (8) of 
the main text. Panels (b)-(d) provide an example of 3 enzyme groups with their mass faction in the final 
steady-state given by 𝜙1∗ = 2𝜙G∗ = 2𝜙E∗. (b) 𝜂D(𝑡); (c): 𝑞D(𝑡); (d): 𝑛a(𝑡). In (b) and (c), blue indicate group 
1, pink indicates group 2, yellow indicates group 3. (e) The dynamics of a toy model for the three enzyme 
groups shown in panels (b)-(d), at a time point 𝑡  between 𝑡G  and 𝑡E . Enzyme groups 𝐸1 , 𝐸G  and 𝐸E 
synthesize amino acid 1, 2 and 3 respectively. The bars below the enzymes shows the expression level 
relative to the final (𝑞D) at time 𝑡. Amino acid 1, 2	and	3	are “consumed” by the protein synthesis process 
with the help of tRNA as shown on the right side of the plot. The usage of AAs depend on the codons on 
the mRNA (blue, red and yellow color bars on mRNA). Here for simplicity we assumed equal codon 
frequencies. Since the level of 𝐸E is higher at this time, more AA3 is synthesized than what can be utilized 
(since protein synthesis is limited by AAs 1 and 2). Since the expression of AAB enzymes is negatively 
regulated by their corresponding AA products through pathway-specific regulations (44) the surplus in AA3 
suppresses the expression of 𝐸E, thereby channeling the flux of protein synthesis preferentially into the 
synthesis of 𝐸1 and	𝐸G as panels (b)-(d) illustrates. 
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Figure 3.16: (a) Scatter plots comparing the normalized AA molar composition of RDM (blue circles, see 
Table 3.4 for the recipe (22)) and casein (brown diamond, (50)) with the natural AA frequency across proteins 
(52). Serine (arrow) is over-represented by ~10x in RDM. (b) Growth curves for AA downshifts with additional 
AAs excluded from the pre-shift medium: ser excluded (open diamonds), ser and met excluded (open circles), 
met excluded (filled squares); see Table 3.4 for AA concentrations.  The corresponding model predictions are 
shown as lines with the corresponding colors. To model ‘18AA-but-ser’ to ‘none’ shift, we excluded ser 
enzymes from the AAB groups while taking the 𝑞D(0) of the other AAB enzyme groups to be the same as those 
in the ‘all’ condition. Similar idea applies to the modeling of the other shifts.   
Our model successfully captured the growth kinetics when ser was excluded in the pre-shift medium (open 
symbols), but not when ser was present (solid symbols, see also Fig. 3.5f for ‘18AA-to-none’ shift). Our model 
did not quantitatively capture the growth kinetics of ‘18AA-to-none’ as seen in Fig. 3.5f despite its success 
with the enzyme kinetics. Since the tradeoff between the synthesis of AAB enzymes and ribosome is the starting 
point of our model (Eqs. (3.1) and (3.2)), while the determination of growth by ribosome allocation is well 
established (Eq. (3.4), (23)), the discrepancy between the observed and predicted growth curves likely 
originated outside of the tradeoff between AAB enzymes and ribosomes. Close comparison of our data and 
model prediction pointed to prolonged delay in serine biosynthesis (Fig. 3.3i). In support of this, we found that 
AA downshifts without serine shortage were quantitatively captured by our model as shown in panel (b).  
Looking further into the “serine problem”, we noted that the common recipe of AA composition for the “rich 
medium” we used (RDM, Ref. (22)) contained >10-fold higher serine than the natural AA composition in 
proteins (blue circles in (a)). This recipe was presumably formulated to counteract the very high serine 
consumption rate by E. coli (48, 49) so that serine would never run out in steady state studies. For cells growing 
in media with AA composition more representative of the natural AA frequencies, e.g., “casamino acid” (CAA) 
obtained from hydrolysis of casein (brown diamonds in (a)),  serine is known to be depleted well before any 
other AAs (49). We thus expected downshift of cells grown in CAA to exhibit growth kinetics similar to that 
seen in 18AA-ser shift (magenta diamonds in (b)), which was well-described by our model. This was indeed 
seen to be the case as shown in Fig. 3.5f (open red circles).  Thus, the “serine problem” is likely an artifact of 
artificial medium composition that is not likely encountered in natural AA downshifts. In this light, the extra 
delay in the onset of serine biosynthesis enzymes observed from growth in high serine could result from a built-
in protection mechanism against surge of serine (which would be toxic (53–55)) but not usually encountered in 
natural AA downshifts. 
  



 89 

 
 

Figure 3.17: Applicability of the “just-in-time” program to enzyme recovery kinetics. (a) ‘Just-in-
time’ program of enzyme recovery kinetics (51) states that during AA downshift, the response time of an 
enzyme in a linear pathway is shorter if it is located towards the beginning of the pathway (as indicated by 
the blue symbols), while the maximum abundance is higher towards the beginning of the pathway (as 
indicated by the red symbols). (b) Examples of response time calculated based on the proteomic 
measurements of SerA, SerB, SerC (Fig. 3.10i). Between the measured data points, we used linear 
interpolation (gray dash lines) to connect the data points. The x-coordinates of the solid dots represent the 
corresponding response times, defined as the time when the enzyme abundance reaches 50% of the 
maximum during the shift according to Zaslaver et al (51). For enzyme abundance exceeding 50% at the 
beginning of the shift (as in the case of SerB), we took the response time to be zero. (c)-(g) The observed 
response times and maximum enzyme abundances for 5 linear segments of the AAB pathways are plotted 
in the order of enzyme locations for met in panel (c), ser in panel (d), arg in panel (e), lys in panel (f). 
Neither the response time nor the maximum abundance exhibited the predicted trends shown in (a) for any 
of the 4 pathways. The derivation of the ‘just-in-time’ program shows that this strategy was formulated 
based on the assumption that the synthesis of an enzyme in a pathway depended only on the pool of its 
substrate. In reality during AA downshift, enzyme synthesis depended on the availability of all AAs, which 
are products located at the end of each AAB pathway. 
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Figure 3.18: (a) Histogram of lag times predicted by our dynamic proteome allocation model, with 
randomly generated pre-expression levels 𝑞D(0) constrained to the total pre-shift AAB enzyme levels, 
∑ 𝜙C,D(0)D . The abundances in post-shift steady-state are kept the same. For the abundances in pre-shift 
steady-state, we generated 14 random numbers (uniformly distributed in interval (0,1)) and scaled them so 
that the sum equals the measured total pre-expression level of all AAB enzymes, which is 3.14% of the 
proteome. That gave us one set of initial condition 𝑞D(0)	which we used to compute the lag time. This was 
repeated 1000 times and the histogram of the predicted lag time is shown as blue bars. The red solid line 
shows the predicted lag time using the measured values of 𝑞D(0). The red dash line shows the predicted 
lag time if every AAB groups adopts the same 𝑞D(0), ~26%. For fixed total abundance of AAB enzymes 
in the pre-shift and post-shift steady state, the model of Pavlov and Ehrenberg predicted that the shortest 
lag time would be obtained if all the AAB enzymes had the same 𝑞(0) value (vertical dash line). (b) The 
histogram of the relative pre-expression levels (𝑞(0)) observed for the 14 AAB enzyme groups. Since 
cysteine and tyrosine were not provided in the pre-shift media, enzymes on cysteine and tyrosine 
biosynthesis pathways are excluded here.  
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3.9 Tables 

Table 3.1: List of strains employed in this work 
Label Genotype description reference 

EQ353 Wide-type E. coli K12 MG1655 from CGSC (56) 
NCM3722 Wide-type E. coli K12 the parental strain for the 

strains below 
(29, 30) 

NQ1243 𝑧𝑐𝑎 − 3633
∷ Φ(FRT: 𝑟𝑟𝑛𝐵𝑡: Pefgf<h0: 𝑥𝑦𝑙𝑅)	 
Δ𝑝𝑡𝑠𝐺468 ∷ Φ(𝑘𝑎𝑛: 𝑟𝑟𝑛𝐵𝑡: Pu) 

ptsG titratable strain (10) 

NQ1261 Δ𝑝𝑡𝑠𝐺468 ∷ Φ(𝑘𝑎𝑛: 𝑟𝑟𝑛𝐵𝑡: Pu) ptsG deletion strain (17) 
NQ399 𝑎𝑡𝑡𝐵 ∷ Φ(𝑎𝑚𝑝: Peaij<h0: 𝑥𝑦𝑙𝑅)	 

Δ𝑔𝑙𝑝𝐹224 ∷ Φ(𝑘𝑎𝑛: 𝑟𝑟𝑛𝐵𝑡: Pu) 
glpFK titratable strain (12) 
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Table 3.2: Proteomic data sample conditions.  
1. Sample P1,P8-P10 are the repeat of M1-M4, respectively. The average growth rates and protein 

abundances for these four conditions are plotted in Fig. 1.  
2. O8-O10, P3 are used as reference for scaling the proteomic data in other conditions. 
3. See strain description in Supplementary Tabel 1. 
4. MOPS EZ rich defined medium kit M2105 from Teknova (glucose excluded). 
5. BactoTM casamino acid. 
6. Except LB condition, all other conditions are based on MOPS buffered media with 50mM NaCl, 

1.32mM KH2PO4, 10mM NH4Cl and corresponding nutrients listed in the column. RDM 
condition and conditions for EQ353 are based on Neidhardt’s MOPS (22) while the rest all based 
on Cayley’s MOPS (31); see Methods for details. 

7. 3-methylbenzyl alcohol. 
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Table 3.3: Gene classification in Chapter 3.  
*lpd was split half and half into TCA cycle and fermentation to acetate while calculating protein abundance 
of each group. 

 

arg group argA argB argC argD argE argF argG argH argI
aro group aroA aroB aroC aroD aroE aroF aroG aroH aroK aroL
cys group cysC cysD cysE cysH cysI cysJ cysK cysM cysN
glt group gdhA gltB gltD
his group hisA hisB hisC hisD hisF hisG hisH hisI
ilv group ilvA ilvB ilvC ilvD ilvE ilvG_1 ilvH ilvI ilvM ilvN

leu group leuA leuB leuC leuD
lys group asd dapA dapB dapD dapE dapF lysA lysC
met group metA metB metC metE metH metL

other group alaA alaC asnA asnB aspC glnA glyA proA proB proC
phetyr group pheA tyrA tyrB

ser group serA serB serC
thr group thrA thrB thrC
trp group trpA trpB trpC trpD trpE
ATPase atpA atpB atpC atpD atpE atpF atpG atpH atpI

fermentation 
to acetate

aceE aceF ackA lpd* pta

eno fbaA fbaB fbp gapA glpX gpmA gpmM maeA maeB
mdh mqo pck pfkA pfkB pgi pgk ppsA pykA pykF
tpiA ybhA
acnA acnB fumA fumB fumC fumD fumE gltA icd lpd*
sdhA sdhB sdhC sdhD sucA sucB sucC sucD
adk cmk deoB dut gmk guaA guaB ndk nrdA nrdB
nrdE nrdF prs purA purB purC purD purE purF purH
purK purL purM purN purT pyrB pyrC pyrD pyrE pyrF
pyrG pyrH pyrI pyrL thyA tmk trxA
dps ecnB elaB katE osmC osmE otsA otsB wrbA
arfA arfB efp frr fusA infA infB infC lepA prfA

prfB prfC tsf tufA tufB
rplA rplB rplC rplD rplE rplF rplI rplJ rplK rplL
rplM rplN rplO rplP rplQ rplR rplS rplT rplU rplV
rplW rplX rplY rpmA rpmB rpmC rpmD rpmE rpmF rpmG
rpmH rpmI rpmJ rpsA rpsB rpsC rpsD rpsE rpsF rpsG
rpsH rpsI rpsJ rpsK rpsL rpsM rpsN rpsO rpsP rpsQ
rpsR rpsS rpsT rpsU sra
alaS argS asnS aspS cysS glnS gltX glyQ glyS hisS
ileS leuS lysS lysU metG pheS pheT proS serS thrS
trpS tyrS valS
abgT alaE ansP argO argT aroP artI artJ artM artP
artQ brnQ cadB cstA cycA dppA dppB dppC dppD dppF
dtpA dtpB dtpC dtpD eamA eamB frlA gabP gadC glnH
glnP glnQ gltI gltJ gltK gltL gltP gltS hisJ leuE
livF livG livH livJ livM lysP metQ mmuP mtr oppA
oppB oppC oppD oppF pheP plaP potA potB potC potD
potE potF potG potH potI proV proW proX proY putP
puuP rhtA rhtB rhtC sgrR sstT tcyJ tcyL tcyN tcyP
tdcC tnaB tyrP
aceA aceB acs alsA alsB alsC araF araG araH crr
fruA fruB fucK fucP galE galF galK galM galP galR
galS galT galU gatA gatB gatC lacY lacZ malE malF
malG malK malM malP malT malX manX manY manZ melB

stationary phase proteins

AA 
biosynthesis

Central 
carbon 

metabolism 
and energy

glycolysis 
&GNG

TCA

Nucleotide biosynthesis

Translational 
proteins

affiliated 
translational 
apparatus

ribosomal 
proteins

tRNA 
synthase

Transporters

AA transport

carbon 
metabolism
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Table 3.3: Gene classification in Chapter 3, continued. 

 

  

mglA mglB mglC mtlA mtlD nagE ptsG ptsH ptsI rbsA
rbsB rbsC rbsD rbsK srlA srlB srlE treB ugpA ugpB
ugpC ugpE ulaA ulaB ulaC xylA xylB xylE xylF xylG
xylH

glycerol 
uptake

glpA glpB glpC glpD glpF glpK

outer 
membrane 

porin
nmpC ompA ompC ompF ompG ompN phoE

Supplementary Table 3. Gene classification through this work.
*lpd was split half and half into TCA cycle and fermentation to acetate while calculating protein 
abundance of each group.

Transporters

carbon 
metabolism
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Table 3.4: Amino acid concentration in various medium. 
1. AA concentration was calculated from AA composition reported by BD manufactory. Glutamine 

and asparagine is hydrolyzed during analysis. Here we split the percentile value of glutamate into 
glutamine and glutamate with 1:1 ratio. The same thing was done for aspartate. Reported cystine 
abundance was taken to be the abundance of cysteine. 

compositions 

Concentration (mM) 

RDM 20AA 18AA 18AA-
but-ser 

18AA-
but-met 

18AA-but-
ser/met 

0.2% 
Casamino 

acid1 
alanine 0.8 0.8 0.8 0.8 0.8 0.8 0.67 
arginine 5.2 5.2 5.2 5.2 5.2 5.2 0.29 
aspartate 0.4 0.4 0.4 0.4 0.4 0.4 0.18 

asparagine 0.4 0.4 0.4 0.4 0.4 0.4 0.18 
cysteine 0.1 0.1 0 0 0 0 0.02 

glutamate 0.6 0.6 0.6 0.6 0.6 0.6 1.08 
glutamine 0.6 0.6 0.6 0.6 0.6 0.6 1.09 

glycine 0.8 0.8 0.8 0.8 0.8 0.8 0.37 
histidine 0.2 0.2 0.2 0.2 0.2 0.2 0.10 

isoleucine 0.4 0.4 0.4 0.4 0.4 0.4 0.61 
leucine 0.8 0.8 0.8 0.8 0.8 0.8 0.76 
lysine 0.4 0.4 0.4 0.4 0.4 0.4 0.71 

methionine 0.2 0.2 0.2 0.2 0 0 0.19 
phenylalanine 0.4 0.4 0.4 0.4 0.4 0.4 0.44 

proline 0.4 0.4 0.4 0.4 0.4 0.4 1.39 
serine 10 10 10 0 10 0 0.40 

threonine 0.4 0.4 0.4 0.4 0.4 0.4 0.25 
tryptophan 0.1 0.1 0.1 0.1 0.1 0.1 0 

tyrosine 0.2 0.2 0 0 0 0 0.04 
valine 0.6 0.6 0.6 0.6 0.6 0.6 0.96 

 

Table 3.5: Carbon uptake mechanism 
Carbons Uptake mechanism/enzymes reference 
lactose proton symporter LacY and lactose galactohydrolase lacY (57) 
glucose Bacterial phosphotransferase system PtsG, Crr (58, 59) 
fructose Bacterial phosphotransferase system FruAB (59, 60) 
xylose ABC transporter XylFGH and proton symporter XylE (61–63) 

glycerol Glycerol facilitator GlpF and glycerol kinase GlpK (43) 
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3.10 Appendix 

3.10.1 Kinetic equations for enzymes during shift 

Here we provided the details on the deduction of the kinetic equations of AAB enzymes 

and ribosomes (Eq. (3.1) and (3.2)). 

Through this work, we used mass fraction to represent protein abundance. For protein or 

protein groups 𝑥, its mass fraction 𝜙, can be written as  

 𝜙, = 𝑀,/𝑀#. (3.16) 

𝑀, denotes the mass of protein (protein group) 𝑥 in a standard culture volume, e.g., 1ml of culture. 

