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DEDICATION

To my family; Zaher, Maryam, Dana, and Arina

”Listen,” said Pugatschew, with a sort of wild enthusiasm, ”I shall tell you a fable which I
have heard in my infancy, from an old Kalmouk woman. Once upon a time the eagle asked
the raven:–’tell me my good raven how is it that your race lives to the age of three hundred
years, whilst we eagles only live to the age of thirty three?’–’ The reason, my good sir, is,
because you devour your prey alive whilst we live upon dead carcasses.’ The eagle thought,
well, I shall try that too. They thereupon went out together and found a dead horse. They
alighted upon it. The raven began to feed and enjoyed it. The eagle tried several morsels,
then shook his pinions, and said to the raven:’–Nay, brother raven, rather than live three
hundred years upon dead horses, I once feast upon a live victim, and then let fate do its
worst.
Alexander Pushkin, The Captain’s Daughter. Ch. XI, P. 117. 1836.
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One of the fundamental challenges to the performance gain in advanced semiconductor tech-

nology is aging-induced delay degradation of transistors, which consequently increases the

logic gates delays and eventually critical paths delays. Hence, designers have to add sig-

nificant time margin as guardband to the main critical path, which imposes considerable

performance degradation to the system. Temperature and stress (or usage) are the major

sources of transistor’s aging, which vary for different applications and are highly workload

dependent. This thesis covers challenges and opportunities in monitoring aging, its effects

and methods to combat the imposed performance and lifetime degradation in nanometer

scales semiconductor platforms.

We devise methods to monitor and mitigate aging in computing platforms ranging from

the conventional reconfigurable architectures to the contemporary 3D network-on-chips and

many-core systems. To monitor aging-induced delay degradation on critical paths, we pro-

posed SENSIBLE, a highly scalable aging sensor design that can help system-level designers

to detect aging and react accordingly. Additionally, we proposed an applicaiton-dependant

filtering methodology to select Representative Critical Paths (RCPs) among a large pool of

critical paths for aging monitoring in reconfigurable architectures. Furthermore, two proac-

tive methods are presented to mitigate aging impacts on application’s critical paths and
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SRAM cells in reconfigurable architectures. The former is a high-level physical planning

coupled with a reconfiguration policy and the latter is STABLE, a post-synthesis stress-

aware Boolean matching technique. To mitigate and monitor aging on Network on Chip

(NoC) components in both 2D and 3D IC designs we proposed AROMa, which is an aging-

aware adaptive routing algorithm. To this end, we devised Centralized Aging Table (CAT) to

convert transistor level aging phenomenon to the workloads’ behavior in NoC-based many-

core systems. Finally, an aging-aware task mapping, ADAMANT, is proposed to balance

aging in many-core heterogeneous architectures’ components.
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Chapter 1

Introduction

Performance degradation due to runtime (temporal) variations is a fundamental challenge

in the advanced semiconductor technology [2]. Extremely low feature size in CMOS tech-

nology leads to higher temperature, which as time passes, increases the threshold voltage

(Vth) of under stress transistors. Hence, these delay degradations at the transistor level

increase critical paths’ delays, manifesting itself as performance degradation at the system

level. The aforementioned phenomenon is the so called transistor aging or briefly aging as

a new reliability concern in advanced silicon technology. Accordingly, designers have to add

aging guradband to the circuit’s main critical path which imposes significant performance

overhead [2, 51, 132, 149, 155]. Consequently, aging imperils the performance gain from the

movement toward many-core systems and 3D IC design in nano-era technology.

1.1 Aging background

Reliability is a perpetual concern in nanoscale circuits. Among various reliability challenges

aging can significantly impact the dependable operation of applications. Aging can cause
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timing failure in the running application and/or considerably diminish the operational life-

time of the circuit. Different aging mechanisms are classified as following [2]:

• Bias Temperature Instability (BTI)

• Hot Carrier Injection (HCI)

• Time Dependent Dielectric Breakdown (TDDB)

• Electromigration (EM)

BTI

BTI is a two phases mechanism which includes stress phase and partial recovery phase.

