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Viewpoints

A Reconsideration of the Core and Matrix Classification
of Thalamocortical Projections

S. Murray Sherman1 and W. Martin Usrey2
1Department of Neurobiology, University of Chicago, Chicago, Illinois 60637 and 2Center for Neuroscience, University of California, Davis, California
95616

In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this
classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information
to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers,
especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven
especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical
connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evi-
dence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is
great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification.
We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights
into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core
projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix
to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not
support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of
thalamocortical projections.
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We have known for decades that thalamocortical projections rep-
resent a wide variety of forms and functions and that the classifi-
cation and identification of the component motifs are a necessary
early step in understanding this critically important set of con-
nections (Halassa and Sherman, 2019). One of the earliest
attempts claimed that thalamocortical pathways could be divided
into specific and nonspecific or diffuse (Lorente de Nó, 1938;
Jasper, 1949; Hanbery and Jasper, 1953). Specific projections
were described as one from a single thalamic neuron that targets
one or a few cortical areas topographically, whereas nonspecific
ones target multiple areas broadly and diffusely near the cortical
surface (e.g., Layer 1). Jasper (Jasper, 1949) included among the
specific thalamocortical nuclei those involved in primary sensory
relays (e.g., the lateral geniculate nucleus) as well as certain nuclei
he referred to as “specific elaborative systems,” which included
the pulvinar and medial dorsal nucleus.

The chief exemplars of the diffuse system were a number of
intralaminar and midline thalamic nuclei. These nuclei have been
identified with some variability in nomenclature and grouping

among authors, but it is beyond the scope of this account to go
into the organization of this part of the thalamus in any detail.
One such classification includes the following (Groenewegen and
Berendse, 1994; Van der Werf et al., 2002; Vertes et al., 2015): the
centralmedial, paracentral, central lateral, andparafascicular nuclei.

The function of specific thalamocortical projections always
seemed fairly straightforward and noncontroversial: to relay
peripheral information reliably, topographically, and precisely to
the cortex. That of the diffuse projections has always been more
difficult to pin down, but early suggestions tended to emphasize
the ability to synchronize large areas of the cortex in their func-
tioning for overall behavioral features, such as arousal (Lorente
de Nó, 1938; Jasper, 1949; Hanbery and Jasper, 1953).

Core and matrix thalamocortical projections (Fig. 1)
These ideas from over 70 years ago were resurrected and further
expanded by Jones (1998). He demonstrated an immunocyto-
chemical division of relay cells in the thalamus of the macaque
monkey: one set stained for calbindin and the other for parvalbu-
min. Because the calbindin-positive cells were distributed fairly
evenly throughout the thalamus as a sort of background, he called
this group “matrix.” Embedded among calbindin-positive cells
were groups of parvalbumin-positive cells, which he called
“core.” Both cell types were found in most nuclei, meaning these
nuclei had both types of relay cell, but there was a pattern noted:
for instance, the major sensory thalamic relays were dominated
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by parvalbumin-positive cells and midline and intralaminar
thalamic nuclei by calbindin-positive cells.

We note that many thalamic cells identified as matrix
have extracortical projections, such as to the basal ganglia, amyg-
dala, hippocampus, etc. (Vertes et al., 2015, 2022). However, in
this account, we do not consider these extracortical pathways fur-
ther, instead focusing on thalamocortical projections.

Jones also described differences between matrix and core tha-
lamocortical projections (Hashikawa et al., 1991; Rausell and
Jones, 1991; Rausell et al., 1992; Jones, 1998): matrix inputs target
superficial cortical layers (such as Layer 1) in a diffuse manner,
whereas the core projections target middle layers less diffusely,
and matrix projections tend to involve axons that branch repeat-
edly to innervate a number of cortical areas, whereas core axons
innervate one or a few areas.