𝑀# denotes the total protein mass in the same culture volume. The time derivative of 𝜙, can thus 

be written as 

 𝑑𝜙,
𝑑𝑡 =

1
𝑀#

y
𝑑𝑀,

𝑑𝑡 − 𝜙,
𝑑𝑀#

𝑑𝑡 z. (3.17) 

(𝑑𝑀#/𝑑𝑡)  is the protein synthesis flux which is referred as 𝐽& . In this work, we used 𝜒,  to 

represent the fraction of protein synthesis flux that being directed to 𝑥. In other words, 

 𝑑𝑀,

𝑑𝑡 = 𝜒,(𝑡)𝐽&(𝑡). (3.18) 

Then Eq. (3.17) can be rewritten as  

 𝑑𝜙,
𝑑𝑡 =

𝐽&
𝑀#

(𝜒,(𝑡) − 𝜙,(𝑡)). (3.19) 

Given the definition of growth rate 𝜆(𝑡) =
4 abW5!(')X

4'
, 𝐽&(𝑡) can be written as the products of 

𝜆(𝑡) and 𝑀#(𝑡). Eq. (3.19) then became 

 𝑑𝜙,
𝑑𝑡 = 𝜆(𝑡)(𝜒,(𝑡) − 𝜙,(𝑡)). 

(3.20) 



 98 

Substituting AAB enzyme groups or ribosomal proteins for 𝑥, we then achieved the Eq. (3.1) and 

(3.2) in the main text for describing the kinetic changes of 𝜙`,. and 𝜙&/. 
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Chapter 4  

Kinetic response of E.coli to sub-lethal 

chloramphenicol 

4.1 Introduction 

Quantitative characterization of bacterial responses to antibiotics is essential for proper 

usage of antibiotics in treating bacterial infection. In this chapter, we will look into the kinetic 

responses of E. coli to sub-lethal chloramphenicol (Cm). Cm is an translational inhibitor useful for 

the treatment of number of bacterial infections, such as meningitis, plague. It is known that Cm 

inhibit translation elongation by binding to 50S ribosomal subunit. Previous work have well 

studied the physiological behavior of E. coli under sub-lethal Cm during exponential growth 

(referred as R-limitation). It  showed that ribosomal abundance linearly increase with the decrease 

of growth rate with Cm addition (Fig. 1.2c, (3, 17)), while many catabolic and anabolic proteins 

behave the opposite (3, 7). Meanwhile, average translational elongation rate was also found 

increase under Cm (17), taken as a result of increased substrates (ternary complex with charged 

tRNAs). With the steady-state behavior under Cm R-limitation well established, it gave us a 

chance to quantify the kinetic response of E. coli.  Taking the idea of the flux-controlled regulatory 

method used in nutrient shift (Chapter 2 & 3, (23)), we used translational elongation rate as a flux 

sensor and control the expression of ribosomal proteins and metabolic proteins. By extending the 

steady-state relationship to kinetic regime, our model successfully capture the adaptation kinetics. 
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The success of this model indicate a possible important rule of translational elongation rate in 

cellular global regulatory strategy, which is actually shown in Chapter 5. 

4.2 Results 

In order to obtain the kinetics of growth rate change with higher time resolution, we used 

turbidostat (Fig. 4.1) to monitor bacterial growth during chloramphenicol (Cm) downshift. We 

first let cells grow in glucose minimal medium. After they reach exponential growth, 4uM Cm was 

added to the cell culture to initiate Cm downshift. From the measured time course of 𝑂𝐷6!! (a 

proxy of biomass), we were able to calculate the time course of flux 𝐽 and instantaneous growth 𝜆 

rate as shown in Fig. 4.2. (Notice that the data points in Fig. 4.2 are the average of original data 

(Fig. 4.5) with certain window size for clear viewing.) The growth rate in Fig. 4.2c shows a special 

response with an immediate drop followed by a 1-hr slow decrease. After 1hr, cells reached the 

steady-state growth rate and kept the same growth rate during the time of measurements (Fig. 4.5). 

Similar two-stage growth rate drop were also observed when adding higher Cm concentration 

(adding 8uM Cm to glucose medium; Fig. 4.3), or with a different carbon source (adding 4uM Cm 

to fructose medium; Fig. 4.4). We also measured the kinetics of ribosomal content (reported by 

total RNA abundance; green diamonds in Fig. 4.2a) as well as catabolic protein content (reported 

by LacZ expression; red triangle in Fig. 4.2a). As expected, ribosomal content accumulated faster 

than biomass after adding Cm, while catabolic protein content rarely increase in the first 50mins 

after shift despite the increase in biomass. Comparing with the growth rate change in Fig. 4.2c, 

cells resumed the synthesis of catabolic proteins (or at least LacZ) roughly at the same time when 

growth rate relax to the post-shift steady state. It was also seen in other Cm downshifts shown in 

Fig. 4.3 and 4.4. Eventually, the proteome allocation also reached a new steady-state with higher 

fraction of ribosomal content and lower fraction of catabolic proteins. 
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In order to understand the kinetic response to Cm, let’s first review the feature of Cm 

involved translational elongation inhibition. In brief, the function of Cm is equivalent to taking 

away active ribosomes but not affecting average translational elongation rate of complete proteins  

as studied in Dai et al (17). To be detailed, due to the low dissociation rate between Cm and 

ribosomes, the half-life of Cm bound ribosome is more than 8mins as shown in Fig. 4.6a. This 

value means that the percentage of ribosome stalled by Cm but can still finish translation process 

is very low due to mRNA degradation and ribosome abortion, estimated to be no more than 4% of 

total ribosomes (17). In that case, the effect of Cm can be simplified as the decrease in active 

ribosomal fraction (Fig. 4.6a). In detail, we divided total ribosomes into two sub group—inactive 

ribosomes and active ribosomes. Inactive ribosomes does not contribute to protein synthesis, 

whereas the elongation rate of active ribosomes does not affected by added Cm directly. 𝑓+l'2m7 is 

used to represent fraction of active ribosomes among total ribosomes. Fig. 4.6b shows that steady-

state 𝑓+l'2m7 estimated from the dissociation constant of Cm is in a good agreement of measured 

𝑓+l'2m7  (data from Dai et al (17)). Fig. 4.6c shows that measured steady-state translational 

elongation rate of complete protein is either constant or increased under Cm treatments (data from 

Dai et al (17)). Both observations support the above simplification of Cm’s effect on translation.  

With 𝑓+l'2m7 represents the effect of Cm, we established a mathematical model based on 

the flux-controlled regulatory model used in Erickson et al and Chapter 2 & 3 to describe the 

kinetics of transition as shown in Fig. 4.7a. It allows us to capture the proteome reallocation 

process without getting into the details of molecular interactions.  

Qualitatively, according to the steady-state behavior under Cm, cells upregulate 

translational related proteins to compensate for the loss of active ribosomes during the transition. 

Meanwhile, other growth-rate dependent enzymes (non-translational related, such as catabolic and 
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anabolic proteins) are down-regulated under the constrain of limited translational capacity. Based 

on that, we used the three-component partition introduced in Scotts et al to coarse-grained cellular 

proteome into three parts: translational proteins (ribosomal and co-regulated translation-affiliated 

proteins), metabolic proteins (other growth-rate dependent enzymes, mainly catabolic and anabolic 

proteins), and others (fixed core proteins, growth-rate independent under Cm R-limitation). Using 

mass fraction (defined as 𝜙, = 𝑀,/𝑀(  for group 𝑥 where 𝑀(  is the mass of total proteins) to 

describe the protein concentration, the partition above give an intrinsic constrain: 

 𝜙& + 𝜙8 = 1 − 𝜙%'I7$ = 𝜙*+, , (4.1) 

where 𝜙&  is the mass fraction of translational proteins, 𝜙8  is the mass fraction of metabolic 

proteins and 𝜙%'I7$ is the mass fraction of others. Since in steady-state 𝜙%'I7$ is invariant under 

R-limitation, the sum of 𝜙& and 𝜙8 are fixed to be 𝜙*+, under R-limitation as shown in Eq. (4.1). 

In steady-state growth, the proteomic allocation between 𝜙& and 𝜙8 are set so that the flux 

they provided balance with each other as stated in Scott et al. So in order to understand the 

proteomic reallocation process while adding Cm, it’s important to look into the flux change. 

Translational proteins, whose mass are labeled as 𝑀& , provides protein synthesis flux 𝐽&  (Fig. 

4.7a). The relationship between 𝑀& and 𝐽& were deduced in Dai et al (17) as 

 𝐽& = 𝛼𝑀& ⋅ 𝑓+l'2m7 ⋅ 𝜖, (4.2) 

where 𝛼𝑀& is the mass of ribosomal proteins (𝛼 ≅62.5% is an empirical constant possibly due to 

co-regulation of ribosomal and other translation-affiliated proteins, (17)) and 𝜖  represents 

elongation rate. Notice that 𝜖 has absorbed the factor of (1/𝑛&/) where 𝑛&/ is the number of amino 

acid residues in one ribosome, in order to make the unit consistent. For convenience, we let 𝜖 

absorb the factor of 𝛼  in the following text. With the definition of growth rate 𝜆 (𝜆 = 4>.59
4'

= O1
59

), 

Eq. (4.2) can be rewritten in terms of 𝜆 and 𝜙& as 
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 𝜆 = 𝜙& ⋅ 𝑓+l'2m7 ⋅ 𝜖, (4.3) 

Metabolic proteins, on the other hand, provide nutrient influx 𝑗 `  as shown in Fig. 4.7a. 

Quantitatively, they are written as 

 𝑗 ` = 𝑀8 ⋅ 𝑘, (4.4) 

where k is the efficient catalytic rate of metabolic proteins. Under steady-state growth, 𝑗 ` balance 

with 𝐽&— 

 𝐽& = 𝑐 ⋅ 𝑗 `, (4.5) 

where 𝑐 is conversion factor from amino acid to protein (taken as constant). Combining Eq. (4.4)-

(4.5) with the growth rate definition, 𝜙8 is also linked with growth rate 𝜆 under flux balance via 

 𝜆 = 𝜙8 ⋅ 𝜈, (4.6) 

where 𝜈 = 𝑘 ⋅ 𝑐. Notice that Eq. (4.6) is only true under flux balance while Eq. (4.3) always holds. 

Under R-limitation, both 𝑓+l'2m7 and 𝜖 change as stated above, while 𝜈 is irrelevant to Cm conc. 

but only reflects nutrient states (3). Combining Eq. (4.6) with the intrinsic constrain Eq. (4.1), we 

get the relationship between 𝜆 and 𝜙& under R-limitation 

 𝜙& = 𝜙*+, −
𝜆
𝜈. 

(4.7) 

Fitting Eq. (4.7) to steady-state measurements as shown in Fig. 4.7b (solid lines), we can then get 

𝜈 and 𝜙*+, for specific nutrient conditions as shown in Table 4.1. (Here 𝜙*+, is a little different 

in different nutrient conditions. For accurately capturing the steady states, we didn’t force the same 

𝜙*+, across various media as previous work (3).) With 𝜈, we can then evaluate scaled nutrient 

influx 𝑐 ⋅ 𝑗 ` based on the change of metabolic proteins during the shift. Notice here 𝜈 is assumed 

to be constant through the whole shift. (In reality, due to allosteric inhibitions, 𝜈 could be vary 

even with the same nutrient source. We will discuss about it more later.) 
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As we know, before Cm is added, 𝑓+l'2m7 is constant and stays high. While Cm is added, it 

brings down 𝑓+l'2m7, leading to a drop in protein synthesis flux 𝐽&. According to the on/off rate of 

Cm, the estimated time to achieve the equilibrium of Cm-Rb binding is within 10mins for various 

concentration of Cm (Fig. 4.6d). Our model does not intend to catch fast metabolic process, so we 

assumed  𝑓+l'2m7 drop to post-shift steady-state value 𝑓+l'2m7JJ  at time 0 when Cm is added. 𝑓+l'2m7JJ  

is determined by post-shift steady-state measurements via Eq. 4.3. With decreased consumption 

rate of amino acids (AAs), AAs accumulates, initiating the reallocation of protein synthesis flux 

towards translational proteins and metabolic proteins. Regulation function 𝜒2 is used to represent 

the fraction of protein synthesis goes to group 𝑖. In other words, 

 𝑑𝑀&

𝑑𝑡 = 𝜒&(𝑡)𝐽&(𝑡) 
(4.8) 

 𝑑𝑀8

𝑑𝑡 = 𝜒8(𝑡)𝐽&(𝑡) 
(4.9) 

Molecularly, 𝜒& and 𝜒8 are directly or indirectly set by the AAs pools via gene regulations (e.x., 

ppGpp signal system as shown in Fig. 4.7a). With much molecular knowledge on the regulatory 

interactions, it’s still impossible to quantitatively characterize it. Considering AAs pool also set 

translational elongation rate 𝜖, we then used 𝜖 as a representative of AAs pool and set 𝜒& and 𝜒8 

(Eq. 4.10 and Eq. 4.11 in Fig. 4.7a).  

The forms of �̂�&(𝜖) and �̂�8(𝜖) are obtained from their steady-state relationship. Under R-

limitation, it was found the elongation rate 𝜖 and 𝜙& follows Michaelis-Menten relationship  

 𝜖 =
𝜖*+,

1 + 𝐾*/𝜙&
, (4.12) 

 shown as the solid line in Fig. 4.7c . Considering 𝜒& ≡ 𝜙& in steady state, Eq. (4.12) also give a 

relationship between 𝜖 and 𝜒& under R-limitation. Now we extended this relation to kinetic region 

and got 
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 �̂�&(𝜖) =
𝐾*

𝜖*+,
𝜖 − 1

 (4.13) 

The extension was done assuming quasi-steady state during transition (fast reaction between 

metabolites comparing to protein synthesis). The value of 𝐾* and 𝜖*+, are listed in Table 4.1. 

Similarly, for �̂�8(𝜖), we extended the steady-state constraint (Eq. 4.1) to transient and got 

 �̂�8(𝜖) = 𝜙*+, − �̂�&(𝜖) = 𝜙*+, −
𝐾*

𝜖*+,
𝜖 − 1

. (4.14) 

The value of 𝜙*+, is taken to be the same as the steady-state value given by Fig. 4.7b as explained 

above. It’s based on the assumption that the 𝜙%'I7$ stays constant during transient. 

The last remaining piece of the picture is the kinetic of translational elongation rate 𝜖. As 

a central dynamic variable, the kinetics of 𝜖 determines the kinetics of gene expressions through 

Eq. (4.13)-(4.14) and biomass accumulations through Eq. (4.2)-(4.3). First, let’s look at the initial 

value of 𝜖 right after shift. Different from protein level or biomass, translational elongation rate 

can jump at our coarse-grained time scale due to the fast change in metabolites. From the drop of 

growth rate at time 0, we can calculate the boost in elongation rate from Eq. 4.3 (Table 4.1). We 

can see that in different Cm downshift cases, translational elongation rate jumped up 2 to 3 fold. 

The increase in translational elongation rate can be understood as a result of sudden increased 

substrates. The actual boost is probably much smaller since 𝑓+l'2m7 doesn’t drop instantaneously. 

The fitted value of boost incorporate the artificial effect of simplified dynamics of 𝑓+l'2m7, so the 

value boosted elongation rate looks much higher than those in steady states, even 𝜖*+,.  

Under the condition when flux is balanced, the dynamics of 𝜖 can be derived through Eq. 

(4.2) and Eq. (4.4) as below 

 𝑑𝜖
𝑑𝑡 =

𝑑
𝑑𝑡 y

𝐽&(𝑡)
𝑓+l'2m7𝑀&(𝑡)

z =
𝑑
𝑑𝑡 y

𝑐 ⋅ 𝑗 `(𝑡)
𝑓+l'2m7𝑀&(𝑡)

z =
𝑑
𝑑𝑡 y

𝜈𝑀8(𝑡)
𝑓+l'2m7𝑀&(𝑡)

z. 
(4.15) 
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Simplifying Eq. (4.15), we got 

 𝑑𝜖
𝑑𝑡 = 𝜖G𝜈�̂�8(𝜖) − 𝜖𝑓+l'2m7�̂�&(𝜖)H, 

(4.16) 

which can be solved with given initial condition of 𝜖. However, from measured instantaneous 

growth rate, the obvious growth rate drop right after Cm addition clearly shows a drop in protein 

synthesis flux. Since 𝑀8  can’t drop instantaneously, the nutrient influx proportional to 𝑀8 

(assuming constant 𝜈) surely surpass the protein synthesis flux during a finite time after Cm is 

added (the yellow shaded area in Fig. 4.8a). During the flux imbalance regime, we can’t use 

Eq. 4.16 to solve the kinetics of 𝜖. Instead, we assumed that 𝜖 stays constant at the boosted level 

until the flux balance is re-gained (Fig. 4.8b). During this regime, 𝜒& is set to be the maximal 

possible value 𝜙*+,  and 𝜒8  is set to be the minimal possible value 0. With the increase of 

translational proteins and the dilution of metabolic proteins, eventually the protein synthesis flux 

balance with the nutrient influx (Eq. 4.5). Then the kinetics of 𝜖 is calculated through Eq. 4.16, 

and 𝜒&  and 𝜒8  is set by �̂�&(𝜖)  and �̂�8(𝜖)  (the hard boundary of 𝜒& < 𝜙*+,  and 𝜒8 < 0  still 

applies). With the time course of 𝜖 being calculated as above, the time courses of 𝑀((𝑡), 𝑀&(𝑡), 

𝑀8(𝑡) can then be solved by integrations. Furthermore, fluxes can be calculated by corresponding 

protein abundance. The model predictions are shown as solid lines in Fig. 4.2-4.4. They nicely 

catch the recovery dynamics under various Cm downshifts. In this model, all the parameters come 

from steady-state measurements except the boost in 𝜖 at time 0 is determined by the sudden drop 

of growth rate at time 0. 