Negative BTI (NBTI) happens in PMOS transistors and Positive BTI (PBTI) happens in

NMOS transistors. The transistors cross sections during NBTI and PBTI mechanisms are

shown in Fig.1.1 and Fig.1.2, respectively [86, 91, 132, 143]. As shown in Fig.1.1.a, when the

PMOS transistor is ON, the stress voltage brakes the covalent bound of Si-H at interface;

this process is so called reaction. The separated hydrogen atoms combine to form H2, which

diffuses toward the gate of the transistor. These broken Si-H bonds generate positively

charged traps for holes and leads to increase in transistor’s Vth. Interestingly, as illustrated

in Fig.1.1.b, when the PMOS switches off and stress is removed the recovery phase starts

where some of the traps are released and the broken Si-H bounds heal. PBTI in NMOS

transistors was not a challenge in silicon dioxide dielectrics. However, as the high-k dielectric

stacks started from the 32 nm technology node, its contribution to the aging also becomes

considerable [164, 165]. Similarly, Fig.1.2 illustrates the NMOS transistor cross section

during PBTI mechanism. In contrary to NBTI, as shown in Fig.1.2.a, PBTI is generally

happens due to the electrons trapping within the gate dielectric or at the interface when the

NMOS transistor is ON. During its recovery phase, these electrons are released and partially
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go back to the channel which leads to partial improve in transistor’s Vth. Temperature

accelerates BTI mechanism.
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Figure 1.1: PMOS transistor cross section illustration during NBTI.
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Figure 1.2: NMOS transistor cross section illustration during PBTI.

HCI

HCI mechanism is more prominent in NMOS transistors. The transistor cross section during

HCI mechanism is shown in Fig.1.3. When the transistor switches to turn ON the high energy

3



carriers, that are called hot-carriers, collide with other atoms and carriers in the transistor’s

channel. If their energies are higher than impact-ionization threshold then electron-hole

pairs are generated. Some of these carriers are injected to the gate oxide and as a result Vth

increases [91, 119, 145].
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Injection 
current

VCC

Figure 1.3: NMOS transistor cross section illustration during HCI.

TDDB

TDDB mechanism occurs when the voltage across gate generates traps in the dielectric.

Accumulation of these carriers increases the electron density in the transistor dielectric. As

shown in Fig.1.4 when the electron density is high a breakdown path (i.e. conductive path)

between the transistor’s gate and channel is generated [46, 91, 94]. The generated breakdown

path increases leakage power of the transistor, shifts its Vth, and eventually fails its correct

functionality [94, 158].
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Figure 1.4: NMOS transistor cross section illustration during TDDB.

EM

EM occurs along conductors in the direction of electron flows which cause to diffuse metal

atoms. For example, the metal connection between transistors suffers from EM mechanism.

The mass migration of metal atoms along with the electrons depletes a part of conductor

and makes it thinner. Consequently, thinning of the metal increases the resistance of the

connection and eventually leads to an open circuit in the wire [27, 36].

Aging sources and design time solution

The main source of aforementioned aging mechanisms in transistors or wires is usage, or the

so called stress. For example, when the transistor is ON or is switching or a current flows

inside a wire stress happens. Aging rate increases in high temperatures. BTI and HCI that

increase Vth and switching delay of transistors are the dominant aging mechanisms [2, 45,

64, 65, 105]. In [18], it is shown that BTI and HCI impacts are 15% and 5%, respectively

in 65nm technology. This shows that BTI is the dominant mechanism and its impact is
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three times higher than HCI. These get worse for technologies beyond 65nm and the timing

variation are expected to aggravate with technology scaling [2, 35]. Furthermore, In [115],

BTI and HCI impacts are reported 9.4% and 8.5%, respectively. Additionally, [17] reports

about 10% degradation for 32nm in 3 years due to BTI. Based on these reports, in this work,

we assume BTI and HCI in worst case degrades critical paths by 12% and 4% in 3 years,

respectively, given a fixed temperature of 380K. In this dissertation, we study and consider

the impact of BTI and HCI aging mechanisms on delay of a circuit (i.e. performance).

The path with the highest delay in a circuit (i.e. an implemented application) is the main

critical path, which determines the circuit’s clock frequency or performance. Aging increases

the critical paths’ delays which demands for higher period of clock (or lower clock frequency).

Sequential elements (e.g. Flip-flops) are connected at the end of each path to store the

state of the circuit. Any variation on path delay because of aging causes timing violation

and error which results in incorrect state of the circuit. This could lead to failure at the

system level. Therefore, designers have to add pessimistic timing margins to the circuit’s

critical paths (i.e. clock frequency) as guardbands. In addition, dynamic variations at run

time due to running workloads’ variations lead to distinct stress as well as temperature

between resources. For that, designers must consider the worst case scenario due to the

unpredictability of running workloads’ behaviors at runtime on the circuit. Besides, due

to process variation, temperature, and voltage variation other guardbands are required to

be added. These timing guardbands’ lengths are increasing rapidly as technology advances,

which account for almost 40% of the target performance [2]. For example, 20% guardband is

required to avoid failure due to aging in 65nm technology within the first 10 years [51, 155].

Guardbanding constraints those advantages that are because of technology scaling [2].

