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COMPREHENSIVE REVIEW Open Access

Epigenetic Treatment of Neurodegenerative
Ophthalmic Disorders:
An Eye Toward the Future
Walter H. Moos,1,2,* Douglas V. Faller,3,4 Ioannis P. Glavas,5 David N. Harpp,6 Michael H. Irwin,7 Iphigenia Kanara,8

Carl A. Pinkert,9 Whitney R. Powers,10,11 Kosta Steliou,4,12 Demetrios G. Vavvas,13,14,* and Krishna Kodukula2,12,15,*

Abstract
Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in age-
ing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead
to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innova-
tive new approaches that target various mechanisms and sequelae driving conditions that result in adverse vi-
sion. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a
single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, in-
cluding antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomed-
ical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along
with alternative and potentially more effective conjugates, which together harness the necessary potency, spec-
ificity, and biodistribution parameters required for improved therapeutic outcomes.
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Introduction
Given the importance of vision and the number of age-
related causes of vision loss (Table 1), including cata-
racts and macular degeneration,1–3 losing the ability
to see is one of the greatest fears among the elderly,
to some even more than death itself.4 The Ancient
Greeks regarded vision to be the foremost means by
which learning takes place. As early as the latter half

of the 6th century Before the Common Era, the philos-
opher Alcmaeon of Croton5 believed that the eyes are
connected directly to the brain.6 Two centuries later,
by dissecting the human eye during autopsies on ca-
davers carried out in Alexandria, the Greek physician
Herophilus of Chalcedon5 identified the optic nerves,
tracing them directly to the brain.7 Today, the subject
of the eye and the brain has in many places become
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required reading for students of life sciences. For exam-
ple, Gregory’s book,8 ‘‘Eye and Brain,’’ has been a clas-
sic since its first edition in 1966.

The human eye (Fig. 1) is a conveniently accessible,
anatomically complex, highly specialized sensory organ
with pharmacological properties that are largely organ-
specific.10,11 These properties present unique opportu-
nities to study effects of inflammation and infectious
diseases in the eye, with relevance to the brain and cen-
tral and autonomic nervous systems.10 The retina and
optic nerve extend from the brain tissue.12,13 Similar
to the brain, sheltered by the blood–brain barrier as

an immune-privileged tissue, the eye is also an immu-
nologically privileged site protected by the blood-
retinal barrier.10,11,13–15 The retina is one of the highest
metabolic oxygen-consuming tissues of the human body,
exceeding even that of the brain,4,11,16,17 and its photore-
ceptors have the greatest density of mitochondria of all
central nervous system (CNS) neurons.17–19 Mitochon-
dria are intracellular organelles that carry multiple copies
of a circular, maternally inherited, double-stranded DNA
(mtDNA) comprised of *16,500 base pairs in mammals.
A principal role of mitochondria is to supply adenosine
triphosphate (ATP), the bioenergy needed for cellular

FIG. 1. Basic structure of the human eye. (Adapted from: Artwork by Holly Fischer [CC BY 3.0
(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons. Original File URL: https://
upload.wikimedia.org/wikipedia/commons/d/d0/Three_Main_Layers_of_the_Eye.png).

Table 1. Major Causes of Vision Loss Worldwide

Causes Characteristics
Ranking as a cause

of blindness in 2010
Ranking as a cause

of MSVI in 2010

Cataracts Age-related, progressive 1 2
Diabetic retinopathy Including sequelae 4 5
Glaucoma All types 2 4
Macular degeneration Age-related, myopic, macular hole, and other forms 3 3
Refractive errors (uncorrected) Includes aphakia 2 1
Trachoma 5 6

Selected sources: Bourne et al.,1 Tham et al.,2 Wong et al.,3 Aires et al.9

MSVI, moderate to severe vision impairment.
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maintenance and other essential biochemical processes.20

Importantly, when there is a buildup of damaged and/or
dysfunctional mitochondria in the optic nerve, the nerve’s
diminished capacity to produce enough ATP to supply its
energy demands can result in severe visual impairment
and lead to blindness.21–24