4.3 Discussion 

Figure 4.8 marked a special flux imbalance region in our model when capturing Cm 

downshift. It doesn’t exist for carbon downshift (8) or AA downshift described in Chapter 3-4. 

Here I want to discuss about the physical meaning of the flux imbalance region. It doesn’t 
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necessary mean that amino acids are constantly leaking out during that time period. The more 

accurate statement is that the protein synthesis flux is smaller compare to the ‘maximal nutrient 

influx’ 𝜙8 can provide during that region. Here the ‘maximal influx’ means 𝜙8 is working at the 

same rate as in the steady-state growth, which is exactly the assumption of constant 𝜈 (or 𝑘) we 

made in the model. In reality, while protein synthesis flux can’t match the maximal nutrient influx, 

AAs will accumulate and inhibit the activity of 𝜙8 and lead to a drop in 𝜈 (or 𝑘). In other words, 

nutrient influx may actually balance with protein synthesis flux in all or part of the marked ‘flux 

imbalance region’ in Fig. 4.8. But this effect on 𝜈 won’t affect our model results. If 𝜈 is repressed 

in the flux imbalance region, it means AAs pool must have increased and the substrates for 

translation is more abundant. So it is still reasonable to assume the elongation rate stays high during 

that region. 

Notice different from the model in carbon shift (8) or in AA downshifts, the central 

dynamic variable in this model is translational ER 𝜖. Comparing to previously used 𝜎 (defined as 

𝐽&/𝑀&/), 𝜖 has an clear physiological meaning. That lead to the question whether translational ER 

indeed contains important regulatory information, which is answered in Chapter 5.   

4.4 Methods 

4.3.1 Strain 

E. coli K-12 NCM3722 with lacI deletion (NQ354 in (12)) was the strain used in this 

work. LacZ expression was unrepressed under NQ354 (lacI null) strain. 

4.3.2 growth medium 

 All the growth medium used in this work were based on MOPS buffered media described 

in Cayley et al (31). The medium contains 40mM Mops and 4mM Tricine (adjust to pH 7.4 by 

NaOH), 0.1mM FeSO4, 0.276mM Na2SO4, 0.5μM CaCl2, 0.523mM MgCl2, and also 
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micronutrients mixtures used in Neidhardt et al (22). It was supplied with 50mM NaCl, 1.32mM 

KH2PO4, 10mM NH4Cl and different carbon sources (0.2% glucose or 0.2% fructose). The 

chloramphenicol (Cm) is stocked at 0.1M dissolved in ethanol. When adding Cm, the volume of 

the stock added was maintained to be less than 0.1% of total cell culture. 

4.3.3 cell growth and chloramphenicol addition 

For growth curve measurements, we used turbidostat (Fig. 4.1) for batch culture growth 

and media changes. For β-galactosidase and total RNA quantifications, we grew cells either in test 

tubes or flasks in the shaker with 240 rpm. For both cases, the temperature was maintained at 37°C 

by either warm room or water bath. Both experiments followed a standard three-step cell growth 

round: seed culture, pre-culture and experimental culture. Except for the setting in experimental 

culture, the settings of seed culture and pre-culture were the same for turbidostat experiments and 

shaker experiments. For seed culture, cells were inoculated to LB broth from fresh LB plate and 

grew in the test tube in the shaker for about 7hrs. Afterwards cells were washed and diluted to the 

desired MOPS medium (pre-culture) at starting OD600 around 10-3. For Cm addition experiments, 

the medium for pre-culture is the same as experimental culture but without Cm. After overnight 

pre-culture (grew in test tube in the shaker), cells were then transferred to the same MOPS medium 

and kept growing either in turbidostat or in the test tube/flasks in the shaker (experimental culture). 

Cm addition was executed after cells reached exponential growth in experimental culture.  

The settings for turbidostat experiments were from Suckjoon Jun’s lab. The construction 

details were described in previous papers (64). For this study, all the turbidostat settings were kept 

at the 37°C warm room. Cells from overnight pre-culture was diluted to the same medium in the 

turbidostat tube as shown in Fig. 4.1. The starting OD600 was smaller than 0.01. The volume of 

experimental culture was maintained at 20ml by the waste tubing. Oxygen level was maintained 
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by the constantly pumping the air to the air tubing. Magnetic stirrer kept spinning during the whole 

experiments to avoid any heterogeneities in the culture. 𝑂𝐷6!! was read every 15s at the bottom 

of the tube, above the magnetic stirrer and below the bubbles came out of the air tubing. The 

dilution was set to happen around 𝑂𝐷6!! ≅ 0.4. While the 𝑂𝐷6!! reached the threshold, the fresh 

medium (also at 37°C) came in through the medium tubing and the cell culture were pushed out 

through the waste tubing until the culture was diluted to 𝑂𝐷6!! ≅ 0.1. For exponential growth 

measurements, the medium used for was the same as the medium in the tube. After the first dilution, 

𝑂𝐷6!! was kept between 0.1 and 0.4 all the time. For Cm addition experiments, the medium in the 

tube didn’t contain Cm. The medium used for dilution contained the desired amount of Cm (e.x., 

if shifting to 4uM Cm, then the medium contains 4uM Cm). Cm addition was done between 𝑂𝐷6!! 

0.1 and 0.2 before the cell density first reaching 𝑂𝐷6!! ≅ 0.4, that is, before the first dilution. The 

time it took for manually adding Cm to the tube is less than 2 mins.  

For batch growth in the shaker, cells from overnight pre-culture were diluted to test tube 

or flasks. If not specific, the starting 𝑂𝐷6!! was around 0.01. For exponential growth at growth 

rate smaller than 0.3/hr (e.x., with Cm), we let the pre-culture grow to 𝑂𝐷6!! around 0.4 and then 

diluted to experimental culture with starting 𝑂𝐷6!! around 0.05. For Cm addition experiments, 

Cm was added between 𝑂𝐷6!! 0.1 and 0.2. 

The growth rates measured in turbidostat was consistently higher than the growth rates 

measured in the shaker for the same condition. In order to match the growth measurements with 

the RNA and β-galactosidase measurements, the growth curve data in Fig. 4.2-4.2 was scaled so 

that the steady-state growth rates obtained from turbidostat agree with the steady-state growth rates 

obtained from traditional batch measurements. The scaling factor was 1.1. 
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4.3.4 Total RNA quantification 

The RNA quantification method is based on the method described previously (12).  

4.3.5 β-galactosidase quantification 

β-galactosidase assay was based on the Miller assay with ONPG (ortho-Nitrophenyl-ß-

galactoside) as described previously (12).  
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4.6 Figures 

 

Figure 4.1. Turbidostat setting. The glass tube shown above was used for cell growth, cell density control 
and cell density reading in turbidostat. The cap was tightly sealed to the tube so that any medium or air 
exchange were only implemented by the tubings across the cap. From left to right, the three tubings shown 
above connect to fresh medium, air pump and waste bottles respectively. The medium tubing and air tubing 
each connected to a valve for flux control. The flux through waste tubing was passively set by the pressure 
in the tube. In other words, the length of waste tubing inside the tube controls the height (volume) of the 
cell culture. The length of medium tubing inside the tube was set to be much shorter than the waste tubing. 
The air tubing goes in the cell culture as deeper as possible but not interfere with cell density reading 
(absorbance). The position of 𝑂𝐷*++ sensor was set right above the magnetic stirrer. 
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Figure 4.2. Cm downshift in glucose condition. NQ354 (E.coli K-12, lacI-) is used in OD600, RNA and 
β-galactosidase (represent PlacZ activity) measurements during Cm downshift. (a) Before adding Cm, cells 
were growing exponentially in Mops glucose minimal medium. 4uM Cm (final concentration) was added 
at time 0 to trigger the shift. OD600 (black circle) was obtained by turbidostat. RNA amount per culture 
volume (green diamond) and PlacZ activity per culture volume (red triangle) were both normalized to the 
value at t=0. (b) shows biomass accumulation flux calculated from OD600 (time derivative of OD600) verse 
time. (c) shows instantaneous growth rate verse time. Solid lines in all the plots are model predictions. 
 

 
 
Figure 4.3. Downshift with 8uM Cm addition in glucose medium. 8uM Cm (final concentration) was 
added at time 0 to trigger the shift. OD600 (black circle) was obtained by turbidostat. PlacZ activity per 
culture volume (red triangle) was normalized to the value at t=0. (b) shows biomass flux calculated from 
OD600 (time derivative of OD600) verse time. (c) shows instantaneous growth rate verse time. Solid lines in 
all the plots are model predictions. Same strain was used in this figure as in Fig. 4.2. 
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Figure 4.4. Downshift with 4uM Cm addition in fructose medium. 4uM Cm (final concentration) was 
added at time 0 to trigger the shift. OD600 (black circle) is obtained by turbidostat. PlacZ activity per culture 
volume (red triangle) was normalized to the value at t=0. (b) shows biomass flux calculated from OD600 
(time derivative of OD600) verse time. (c) shows instantaneous growth rate verse time. Solid lines in all the 
plots are model predictions. Same strain was used in this figure as in Fig. 4.2. 
 

 
Figure 4.5. Raw growth data of Cm addition experiment shown in Figure 4.2. From left to right, it 
shows the time course of flux, instantaneous GR and OD600 while adding 4uM Cm to glucose minimal 
medium. Notice the growth rate in turbidostat is higher than that measured from batch experiments. The 
data reported in Figure 4.2 was scaled from the raw data to match the growth rate (Methods). 
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Figure 4.6. Chloramphenicol (Cm) inhibits protein synthesis via decreasing active ribosome fraction. 
(a) shows a cartoon of Cm effects. When a translating ribosome is hit by a Chloramphenicol molecule, it 
can’t bind to its substrate and will get stalled on mRNA. The half life of Rb-Cm complex is 8.25min (17, 
65). Due the the tight binding, most stalled ribosomes won’t finish translation (mRNA degradation, 
ribosomal rescue, etc.). The stalled ribosomes are then considered as inactive ribosomes that won’t 
contributed to protein synthesis in our model. 𝑓7M&=N% (active ribosomal fraction) is used to describe the 
percentage of active ribosomes over all the ribosomes. (b) Compares estimated steady-state 𝑓7M&=N% from 
Cm dissociate constant with calculated 𝑓7M&=N% from measured growth rate, RNA/protein ratio (represents 
total Rb mass fraction) and translation elongation rate (ER) in glucose condition through Eq. 4.3. Data from 
(17). (c) came from (17), showing that ER is either constant or increased under Cm treatments. Different 
color represent different carbon source. ER here only means ER of complete proteins. (d) shows simulated  
kinetics of 𝑓7M&=N% upon Cm addition from the on/off rate of Cm. 
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Figure 4.7. Cm downshift model. (a): Bacterial proteome are coarse-grained into 3 parts: metabolic 
proteins (catabolic and anabolic proteins), translational proteins (ribosomal and co-regulated translation-
affiliated proteins) and others (fixed core proteins that are Cm-independent) based on Scotts 2010. 
Metabolic proteins convert external nutrient source to amino acids, which are used as substrates of 
translational proteins. Amino acid synthesis flux 𝑗CC is proportional to the abundance of metabolic proteins 
𝑀' and efficient rate 𝑘 that is only determined by nutrient conditions as shown in the main text. Protein 
synthesis flux 𝐽! depends on abundance of translational proteins 𝑀!, active ribosomal fraction 𝑓7M&=N% and 
translational elongation rate 𝜖 as shown in the main text, where 𝑓7M&=N% is assumed to drop to the post-shift 
steady-state value 𝑓7M&=N%OO  instantaneously when Cm is added. Drop of 𝑓7M&=N% lowers protein synthesis flux. 
AA pool increases as a results, initiating reallocation of protein synthesis flux towards metabolic proteins 
(𝜒') and translational proteins (𝜒!) via gene regulation through ppGpp (14, 45, 66). Molecularly, AA pool 
also directly impact translational elongation rate 𝜖. Taking the idea of dimension reduction from FCR model 
(8), 𝜖 is used as a representative of AA pool and set the global regulation function 𝜒! and 𝜒' as shown in 
Eq. (4.10) and (4.11). The forms of �̂�!(𝜖) and �̂�'(𝜖) are obtained from steady-state relationships. (b) 
Measured steady-state relationship between R/P (represent 𝜙!) and GR under R-limitation (blue triangle: 
fructose, red square: glucose). Data from (17). Black circles are data under C-lim for comparison. Solid 
lines are linear fit to Eq. 4.7. Parameters 𝜙,78 and 𝜈 are obtained via the fitting. (c) Measured steady-state 
relationship between mass fraction of translational proteins (𝜙!) and translational ER (in unit of aa/s) under 
C-lim (black circles) and Cm treatment (colored circles). Data from (17). Solid line is a fit to Michaelis-
Menten relation (Eq. 4.12). (𝜖,78 used in our model later absorbed the factor of 𝛼/𝑛!" to be consistent.) 
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Figure 4.8. Model predictions of flux, translational ER and regulation functions changes with time 
for the shift in Figure 4.2. Flux imbalance region is yellow shaded in (a)-(d). (a) shows the AA synthesis 
flux (green dash line) and protein synthesis flux (black solid line), both normalized to biomass (OD600), 
during Cm downshift. Here for easy comparison, 𝐽CC = 𝑐 ⋅ 𝑗CC. (b-c) shared the same x-axis as (a). Right 
after Cm added (t=0), 𝐽! has an immediate drop (marked by a 4-point star). The decrease in 𝐽! is determined 
by the drop in 𝑓7M&=N%(fixed by post-shift steady-state GR) and the jump in translational ER (marked by 4-
point start in (b)). ER right after shift is chosen so that the predicted drop in 𝐽! match the experimental data. 
𝐽CC, however, changes continuously after Cm addition (a), leading to a flux imbalance region marked with 
yellow background in (a-d). When flux is not balanced, Eq. 4.16 can’t be applied to described the change 
in 𝜖. 𝜖 is set to be constant as shown in (b). (c) shows the time course of regulation function 𝜒9 (solid purple 
line) and 𝜒! (solid blue line). They are functions of 𝜖 with their natural boundary 0 ≤ 𝜒' , 𝜒! ≤ 𝜙,78. (d) 
gives an intuitive view of flux in different stages of Cm downshift with arrow size representing flux 
abundance (purple arrow: 𝐽CC, blue arrow: 𝐽!). 

 

4.7 Tables 

Table 4.1. Parameter table for Fig. 4.2-4.4. 

 Glu+4uM Cm Glu+8uM Cm Fru+4uM Cm 
𝜆2 0.977 0.98 0.69 

𝜙*+, 0.49 0.49 0.3976 
𝜈 3.512 3.512 2.7872 

𝜖*+,(
1
ℎ𝑟) 

10.7 10.7 10.7 

𝐾5 0.088 0.088 0.088 
𝜆= 0.536 0.25 0.33 

boost 2.27 3.3 2.8 
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Chapter 5  

Cellular perception of growth rate and 

mechanistic origin of bacterial growth laws 

5.1 Abstract 

Bacteria organize many activities according to their grow rate via the ppGpp signaling 

system. Yet it is not clear how this signaling system “knows” how fast cells grow. Through 

quantitative experiments, we show that ppGpp responds inversely to the rate of translational 

elongation in E. coli. Together with its roles in inhibiting ribosome biogenesis and activity, ppGpp 

closes a key regulatory circuit that enables the cell to perceive and control the rate of its growth 

across conditions. The celebrated linear growth law relating the ribosome content and growth rate 

emerges as a consequence of keeping a supply of ribosome reserves while maintaining elongation 

rate in slow growth conditions. Further analysis suggests the elongation rate itself is detected by 

sensing the ratio of dwelling and translocating ribosomes, a strategy employed to collapse the 

complex, high-dimensional dynamics of the molecular processes underlying cell growth to 

perceive the physiological state of the whole. 
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5.2 Introduction 

In the past decade, much efforts have been devoted towards characterizing and 

understanding the allocation of bacterial proteome across different growth conditions (2, 3, 7, 33, 

67, 68). Central to the bacterial proteome allocation strategy is the approximate linear increase of 

the ribosome content with growth rate (69–71), when growth is varied by using different nutrients. 

This classic bacterial “growth law” is rationalized by Maaloe in term of the need of more ribosomes 

to synthesize proteins to achieve faster growth rate, when the rate of translational elongation by 

ribosomes is saturated9. This strategy of producing ribosomes “as needed” in different growth 

conditions forms the basis of the optimal resource allocation strategy, which posits that cells 

allocate its resources (the proteome in this case) in such a way to maximize its growth (26, 68). 