The static variations (i.e. process variation) effects can be mitigated by pre-silicon and

post-silicon tuning techniques. While aging as a temporal variation requires after fabrication

solutions, during runtime and at system level to compensate for the performance degradation
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related to guardbands and help designers to avoid adding considerable guardbands to the

system at fabrication time. In all, not only design time analysis and adding guardbands but

also runtime techniques can help to cope with aging effects.

Since stress and temperature change broadly for different transistors in a circuit, aging rates

of logic gates and the paths along them are not balanced [51, 66, 153]. Therefore, the

aging-induced delay increments of different paths vary, which may cause generation of new

critical paths by converting non-critical path to critical path. The imbalance aging rate

becomes more severe in many-core systems and 3D ICs, where temperature is a fundamental

challenge. Beside that, various components (e.g. cores, interconnection infrastructures, and

etc.) inside devices experience different temperatures and stresses. Similarly, reconfigurable

architectures components where not only the running application on them but also the

implemented logics among them change. This also causes imbalance and unfair aging of

components.

1.2 Selected platforms and motivation

Runtime reconfigurable architectures enable dynamic adaptation of changing workloads, that

allows to optimize area, performance and power [61, 67]. They comprise general purpose

cores and a reconfigurable architecture which is implemented as SRAM-based Field Pro-

grammable Gate Array (FPGA) to allow swift runtime reconfigurations. Fig. 1.5 illustrates

the contemporary island style SRAM-based reconfigurable architecture. The ever-increasing

usage of FPGAs in mainstream applications such as acceleration in data-centers as well as

safety critical application such as space, automotive, and medical made us to investigate

aging in such a platform.

As shown in Fig. 1.5 the application’s logics are implemented in tiles which are known as
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Figure 1.5: Island style SRAM-based reconfigurable architecture.

Configurable Logic Blocks (CLBs) is composed of Look-up-Tables (LUTs), Flip-Flops (FFs),

Carry chain, logic gates and etc. These components are connected to each other through

Connection Blocks (CBs) and also connected to other CLBs through Switch Boxes (SB).

SRAM cells inside these components are configured to implement the desired logics and their

required routings. Fig. 1.5 shows that all the components in an FPGA suffer from aging-

induced delay degradation (red thunders). For example, the delay of implemented critical

paths along a reconfigurable architecture components can increase due to aging mechanisms

such as BTI or HCI. Additionally, aging impact on SRAM cells in a reconfigurable archi-

tecture manifests itself as the SRAM’s Static Noise Margin (SNM) reduction. SNM is the

SRAM cell reliability measurement. Hence, SNM reduction in an SRAM cell decreases its
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stability and increases its Soft Error Rate (SER).

There have been noticeable numbers of studies in the literature about aging in reconfigurable

architectures [6, 87, 88, 123, 138, 142, 167, 169]. These techniques tried to mitigate aging

through changes in placement or routing of the implemented design on FPGAs. It is required

to be noted that temperature map of the implemented circuit cannot change drastically by

these local changes. Therefore, the local tuning not only cannot change the aging map of

the implemented design but also induces performance overheads due to stringent constraints

of placed and routed design. Furthermore, these methods only focused on the performance

degradation of implemented design on an FPGAs and the impact of aging on SRAM cells of

reconfigurable architectures is ignored.

Additionally, the movement toward many-core systems and the demand for lower area, power,

and scalability as well as higher performance leads computer architects to 3D IC and NoC de-

signs [47]. Furthermore, the broad diversity of application requires many-core heterogeneous

architectures, as well. Fig. 1.6 illustrates the system evolution toward many core systems

and their on-chip interconnections. It can be seen that routers are the main components to

connect cores in a platform with 80 cores [47] which can suffer from aging. Aging-induced

performance degradation in routers endangers the reliability and scalability of such plat-

forms. Furthermore, cores in heterogeneous architectures have different clock frequencies

which increases the chance of higher imbalanced aging among cores.

All of these lead us to investigate aging in NoCs, as a promising solution for scalable and high

performance many-core systems, and heterogeneous architectures. It is shown in Fig. 1.6 that

all the components in a many core system such as cores, routers, and links are susceptible

to aging-induced performance degradation. It can be concluded that in many-core systems

different components experience various temperatures and stresses related to the running

workload on them. This leads to aging imbalance among them which causes premature

lifetime degradation of highly aged components (i.e. cores or routers).
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The related works in [11, 12, 19, 20] focused on aging degradation in NoC components.The

focus of their works was to mitigate aging by changing the routing between source-destination

pairs through profiling aging information at offline. These techniques are not able to catch

the runtime behavior of workloads and their impact on temperature and aging. Also, non

of these related works studied the impact of aging for 3D NoCs. Additionally, the impact

of aging on processing units in many-core systems are studied in [121, 104, 69]. These

techniques tried to mitigate aging through task mapping for homogeneous architectures. We

observed that for heterogeneous architectures age imbalance between the highest aged core

and the lowest aged core is almost 55% higher than homogeneous architectures.