Mitochondrial dysfunction is a prominent feature in
the disease-progression mechanisms and pathways of a
growing list of clinical disorders.25–33 Included among
these are vision impairments such as cataracts,4,34 the
most common cause of (preventable) blindness in the
world,35,36 macular degeneration,4,19,24,37–42 diabetic
retinopathy,4,19,43–45 and optic nerve diseases23,46,47

such as glaucoma.4,24,48 Glaucoma, an umbrella term
for eye conditions that are caused by glaucomatous
optic neuropathy, characterized by a progressive reti-
nal ganglion cell loss and visual field damage,47,49,50 is
the second leading cause of blindness worldwide.9

However, the ultimate form of mitochondrial dys-
function is expressed in the primary mitochondrial
disorders25,51,52 and, with the brain and eye being
insatiable consumers of ATP, it is not surprising that
neuronal and/or ocular health are inevitable frontline
casualties in these diseases.53–55

In fact, (neuro-)ophthalmologic assessment56 is very
much in order when mitochondrial disease is suspected
(Table 2),57–59 even though significant clinical and
genetic heterogeneity is evident in mtDNA mutation-
driven disorders.60 In one study, 26 of 74 adult and pe-
diatric patients with mitochondrial disease exhibited
ophthalmologic abnormalities,61 and in another, 46 of
57 children and young adults with genetically verified
mitochondrial disease had ophthalmologic findings.62

Signs of potential ocular involvement in mitochondrial

disease may include hyperpigmentation of the retina,
nystagmus, ptosis, ophthalmoplegia, optic atrophy,
strabismus, and visual field defects. More extensive ex-
amination of the eye is required when the optic nerve
itself is involved. Examples of the latter include autoso-
mal dominant optic atrophy-related disorders and Leb-
er’s hereditary optic neuropathy.63

Although mitochondria in their production of ATP
serve as the powerhouses of the cell,20 they also func-
tion as strategic platforms for intracellular signaling,
as modulators of stem cell activity and cell death path-
ways, and as regulators of innate and adaptive immune
responses to viral infections and other biological at-
tacks.32,65–71 Indeed, a growing list of studies exposing
the pivotal roles mitochondria play in immune-related
pathways32,68,70–77 is fueling the characterization of mi-
tochondria as the powerhouses of immunity.78 Thus,
given these essential processes that mitochondria un-
dertake in mitigating cell protection, survival, and
function, they are attractive targets of opportunity for
diagnostic, prognostic, and therapeutic indications,
particularly in diseases of tissues with high energy
needs.79 Breakthroughs in diagnosing and treating neu-
rological disorders are in great need29–32,80–82 and the
eye, being an accessible part of the brain, offers a
clear window for us to begin to explore.

Ocular Manifestations of Neurological
Conditions and Disorders
For more than two millennia, physicians have looked to
the eye as a sentinel indicator of disease.7,83 Abnormal
avoidance of eye contact is an early risk-marker asso-
ciated with autism.84–86 Several neurodegenerative
conditions—Alzheimer’s disease (AD), inherited primary

Table 2. Selected Mitochondrial Diseases and Associated Clinical or Neurological Ophthalmologic Features

Representative mitochondrial diseases and associated clinical/neurological features Alternative names and/or causes

Chronic progressive external ophthalmoplegia CPEO
Encephalopathy with enteropathy, neuropathy, and progressive external ophthalmoplegia MNGIE
Encephalopathy with cardiomyopathy, nephrotic syndrome, deafness, optic

atrophy, and ataxia
Coenzyme Q10 deficiency

Leigh’s disease Subacute necrotizing encephalomyelopathy
Leber’s hereditary optic neuropathy LHON
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes MELAS
Mitochondrial DNA deletions or depletion mtDNA deletions or depletion
Myoclonus epilepsy with ragged-red fibers MERRF
Neuropathy, ataxia, and retinitis pigmentosa NARP; secondary to mtDNA mutation in MT-ATP6
Nuclear DNA point mutations nDNA point mutations
Pearson’s/Kearns-Sayre syndrome Pearson’s/KSS
Progressive external ophthalmoparesis PEO