However, it is actually long known that the translational elongation rate itself varies across growth 

conditions (72), which poses a challenge to the rationalization by Maaloe. Moreover, it is known 

that in conditions where cells are hardly growing, a significant pool of ribosome (the “ribosome” 

reserves) is kept idle, presumably for rapid transition to fast growth when favorable growth 

conditions returns (1, 73, 74). Intriguingly, the ribosome reserve kept by cells is not limited to slow 

growth, but maintained at a constant amount above the minimum needed across growth rates (3, 

74, 75). This behavior again challenges the notion of optimal resource allocation for the current 

growth condition. 

 One approach towards understanding the bacterial proteome allocation strategy is to 

follow its regulatory mechanisms, to see how the linear growth law is implemented 

mechanistically. This involves the sensing and control of the cell’s growth rate, since proteome 

allocation strategy is strongly dependent on the growth rate. Towards this end, we note that 

Guanosine tetraphosphate (ppGpp) (76) is a key signaling molecule involved in bacterial response 
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to environmental changes and in coordinating growth-rate dependent responses (27, 66, 77, 78). 

ppGpp signaling has been extensively studied (14, 27, 66, 78–81), both for mechanisms 

contributing to its synthesis and degradation, and for its downstream effects on hundreds of genes 

(25, 47, 82, 83), including the synthesis (84, 85) and activity (66, 80) of the translation machinery. 

Without a doubt, ppGpp-signaling plays a crucial role in responding to the cellular growth rate. 

Yet, despite the wealth of information at the molecular level, quantitative understanding of how 

bacteria perceive the state of cell growth is lacking. Here we reveal the underlying signaling 

strategies employed by E. coli to perceive and respond to growth, established through a series of 

experiments in which ppGpp and other key physiological variables are quantitatively measured. 

These strategies provide important insight on the initial question on bacterial proteome allocation 

strategy as we will discuss at the end. 

5.3 Results 

5.3.1 A simple, robust relation between ppGpp and translational elongation rate 

During environmental changes such as diauxic shifts, E. coli responds by producing ppGpp 

(86). Fig. 5.1a shows a typical diauxic growth curve in minimal medium containing glycerol and 

a small amount of glucose as the only carbon sources: cells grow exponentially on glucose without 

utilizing glycerol until glucose is depleted (10), followed by a period of growth arrest 

(approximately 40-50 min in this case), before fully resuming growth on glycerol. We followed 

the kinetics of ppGpp accumulation by performing such growth transition experiments in the 

presence of 32P-orthophosphate. Throughout the transition, labelled nucleotides were extracted and 

resolved by thin-layer chromatography (Fig. 5.1b). The ppGpp level relative to that of steady-state 

growth in glucose, denoted as 𝑔(𝑡), increased by over 8-fold within the first 10 min of glucose 

depletion before relaxing to a new steady-state level (Fig. 5.1c).  
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We also characterized changes in the translational elongation rate (ER, denoted by 𝜀) 

during the growth recovery period by assaying for the delays in LacZ induction, as previous studies 

have established that ER determined from LacZ is representative of that of typical proteins (17, 

87), and single-molecule study of translation kinetics in vivo suggested little variation in ER in the 

absence of antibiotics (88, 89). Using the induction time obtained at various time 𝑡 (Fig. 5.6a-c) 

and taking into account of the initiation time which showed little variation (Fig. 5.7), the 

instantaneous ER, 𝜀(𝑡), was deduced throughout the transition period (Fig. 1d, Fig. 5.6d). The data 

shows an abrupt drop in ER immediately following glucose depletion and a gradual recovery 

before growth resumed. During the period of growth arrest, the time course of 𝜀(𝑡)	strikingly 

mirrored that of the relative ppGpp level 𝑔(𝑡) (Fig. 5.1c). Scatter plot of the ppGpp level with the 

reciprocal of ER exhibits a striking linear relation (Fig. 5.6e). Defining the value of the 

extrapolated ER at 𝑔 = 0 to be 𝜀*+,, the maximum elongation rate (to be justified below), the 

empirical relation between the relative ppGpp level and ER can be expressed as  

𝑔 = 𝑐 ⋅ �
𝜀*+,
𝜀 − 1� (5.1) 

where 𝜀*+, ≈ 19.4	𝑎𝑎/𝑠 and 𝑐 ≈ 4.0; see Fig. 5.1e. 

Since the ppGpp level and ER are both known to change with the cellular growth rate (13, 

17), we further examined their mutual relationship during steady-state growth. We grew E. coli 

with different nutrient composition at growth rates ranging from 0.13 h-1 to 0.96 h-1 (Table 5.1) 

and measured the steady-state ppGpp levels relative to that in glucose, as well as the corresponding 

translational elongation rates; see Methods. As growth rate was reduced, ppGpp levels increased 

while ER decreased, (Fig. 5.2a, 5.2b, red squares), consistent with earlier reports (13, 17) 

Additionally, ER has recently been shown to increase in the presence of sub-lethal amounts of 

chloramphenicol (Cm) (17). Accordingly, we observed ppGpp levels to decrease and ER to 
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increase during steady-state growth in the presence of increasing doses of Cm (Fig. 5.2a, 5.2b, 

green triangles). Owing to the difficulty of detecting low ppGpp levels, we used a ∆ptsG strain 

(NQ1261) (17) which has reduced glucose intake and thereby shows elevated ppGpp levels in the 

absence of Cm. This strain allowed us to quantify changes in ppGpp level and compare it to the 

changes in ER under Cm treatment. Scatter plot of the steady state ppGpp level with the reciprocal 

of ER under carbon limitation again exhibited a linear relation (red squares, Fig. 5.2c).  Moreover, 

those from Cm-inhibited cells fell on the same linear relationship (green triangles). Strikingly, this 

is the same relationship as the one observed during the diauxic shift (compare with blue circles in 

Fig. 5.2d), i.e., Eq. (5.1) with the same intercept and proportionality constant.  

5.3.2 Regulatory circuit mediated by translation rate links ppGpp quantitatively to growth 

rate 

A steady state relationship between ER and ppGpp level allows the cell to link ppGpp 

uniquely to the steady state growth rate via a simple regulatory circuit (Fig. 5.3):  Due to negligible 

rate of protein turnover (90, 91), the rate of protein synthesis is given by the product of ER and the 

total number of active (translating) ribosomes per cell, 𝑁&+l'. During exponential growth at rate 𝜆, 

the total peptide synthesis rate is 𝜆 ⋅ 𝑀(, where 𝑀( is the total protein mass per cell (in unit of the 

mass of an amino acid). The number of active ribosomes is the difference between the total number 

of ribosomes per cell (𝑁&) and the number of inactive ribosomes per cell (𝑁&2.+l'). Thus, 

𝜆𝑀( = 𝜀 ⋅ G𝑁& − 𝑁&2.+l'H. (5.2) 

The ratio 𝑁&/𝑀( , which is proportional to the cellular ribosome concentration (since 𝑀(  is 

proportional to the cell volume (1)), is set by the ppGpp level through regulation of rRNA 

expression (85). We take this regulatory function to be 

𝑁&/𝑀( ≡ 𝑅(𝑔) = 𝑎/𝑔 (5.3) 
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(with an unknown constant 𝑎) since the RNA/protein mass ratio, which is proportional to 𝑅, scales 

as 1/𝑔; see Fig. 5.4a. The inactive ribosome concentration, which is proportional to 𝑁&2.+l'/𝑀(, 

is difficult to quantify directly but can arise due to two potential effects of ppGpp. (i) the binding 

of ribosomes to various ribosome hibernation factors, e.g., Rmf, Hpf, and RaiA(92–94), the 

abundances of the latter proteins all increase linearly with the ppGpp level as growth rate is reduced 

by limiting carbon uptake (Fig. 5.8) and (ii) the inhibition of the translation initiation factor 

IF2(95–97). Accounting for these roles leading to ribosome inactivation, we assume the form  

𝑁&2.+l'/𝑀( ≡ 𝐻(𝑔) = 𝑏 ⋅ 𝑔 (5.4) 

for simplicity, with another unknown constant 𝑏.  

Putting together the form of the regulatory factors in Eqs. (5.3) and (5.4) into Eq. (5.2) 

leads us to a relationship between the growth rate and the ppGpp level for exponentially growing 

cells:  

𝜆 = 𝜀(𝑔) ⋅ G𝑅(𝑔) − 𝐻(𝑔)H = 𝜀(𝑔) ⋅ y	
𝑎
𝑔 − 𝑏 ⋅ 𝑔	z. (5.5) 

where 𝜀(𝑔) = 𝜀*+,/(1 + 𝑔/𝑐)  is obtained from the steady-state relation between 𝜀  and 𝑔 

(Fig. 5.2d), which is mathematically the same as inverting Eq. (5.1). The two constants 𝑎 and 𝑏 in 

Eq. (5.5) specify the magnitudes of the two regulatory interactions. With appropriate choices of 

these two constants, the simple model defined by Eq. (5.5) is able to quantitatively capture all the 

observed correlations among the growth rate 𝜆, the ppGpp level (𝑔), the ribosome content (𝑅), and 

the elongation rate (𝜀) under nutrient limitation (Fig. 5.4b-e), with model predictions based on 

best-fitted values of 𝑎 and 𝑏 shown as solid lines. In particular, the model recapitulated the well-

known inverse relation between the growth rate and ppGpp level (Fig. 5.4b) (13, 98). This 

illustrates the general principle that the cell can perceive its own growth rate by incorporating the 

sensing of ER (Eq. (5.1)) into a simple regulatory circuit (Fig. 5.3) that controls the active ribosome 
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content by the sensor. Equally importantly, the simple correspondence between the growth rate 

and ppGpp level enables the cell to implement growth-rate dependent control of many cellular 

functions, ranging from metabolism to cell division control, by simply using ppGpp to control the 

expression of the relevant genes (64, 77, 82, 99, 100). In a previous study on bacterial growth 

control by Erickson et al (8), an ansatz was introduced in which the translational activity	(𝜎 ≡

𝜆/𝑅) was used to control gene expression during diauxic shifts. The results here establish a one-

to-one relation between 𝜎 and 𝑔 (Fig. 5.9), thereby justifying the ansatz used in (8). 

5.3.3 Linear bacterial growth law obtained with a special condition on elongation rate 

At a quantitative level, our model captured the approximate linear relation between the 

ribosome content and the growth rate (Fig. 5.4c), the celebrated growth law discovered long ago 

(69, 71, 101). Additionally, the model captured the Michaelis-like relation between the ER and the 

ribosome content (Fig. 5.4d), substantiated with extensive data collected from many conditions as 

reported in Dai et al (17). Notably, a fit of the data to the Michaelis-Menten relation (Fig. 5.10) 

recovers a maximum elongation rate (20.0 ± 1.9  aa/s) that is indistinguishable from 𝜀*+, =

19.4 ± 1.4 aa/s defined by taking 𝑔 → 0 in Eq. (5.1) (Fig. 5.6e). Finally, the model captures the 

weak dependence of the elongation rate at different growth rate (Fig. 5.4e), with the minimal ER 

in slow growth condition, denoted by 𝜀!, whose value is close to one-half of 𝜀*+,.  

The emergence of a simple linear relation between the ribosome content R and the growth 

rate 𝜆 is surprising, given the nonlinear regulatory effects exerted by ppGpp (Eq. (5.5)). In fact, a 

variety of relationships among these quantities is possible for generic values of 𝑎 and 𝑏 (Fig. 5.11). 

However, if the regulatory parameters 𝑎 and 𝑏 are such that the ratio 𝜀!: 𝜀*+,, is exactly one-half, 

then mathematically the model yields an exact linear relation between 𝑅 and 𝜆, with the slope 

given by 1/𝜀*+, , and an exact Michaelis-Menten relation between the ER and the ribosome 
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content, with the maximal ER being 𝜀*+, (Appendix 1). Thus, to the extent that Eqs. (5.3) and 

(5.4) capture the forms of the regulatory functions, prescribing the appropriate regulatory 

parameters 𝑎  and 𝑏  to enforce 𝜀!  being approximately one-half of 𝜀*+,  is necessary for the 

emergence of the approximate linear growth relation between the ribosome content and the growth 

rate. (We have separately shown that adding offsets to the simplest forms of the regulatory 

functions used in Eqs. (5.3) and (5.4) do not affect the quality of the fit; see Fig. 5.12.) 

Maintenance of ER above a minimal level is clearly of physiological importance, as too 

low an ER would lead to problems in the processivity of protein synthesis (102, 103). Another 

physiological requirement is the maintenance of a sufficient ribosome reserve at slow growth, 

denoted by 𝑅!, needed for rapid growth recovery when favorable nutrient conditions return (1). 

Both physiological requirements are satisfied by employing hibernation factors to inactivate 

ribosomes. By employing both positive and negative regulation through distinct promoters 

(Fig. 5.3), the cell can readily attain the required values of 𝜀! and 𝑅! by simply prescribing the 

regulatory parameters 𝑎  and 𝑏 ; see Fig. 5.13 and Appendix 1. To keep 𝜀!  high while also 

maintaining a ribosome reserve is possible in principle; see Fig. 5.14. With high ER (e.g., above 

90% of 𝜀*+,, dashed line in Fig. 5.14a), the ribosome content would even be moderately reduced 

at fast growth rate (Fig. 5.14b), a fitness benefit from the proteome allocation perspective (104, 

105).  However, this strategy would also require significant improvement in detecting very short 

translational dwell time (right axis, Fig. 5.14d). Thus, the choice of using 𝜀! ≈ 𝜀*+,/2 may reflect 

a compromise between the physiological demand for keeping 𝜀*2.  high and the molecular 

constraint for detecting small changes in ER in order to sense slow growth and enforce growth-

rate dependent regulation.   
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5.3.4 Mechanism of sensing the translational elongation rate 

It is important to point out that the steady-state results presented here (Eq. (5.5) and Fig. 5.3) 

depend only on the existence of the empirical relation given by Eq. (5.1). We now return to discuss 

the causal link and the mechanistic origin. Towards this end, the first question to address is whether 

ppGpp or ER is the primary driver of this response. One scenario is that ppGpp rises in response 

to some unknown “starvation signal” and the resulting increase in ppGpp then reduces the ER. 

However, we will show shortly below that a mutant in which ppGpp does not rise instantaneously 

still exhibits a strong immediate drop in ER. An alternative scenario is that the drop of ER occurs 

first, and this drop is itself the signal that drives up ppGpp. The latter scenario is supported by 

metabolomic study which found the amino acid pools (and particularly the glutamate pool) to drop 

sharply and immediately following glucose runout (106), thus imposing obligatory reduction in 

ER. Sensing the drop in ER could therefore be an effective strategy to sense the nutritional status 

of the cell.   

We next examine the form of the response (5.1) in terms of the known mechanisms of 

ppGpp synthesis and degradation. It will be convenient to re-express ER and 𝜀*+, in Eq. (5.1) in 

terms of the elemental steps of the translation cycle (Fig. 5.5a): a time 𝜏4n7>> where the ribosome 

dwells on the A-site waiting for the cognate charged tRNA, and a time 𝜏'$+.J for peptidyl transfer 

and translocation to the next codon. This changes Eq. (5.1) to 𝑔 = 𝑐 ⋅ 𝜏4n7>>/𝜏'$+.J , with the 

maximal elongation rate 𝜀*+, = 𝜏'$+.J<0  identified with the case where 𝜏4n7>> → 0. (Incidentally, 

the special limit of elongation rate at slow growth being one-half of 𝜀*+, corresponds simply to 

𝜏4n7>> = 𝜏'$+.J at slow growth.) 
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Next, detailed analysis based on flux balance (Appendix 2) establishes a simple relation 

between two pools of actively translating ribosomes, those in the dwelling state (of concentration 

𝑅4n7>>) and those in the process translocation (of concentration 𝑅'$+.J):   

𝑅4n7>> ⋅ 𝜏4n7>><0 = 𝑅'$+.J ⋅ 𝜏'$+.J<0 	, (5.6) 

Eq. (5.6) is simply a condition of detailed balance between the flux of ribosomes transitioning 

from the dwelling state to the translocation state, and the flux transition from the translocation state 

back to the dwelling state, with 𝑅4n7>> + 𝑅'$+.J = 𝑅+l' being the total concentration of actively 

translating ribosomes. In terms of these ribosome pools, Eq. (5.1) then becomes 

𝑔 = 𝑐 ⋅ 𝑅4n7>>/𝑅'$+.J	, (5.7) 

i.e., the ratio of the two pools of ribosomes.  