In this dissertation we chose reconfigurable architectures and NoC in many-core system as

our platforms for aging study. The usage of both platforms in embedded systems such as

safety critical applications as well as main stream applications is inevitable. Performance
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and reliability demands for the new application of digital systems such as Internet-of-Things

(IoT) requires careful investigation of aging to avoid loss in performance, energy, area, power,

and scalability.
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1.3 Dissertation contribution

This dissertation focuses on mitigating performance degradation for aging in both recon-

figurable architectures and many-core system components (i.e. cores and NoC). We devise

methods to monitor aging on critical paths, mitigate aging impact on performance in recon-

figurable architectures as well as their SRAM cells’ SNM. In addition, we investigate aging

for both 2D and 3D NoCs and heterogeneous cores in many-core architectures. Our proposed

methods objective is to balance aging among available resources and minimizes the delay

degradation of highly aged components.

We classify our aging investigation methods for reconfigurable architectures as reactive and

proactive methods. In the reactive category, we proposed:

• A highly scalable sensor design for late transition detection in FPGA-based platforms.

• A two-step aging-aware methodology for Representative Critical Paths (RCPs) selec-

tion from a large number of Critical Paths (CPs) in programmable logic devices.

At first, we propose a sensor clock (SCLK) that is a function of minimum slack time of a set

of paths selected for age monitoring. There will be one such clock for many sensors as are

needed in an entire FPGA. Our proposed sensor architecture makes it possible for a single

SCLK to be shared by all sensors. Additionally, the proposed sensor occupies one slice (basic

FPGA logic block), which leads to low area, power, and performance overhead.

In addition, we proposed a two-step filtering methodology to select RCPs for aging monitor-

ing in a reconfigurable architecture. In the first step, nomination of CPs is based on delay,

temperature, and lexicographic function of duty cycle and switching activity filtering, which

are the major causes in BTI and HCI aging mechanisms. Secondly, RCPs will be selected

based on Fan-out (FO) and physical location of Logic Blocks (LBs) along a CP to decrease
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aging propagation and sensor distribution fairness, respectively. We then present a sensor

insertion algorithm that will be used during design placement to avoid sensors’ inaccuracy.

Implementation steps of sensor insertion are performed automatically with a limited human

interaction.

In the proactive category, we proposed:

• A high-level physical planning with reconfiguration strategy in order to mitigate the

aging-induced delay degradation in FPGA resources.

• A three-step post-synthesis stress-aware technique, to reduce the impact of BTI-induced

SNM reduction in FPGA LUTs using SAT-based Boolean Matching (BM) algorithm.

The first method is an offline framework composed of an aging-aware floorplanner coupled

with a proactive aging-aware reconfiguration policy which generates checkpoints aperiodi-

cally for runtime reconfiguration. We consider BTI and HCI aging mechanisms and consider

the BTI-based aging recovery during idle periods using aging history map.

Secondly, our proposed methodology partitions Data-Flow-Graph (DFG) of the implemented

design into different cones. First, our SAT-based BM algorithm finds a new configuration for

each cone in DFG while all SRAMs are flipped and its functionality is preserved. Secondly,

cones that did not pass step one can benefit from unused SRAMs in their partially-used

LUTs. Hence, we store the flipped configuration of such LUTs in their unused SRAMs.

Finally, flipped configurations of fully-used LUTs are stored in unused LUTs. The main con-

figuration of implemented design on FPGA will be swapped by the new flipped configuration,

periodically.

To cope with the delay degradation in 2D and 3D NoCs we proposed an online monitoring

method through a Centralized Aging Table (CAT) for routers in NoCs. To capture inter-

layer temperature variations in 3D NoC we exploit Distributed CAT (D-CAT). Router’s
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capacity in flits, which are the main stimuli in routers, is predictable and limited for a given

period of time. Consequently, stress rate and temperature, which are the major sources

of aging mechanisms such BTI and HCI, will be in the predictable ranges, as well. Our

methodology uses CAT which is populated by values that represent aging degradation for

each different pairs of stress and temperature ranges during a given period of time. In

3D NoC, each layer has its own D-CAT to capture the difference between temperature of

different layers even with same stress. Furthermore, utilizing D-CAT, we propose AROMa,

an online adaptive aging-aware routing algorithm in order to avoid highly aged routers which

eventually leads to age balancing between routers. Our proposed routing algorithm reduces

maximum age of routers by changing the shortest paths between source-destination pairs

adaptively, considering routers’ ages across them in each given period of time.