Sources: Zhu et al.,61 Grönlund et al.,62 McFarland et al.,63 Yu-Wai-Man and Newman.64
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mitochondrial diseases, Parkinson’s disease, and multiple
sclerosis among others—have manifestations in the eye.
Indeed, ocular symptoms often precede conventional di-
agnosis of these conditions.13,55,56,87–97 In addition to
when the eye itself is the target of infection, ocular symp-
toms are also common to viral diseases that affect the
brain and CNS.32,98–102 Healthy mitochondrial func-
tion is necessary in upholding a competent innate
immunity, the body’s frontline response against
viral infections.32,76,78 Although these varied types of
neurological and related conditions and disorders can
have disparate root causes, they share in common mi-
tochondrial dysfunction in their disease progression
pathways.26–32,65 Consequently, the eye, not infre-
quently the first neuronal tissue affected by mitochon-
drial failure, offers itself as a model for energetic
impairment in the CNS with direct implications for de-
generative brain diseases53 (Table 3).

Targeting Mitochondrial Dysfunction
in Ocular Diseases
Many of the familiar features of aging seen in aged an-
imals (including humans) correlate with epigenetic al-
terations that regulate transcription.108–110 Nutritional
disequilibrium, epigenetic changes in gene expression,
increased genomic instability, an erosion of telomeres,
increased cellular senescence, and deregulated nutrient
sensing are some of the age-related functional charac-
teristics acting on or with each other that impact
other hallmarks such as mitochondrial function and/
or dysfunction and the degradation of an appropriate
immune response.66,78,111–115

Because mitochondria cannot be produced de
novo,116 cells rely on the preservation of their
healthy mitochondria from which mitochondrial
biogenesis (the growth and division of pre-existing
mitochondria) can occur. Mitophagy, a sub-form

of autophagy,70,72,117–120 clears away damaged and/
or dysfunctional mitochondria.25,71,75,111,120–127

Not surprisingly, given the irreplaceable nature of
the mitochondrion and the indispensable roles mi-
tochondria play in maintaining neuro-(ocular)
health, mitoprotection has become an important
target of pharmacological intervention—spawning
an emerging pharmaceutical interest in develop-
ing ‘‘mitoprotectors,’’23,128–132 and therapeutics for
activating antioxidant and/or select mitophagic
pathways.72,117,118,122,125,126,133–137 This includes dysre-
gulated situations where these pathways and their mod-
ulators may be potentially maladaptive,138–141 for
example, wherein constraining the induction of autoph-
agy or mitophagy is desirable.142 However, when
autophagy was inhibited in retinal pigment epithelial
(RPE) cells subjected to rotenone-induced mitotic catas-
trophe (MC) in vivo (mice), it caused necrotic cell
death—suggesting that cell-controlled autophagy and
mitophagy act to prevent the RPE-MC cells from collec-
tively plunging into cell death indiscriminately, and thus
help minimize the extent of untoward RPE cell loss.143

a-Lipoic Acid and L-Carnitine
(R)-5-(1,2-dithiolan-3-yl)pentanoic acid, commonly
known as a-lipoic acid (ALA, Fig. 2) and its reduced
form (R)-6,8-bis(sulfanyl)octanoic acid, commonly re-
ferred to as dihydrolipoic acid (DHLA, Fig. 2) are enzy-
matically synthesized in mitochondria from octanoic
acid.144 ALA and DHLA are naturally occurring cofactors
for vital metabolic multi-enzyme complexes, including py-
ruvate dehydrogenase and glycine decarboxylase.144–146

They possess powerful antioxidative effects28,145,147,148

and anti-inflammatory activity,149 instigate signal trans-
duction modulatory pathways,32,150 and are well known
to stimulate the expression of nerve growth factor148,151,152

and enhance conduction velocity of motor nerves.148,153

Table 3. Association of Vision Loss with Other Diseases

Eye disease/indication Cause/associated condition Disease progression

Diabetic retinopathy45 Diabetes Progressive degeneration leading to blindness
Macular degeneration103 Aging, complement dysregulation,

oxidation, mitochondrial dysfunction
Progressive degeneration leading to legal

blindness
Microvascular abnormalities104,105 AD, diabetes, cardiovascular disease
Optic nerve cupping, optic neuropathy104 Glaucoma, ischemic optic neuropathies.