In a simple model of ppGpp comprised of rapid equilibration between synthesis and 

degradation such that 88&𝑔 = 𝛼 − 𝛽 ⋅ 𝑔, the ppGpp level is given by the ratio of the synthesis rate 

(𝛼) and the specific degradation rates (𝛽). A simple scenario giving rise to the empirical relation 

(5.1) or (5.7) is therefore to have the synthesis rate 𝛼 ∝ 𝑅4n7>>   and the degradation rate 𝛽 ∝

𝑅'$+.J. The effect of dwelling ribosomes on ppGpp synthesis is well-supported molecularly based 

on the known structure of the ppGpp synthetase RelA in complex with the ribosome (107, 108) as 

well as earlier biochemical studies (109, 110), which find that RelA is activated (i.e., synthesizing 

ppGpp) only when it is complexed with an uncharged tRNA together at the A-site, i.e., when the 

ribosome is in the dwelling state (Fig. 5.5b left). Less is known about ppGpp degradation, which 

is solely catalyzed by SpoT in E. coli (78, 111). The empirical relation (5.1) excludes a model with 

constitutive hydrolysis of ppGpp by SpoT (Appendix 2) and instead predicts SpoT hydrolysis 

activity to be stimulated by the translocating ribosomes (Fig. 5.5b right). Consistent with these 

ideas, we find deletion of relA to disrupt the linear relationship between ppGpp and ER during the 
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diauxic transition (Fig. 5.16), with the remaining nontrivial ppGpp dynamics attributed to the 

response of SpoT, which is also the only other enzyme capable of ppGpp synthesis in E. coli (78, 

81). [In this strain, a much slower accumulation of ppGpp occurred following glucose runout 

compared to the wild type (Fig. 5.16b); yet ER dropped more and for a longer period, thus negating 

the afore-mentioned scenario that the drop of ER could be a result of ppGpp accumulation.]  

Intriguingly, relA deletion has no effect on either the ppGpp level or the elongation rate in 

steady state growth (Fig. 5.17), consistent with the knowledge that RelA is not essential during 

steady-state growth (13). The maintenance of the relationship (5.1) by the ∆relA strain can only be 

attributed to SpoT. Given Eq. (5.7), our data thus suggest that in steady state, SpoT has acquired 

the ability to sense both the dwelling and translocating ribosomes, in ways that it is not capable of 

during transient shift.  How SpoT may sense different states of the ribosome is however not known. 

While there is some evidence of SpoT associated with the ribosome (112), the functional 

significance of this association is unclear. It is likely that this process is aided by some unknown 

mediators which interact with the ribosomes in ways analogous to RelA (Fig. 5.5b) and convey 

that information to SpoT.  

5.4 Discussion 

Coordination of bacterial behaviors with growth rate is widely observed (7, 64, 113, 114). 

While the ppGpp signaling system is known to be central to the growth-rate dependent responses 

(27, 77), how growth rate is perceived and used for regulation is not known at the quantitative 

level. Our work establishes a missing central element in E. coli’s strategy to perceive its state of 

growth and respond to it: Changes in nutrient environment is immediately reflected in the rate of 

translational elongation, and this in turn sets the ppGpp level within a time scale of 5-10 mins 

(Fig. 5.1). ppGpp’s well-established regulation of the ribosome content and activity, together with 



 128 

its robust relation with the elongation rate (Fig. 5.3), then forges a unique relation between ppGpp 

and growth rate since the latter is given quantitatively by the product of active ribosomes and their 

elongation rate.  

As translational elongation is affected by many metabolic processes in the cell, monitoring 

the elongation rate is an effective strategy to diagnose the state of cell growth independently of 

specific nutrient bottlenecks. This is the origin of the generality of the phenomenological growth 

laws, i.e., why the same quantitative relation between the ribosome content and the growth rate is 

sustained regardless of whether cell growth is limited by carbon supply (3, 12, 69), nitrogen supply 

(115), partial auxotrophy (7, 12), or drugs which inhibits tRNA charging (116). This mechanism 

also predicts generally that for perturbations not captured by a repartition of the two ribosomal 

states, including antibiotics (17, 117), phosphate limitation (115) and lipid stress (118), growth rate 

perception is distorted and the linear relation between ribosome content and growth rate is altered.  

One surprising finding of our analysis is the important role played by factors that inactivate 

the ribosome. These factors control the amount of ribosome reserve kept by cells at slow growth 

(119), and the ribosome reserve is important because it affects the rapidity of growth recovery 

when good growth condition returns (1, 73, 74, 119). However, the necessity of employing 

ribosome inactivating factors can only be appreciated in light of cell physiology at slow growth: 

If inactivating factors are not used, then keeping a finite ribosome reserve would require the 

translational elongation rate to drop to low levels in slow growth conditions, leading to problems 

in protein synthesis68. Thus, these inactivating factors serve as an effective tool to maintain 

elongation rate while setting aside ribosome reserve at slow growth. 

Nevertheless, the deployment of these factors complicates the overall regulation of active 

ribosomes, making it difficult to understand how the well-known linear relation between ribosome 
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content and growth rate arises. Our analysis shows that the linear relation emerges for a special 

choice of regulatory parameters such that the elongation rate at very slow growth is one-half of the 

maximal elongation rate, or alternatively, the time a ribosome spends in the dwelling state of the 

translation cycle is not longer than the time it spends in the translocating state, i.e., 𝜏4n7>> < 𝜏'$+.J. 

It should be noted that this implementation of the linear ribosome-growth rate relation is very 

different from the existing ideas, based e.g., on a Michaelis-relation between translational factors 

and the elongation rate (75), or on optimizing the steady-state growth rate (26, 68). Regarding the 

former, this work shows that the appearance of a Michaelis relation between the translational 

factors and the elongation rate (17) is actually a consequence of regulation involving the ribosome 

inactivating factors. Regarding the latter, the existence of ribosome reserve which is detrimental 

to steady state growth but needed for rapid transition from slow to fast growth, is typically glossed 

over in optimization theories. However, the specific mechanism used to set the reserve, i.e., the 

use of ribosome inactivating factors which are needed for maintaining a finite elongation rate in 

the presence of inactive ribosomes, and which produces a constant “offset” (𝑅!) in the linear 

ribosome-growth rate relation across the entire growth rate range, calls into question the popular 

notion that the linear ribosome-growth rate relation is predominantly driven by the optimization 

of steady-state growth. Instead, it suggests that setting aside a pool of ribosomes as a reserve is 

something specific that the cell intends to accomplish in its proteome allocation strategy, despite 

having a cost to the steady-state growth rate.  

Turning to the mechanisms for sensing the translational elongation rate, our data and 

analysis show that it is based on the ratio of translating ribosomes in their two alternating states 

(Fig. 5.5). Sensing of the dwelling ribosomes fits well with the elaborate molecular design known 

for RelA (81, 110). However, our analysis suggests that this RelA-based mechanism is insufficient 
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by itself: As RelA is not required in steady state, ppGpp synthesis activity by SpoT must somehow 

also be able to respond to dwelling ribosomes. The synthesis activity of SpoT was recently shown 

to be correlated with the levels of acetyl phosphate, a glycolytic intermediate (120). But glycolytic 

flux is not necessarily a proxy for dwelling ribosomes. While SpoT has been shown to interact 

with ribosome associated proteins70, currently it remains unclear what interactions can enable 

SpoT to sense dwelling ribosomes. Moreover, even in the presence of RelA, the empirical relation 

observed between ppGpp and elongation rate during growth transition requires additional 

regulation by SpoT (Appendix 2). Finer details of the ppGpp signaling system may be revealed by 

quantifying how the ppGpp-ER relation is modified for various combinations RelA and SpoT 

mutants in future studies. 

At a broader level, this study provides a rare, trackable example of how cells perform 

dimensional reduction at the molecular level to attain crucial physiological information at the 

cellular level (121). The key “trick” E. coli uses to collapse the high-dimensional complexity of 

the metabolic state of a cell, e.g., involving 20 amino acid synthesis pathways and the charging of 

over 60 tRNAs (Fig. 5.5c), is to take advantage of detailed balance between the two alternating 

states of the elongation ribosome, so that the ratio of the ribosome dwelling and translocation time, 

which reflects a weighted average of the tRNA charging ratios, can be deduced from the ratio of 

the dwelling and translocation pools of ribosomes regardless of molecular details (Fig. 5.5a, b and 

Appendix 2). Identifying and elucidating further instances of such strategies of dimensional 

reduction employed by cells will be instrumental in fundamentally advancing our understanding 

of the connection between molecular interaction and cellular physiology for prokaryotes as well 

as for eukaryotes. 



 131 

5.5 Methods and Materials 

5.5.1 Growth media composition and culture conditions 

Steady-state and growth transitioning cultures were grown in MOPS based minimal media 

(122) supplemented with various carbon sources and chloramphenicol as indicated in Table 5.1. 

All cultures were grown at 37°C with shaking at 250 rpm. For every experiment, culturing was 

carried out through sequential propagation of seed cultures in LB, pre-cultures in the experimental 

medium, and the experimental cultures. Single colonies from fresh LB agar plates were first grown 

in LB broth for 6 hrs as the “seeding culture”. In the pre-culturing step, depending on the 

experiment, cells from seeding cultures were diluted into appropriate media such that the pre-

cultures would still be in exponential growth phase after overnight growth. Media used for pre-

culturing in steady-state experiments were same as the experimental media (Table 5.1). For the 

glucose to glycerol transitions, optical density was monitored at 600 nm (OD600) to follow the 

growth transition kinetics. Pre-cultures were grown in medium supplemented with 20mM glucose 

and 20mM glycerol, to avoid glucose run-out during the pre-culturing step. Exponentially growing 

pre-cultures were then diluted in the appropriate experimental medium (pre-warmed) at an initial 

OD600 of ~0.005 and various measurements were carried in the OD600 range of 0.1-0.4.  

5.5.2 Strain construction 

Wild type E. coli K-12 NCM3722 (29, 30) and its derivatives were used in this work. 

HE838 (∆relA) was constructed using the λ-Red recombinase method (123) as follows. The km 

resistance gene was amplified from pKD13 using chimeric oligos relA1-P1 and relA2-P2 

(Table 5.2). The PCR products were electroporated into NCM3722 cells expressing Lambada-Red 

proteins encoded by pKD46. The Km resistant colonies were confirmed by PCR and sequencing 

for the replacement of the region harboring relA by the km gene. 



 132 

5.5.3 Translation elongation rate (ER) measurement 

ER was measured using LacZ as a reporter as described in Dai et al (17) with modifications. 

Depending on the experiment, 10 ml cultures were either grown in different steady state conditions 

or as undergoing glucose to glycerol growth-transition. When cultures reached OD600=0.4 (for 

steady-state growth) or at specific time-points during the growth transition, 5 mM isopropyl-β-D-

thiogalactoside (IPTG) was added to induce the lac operon. Immediately after induction, 500 ml 

samples were taken at 10 s or 15 s intervals to pre-cooled (−20℃) tubes with 20 ml of 0.1M 

chloramphenicol and then rapidly frozen by dry ice. Samples were stored at -80℃ before beta-

galactosidase assay. 4-methylumbelliferyl-D-galactopyranoside (MUG, a sensitive fluorescence 

substrate) was used to measure LacZ activities in this work. Briefly, each sample was diluted by 

Z-buffer by 5-fold and added to 96-well plate to a volume of 200 ml. Plate was warmed at 37℃ 

for 10 mins before adding MUG. Tecan (SPARK) plate reader was used for MUG injection and 

fluorescence readings. 20 ml of 2mg/ml MUG was injected to each well and fluorescence intensity 

(365nm excitation filter, 450nm emission filter) was measured every 4 mins for 2 hours. In the 

linear range of fluorescence intensity vs time plot, a linear fit was applied to obtain the slope as 

the relative LacZ activity for each sample. By plotting the square root of the relative LacZ activity 

above basal level against time (124) (Schleif plot), the lag time for the synthesis of the first LacZ 

molecule (𝑇=2$J') was obtained for each sample; see Fig. 5.6a-c). Similar measurements using the 

𝛼-complement of LacZ (strain NQ1468, (17)) allows us to estimate the translational initiation time; 

see Fig. 5.7. The ER measured in this work was found to be slightly higher than that reported by 

Dai et al (17), likely due to the higher sensitivity of the substrate MUG compared to ONPG as 

used previously (17). 
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5.5.4 ppGpp measurement 

ppGpp measurements were carried out as described by Cashel (125) with minor 

modifications. Typically, experimental cultures were grown in 3ml volumes. Labelling was carried 

out when the experimental cultures grew to OD600 = 0.02 by adding 0.1mCi 32P-orthophosphate 

(Perkin Elmer) per ml culture. For steady-state growth, 20 μl aliquots were drawn at various OD600 

values between the range 0.1-0.4 (see Fig. 5.18a), and added to an equal volume of pre-chilled 10% 

formic acid. For cultures undergoing diauxic shift, 20 μl aliquots were drawn at various time points 

during the transition, and added to an equal volume of pre-chilled 10% formic acid. Formic acid-

extracts were spun down at 13k rpm for 10 minutes and a total of 2 μl supernatant was spotted 

0.5 μl at a time near the base of a PEI-Cellulose F thin layer chromatography plate (Millipore). 

The spots were dried and nucleotides were resolved using freshly prepared 1.5M KH2PO4 (pH 3.4). 

The TLC plates were dried and exposed to a phosphorimaging screen for 24-36 hours. 

Chromatograms were imaged using a Typhoon FLA 9500 scanner (GE) and analyzed using Fiji 

software. For steady state growth conditions, the slope of ppGpp signal intensities versus OD600 

were compared among different cultures to obtain the relative ppGpp levels, as shown in Fig. 5.18c. 

For any batch of measurements, the ppGpp level from a sample of NCM3722 growing steadily in 

MOPS glucose was always included as a reference. All measurements in that batch were 

normalized to the glucose-grown reference in the same batch. 

5.5.5 Total RNA and Protein measurement 

Total RNA was measured using the method of Benthin et al (126), and protein was 

measured using the Biuret method (127), with minor modifications as described by You et al (12). 
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5.7 Figures 

 
 