The pervasiveness of heterogeneous multiprocessors (HMP) in the mobile domain enables

more energy efficient systems. Current approaches to exploit the energy efficiency of HMPs

results in unbalanced usage of resources, which leads to higher aging rates and delay degra-

dation when compared to homogeneous architectures. Hence, we propose ADAMANT, an

aging-aware task mapping algorithm for HMPs. ADAMANT exploits on-chip sensing of

aging, performance, and power in order to enable online workload characterization to select

task-to-core mappings that yield both increased system lifetime and energy efficiency.

14



1.4 Dissertation organization

The rest of this dissertation is organized as follows. First, Chapter 2 presents SENSIBLE a

highly scalable sensor design for reconfigurable architectures. Chapter 3 elaborates on our

two-step methodology to find RCPs among large pool of critical paths to insert aging sensors

(e.g. SENSIBLE) on them. We propose our high-level physical planning method along with

reconfiguration policy for aging mitigation in FPGAs in Chapter 4. Chapter 5 proposes

STABLE, a three-step post-synthesis technique to mitigate SNM reduction due to BTI in

SRAM cells in FPGAs using Boolean matching technique. In Chapter 6 we elaborate on

AROMa, an adaptive aging-aware routing algorithm for 3D NoCs and 2D NoCs along with

our novel online aging monitoring system. Next, in Chapter 7, we propose ADAMANT, an

aging-aware task mapping technique for heterogeneous architectures.
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Chapter 2

SENSIBLE, a novel scalable

low-overhead aging sensor design

FPGAs are broadly deployed to accelerate computation in various applications ranging from

embedded applications such as automotive, vision, and medical devices to data-center ap-

plications. Fabricated in latest advanced silicon technology and deployed for highly com-

putationally intensive kernels, FPGAs face reliability challenges such as aging [18, 30, 161].

BTI and HCI aging mechanisms induce delay degradation to FPGA resources and increase

leakage power consumption [142, 148, 7, 138, 50]. The delay degradation in logic and routing

resources along Critical Paths (CPs) of a design on FPGA results in late transitions that

can cause timing failures.

Delay degradation (aging rate) in BTI and HCI mechanisms is exponential function of tem-

perature and nonlinear function of stress time. Each resource in FPGA can be possibly in

a critical path of target applications with different temperature and Stress Rate (SR) maps.

This means different CPs experience different temperatures and stresses, thus different aging

rates. Therefore, delay of CPs with longer slack times may exceed smaller ones (including
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longest critical path) [50]. This chapter focuses on on-chip aging sensors for critical path

delay monitoring in FPGAs.

On-chip aging sensors that are referred to as application dependent sensor [7, 118, 148], are

deployed along the paths in a circuit to detect any increase in delay of the paths for system

level aging mitigation techniques [118, 160]. A path has a slack time relative to the longest

critical path or operating clock period (MCLK). Any transition in slack time is an indication

of aging that needs to be detected by aging sensors. While critical paths with negligible

slack times are more vulnerable to timing failure due to aging, it is shown that some of near-

critical paths with relatively small non-zero slack time often have higher aging rates [50].

Hence, by selecting and monitoring such near-critical paths as Representative Critical Paths

(RCPs), we can potentially detect aging pro-actively to avoid functional failures caused by

timing failures in the entire system [50]. Such RCPs even tend to exceed the longest CP’s

delay due to aging.

Inserting aging sensors on such RCPs’ endpoint avoids performance loss due to the added

delay of sensors to RCPs. To find these RCPs we deployed and improved version of our RCP

selection algorithm in Chapter 3. This algorithm finds RCPs that have higher aging rates

than CPs with smaller slack time. However, if aging rates of CPs with smaller slack times

(including longest CP) are high enough that may result in timing failure before detection of

aging on other selected RCPs, the algorithm selects them for monitoring. Hence, negligible

performance loss is unavoidable.

Slack-based aging sensor architecture and design for such RCPs is challenged by various

factors. Because of a large number of RCPs in a design, the number of required sensors

will be high [50]. Each aging sensor requires a sensor clock (SCLK) and state-of-the-art

aging sensors cannot share a single clock source [7, 148]. Given that the number of clock

generation modules is limited for an FPGA, existing aging sensor designs are not scalable to

be deployed in a large scale for RCPs (Fig. 2.1a). This becomes more important in multiple
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Figure 2.1: Multiple aging sensor architecture in FPGAs.

clock domain designs. Another challenge is sensor placement at the RCPs’ endpoints. Sensors

with higher resource utilization (logic and clock resources) incur more stringent placement

constraints. If aging sensors utilize fewer logic resources and share a clock resource, they are

more likely to be inserted near RCPs’ endpoints. This leads to higher scalability and more

accurate operation of sensors with less overhead. Higher accuracy (or sensitivity) leads to

faster aging detection than previous works [148, 7]. This helps system level aging mitigation

methods to react better by having more precise aging information in RCPs.