Compressive optic neuropathies
Pupillary abnormalities104 AD, diabetes, optic nerve and CNS

abnormalities
Retinal neurodegeneration (thinning of RNFL)104 AD, PD
RP64,106 Several hundred genes isolated to day Progressive blindness
Usher syndrome107 Deafness coupled with RP Progressive degeneration and deterioration

AD, Alzheimer’s disease; PD, Parkinson’s disease; RNFL, retinal nerve fiber layer; RP, retinitis pigmentosa.
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Additionally, ALA has significant histone deacety-
lase (HDAC) inhibitory activity.31,145 It is a potent ac-
tivator of the nuclear factor erythroid 2-related factor 2
(Nrf2)/antioxidant response element (ARE) signaling
pathway,28–32,162,163 which plays a central role in cellu-
lar defense against oxidative stress and the subsequent
upregulation of ARE-dependent cytoprotective genes, in-
cluding the heme oxygenase-1, catalase, and superoxide
dismutase genes, without exhibiting cytotoxicity.164,165

Nrf2 is essential for supporting and maintaining nor-
mal mitochondrial function and structural integrity,
particularly under conditions of cellular/neuronal
stress inherent in neurodegenerative disorders.29

Oxidative stress is one of the main factors contribut-
ing to the pathogenesis of age-related macular degen-
eration (AMD),39,40,166–169 the most common cause
of blindness in the elderly3,15,167,170,171 and the third-
leading cause of blindness worldwide3 (Table 4).

Nrf2-mediated activity has been shown to decrease
in aged rodents compared to younger pups, and in hu-
mans, in macrophages from older smokers in compar-
ison with older nonsmokers, and in the affected brain
regions of AD patients.166

Although ALA reaps much attention in clinical ther-
apy against a host of diseases susceptible to reactive ox-
ygen species, including radiation exposure scenarios and
heavy metal toxicity,28,175 its poor pharmacokinetic (PK)
properties 43,176–179 are a barrier to achieving sustainable
therapeutic concentrations in vivo.163,177,180,181 This PK
deficit limits the range of ALA’s potential clinical indica-
tions. Nonetheless, ALA is an effective treatment option
for diabetic neuropathy43,182 and possibly helpful in di-
abetic retinopathy,183 as outlined below.

In a clinical study evaluating oxidative stress, preretino-
pathic diabetic subjects who received oral treatment with
ALA in combination with other antioxidants showed a

FIG. 2. ALA-conjugates: PMX500FI28,154,155; EV06156; Lipoamide-ibuprofen conjugates (n = 2; 4; 6)157,158;
Lipoamide-rivastigmine conjugate, Lipocrine159; MiotL, revMitoLipAc160; Scopoletin lipoate.161 ALA, a-lipoic
acid.
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significant benefit in retinal elements—presumably due to
a protective antioxidant effect on retinal cells (as deter-
mined by electroretinogram analysis).184 A protective an-
tioxidant effect was also noted in a separate randomly
assigned clinical trial involving 100 patients with dry
AMD (50 patients given an oral administration of 0.2 g
of ALA capsules daily for 3 months, and a control group
of 50 patients receiving an oral administration of 1 g of vi-
tamin C daily). Using the Chinese-Version Low Vision
Quality of Life Questionnaire to assess vision-related qual-
ity of life, the ALA-treated group scored higher vs. the con-
trol group.185 In a study using a rat model of optic nerve
crush injury, ALA administered intravenously (63 mg/kg)
1 day before or 1 day after the ONC injury was shown to
have neuroprotective effects on retinal ganglion cells and
a stronger prophylactic effect in the retina of the ONC-
rats receiving ALA the day before the ONC injury.186

In a preliminary study with a higher species animal
model (diabetic dogs) given ALA (2 mg/kg) orally, with
ALA possibly acting as an antioxidant and/or as an aldose
reductase inhibitor, the onset of glucose-sorbitol-induced
cataracts was delayed, suggesting that the use of ALA
should be studied for treating aldose-reductase-associated
diabetic retinopathy in humans.187

However, to more fully take advantage of ALA’s clin-
ical potential as a drug candidate (particularly in ocular
indications), its PK drawbacks must be resolved. With
this in mind, mitochondria-targeting ALA-conjugated
esters were conceived and synthesized. Chemical struc-
tures representing some of the conjugates that have
been shown to have improved bioavailability and activ-
ity in vivo are shown in Figure 2.27,28,154–161,188–190