Figure 5.1: Relation between ppGpp and the translational elongation rate during growth transition. 
a, Growth kinetics of E. coli K-12 NCM3722 monitored by measuring the optical density at 600 nm (OD600) 
during the diauxic transition from glucose to glycerol. The same color-scheme is used across the panels to 
match different measured quantities to samples taken at different time during the growth transition. b, 
Resolution of ppGpp in cells sampled at different time during the growth transition by thin layer 
chromatography (TLC). The spots at bottome correspond to sample loading and the migrated ppGpp are 
indicated alongside the chromatogram. Signal intensity from the chromatograph was used as the measure 
of the ppGpp level. c, Signal intensity for ppGpp obtained from panel b is normalized by that before the 
growth shift, denoted by 𝑔(𝑡) , is plotted against the time 𝑡  at which the sample was taken. d, The 
translational elongation rate 𝜀(𝑡)	was obtained as described in Fig. 5.6, and plotted against the time 𝑡 at 
which sample was taken. e, ppGpp levels 𝑔(𝑡) are plotted against the reciprocal of the corresponding 
elongation rates normalized by the maximum elongation rate (𝜀,78), defined as the value of the elongation 
rate extrapolated to 𝑔 = 0 (see Fig. 5.6e). The line is the best-fit of the data to Eq. (5.1), with 𝑐 ≈ 4.0 and 
𝜀,78 = 19.4 ± 1.4 aa/s. 
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Figure 5.2: Relation between ppGpp and translational elongation rate during steady-state growth. a, 
ppGpp levels relative to that in the glucose minimal medium, 𝑔, are plotted against the corresponding 
growth rates for cells under steady state carbon-limited growth (red) and translation-limited growth (green) 
for cells treated with sub-lethal doses of chloramphenicol (Cm); see Table 5.1. For each growth medium, 
ppGpp level was obtained by measuring 4 samples taken from exponentially growing cells at different ODs 
and using linear regression (Methods and Fig. 5.18). Error bars represent the uncertainty in the linear fit. b, 
Translation elongation rates are plotted against the steady state growth rates for carbon-limited (red) and 
Cm treated (green) cells. c, Scatter plot of reciprocal elongation rates (or the step time for ribosome 
advancement) in milliseconds and the relative ppGpp levels (𝑔) measured during steady-state growth for 
wild-type E. coli under carbon limitation (red) and translation inhibition (green). d, The same measurements 
from steady-state growth (panel c) are replotted by normalizing the elongation rate to 𝜀,78 together with 
the data collected under growth transition from Fig. 5.1e (blue symbols) for comparison. The line is the 
same as that in Fig. 5.1e. 
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Figure 5.3: Regulatory circuit connecting ppGpp to growth rate. The steady state protein synthesis flux 
𝜆 ⋅ 𝑀P is given by the product of the elongation rate 𝜀 and the number of active ribosomes, 𝑁!7M&. Because 
𝜀 is simply connected to the ppGpp level 𝑔 (Fig. 5.2d as summarized by Eq. (5.1)), and the active ribosome 
content 𝑅7M& ≡ 𝑁!7M&/𝑀P is given by the difference between the total ribosome content 𝑅(𝑔) (Fig. 5.4a and 
Eq. (5.3)) and the content of the ribosome-sequestering elements 𝐻(𝑔) (Fig. 5.8 and Eq. (5.4)), each of 
which is a function of 𝑔 due to ppGpp-mediated regulation, it follows that 𝜆 = 𝜀(𝑔) ⋅ 𝑅7M&(𝑔) is a function 
of 𝑔. This gives rise to the correlation between the ppGpp level and growth rate (13, 98) (Fig. 5.4b). By 
using ppGpp to regulate a spectrum of cellular processes (14, 66, 81), the cell thus manages to link the 
regulation of these processes to the growth rate, leading to the appearance of “growth-rate dependent” 
control (77, 99, 113) 
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Figure 5.4: Model data comparison. a, RNA-protein ratio (circles, left vertical axis) is proportional to the 
reciprocal of ppGpp level. This ratio is taken to be proportional to the ribosome content, 𝑁!/𝑀P (right 
vertical axis), and is used as an input to the model; see Eq. (5.3). The proportionality constant between 
RNA-protein ratio and 𝑁!/𝑀P, denoted by 𝜂, is one of the 3 fitting parameters of the model. The best-fit 
is shown by the line. b, The approximate linearity between the RNA-protein ratio and the growth rate 
(circles, left vertical axis) is well accounted for by the model (line), as is the approximate linear relation 
between the growth rate and the reciprocal of ppGpp level (panel c), and the weak relation between the ER 
and growth rate (panel d), and the Michaelis relation between ER and the RNA-protein ratio (panel e). The 
model is described by Eqs. (5.1) and (5.5). The values of the best-fit parameters were 𝑎 ≅ 1.85 × 100Q, 
𝑏 ≅ 2.11 × 100*, 𝜂 ≈ 6.8 × 100Q. 
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Figure 5.5: Sensing of the translational elongation rate by ppGpp. a, A cycle of translation elongation 
constitutes the loading of a cognate charged tRNA to the A site (taking time 𝜏RS%??), followed by peptidyl 
transfer and the translocation of mRNA/tRNA (taking time 𝜏&<7DO). The total time for one cycle, given by 
the reciprocal of the translational elongation rate 𝜀, is thus given by 𝜀01 = 𝜏RS%?? + 𝜏&<7DO. 𝜏&<7DO depends 
on the molecular properties of the translation machinery and 𝜏RS%??  depends on the concentration of 
uncharged tRNAs. Hence, long dwell times would lead to slow elongation speeds after a nutrient downshift 
owing to the increased uncharged tRNA levels, while the fastest elongation speed is obtained when 
𝜏RS%?? → 0, in which case 𝜀 → 𝜏&<7DO01 ≡ 𝜀,78. The empirical relation observed between ppGpp and the 
elongation rate 𝜀 , Eq. (5.1), can thus be alternatively written as 𝑔 = 𝑐𝜏RS%??/𝜏&<7DO . According to the 
analysis of Appendix 2, the ratio of dwelling and translocation time is given by the ratio of the dwelling to 
translocating ribosomes, whose concentrations are 𝑅RS%??  and 𝑅&<7DO  as indicated in the figure. As the 
transition from the dwelling state to the translocation state occurs with rate 𝜏RS%??01  while the transition from 
the translocation to the dwelling state occurs with the rate 𝜏&<7DO01 , the condition of detail balance imposes 
that 𝜏RS%??/𝜏&<7DO = 𝑅RS%??/𝑅&<7DO  regardless of the values of hundreds of molecular parameters 
underlying the translation process (Appendix 2). It then follows that the empirical relation (5.1) can be 
obtained if, e.g., the synthesis of ppGpp is proportional to 𝑅RS%??  and the hydrolysis of ppGpp is 
proportional to 𝑅&<7DO.  b, According to biochemical and structural studies (81, 107, 108, 110, 128), ppGpp 
synthesis is activated when the A-site of the ribosome is loaded by a RelA-bound uncharged tRNA. This 
provides a mechanistic model for the control of ppGpp synthesis rate by 𝑅RS%?? , the concentration of 
dwelling ribosomes. Although this RelA-mediated synthesis activity would provide elevated levels of 
ppGpp in poor nutrient conditions, it is insufficient to generate the empirical relation described in Eq. (5.1); 
see Figure 5.15 with details in Appendix 2. Instead, the involvement of state-dependent ppGpp hydrolysis 
is predicted for a full account of the empirical relation.  c, As charged tRNAs must be delivered to the 
ribosomal A-site to complete each step of translation, the distribution of dwelling and translocating 
ribosomes is dependent on the metabolic fluxes directed towards all the biosynthetic precursors needed for 
protein synthesis,  represented here by the orange cloud: triangles, amino acids; clover leaves, tRNA; 
colored arrows, fluxes. The translational elongation rate is therefore a single quantity that reflects the 
combined status of the hundreds of diverse metabolic reactions underlying protein synthesis and cell growth 
(Appendix 2). In this sense, the mechanism of ER-sensing described in panel b is a dimensional reduction 
technique employed by E. coli to convey the nutrient status by a single quantity, the level of ppGpp. The 
latter is further connected to the growth rate via the regulatory circuit of Figure 5.3. 
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Figure 5.6: Elongation rate measurements during diauxic shift. a, Scheme for measuring the 
instantaneous translation elongation rates 𝜀(𝑡) during growth transition. At different time (𝑡) during the 
diauxic transition, 10 ml aliquots were removed into a fresh tube and the synthesis of the reporter protein 
LacZ was induced immediately by the addition of IPTG. b, LacZ induction curves for the four samples 
taken (indicated by the arrows in panel a). LacZ induction kinetics of each sample was followed by 
monitoring the β-galactosidase activity using 4-methylumbelliferyl-D-galactopyranoside (MUG) assay (see 
Methods and Materials for details). c, The square root of lacZ activity above basal level were plotted against 
induction time to obtain the lag time for the synthesis of the first LacZ molecule (𝑇>=<O&, shown by the 
arrows (124)). The translational elongation rates shown in Fig. 5.1 were obtained as 𝜀 = 𝐿TUVW/(𝑇>=<O& −
𝑇=D=&)  with 𝐿TUVW  being the length of LacZ monomer (1024aa) and 𝑇=D=&  being the time taken for the 
initiation steps (10s across various nutrient conditions (17) and during transition; see Fig. 5.7). d, 
Comparison of the elongation rate obtained from the naïve approach described above with a more detailed 
calculation using all of the LacZ induction data together. The yellow circle represents the naïve calculation 
of ER at the various time where samples were taken.  The purple line represents 𝜀(𝑡) calculated from 
solving the following integral equation 
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+
= 𝐿TUVW, (5.8) 

 
where 𝑡= is the time when IPTG is added.  𝑇>=<O&(𝑡=) denotes the lag time obtained from the LacZ induction 
curve when IPTG was added at time 𝑡= . 𝑇=D=&  was taken to be 10s as explained in Fig. 5.7. Taking the 
derivative of 𝑡= on both sides of Eq. (5.8), we obtain 
 
 

𝜀 {𝑡= + 𝑇>=<O&(𝑡=)| × }1 +
𝑑𝑇>=<O&(𝑡=)

𝑑𝑡=
~ = 𝜀(𝑡=). (5.9) 

 
By fitting 𝑇>=<O&(𝑡=) to an exponential function 𝑦 = 𝑎1 exp(𝑎G𝑥) + 𝑎E, we estimated R

R&,
𝑇>=<O&(𝑡=) at each 

time point during the shift. For 𝑡= > 40	min, since the change in 𝑇>=<O& is relatively small (circles in (d) 
represent the inverse of 𝑇>=<O& ), we Taylor-expanded 𝜀 {𝑡= + 𝑇>=<O&(𝑡=)|  at 𝑡=  and solved Eq. (5.9) 
analytically with the boundary condition 𝜀(100	min) = 𝜀[?\M%<:? = 16𝑎𝑎/𝑠. For 𝑡= < 40	min, we directly 
used Eq. (5.9) to calculate 𝜀(𝑡=)  from 𝜀 {𝑡= + 𝑇>=<O&(𝑡=)|  at a later time numerically. Notice that the 
difference between the two ways of calculating the instantaneous ER is negligible. This is because the time 
scale of  𝑇>=<O&, a few minutes as seen in panel (c), is overall much smaller than the time scale of the shift 
(~40 min).  So we simply reported the result of the naive ER calculation through this work. e, Relative 
ppGpp level 𝑔(𝑡) obtained in Fig. 5.1c are plotted against the reciprocal of the elongation rate, or the step-
time for ribosome advancement. 𝜀(𝑡) values for the time points at which ppGpp levels were measured were 
estimated from fitting the naïve calculation of ER vs time in panel (d) to an exponential function. A linear 
fit of the data in panel (e) yields the x-intercept 1/𝜀,78, with 𝜀,78 = 19.4 ± 1.4	𝑎𝑎/𝑠.  
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Figure 5.7. Determination of the translational initiation time. The induction time of lacZ monomer 
(𝑇>=<O& shown in Fig. 5.7c) during the shift were plotted as yellow diamonds in panel (a). To obtain the 
contributions of translational initiation towards this induction time, we also determined the induction 
kinetics of a short LacZ alpha fragment (𝐿𝑎𝑐𝑍𝛼, the N-terminal 1-90aa of lacZ) before and right after the 
shift. The induction time obtained, 𝑇>=<O&,]7M^_, were plotted as red and blue circles respectively. The error 
bars indicated the 95% confidence interval from fitting and technical repeats. The induction time obtained 
can in principle be used to estimate the translational initiation time, 𝑇=D=& = 𝑇>=<O&,]7M^_ − 𝐿]7M^_/𝜀,̃ where 
as a first estimate of the elongation rate, we used 𝜀̃ = (𝐿?7M^ − 𝐿?7M^_) (𝑇>=<O&,]7M^ − 𝑇>=<O&,]7M^_)⁄  
assuming the same initiation time for LacZ and LacZ alpha, with 𝑇>=<O&,]7M^_ used for 𝑇=D=& of LacZ𝛼. This 
was done for the pre-shift condition, with the result  𝑇=D=& = 15𝑠 ± 6𝑠 (error from uncertainty in 𝐿𝑎𝑐𝑍𝛼 
induction time), consistent with previous measurements (17). To estimate the initiation time immediately 
following the shift, we looked more closely into the induction time data collected, shown as the blue circles 
in panels (b) and (c). Due to the uncertainties in 𝐿𝑎𝑐𝑍𝛼 induction time determination, together with the 
uncertainty in determining the precise shift time (i.e., time “0”) between the strains expressing LacZ and 
LacZ𝛼, it is difficult to calculate the initiation time based on the difference 𝑇>=<O&,]7M^ − 𝑇>=<O&,]7M^_ while 
𝑇>=<O&,]7M^ varied by strongly in the first 10 min. Instead, we assumed a constant initiation time (𝑇=D=&) and 
predicted the range of 𝐿𝑎𝑐𝑍𝛼 induction time given measured 𝐿𝑎𝑐𝑍 induction time in this 10min-window 
(160s-250s). The grey bar in b and c shows the predicted range for 𝑇>=<O&,]7M^_ assuming 𝑇=D=& = 10𝑠 and  
𝑇=D=& = 15𝑠, respectively. Comparing with our measurements, it suggest the initiation time in transition is 
within the range of 10s-15s, similar to the initiation time in pre-shift condition. For simplicity, we used 
𝑇=D=& = 10𝑠 for both pre- and post-shift throughout this work. This does not mean that the initiation time is 
not affected during the transition, but that our method is too coarse to resolve differences in the initiation 
time.



 144 

 
 
Figure 5.8: Relation between the ribosome-sequestering proteins and the ppGpp levels. a, The number 
of mRNA (black circles) and protein (blue circles) as a percentage of the total number of mRNA and protein, 
respectively, for the ribosome remodeling factor Rmf obtained during steady state growth are plotted 
against the growth rate for a number of cultures under varying degrees of carbon limitation. Data for mRNA 
abundance is obtained from Balakrishnan et al (129) and for protein abundance is obtained from Mori et al 
(2). b, Same as panel a, but for the mRNA and protein of the ribosome associated inhibitor gene raiA (130). 
c, Same as panel a, but for the mRNA and protein of the gene encoding the hibernation promoting factor 
hpf (93). For each case shown in panels a-c, the protein and mRNA abundances approximately match each 
other within 2-fold, as is typical of many genes expressed during exponential growth. For Rmf, the protein 
level showed zeero for a number of conditions due to lack of detected peptides. d-f,  The fractional number 
abundances of the mRNA (black circles) of rmf, raiA and hpf are plotted against the relative ppGpp of the 
corresponding conditions. The black dash lines show the linear fit of the data. To directly compare the 
expression of rmf, raiA and hpf with ppGpp levels, we fitted the mRNA vs GR data in panel a-c with 3rd-
degree polynomials and estimated their mRNA levels at the same growth rates for which ppGpp was 
measured.  The horizonal error bars in panels d-f comes from ppGpp measurements, while the vertical error 
bars come from the polynomial fitting (95% prediction interval). 
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Figure 5.9. a, Translational activity 𝜎, defined as 𝜆/𝑅, and thus given by 𝜀 ⋅ (𝑅 − 𝐻)/𝑅, is plotted against 
normalized elongation rate for the best-fit model parameters used in Fig. 5.5. b, Translational activity 𝜎 
plotted against the relative ppGpp level 𝑔. The one-to-one relationship between the translational activity 
and the ppGpp level justifies the use of the translational activity as the dynamic variable in the kinetic model 
of diauxic transition developed by Erickson et al (8).  c, The plot of ribosomal content vs 𝜎 used by Erickson 
et al (8) as the regulatory function for ribosome biogenesis is shown as the grey dashed line. The same 
relation according to the model in Fig. 5.5 is shown as the solid red line. The two lines are very similar, 
indicating that Erickson et al (8) correctly inferred the regulatory function even though the relation between 
𝜎 and 𝑔 (panel c) was not known at the time. 
 
 
 

 
 
Figure 5.10: Estimating the maximum translation elongation rate in steady-state growth. Translation 
elongation rates measured in the carbon-limited and chloramphenicol-treated cultures are plotted against 
the ratio of RNA and protein measured in the same conditions. The data are collectively fitted to the 
Michaelis-Menten relation 𝜀 = 𝜀,78 ∙ 𝑟/(𝐾, + 𝑟) where 𝑟 is the RNA-protein ratio. The best-fit gives 
𝜀,78 = 20.0 ± 1.9𝑎𝑎/𝑠	  and 𝑘, = 0.066 . The maximum elongation rate 𝜀,78  estimated this way is 
indistinguishable from that estimated from the relation between ppGpp and the elongation rate during 
growth transition (see Fig. 5.6e). 
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Figure 5.11: The effect of parameter choices on model output. The measured data points (red open 
circles) and the best-fit model outputs (solid red lines) in panels a-d are the same as those shown in Fig. 
5.5b-e. When keeping parameter 𝑎 the same as the best-fit value  𝑎∗ while varying 𝑏 to be 3-fold larger or 
smaller, the model gave predictions shown as the dotted and dash black lines, respectively. When keeping 
parameter 𝑏 the same as the best-fit value 𝑏∗ and varying 𝑎 to be 3-fold larger or smaller, the model gave 
predictions shown as the dotted and dash blue lines, respectively; See the legends table. The results show 
that model outputs are comparatively more sensitive to the choice of the parameter 𝑎 than 𝑏. Fortunately, 
the parameter 𝑎 involved in the relation between ppGpp and the ribosome content (see Eq. (5.3)) is well 
established by Fig. 5.5a.  
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Figure 5.12: The effect of constant offsets in the regulatory functions on model output. Here we 
investigate the effect of altered forms of regulatory functions from the simplest forms assumed in Eqs. (5.3) 
and (5.4). The altered forms are shown as Eqs. (5.10) and (5.11) below the legend table on the right, with 
constant offsets parameterized by 𝑔! and 𝑔`.  a-d show the same four outputs as in Fig. 5.11 with different 
modeling results. The table on the right compares the best-fit parameter values under different model 
settings. The solid blue line is the same as that shown in Fig. 5.5 (where offsets in 𝑅(𝑔) or  𝐻(𝑔) are not 
considered, left column of the legend). The orange dash lines are the best-fit of the model with 𝑔! and 𝑔` 
treated as fitting  parameters also. Results of the fits are listed in the right column of the legend table. While 
the fits may be marginally better, one aspect of the fitting parameter becomes quite unreasonable: the 
relation between the ribosome content (𝑁!/𝑀P) and the RNA-protein ratio is determined by the fraction of 
ribosome RNA within all RNA (the last row in legend table). In the case where all parameters are fitted 
(right column), the rRNA-RNA ratio is ~1, which is impossible given that tRNA comprises ~10% of the 
total RNA. In comparison, the simplest model not considering offsets gave an rRNA-RNA ratio of 92% 
(left column) which is closer to the accepted range. If we fix the rRNA-RNA ratio to 86%, estimated 
previously for a few growth conditions (4, 65) ,  the best-fit model outputs are shown as the green dotted 
lines, with the best-fit parameters shown in the middle column. For the ease of assessing the effect of these 
offsets on the form of the regulatory functions 𝑅(𝑔) and 𝐻(𝑔), we display these forms for the 3 cases 
considered in panel e and f, using the same line styles as those indicated in the legend table. We see that 
little difference is made to the model outputs despite substantial changes to the forms of the regulatory 
functions, thus indicating that these results are robust to the exact forms of the regulatory functions assumed.  