This chapter presents a highly scalable sensor architecture by utilizing the minimum slack

time of selected RCPs to build a shared sensor clock (SCLK) called SENSIBLE. The proposed

multi-sensor clock design has lower area and power overhead in comparison with state-of-

the-art aging sensors. As illustrated in Fig. 2.1b, using SENSIBLE we can utilize the same

clock generator for a group of sensors. Additionally, the proposed sensor only occupies one

basic FPGA logic block (e.g., a slice in Xilinx Artix FPGAs).
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Programmable routing resources between programmable logic blocks (CLBs) on FPGAs im-

pose significant delay overhead in a sensor design, which may sometimes exceed the aging-

induced delay degradation. By containing the sensor in one logic block and avoiding pro-

grammable routing resources, our proposed aging sensors are able to detect aging earlier

(i.e. higher accuracy) than existing aging sensors, and yet, they have lower area and power

overheads. Earlier (more accurate) aging detection before happening of timing failure helps

the system level aging mitigation techniques to react sooner and properly. For example, by

changing the placement (configuration bits) of more aged regions we are able to mitigate

aging in reconfigurable architectures [65].

The experimental results on Artix7-based board show that the SENSIBLE is a scalable

low-overhead aging sensor and it can be inserted in designs on FPGAs in large scale with

negligible impact on design performance. Our experimental results support this claim that

unlike previous works [148, 7], our proposed sensor design with lower logic resource utilization

can fit as closely as possible to path endpoint CLB so as to avoid programmable routing

resources. Due to higher accuracy, the aging along CPs are detected earlier than using aging

sensors in [148, 7]. To the best of our knowledge this is the first attempt for scalable design

of aging sensors on FPGAs which can be applied for ASIC design as well.

2.1 State-of-the-art aging sensors for FPGAs

Logic-based aging sensors for ASIC designs have been proposed in the literature. For in-

stance, sensors presented in [118, 117] measure delay degradation in a circuit due to transistor

aging. In [118], two approaches for detection and correction of late transition due to NBTI

are proposed, which either impose performance or area overhead to the circuit. The sen-

sor introduced in [117] is based on two ring oscillators, one as a reference, and the other

one under stress conditions. The difference between their frequencies is a representation of
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their delay difference. In [170], a ring oscillator based multi-purpose sensor on FPGA is

presented. Although their method is suitable to extract the FPGA delay, they cannot be

used for monitoring aging on CPs (i.e., not application dependent).

Application dependent aging sensors (i.e. by monitoring aging along CPs) for FPGA-based

designs are proposed in [148, 7]. In order to detect transitions on path endpoints near the

active clock edge, they monitor RCPs. In [7], an FPGA-based aging sensor is proposed

which occupies more than one slice. A similar approach is used in [148], with a difference

that their proposed sensor is able to adjust the observation interval dynamically. Since

such aging sensors require different clocks, multiple clock sources are required (See more

details in Section 2.4). This not only reduces their scalability due to limited numbers of

clock generation modules, but also increases the area and power overheads. Additionally,

the aging sensors occupy more than a basic logic block (e.g. slice) and they are forced to

connect to the RCPs’ endpoint through programmable routing resources (outside the slice),

with a higher delay. In addition, due to higher resource utilization (clock resources and logic),

it is less likely to be able to place the sensors close to the RCPsâĂŹ endpoints. Detailed

comparison in Section 2.4 is provided.

Some of the related works try to mitigate aging in re-configurable architecture at different lev-

els of granularity by changing the placement of design inside an FPGA [138, 65, 32]. [138, 32]

proposed offline aging mitigation techniques by profiling the aging rates of different blocks

in an application to increase chip lifetime or avoid timing failure at runtime. However, the

applications’ behavior (temperature and stress) at runtime might be different and result to

impaired solutions which leads to online aging mitigation techniques [32]. Aging sensors

on RCPs will be one way of online monitoring. Therefore, sensors with lower overheads

and higher sensitivity are needed. Lower overheads (area, power, performance, number of

required clock generators, clock routing) leads to higher scalability and lower design complex-

ity. In this work, we amended our proposed RCP selection method in [50] to find required
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Figure 2.2: Block diagram of SENSIBLE.

RCPs for aging monitoring in FPGAs (Section 2.4).

2.2 Our novel proposed aging sensor (SENSIBLE)

Operation of SENSIBLE is based on the fact that several paths (selected RCPs) in a circuit

have non-zero slack times that are relatively close to the slack time of the critical paths. A

transition on such path’s endpoints during the slack time is known as an erroneous behavior.