Here, it is worth considering the descriptor “diffuse,” because
it has potentially different meanings in the context of thalamo-
cortical projections and these differences can be confusing as
elaborated below. Many would define a diffuse thalamocortical
projection as one in which individual axons branch extensively
to innervate broad areas of the cortex nontopographically.
Jones used a subtly different definition: he called the matrix pro-
jections diffuse, because retrograde label applied to superficial
cortical layers labeled thalamic calbindin cells in many thalamic
nuclei (Jones, 1998). Whereas this may be a reasonable use of
“diffuse,” it should be noted that the pattern described by Jones
could easily involve highly topographic projections from thalamic
cells that converge onto one cortical region in upper layers. It is
also possible that a thalamocortical axon can branch to innervate
multiple cortical areas, whatmay be seen as a diffuse property, but
the projections may all be topographic within their target zones.
Thus, “diffuse” canmean nontopographic projections in one con-
text but not in the other.

How are matrix thalamic cells defined and
identified?
There appears to be some confusion or variability regarding how
matrix thalamocortical projections are identified. The simplest
criterion for identification applies only to monkeys: a thalamic
cell that stains for calbindin is matrix. This is not very useful,
because, as Jones points out (Jones, 1998), such staining for iden-
tification purposes is not clearly useful in mammals other than
the monkey. Furthermore, such a staining pattern by itself
does not provide any functional insights. Instead, the implicit
identification of matrix thalamocortical cells seems to depend

on their projection patterns, namely, relatively nontopographic
projections to multiple areas terminating in upper layers, mostly
Layer 1, and avoiding deeper layers (Fig. 1).

However, a number of thalamocortical projections identified
as matrix defy this classification. For instance, koniocellular cells
of the lateral geniculate nucleus of monkeys, cells that stain for
calbindin, are identified as matrix (Jones, 1998). These do project
to upper layers, including Layer 1 of the primary visual cortex,
but do so in an extremely topographic manner, and their axons
do not branch to innervate other cortical areas (Ding and
Casagrande, 1997; Casagrande et al., 2007). Whereas it is known
that some koniocellular cells in the monkey project to extrastriate
areas (Yoshida and Benevento, 1981; Sincich et al., 2004), it is as
yet undetermined if these axons branch to innervate other areas
as well. Other examples exist of topographic and specific thala-
mocortical innervation to Layer 1 (Odagiri et al., 2011). There
are also thalamic relay cells that innervate Layer 1 (a matrix fea-
ture) but have axon collateral innervation of deeper layers,
including Layer(s) 4 and/or 5 (core features; Usrey et al., 1992;
Ohno et al., 2012).

How common are projections that terminate in Layer 1 and
are diffusely distributed throughout much of the cortex? Clear
examples outside of the intralaminar andmidline thalamic nuclei
are rare. These intralaminar andmidline thalamic nuclei were the
original focus of the so-called nonspecific thalamocortical projec-
tions (Lorente de Nó, 1938; Jasper, 1949; Hanbery and Jasper,
1953), and so these nuclei may harbor cells that fit the criteria
for matrix. However, a chief criterion is diffuseness of the projec-
tion, and modern neuroanatomical data suggest that such projec-
tions are not common. That is, the projections of these
intralaminar and midline thalamic nuclei are typically specific
and topographic (Groenewegen and Berendse, 1994; Van der
Werf et al., 2002).

We suggest that many thalamic relays suggested to be matrix
are topographic, specific, and often innervate deeper layers.
Indeed, it is not clear how common the matrix pattern in
Figure 1 is, and available data certainly do not support the idea
that such a pattern represents a major type of thalamocortical
projection. This raises the question: How valid and useful is
the core/matrix classification for the thalamus?