  

(5.10) 

(5.11) 
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Figure 5.13. Ribosome content are plotted against normalized elongation rate for various model parameters. 
Using the best-fit parameters in Fig. 5.5 (labeled as a* and b* in legend table), total ribosome content (solid 
blue line) increases with elongation rate while inactive ribosome content (solid grey line) decrease with 
elongation rate. Their intersection (marked by the filled red circle) represents the elongation rate and 
ribosome content while growth rate approaches zero, i.e., 𝜀,=D and 𝑅+, respectively. When the parameter 
𝑎 is changed to 3-fold smaller or larger, the relation between total ribosome content and elongation rate is 
changed to the blue dashed or dotted lines, respectively. When the parameter 𝑏 is changed 3-fold smaller 
or larger, the relation between total ribosome content and elongation rate is changed to the black dashed 
and dotted lines, respectively. As shown in the figure, the different parameters result in different values of 
the intersection point and hence different values of (𝜀+, 𝑅+).   
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Figure 5.14: The effect of the value of 𝜺𝟎 on model output. As shown in Supplementary Note, the model 
defined by Eqs. (5.1) and (5.5) has a particularly simple solution for 𝜀+ = 𝜀,78/2 , where 	𝜀+  is the 
elongation rate as the growth rate 𝜆 → 0.  The best-fit output of the model has 𝜀+: 𝜀,78 ≈ 0.6, which is 
close to the simple linear solution, thus rationalizing the approximate linear correlations observed in 
Fig. 5.5. In this figure, we show the model output for choices of the parameters 𝑎  and 𝑏  such that 
𝜀+: 𝜀,78 = 0.3 and 0.9 (dotted and dashed lines, respectively). The red open circles are the same data as 
those shown in Fig. 5.5. Deviations from the linear growth law are clearly seen for the expected 
RNA/protein ratio in panel b, with the high ratio of 𝜀+: 𝜀,78  (dashed purple lines) exhibiting reduced 
ribosome content. In principle, large ER and reduced RNA/protein ratio are advantageous. However, this 
would lead to very low dwell time for ribosome on A-site as seen in panel d (right vertical axis): 10-30 ms 
for the best-fit parameters, and < 5ms for the purple dashed line with ER maintained above 90% of 𝜀,78.  
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Figure 5.15: Comparing predictions for unregulated hydrolysis to the observed relation between 
elongation and ppGpp. a, Observed ppGpp levels for steady state growth under carbon limitation and Cm 
inhibition (Fig. 5.2d) are compared to the predicted ppGpp levels for unregulated SpoT hydrolysis derived 
in Eq. (5.40). Using Eq. (5.40), 𝜏RS%??/(𝜏RS%?? + 𝜏&<7DO) is computed from the elongation rate as 1 −
𝜀/𝜀,78 . The ppGpp level, 𝑔, is then solved assuming 𝑅7M&  is the difference between 𝑅(𝑔), main text 
Eq. (5.3), and H(g), main text Eq. (5.4). The proportionality constant for Eq. (5.40) has been set so that the 
ppGpp level in the glucose reference condition is 1. The fit phenomenological model, main text Eq. (5.1), 
is shown for comparison with 𝜀,78 ≈ 19.4𝑎𝑎/𝑠	and 𝑐 ≈ 4.0. b, Observed ppGpp levels during the growth 
transition (Fig. 5.1e) are compared to predictions for unregulated SpoT hydrolysis computed from Eq. 
(5.40). Here 𝑅7M& is assumed to remain at pre-shift levels, and the same proportionality constant is used 
from panel (a). The fit phenomenological model, main text Eq. (5.1), is again shown for comparison. 
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Figure 5.16: Relation between the ppGpp level and elongation rate for the ∆relA strain during diauxic 
shift. a, Growth kinetics of the ∆relA strain (colored triangles) and the wild type (grey circles, same as in 
Fig. 5.1a) during the glucose-to-glycerol diauxic transition. Vertical arrows indicate the duration of the lag 
period following glucose depletion before growth resumes on glycerol. Color-scheme corresponding to 
individual samples for ∆relA is shared across panels in this figure. b, ppGpp levels measured for the ∆relA 
strain (colored) and the wild type (grey, same as those in Fig. 5.1c), relative to the WT ppGpp level in 
glucose minimal medium, during the glucose-to-glycerol transition. Note that pre-shift ppGpp levels of the 
two strains are indistinguishable. c, Instantaneous translation elongation rate measured for the ∆relA strain 
(colored) and the wild type (grey, same as those in Fig. 5.1d) during the glucose-to-glycerol transition. d, 
The relation between ppGpp level and the instantaneous elongation rate for the ∆relA strain (colored) and 
the wild type (grey, same as those in Fig. 5.1e) during the glucose-to-glycerol transition. 
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Figure 5.17: Relation between the ppGpp level and elongation rate for the ∆relA strain in steady-
state growth. a, ppGpp levels relative to that in the reference growth condition (wild type grown in minimal 
glucose medium) are plotted against the steady state growth rates for wild-type (red) and ∆relA (black) 
grown in various carbon sources (See Table 5.1). Error bar represents the uncertainty in the linear fit over 
four measurements; see Fig. 5.18. b, Translation elongation rates are plotted against the steady state growth 
rates for wild-type (red) and ∆relA (black) grown in various carbon sources (See Table 5.1). c, Steady-state 
relative ppGpp levels are plotted against the reciprocal of the translational elongation rate for wild-type 
(red) and ∆relA (black) grown in the same conditions. Both the ppGpp levels and the elongation rates in 
steady state growth are not affected by relA deletion, unlike the case during diauxic transition shown in 
Fig. 5.16. 
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Figure 5.18: Measurement of ppGpp levels in steady-state growth conditions. 
a, Scheme for ppGpp measurement under balanced growth. E. coli strains were grown in either glucose 
minimal media (reference condition, growth rate =0.96/h) or various poor carbons at different steady-state 
growth rates. At various OD600 values during the exponential growth phase of each culture, aliquots were 
withdrawn, nucleotides were extracted and ppGpp was resolved using TLC. b, An example of ppGpp 
measurement for the wild type strain (reference condition, blue) and NQ1261, a ∆ptsG strain defective in 
glucose uptake, both grown in glucose minimal medium (red). NQ1261 strain is used to create reduced 
growth on glucose (see Methods). Nucleotides extracted at four different OD600 were spotted on the bottom 
of TLC plates and ppGpp was resolved. c, ppGpp from the wild type and NQ1261 strains are plotted against 
OD600. The slope of each plot gives the ppGpp level (per OD600) for that strain and condition. In Fig. 5.3 of 
the main text, we report the ppGpp level relative to that in glucose steady state. In this case, the relative 
ppGpp level of NQ1261 strain grown in glucose is just the ratio of the slope of the red line to that of the 
blue line. Error bar in the estimate of ppGpp was taken to be the uncertainty in the slopes of the linear fit.  
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5.8 Tables 

Table 5.1: Strains and growth conditions used in this study. 

strain name description growth condition growth 
rate (h-1) 

NCM3722 (29, 
30) 
 

Wild type  
E. coli K-12 
 

MOPS+ 20mM glucose 
MOPS+20mM succinate 
MOPS+40mM glycerol 
MOPS+30mM acetate 
MOPS+3mM mannose 
MOPS+20mM aspartate + 10mM NH4Cl 
MOPS 0.4% glycerol+10mM arginine 
MOPS+20mM glutamate + 10mM NH4Cl 

0.96 
0.68 
0.65 
0.43 
0.33 
0.35 
0.32 
0.13 

NQ1261 (17) ∆ptsG 
 

MOPS+20mM glucose 
MOPS+20mM glucose + 2μM Cm 
MOPS+20mM glucose + 3μM Cm 

0.36 
0.16 
0.12 

HE838  
(this work) 

∆relA MOPS 20mM glucose 
MOPS+4mM mannose 
MOPS+20 mM aspartate+10mM NH4Cl 

0.99 
0.42 
0.34 

NQ1468 (17) Inducible 
𝐿𝑎𝑐𝑍𝛼 with 
constitutively 
expressed 
𝐿𝑎𝑐𝑍𝜔 

MOPS 20mM glucose 
 

0.90 

NCM 3722 and HE838 under 
diauxic transition 

MOPS+2mM glucose+40mM glycerol N.A. 

 
 
Table 5.2: Primers used in this study. 
name sequence use 
relA-P1 cgatttcggcaggtctggtccctaaaggagaggacgatggttg

cggtaagatgtgtaggctggagctgcttc 
 Chromosomal deletion of 
relA gene 

relA-P2 atatcaatctacattgtagatacgagcaaatttcggcctaactccc
gtgcaattccggggatccgtcgacctg 

 Chromosomal deletion of 
relA gene 

relA-ver-R tacgctactgtggatcataaccctttc  Verification of deletion of 
relA gene 
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5.9 Appendix 

5.9.1 Dependence of the steady-state model on 𝜺𝟎 and 𝑹𝟎 

In the main text, Eq. (5.5) described the relationship1 between growth rate 𝜆 and ppGpp 

level (or elongation rate via Eq. (5.1)) using parameter 𝑎 and 𝑏. Here we show that 𝑎 and 𝑏 can be 

expressed by 𝜀! and 𝑅!, defined as the elongation rate (ER) and ribosomal abundance, respectively, 

when the growth rate approaches zero. Also, we show that when 𝜀!: 𝜀*+, = 1: 2, the model yields 

simple dependences of 𝑅 and 𝑔 on 𝜆. 

In order for ER to be nonzero (with value 𝜀!) when the growth rate approaches zero, we 

must have 𝑅 = 𝐻  (with value 𝑅!) according to Eq. (5.5). Using Eqs. (5.1) and (5.3), we can 

express 𝑎 in terms of 𝜀*2. and 𝑅!: 

 𝑎 = 𝑐 ∙ 𝑅! ∙ (ℎ − 1), (5.12) 

where we introduced  ℎ ≡ 𝜀*+,/𝜀!  for convenience. Similarly, from Eqs. (5.1) and (5.4), the 

parameter 𝑏 can be expressed as 

 𝑏 =
𝑅!

𝑐 ∙ (ℎ − 1). 
(5.13) 

Conversely, we can express the two physiological parameters 𝑅!  and ℎ in terms of the model 

parameters 𝑎 and 𝑏, with 𝑅! = √𝑎 ⋅ 𝑏 and ℎ = 1 + 𝑐¾𝑎/𝑏. 

Substitute Eqs. (5.3), (5.12) and (5.13) into Eq. (5.5), we obtain a relationship between 𝜆 

and 𝑅 with ℎ and 𝑅! being the parameters: 

 
𝜆 = 𝜀*+,

𝑅1 − 𝑅!1

𝑅 + 𝑅! ∙ (ℎ − 1)
. (5.14) 

 
1 In writing down the relationship in Eq. (5.2) and Eq. (5.5), we assumed proteins are stable. At very slow growth, 
the effect of protein degradation should in principle be included. However, based on the measured protein 
degradation rates (91, 133) this effect is negligible even at the smallest growth rate we studied here.  
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Notice that when ℎ = 2 (or 𝜀!: 𝜀*+, = 1: 2), Eq. (5.14) is reduced to 𝜆 = 𝜀*+, ∙ (𝑅 − 𝑅!), or 

 𝑅 = 𝑅! + 𝜆/𝜀*+, , (5.15) 

i.e., an exact linear relationship between 𝑅 and 𝜆 with 1/𝜀*+, being the slope of 𝑅-𝜆 plot.  

We can similarly work out the relation between 𝑔 and 𝜆. From Eq. (5.12) above, we can 

rewrite Eq. (5.3) of the main text as  𝑅 = 𝑅!𝑐 ⋅ (ℎ − 1)/𝑔. Defining the value of 𝑔 as the growth 

rate 𝜆 → 0 as 𝑔!, we have 𝑐 ⋅ (ℎ − 1) = 𝑔!, or  

 𝑅 = 𝑅! ∙ 𝑔!/𝑔. (5.16) 

Substituting Eq. (5.16) into Eq. (5.14), we obtain 

 
𝜆 = 𝜀*+,𝑅!

(𝑔!/𝑔)1 − 1
𝑔!/𝑔 + (ℎ − 1)

	. (5.17) 

For ℎ = 2 (or 𝜀!: 𝜀*+, = 1: 2), Eq. (5.17) is reduced to 𝜆 = 𝜀*+,𝑅! ∙ (𝑔!/𝑔 − 1), or 

 𝑔 =
𝑔!

1 + 𝜆/(𝜀*+,𝑅!)
	, (5.18) 

i.e., a simple hyperbolic dependence of the ppGpp level on the growth rate 𝜆. Alternatively, 𝑔<0 

has a simple linear dependence on 𝜆. 

Lastly, we examine the relation between 𝑅 and 𝜀. Inverting Eq. (5.1) of the main text, we 

have 

 𝜀 =
𝜀*+,

1 + 𝑔/𝑐. (5.19) 

Further using Eq. (5.16) and 𝑔! = 𝑐 ⋅ (ℎ − 1), we obtain 

 𝜀 =
𝜀*+,

1 + (ℎ − 1)𝑅!/𝑅
	, (5.20) 

which is generally of the Michaelis form, 𝜀*+, being the maximal ER.  For ℎ = 2, the “Michaelis 

constant” becomes simply 𝑅!.  
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5.9.2 Molecular-level models linking Elongation Rate and ppGpp 

The observed relation between ppGpp levels and the elongation rate (Eq. 5.1) provides a 

new constraint on the molecular mechanisms underlying ppGpp synthesis and degradation. Given 

the mechanistic view of translation detailed in Figure 5.5 of the main text, the observed relation in 

Eq. 5.1 can be expressed as 𝑔 = 𝑐𝜏4n7>>/𝜏'$+.J, where τ'$+.J is the translocation time of charged 

ribosomes and τ4n7>>  is the dwell time of ribosomes waiting for charged tRNA.  However, it 

remains to be established how the cell can sense these two timescales biochemically, and how the 

timescales in turn reflect the various tRNA charging levels that ultimately determine the elongation 

rate. In this note, we show that the cell can feasibly sense the ratio τ4n7>>:τ'$+.J through the ratio 

of ribosomal states, 𝑅4n7>>: 𝑅'$+.J where 𝑅4n7>> is the concentration of ribosomes in the dwelling 

state and 𝑅'$+.J  is the concentration in the translocation state. We show that this relation 

τ4n7>> :τ'$+.J = 𝑅4n7>>: 𝑅'$+.J  depends only on an assumption of flux balance for each tRNA 

species during the translation process. We then show how the ratio of ribosomal states is 

proportional to a weighted average of tRNA charging ratios, such that the cell can sense the 

imitation of any charged tRNA species via sensing the ratio 𝑅4n7>>: 𝑅'$+.J. Finally, we show how 

the known mechanism of ppGpp synthesis via RelA cannot alone recapitulate the observed relation 

between ppGpp and the elongation. We propose that regulation of SpoT, either directly or 

indirectly, by translocating ribosomes is needed to reproduce the observed relation. The proposed 

regulation of SpoT also provides a feasible mechanism for the cell to sense 𝑅𝑅4n7>>: 𝑅'$+.J. 

Elongation timescales and translocating/dwelling ribosomes  

In order to produce the empirical relation between p)/0
p
− 1 and the ppGpp level, 𝑔, the 

cell must be able to sense the τ'$+.J  and τ4n7>>  timescales detailed in Figure 5.5. In 

correspondence with these two timescales, we assume actively translating ribosomes can be in one 
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of two states: translocating, with concentration 𝑅'$+.J, and dwelling, with concentration 𝑅4n7>>, 

such that 𝑅+l' = 𝑅4n7>> + 𝑅'$+.J. From global flux balance, it follows that the growth rate, 𝜆, must 

balance both 1) average elongation rate, 𝜀, multiplied by the active ribosomes, 𝑅+l', as well as 2) 

the translocation rate, 𝜀*+,, multiplied by the translocating ribosomes, 𝑅'$+.J, such that 

Rearranging Eq. (5.21) we see that the ratio of the elongation rate to the maximum rate is equal to 

the fraction of active ribosomes that are translocating 

As discussed in Fig. 5.5, the elongation rate decomposes into two timescales such that, 𝜀<0 =

τ'$+.J + τ4n7>> , and the maximum elongation rate can be interpreted as and 𝜀*+,<0 = τ'$+.J. By 

substituting these expressions, along with 𝑅+l' = 𝑅4n7>> + 𝑅'$+.J, into Eq. (5.22), we have 

Simplifying this expression then yields Eq. (5.6) in the main text; 𝑅4n7>> ⋅ 𝜏4n7>><0 = 𝑅'$+.J ⋅ 𝜏'$+.J<0 . 

As mentioned, Eq. (65.) must hold to ensure detailed balance of fluxes between the two ribosomal 

states.  

Eq. (5.22) can also be re-arranged to solve for elongation rate in terms of 𝑅'$+.J and 𝑅4n7>>, 

such that 

Using Eq. (5.24) we can then see that the empirical quantity of interest, p)/0
p
− 1, can be expressed 

in terms of translocating and dwelling ribosomes as 

 𝜆	 = 𝜀 ∙ 𝑅+l' = 𝜀*+,𝑅'$+.J.	 (5.21) 

 
𝜀

𝜀*+,
=
𝑅'$+.J
𝑅+l'

.	 (5.22) 

 
τ'$+.J

τ'$+.J + τ4n7>>
=

𝑅'$+.J
𝑅4n7>> + 𝑅'$+.J

,	 (5.23) 

 𝜀 =
1

τ'$+.J
𝑅'$+.J

𝑅4n7>> + 𝑅'$+.J
.	 (5.24) 
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Thus, p)/0
p
− 1 -- which corresponds to the ratio of the dwell and translocation times -- can be 

obtained by the cell simply as the ratio of the dwelling ribosomes to the translocating ribosomes. 