EV06 and PMX500FI (Fig. 2) are covalently linked
esters of natural substrates (EV06: ALA and choline156;
PMX500FI: ALA and L-carnitine28,154,155) that localize
to and are operated on in mitochondria. A detailed and
elegant study highlighting the anticancer properties of
ALA (acting as a modulator of signal transduction and
gene expression) inhibiting HDAC activity in human
tumor cells was reported by van de Mark et al.145 In
this study, choline was used as the vehicle (control), as
it apparently has no noteworthy activity of its own in
the assays used. However, choline is an essential nutrient
and methyl donor required for epigenetic regulation,191

and choline acetyltransferase (an enzyme that catalyzes
the biosynthesis of the neurotransmitter, acetylcholine)
is well-represented in ocular tissues of the human
eye192 and in cholinergic cells of the brain and CNS.193

L-Carnitine [L-(3R)-3-hydroxy-4-(trimethylammonio)-
butanoate], a natural compound primarily obtained fromTa
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meat-containing foods in the diet and/or endogenously
synthesized in the body,194 is a necessary nutrient of met-
abolic oxidation.195 It is required in the transport of
medium-chain and long-chain fatty acids (acyl groups) be-
tween cell organelles and into the mitochondrial matrix
where b-oxidation occurs, and in the removal of interme-
diate toxic products out of the mitochondria for excretion
in urine.154,194,196,197 In combination with carnitine acyl-
transferases (a family of enzymes that catalyze the revers-
ible transfer of acyl groups between coenzyme A [CoA]
and L-carnitine), acyl-carnitine esters are converted into
acyl-CoA esters, the active acyl substrate operated on by
the mitochondrial enzymes in b-oxidation; in the export
of excess acetyl groups from the mitochondria; and in acet-
ylation reactions that regulate gene transcription and en-
zyme activity.194 L-carnitine has also been shown to
confer protection in the prevention of radiation-induced
brain and retinal damages.198,199

Nrf2, and Epigenetic Attributes of ALA, L-Carnitine,
and Their Conjugated Esters
Retinal diseases and/or damages leading to a substantial
loss of retinal neurons can result in visual impairment
that may be permanent. The adult mammalian retina
has little capacity for regeneration,200,201 and as noted pre-
viously, unmitigated oxidative stresses in ocular tissues
can cause irreversible harm to the eye. The Nrf2-Kelch-
like ECH-associated protein 1 (Keap1) assembly is one
of the main cellular defense systems against oxidative
stresses.110,169,202 Nrf2 is a key nuclear transcriptional in-
ducer. It couples with ARE in the DNA promoter and
synchronizes the transcription of a large number of anti-
oxidant genes, including glutathione-S transferase, gluta-
thione reductase, and thioredoxin reductase.110 Notably,
the Nrf2/ARE/Keap1 signaling pathway regulates anti-
inflammatory gene expression and inhibits the progres-
sion of inflammation.203 Relevant to this discussion,
ALA and L-carnitine, separately and/or as a conjugate
ester (PMX500FI), are HDAC inhibitors that indepen-
dently may act to prolong epigenetic gene expression.31

Nrf2 production (Nfe2l2 gene expression) has been
demonstrated (in animals) to decline progressively
with age,141,166 and this may in part account for the ret-
inopathies,45 including macular degeneration, present-
ing as age-related diseases of the eye.204–206 An
imbalance in oxidative stress and antioxidant defense
mechanisms contributes to the pathogenesis of both
inherited and acquired corneal pathologies23,24 and to
the development of ischemic retinopathies such as dia-
betic retinopathy and retinopathy of prematurity.207 A

study designed to model retinopathies in mice showed
that Nrf2 activation reduced the vision-threatening fea-
tures of oxygen-induced retinopathy, namely vaso-
obliteration, neovascularization, and vascular leakage,
with potential therapeutic utility.207