Relationship to the first- and higher-order thalamus
classification
In a different classification system, thalamic relays can be catego-
rized based on the source of the information they relay to the

Figure 1. Examples of presumed core (red) and matrix (blue) thalamocortical projections. A core thalamocortical cell projects in a focused, highly topographical manner and primarily targets
middle cortical layers, especially Layers 4 and 5, in one area. A matrix thalamocortical cell projects in a diffuse, less topographical manner and primarily targets upper cortical layers, especially
Layer 1, in multiple areas.
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cortex: first-order relays receive such input from a subcortical
source, whereas higher-order relays receive it from Layer 5 of
the cortex (Guillery, 1995; Sherman and Guillery, 2013;
Sherman, 2016; Usrey and Sherman, 2021). The lateral geniculate
nucleus, which receives subcortical information from the retina,
is a first-order exemplar, and one for higher-order is much of the
pulvinar, which receives such input from Layer 5 of the visual
cortex and projects to other visual cortical areas. This pattern
is not limited to the visual system: for the somatosensory system,
the ventral posterior nucleus is first-order, and the posterior
medial nucleus is higher-order; for the auditory system, the
ventral division of the medial geniculate nucleus is first-order,
and the dorsal division is higher-order (details reviewed in
Sherman and Guillery, 2013). This classification has been
extended to most of the thalamus; for instance, the medial dorsal
nucleus is identified as mostly a higher-order relay (Mitchell,
2015). Thus the question: How do the first-/higher-order classes
relate to the core/matrix division?

There seems to be some confusion regarding the relationship
of first- and higher-order relays to the core/matrix classification.
For instance, some suggest that first-order relays are core and
higher-order are matrix (Harris and Shepherd, 2015; La Terra
et al., 2022; Aru et al., 2023; Munn et al., 2023). A likely problem
with this, as noted above, is how one goes about identifying
matrix elements. If a projection to Layer 1 indicates a matrix con-
stituent, it is clear as indicated above that the lateral geniculate
nucleus, by this definition, is partly matrix, which challenges
the generalization that first-order relays are strictly core.

Perhapsmore significant is the idea that higher-order relays are
matrix. This idea is articulated in many recent publications, for
example, that higher-order relays are “…nonspecific (diffuse pro-
jecting)…” (La Terra et al., 2022); that the “…thalamocortical net-
work…includes both specific (a.k.a. ‘core’ or ‘first-order’…and
nonspecific thalamocortical circuits (a.k.a. ‘matrix’ or ‘higher-
order’…” (Munn et al., 2023); or that “The thalamocortical net-
work encompasses cortical areas, cortico-cortical connectivity,
and higher-order thalamic nuclei with their diffuse projections to
cortical areas…” (Aru et al., 2023). However, it is clear that
many, if not most, higher-order nuclei are core based on topo-
graphic projections that target middle layers. Examples include
higher-order thalamocortical projections of the visual thalamus
(Niimi et al., 1974; Benevento and Rezak, 1976; Symonds et al.,
1981; Dick et al., 1991; Lyon et al., 2003; Mundinano et al., 2019;
Juavinett et al., 2020), of the somatosensory thalamus (Krubitzer
and Kaas, 1992; Bureau et al., 2006; El-Boustani et al., 2020), of
the auditory thalamus (Huang andWiner, 2000), and of themedial
dorsal nucleus (Groenewegen, 1988; Mukherjee et al., 2020;
reviewed in Usrey and Sherman, 2021).

We conclude that the idea that the core and matrix thalamus
corresponds one to one onto the first- and higher-order moieties
is wrong and misleading.

Concluding remarks
The real problem we see is establishing a clear definition for what
is meant by the “matrix” thalamus. Is it a projection to cortical
Layer 1? Is it diffuse, poorly topographic, or nonspecific thalamo-
cortical innervation? Do all sets of requirements need to be met
to identify the matrix thalamus, and if so, are there clear exam-
ples of such thalamocortical projections? We suggest that no
clear criteria for the matrix thalamus exist that distinguishes it
from the core thalamus. Instead, there is a wide variety of thala-
mocortical innervation patterns (Clascá et al., 2012; Halassa and

Sherman, 2019), some of which at one extreme of variation may
resemble what is understood as matrix; others at another
extreme, as core; and yet others as neither.

We suggest that the core/matrix idea has lived beyond its sell-by
date and that it should be abandoned, because it now servesmainly
to confuse and misrepresent. Instead, what is needed is a proper
classification of thalamocortical projections. This is a daunting
challenge: we are far from appreciating the range of variability
and number of discrete motifs in thalamocortical processing. But
the challenge must be recognized.
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