Detection of any transition on a path’s endpoint during the slack time caused by aging

mechanism, is considered as an aging effect.
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The design of the proposed method is shown in Fig. 2.2. The aging sensor is potentially

placed on a near-critical path’s (RCP1) endpoint. The sensor consists of an FF, an XOR

gate, and a Delay Element (DE). For clocking the sensors, a sensor clock (SCLK) is generated

that is synchronized with the main system clock (MCLK) using Clock Management Tiles

(CMTs). Fig. 2.3 shows the timing diagram of SCLK and MCLK. The SCLK frequency is

the same as that of MCLK. SCLK makes a 0-to-1 (active edge) transition during the slack

time before the active edge of MCLK.

Today’s FPGAs have a feature for generating different clock signals using embedded stan-

dard resources called Clock Management Tiles (CMTs), which consist of Mixed-Mode Clock

Manager (MMCM) and/or PLLs. For a given clock period Tclk, CMTs allow a configurable

phase shift to take any discrete value; phase shift = N × Tclk/256, where N is an integer in

the range −255 < N < 255. In addition, CMTs allow generation of various duty cycles for

a given clock period. Therefore, we can generate a shifted clock signal with a desired duty

cycle for the sensor, as required by the proposed aging sensor in this work.

Fig. 2.3 shows the timing diagram of the sensor presented in Fig. 2.2 (for RCP1). As shown,

a late transition generates a positive pulse with width of TDE at the output of the XOR gate.

The sensor’s FF is initialized to ’0’. The XOR gate receives data from the near CP (in1)

(RCP1), and its time-shifted data (in2) by delay element. Because of the delay element,
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any transition at the output of the RCP driving this sensor will cause a positive pulse on

the XOR output. If this pulse happens outside of the slack time, it will safely pass without

affecting the FF value. On the other hand, due to the induced delay by aging in the RCP,

the aging sensor’s FF will capture the pulse at XOR output during slack time window. This

occurs on the positive edge of SCLK where FF setup and hold times are also considered.

This positive pulse causes a ’1’ at the FF output. When there is no aging effect, the path’s

endpoint does not have any transition that can be captured by SCLK during slack time and

there will be no difference between the XOR inputs. XOR output remains at ’0’ and hence,

the FF remains at ’0’ indicating no late transition.

In order to ensure correct operation of the sensor, TSlack must be chosen based on slack times

of selected paths sharing the same clock. Given a set of RCP i with slack time Si, TSlack is

the minimum of all slack times.

TSlack = min(S1, S2, ..., Sn) (2.1)
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This condition guarantees that none of the selected paths has any transition in TSlack. Valid

changes at in1 input of XOR gate can occur up to the start of TSlack. Since in2 is formed by

delaying in1 by TDE, we can expect in2 to change TDE after the start of TSlack. Considering

TXOR gate delay, the clocking of the FF must be after TDE +TXOR in order to capture slack

time violations. It should be noted that as long as the aforementioned condition for SCLK

start point is met, its duty cycle could exceed the duty cycle of MCLK. This leads to the

easier design of SCLK for our proposed sensor.

To determine the delay of the delay element TDE, the timing difference between the XOR

gate inputs must be long enough such that the XOR gate can propagate this difference to

its output (e.g., generating positive pulse at its output). Hence, the first condition to be

satisfied by TDE is:

TDE ≥ TXOR (2.2)

This pulse propagates to the output of XOR gate (input of FF). Also, TDE must be long

enough so that FF setup and hold times are not violated, i.e.,

TDE ≥ TF F setup hold time (2.3)

From (2.2) and (2.3), we can conclude:

TDE ≥Max(TXOR, TF F setup hold time) (2.4)

The implementation of the proposed sensor on FPGA resources is shown in Fig. 2.6c. In

Xilinx Artix (or Virtex) FPGAs, our sensor occupies only one slice. Recall that slice is

the basic logic block in Xilinx FPGA devices. Our proposed sensor only uses the intra-slice

interconnect resources for connectivity and does not require programmable routing resources.
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The proposed sensor has higher accuracy in comparison to available aging sensors in the

literature and the delay element (DE) is implemented using two LUTs connected serially.

When there is no unused slice inside the endpoint CLB, an unused slice in the nearby CLBs

will be selected as the sensor slice. In this case, the programmable routing resources are

used. To avoid such scenarios, the placement tools can reserve a slice in the endpoint CLB

for sensor insertion. Unlike previous works that propose aging sensors with two slices [148, 7],

our proposed sensor only occupies one slice and hence, the probability of finding an unused

slice inside the endpoint CLB without changing original design placement is higher. We use

a greedy local search to find the closest unused slices (more details in Section 2.5.2).