Interestingly, activation of the Nrf2 cell defense path-
way can also be influenced by diet.208–214 Deregulated nu-
trient sensing is one of the hallmarks of aging112,114 and
numerous studies link elevated levels of oxidative stress
and inflammatory changes in various tissues and organs
to a dysbiotic shift in the gut microbiota.30,215 Kugadas
et al.216 suggest that pathogenic bacteria in the gut may
affect ocular disease susceptibility, and provide experi-
mental evidence for the existence of a gut-eye axis of im-
mune regulation. A study by Rowan et al.217 discovered
that metabolites and microbiota, acting together within
a gut-retina axis, appear to protect against diet- and
age-induced AMD features—implying that a simple die-
tary intervention may have complementary use in the
treatment of patients with AMD.218,219 Indeed, metabolo-
mics is an emerging and promising laboratory testing
technique for identifying blood profiles associated with
AMD across all its stages and severity.220 Microbiome re-
search in general is an aggressive field of study and al-
though the gut microbiome has captured most of the
attention,215 the microbiota on the surface of the
human eye (ocular microbiome) is drawing increasing
interest as a unique and immunoprotective commensal
ecosystem.32,216,221–224

Concluding Remarks
As should be clear at this point, eye disease is a primary
medical condition that often requires immediate attention
and therapeutic intervention in ageing populations world-
wide, not to mention pediatric and young adult patients.
Exacerbating the problem is the increasing global bur-
den of diabetes and obesity, along with heart disease,
which all lead to significant secondary and tertiary man-
ifestations of ophthalmic distress. Even less serious chal-
lenges such as managing dysfunctional tear syndrome
continue to frustrate greatly both patients and eye care
professionals.225,226 Therefore, increased interest is man-
ifold in developing innovative new approaches that tar-
get various mechanisms and sequelae driving conditions
that result in adverse vision. The research and develop-
ment challenges are even greater given that the varied
and extensive terrain of eye diseases is difficult to land-
scape into a single or even two or three therapeutic
themes, although some would say that all roads may ul-
timately lead to mitochondria.
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Thus, in this report, we have attempted to address
the burden of eye disease due to mitochondrial dys-
function, including antioxidant, autophagic, epigenetic,
mitophagic, and other essential cellular processes that
modulate the biomedical end result. In such a light, it
is appropriate to single out lipoic acid as a potent
known natural activator of these pathways, along
with alternative and potentially more effective carnitine
conjugates, which together we anticipate could harness
the necessary and complete profile of potency, specific-
ity, and biodistribution parameters that are required
for improved therapeutic outcomes.

In particular, Nrf2 is an important endogenous pro-
tective factor against oxidative stress and essential for
supporting and maintaining normal mitochondrial
function, especially in neuroretinal and other high
energy-demanding tissues. The clinical development
of drugs that modulate Nrf2 expression is vigorously
being researched as a neuroprotective strategy for treat-
ing conditions of oxidative stress, including age-related
cataracts and AMD.24,110,169,202,227–233

Eye disease is reaching epidemic proportions world-
wide.234 As yet one more example, it is estimated that
the incidence of glaucoma will exceed 100 million cases
by 2040,235–238 and most of the people affected will reside
in Asia and Africa.2 These healthcare juggernauts are due
to primary causes as well as secondary manifestations
resulting from metabolic distress in the eye, brain, and
elsewhere in the body where energy demanding cell
types are resident–again, think mitochondria.239 Ageing
populations add to the burden. The revival of interest
in developing novel eye disease therapies237–241 is conse-
quently no surprise. We hope that our review convinces
even more researchers to join the search for the next gen-
eration of safe and effective ophthalmic medicines.
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Abbreviations Used
AD ¼ Alzheimer’s disease

ALA ¼ a-lipoic acid
AMD ¼ age-related macular degeneration

ARE ¼ antioxidant response element
ATP ¼ adenosine triphosphate
CNS ¼ central nervous system
CoA ¼ coenzyme A

DHLA ¼ dihydrolipoic acid
EV06 ¼ lipoylcholine chloride

HDAC ¼ histone deacetylase
Keap1 ¼ Nrf2-Kelch-like ECH-associated protein 1

KSS ¼ Kearns-Sayre syndrome
MC ¼ mitotic catastrophe

MNGIE ¼ mitochondrial neurogastrointestinal
encephalomyopathy

MSVI ¼ moderate to severe vision impairment
Nrf2 ¼ nuclear factor erythroid 2-related factor 2

PD ¼ Parkinson’s disease
PEO ¼ progressive external ophthalmoplegia

PK ¼ pharmacokinetic
RNFL ¼ retinal nerve fiber layer

RPE ¼ retinal pigment epithelial
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