Note that this relation is valid instantaneously. In particular, Eq. (5.25) depends only on the ratio 

of ribosomes in different states, not on the overall abundance of the translating ribosomes.  

tRNA charging and elongation rate 

Past models (131, 132) have derived the dependence of the translation elongation rate on 

the individual tRNA abundances and charging levels. Here we use these models to connect the 

elongation timescales, τ'$+.J  and τ4n7>> ,  to the individual tRNA charging levels. In the past 

models, each active (i.e., translating) ribosome is assumed to be located at a specific codon 

associated with a given tRNA species, 𝑖. At a given moment, the active ribosomes are partitioned 

into i subspecies, with 𝑁!,#$%& representing the number of ribosomes whose A-site resides at a codon 

associated with the ith tRNA species. The total number of active ribosomes is 𝑁&
𝑎𝑐𝑡 = ∑ 𝑁&,2+l'2 . The 

corresponding concentrations of active ribosomes are 𝑅+l',2 ≡ 𝑁&,2+l'/𝑀(  and 𝑅+l' ≡ 𝑁&+l'/𝑀( . 

The concentration of each tRNA species i is denoted as  𝑡'%',2 and can be further partitioned as 

either charged, of concentration	𝑡𝑎2, or uncharged, of concentration 𝑡2, such that 𝑡'%',2 = 𝑡2 + 𝑡𝑎2. 

Active ribosomes are assumed to undergo reversible binding with both charged and uncharged 

tRNA species, having codon-specific dissociation constants 𝜅2'+ and 𝜅2' respectively. Binding to 

non-cognate tRNAs is neglected. Under the reversible binding model, active ribosomes associated 

with the 𝑖th tRNA can be further partitioned into three possible states based on the occupancy of 

their A-site: 1) bound with charged tRNA, of concentration 𝑅'+,2  and referred to as “charged 

ribosomes”, 2) bound with uncharged tRNA, of concentration 𝑅',2 and referred to as “uncharged 

 
𝜀*+,
𝜀 − 1 =

𝜏4n7>>
𝜏'$+.J

=
𝑅4n7>>
𝑅'$+.J

.	 (5.25) 



 160 

ribosomes”, or 3) not bound to either, of concentration 𝑅%,2 and referred to as “open ribosomes”. 

It then holds that  𝑅+l',2 = 𝑅'+,2 + 𝑅',2 + 𝑅%,2. Using the reversible binding model, the fractional 

abundance of the charged, uncharged and open ribosome species can be written as 

 𝜌2'+ ≡
𝑅'+,2
𝑅+l',2

=	~
𝑡𝑎2
𝜅2'+	

� ~1 +
𝑡𝑎2
𝜅2'+	

+
𝑡2
𝜅2'
�Á ,	 (5.26) 

 𝜌2' ≡
𝑅',2
𝑅+l',2

	= ~
𝑡2
𝜅2'
� ~1 +

𝑡𝑎2
𝜅2'+	

+
𝑡2
𝜅2'
�Á ,	 (5.27) 

 𝜌2% ≡
𝑅%,2
𝑅+l',2

= 1 ~1 +
𝑡𝑎2
𝜅2'+	

+
𝑡2
𝜅2'
�x . (5.28) 

To relate these ribosome fractions to the translational rate of the ribosomes, we start with the 

incorporation flux of the amino acid associated with the 𝑖th tRNA, denoted as 𝐽2 . The flux 𝐽2  is 

proportional to the number of ribosomes associated with the 𝑖'I  charged tRNA such that 𝐽2 =

𝜀*+,𝜌2'+𝑁&,2+l'. The proportionality constant is the maximum specific elongation rate, 𝜀*+,, which 

is just the rate for ribosome translocation given that it is loaded with the cognate charged tRNA. 

Due to flux balance of individual amino acids in protein synthesis, the consumption of amino acids 

from each tRNA species must be balance by the overall protein synthesis flux,  𝐽&, i.e., 𝐽2 = 𝑓2 ⋅ 𝐽& 

where 𝑓2 is the fraction of all actively translated codons corresponding to the 𝑖th tRNA species. It 

will be convenient to express the fluxes in intensive quantities. The protein synthesis flux is 

generally defined as 𝐽& ≡
4
4'
𝑀( = 𝜆(𝑡) ⋅ 𝑀(  where 𝜆(𝑡) = 4

4'
ln𝑀(  is the instantaneous growth 

rate. This leads to   

 𝑓2𝜆 = 𝜀*+,𝑅+l',2𝜌2'+ ,	 (5.29) 

which is valid not only in steady state but also during transient where 𝜆 and 𝜌 may be strongly 

time-dependent. 
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To derive an expression for the elongation rate, we solve for 𝑅+l',2 from Eq. (5.29)  

 𝑅+l',2 =
𝜆

𝜀*+,
𝑓2
𝜌2'+

,	 (5.30) 

and sum it over all tRNA species to obtain 

 𝑅+l' =Â 𝑅+l',2
2

=
𝜆

𝜀*+,	
	Â 𝑓2/𝜌2'+

2
	. (5.31) 

The translation elongation rate is then obtained from its definition as  

 𝜀 ≡
𝜆
𝑅+l'

=	𝜀*+, Â
𝑓2
𝜌2'+2

x 	= 𝜀*+, Ã1 +Â 𝑓2
𝜅2'+

𝑡𝑎2
~1 +

𝑡2
𝜅2'
�

2
Äx 	 ,	 (5.32) 

where the 2nd equality follows from the definition of 𝜌2'+ in Eq. (5.26), so that the elongation rate 

can be expressed in terms of the charged and uncharged tRNA species. Importantly, Eq. (5.32) can 

be rearranged such that  

 𝜀*+,
𝜀 − 1 =Â 𝑓2

𝜅2'+

𝑡𝑎2
~1 +

𝑡2
𝜅2'
�

2
	 ,	 (5.33) 

where the left-hand side is the quantity found empirically to be proportional to the ppGpp level 

(Eq. 5.1 of the main text) both in steady state and during transient shifts (Fig. 5.2d).  

It is also useful to express Eq. (5.33) in terms of the ribosomes in their different states, to 

make contact with the results derived above based on global flux balance. From Eq. (5.26) and 

(5.30), we have 𝑅'+,2 = 𝑅+l',2 ⋅ 𝜌2'+ = 𝜆𝑓2/𝜀*+,, and 𝑅'+ ≡ ∑ 𝑅'+,22 = 𝜆/𝜀*+, such that 𝑅'+,2 =

𝑓2 ⋅ 𝑅'+. Further, from Eqs. (5.26)-(5.28), we have 

 
𝑅',2 = 𝑅'+,2

𝜌2'

𝜌2'+
= 𝑓2𝑅'+ ⋅ ~

𝑘2'+

𝑡𝑎2
⋅
𝑡2
𝑘2'
�, (5.34) 

 
𝑅%,2 = 𝑅'+,2

𝜌2%

𝜌2'+
= 𝑓2𝑅'+ ⋅ ~

𝑘2'+

𝑡𝑎2
�, (5.35) 
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Summing up each of the above expression over 𝑖 and using the shorthand 𝑅' ≡ ∑ 𝑅',22 , 𝑅% ≡

∑ 𝑅%,22 , we obtain 

 
𝑅' + 𝑅% = 𝑅'+ ⋅Â𝑓2 ⋅

𝑘2'+

𝑡𝑎2
~1 +

𝑡2
𝑘2'
� .

2

 (5.36) 

Comparing the above relation with Eq. (5.33), we obtain 

 𝜀*+,
𝜀 − 1 =

𝑅' + 𝑅%
𝑅'+

, (5.37) 

i.e., our central quantity of interest, p)/0
p
− 1, is given by the ratio of the total concentrations of 

ribosomes not bound to the charged tRNAs (𝑅' + 𝑅%) and those bound to charged tRNAs (𝑅'+). 

We can thus identify the former group as “dwelling ribosomes” of concentration 𝑅4n7>>  referred 

to in the main text and earlier in this note, and the latter group as “translocating ribosomes” of 

concentration 𝑅'$+.J, with Eq. (5.37) being a mathematical derivation of Eq. (5.25). 

Implications for ppGpp synthesis and degradation  

It is known experimentally that ppGpp synthesis by RelA requires the binding of RelA-

bound uncharged tRNA to the ribosome3. Thus, the pool of ribosomes that RelA samples is 𝑅'  in 

our classification. On the other hand, Eq. (5.37) requires that the observed ppGpp pool to be 

proportional to &&L&#
&&/

, . This implies that 𝑅% ≪ 𝑅' , which occurs if	 𝑡2 ≫ 𝑘2' , i.e., it is much 

favorably for the A-site to be occupied by tRNA, even if uncharged, compared to not occupied at 

all. In this limit, we have 𝑅4n7>> ≡ 𝑅' + 𝑅% ≈ 𝑅', and Eq. (5.37) becomes 

 𝑅4n7>>

𝑅'$+.J ≈Â 𝑓2
𝜅2'+

𝜅2'
𝑡2
𝑡𝑎22

	 ,	 (5.38) 

which is a key relation of this Note. It shows that ppGpp levels are directly proportional to the 

ratio of dwelling to translocating ribosomes, senses a weighted average of the inverse of the tRNA 

charging ratios, 𝑡𝑎2: 𝑡2, each of which is in turn dictated by the availability of the corresponding 
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amino acid pool. Thus by sensing the ratio of the dwelling and translocating ribosomes, ppGpp is 

able to combine the charging levels of the many tRNA species and hence the availability of each 

amino acid into a single signal.  

The ratio 𝑅4n7>>/𝑅'$+.J  also provides the cell with a convenient biochemical ‘handle’ 

which can be used to regulate ppGpp synthesis and degradation. Considering a simple model for 

ppGpp dynamics, 

 𝑑𝑔
𝑑𝑡 = 𝛼 − 𝛽𝑔, (5.39) 

which yields 𝑔 = 𝛼/𝛽. Given Eq. (5.38), our empirical observation 𝑔 ∝ p)/0
p
− 1	 can be most 

conveniently explained if ppGpp is synthesized at a rate proportional to 𝑅4n7>> , such that α ∝

𝑅4n7>>, and hydrolyzed at a rate proportional to 𝑔 ⋅ 𝑅'$+.J, such that β ∝ 𝑅'$+.J. The hypothesized 

form of the synthesis rate is well-justified by the known mechanism of RelA activity as explained 

in Fig. 5.5 of the main text. The hypothesized form of the hydrolysis rate could arise if SpoT’s 

hydrolysis activity is stimulated by ribosomes bound to charged tRNA, or during the translocation 

of ribosomes. Alternatively, SpoT hydrolysis activity could be auto-regulated by ppGpp levels, 

e.g., 𝛽 ∝ 𝑅+l'/(1 + 𝑔). 

Regardless of the form, our analysis suggests that the regulation of SpoT hydrolysis activity 

is practically a requirement in order to produce the empirical relation between elongation rate and 

ppGpp level. (An exception is if ppGpp synthesis is controlled by the ratio of 𝑅4n7>> and 𝑅'$+.J, 

which would be very difficult to implement molecularly and is not considered here.) If ppGpp 

synthesis via RelA was the only point of regulation, with α ∝ 𝑅4n7>> and β constant as proposed 

in (132), then ppGpp levels would be proportional to 𝑅4n7>>. Combining Eq. (5.6) from the main 

text, 𝑅4n7>> ⋅ 𝜏4n7>><0 = 𝑅'$+.J ⋅ 𝜏'$+.J<0 , and the constraint 𝑅+l' = 𝑅4n7>> + 𝑅'$+.J , we can show 
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that 𝑅4n7>> = 𝑅+l' ∙ 𝜏4n7>>/(𝜏'$+.J + 𝜏4n7>>). It then follows that, if RelA is the only point of 

regulation,  

 𝑔 ∝ 𝑅+l'
𝜏4n7>>

𝜏'$+.J + 𝜏4n7>>
.	 (5.40) 

In this form it is clear that RelA-exclusive regulation would pose a problem in slow growth 

conditions where 𝑔 is observed to be in high abundance, because at slow growth 𝑅+l' → 0 while 

𝜏4n7>>/(𝜏'$+.J + 𝜏4n7>>) is limited by saturation. This is shown in Fig. 5.15 where we have plotted 

observations in steady state growth from the main text against predictions for unregulated SpoT 

hydrolysis computed from Eq. (5.40). Without regulation of SpoT, ppGpp would be much lower 

than observed. Likewise, there would be problems during the transient condition shown in 

Fig. 5.1c, where ppGpp reaches ~8 times their initial level. In such transitions the number of 

translating ribosomes 𝑅+l'may not change significantly right after the shift. However, the factor 

𝜏4n7>>/(𝜏4n7>> + 𝜏'$+.J) = 1 − 𝜀/𝜀*+,  changes only ~3x, from 𝜀/𝜀*+, ≈ 0.75 before the shift 

(Fig. 5.6e) to 𝜀/𝜀*+, ≈ 0.25 shortly after the shift. This is clearly shown in Fig. 5.15b where we 

have plotted transition data from the main text against predictions from Eq. (5.40), assuming 𝑅+l'  

does not change from pre-shift conditions. Without SpoT regulation, ppGpp is predicted to 

undershoot observed levels. These problems would only be exacerbated if RelA-mediated 

activation of ppGpp synthesis saturates according to a Michaelis-Menten relation (i.e. 𝑔 ∝

𝑅'/(𝑅' + 𝐾)), as is proposed in (132). In such a case, ppGpp levels could only be more limited in 

both steady state and transient conditions. Combined, the slow growth and transient ppGpp levels 

suggest that regulation of RelA by uncharged tRNA at the ribosomal A-site is by itself insufficient, 

and some regulation by SpoT is needed. It is therefore not surprising to see the ppGpp level 

responding in a different way in the Δ𝑟𝑒𝑙𝐴  strain. However, quantitatively understanding the 
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dynamics of the latter would require also knowing how ppGpp level is set in the steady state in the 

Δ𝑟𝑒𝑙𝐴 strain. 
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Chapter 6  

Summary 

 
The work of my dissertation started from extending the model of carbon shift in Erickson 

et al (23) to multiple growth-transition scenarios, and ended with closing the circuit of the ppGpp 

based growth rate perception network. In the work, I studied the dynamics of proteomic 

reallocation during chloramphenicol addition and various amino acid depletion, which all 

displayed interesting phenotypes. In chloramphenicol downshift, I observed a two-phase growth 

rate change—a fast drop followed by a slow decrease, indicating an instantaneous translational 

elongation rate boost upon chloramphenicol addition. In all AA downshifts, we observed a positive 

linear relationship between the onset time and fractional pre-shift reserves across amino acid 

biosynthesis (AAB) pathways, indicating an as-needed gene expression pattern in AAB enzymes. 

Despite more complexities in growth conditions, we showed the power of the flux-controlled 

regulatory method in predicting kinetics of growth transitions with only qualitative knowledge on 

gene regulations and limited proteomic measurements at steady state. Although we only focused 

on three different growth transitions in my dissertation, it opens up the opportunity to 

quantitatively understanding bacterial behavior under various nutrient shifts (especially amino acid 

shifts) and other environmental changes in nature.  

In my dissertation we also first revealed the rate-sensing strategy of ppGpp signaling 

system, answering the decades old puzzle of how ppGpp senses the metabolic flux involving 20 

different AAs, and as a result leads to different growth rates (along with different proteomic 
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allocations) in different conditions. Along with the downstream effects of ppGpp on ribosomes, 

we linked growth rate, translational elongation rate, ribosomal abundance and ppGpp level all 

together. In the past, the studies on bacterial physiological behavior and the studies on detailed 

molecular gene expression regulations are mostly two parallel lines. Therefore, it is very exciting 

to see that my work can connect the ribosomal growth law under nutrient limitations with this 

magical signaling molecule ppGpp. More inspiring, it opens a gate for future bacterial studies. For 

short term, the rate-sensing strategy allows us link ppGpp level with defined nutrient conditions. 

One can thus explore the ppGpp responses under other limitations with fixed nutrient condition, 

including the conditions directly affecting the translational process, which could lead to thoroughly 

understanding the mechanism of ppGpp synthesis and degradation. Also, it’s interesting to extend 

the study to biological systems other than E.coli, involving the ones with different enzymes 

synthesizing/degrading ppGpp, to see whether the response of ppGpp to translational ER is 

universal. For long term, with ppGpp being the link between internal metabolites and growth rates, 

it is possible to look into the effects of internal metabolites on growth rate changes, especially in 

transient considering the fast responding time of metabolites to the environments. Previous study 

and my dissertation work on growth transitions based on proteomic allocation only allow us to 

view bacterial behavior at coarse-grained time scales (time resolution>10mins). But with the link 

to metabolites, we can quantitatively look into bacterial behavior with the time resolution around 

one minute. Furthermore, since the rate-sensing mechanism is very helpful for bacteria to obtained 

the integrated information from variable inputs, it is possible that the bacteria also used it in some 

other signaling systems. I hope it can inspire some new findings on the regulatory systems of 

bacteria and even other organisms. 
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