Since aging is a gradual mechanism and happens in a long term we can turn on sensors in

steps of time to avoid aging in sensor’s components (Delay element, FF, and XOR). This

can be easily done by disconnecting the clock source (SCLK) from them (e.g. by setting

a flag). Next, we present a comprehensive comparison between our proposed sensor and

existing sensors presented in [148] and [7].

2.3 SENSIBLE vs. state-of-the-art works

As shown in Fig. 2.5a and Fig. 2.6a the proposed sensor in [148] utilizes the observation

(guard-band) interval (Tg) of the clock period for detecting any unwanted late transition due

to aging. SCLK is the negative-shifted MCLK by Tg to store the correct data before late

transition. Then, the faulty data after late transition will be stored in endpoint flip-flop for

comparison. By using a Tg shift of MCLK for generation of SCLK, it only detects aging on

the targeted RCP accurately (with same Tg).

For multi-sensor insertion on different RCPs multiple clock generators are required because

they have different Tg. We can use shared SCLK for this sensor too but in cost of losing
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Figure 2.5: Sensor design.

sensitivity and accuracy significantly due to its described way of detecting timing violation.

Furthermore, to avoid sensor sensitivity-loss FF1 and endpoint FF must be placed in the

same CLB to avoid programmable inter-CLB routing resources with higher delay overhead.

Clock enable (CE) input of FF4 is different from other FFs inside the sensor. There is a

need for at least two slices (sometimes three) to implement this sensor since flip-flops inside

a slice have the same CE inputs (only one CE).

As shown in Fig. 2.5b and Fig. 2.6b, the sensor proposed in [7] uses the signal on the main

CP’s output as its SCLK and MCLK as its input. When critical path has late rising (falling)

transition due to aging, the positive level of MCLK will be latched in FF1 (FF2) as the

sign of aging. By using MCLK as sensor’s input, it only detects aging on the main critical
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Figure 2.6: Sensor implementation on FPGA resources.

path. Hence, for multi-sensor insertion on different RCPs (with different delays), we are not

able to share SCLK between different sensors and they need multiple clock generators for

different detection windows. In addition, FF1 is a positive edge-triggered flip-flop and FF2

is negative, this means we need two slices to implement this sensor because flip-flops inside

a slice can only be triggered either on the positive or negative edge.

In summary, the aforementioned sensors have two main drawbacks. For multi-sensor inser-

tion, they need multiple clock generators which impact the sensor design scalability because

of limited number of clock generators on FPGAs and increasing clock routing complexity.
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This becomes worse in multi clock domain designs in FPGAs. Designing and tweaking

different SCLKs for these sensors will be a challenge for designers as well. Since these sen-

sors cannot be placed at the same path endpoint CLB, the inter-CLB routing resources are

required to connect the sensor to the path endpoint. This delay overhead impacts the sen-

sitivity of such sensors or may even introduce new critical path to the circuit. Furthermore,

using two slices (one CLB) for a sensor induces area and power overheads, which again

impacts their scalability for large circuits.

2.4 Aging-aware representative critical paths selection

Due to limited number of resources in reconfigurable architectures, we are not able to monitor

the large number of critical paths for aging mitigation techniques. We use the amended

version of our proposed algorithm in Chapter 3 to find the minimum number of RCPs.

Algorithm 1 shows our filtering based RCP selection pseudo code. The algorithm inputs are

the activity matrix −→α , duty cycle matrix −→Y , power consumption matrix −→P , clock frequency

f, and matrix of each node (i.e slice) Fan-out along each critical path −→FO.

At the beginning, the list of RCP (RCPlist) is equal to list of CPs. For each CP, we

calculate the delay, stress, and fan-out using their node level information (matrices) (line

2-6). Temperature is the dominant factor for BTI and HCI aging mechanisms. Since each

CP goes across different regions of implemented design on FPGA the nodes (i.e. slice)

along it will experience different temperatures and stresses (Section 2.6, Fig. 2.11). We call

HotSpot [137] to extract temperature map at node level as well. Then we remove CPs from

the RCPlist that experiences lower temperature than the temperature threshold (line 7-15).

After that, we extract the stress map using activity and duty cycle matrices at same level.

Then CPs from RCPlist that suffer less than the stress threshold are removed (line 16-20).
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Algorithm 1 RCP selection
Input: Critical paths list CP, Delay matrix −→D , Activity matrix −→α , Duty cycle matrix −→Y ,

Power consumption matrix −→P , Clock frequency f, Fan-out matrix −→FO, Path endpoints
list {Ph}

Output: List of representative critical paths {RCP}
1: RCPlist = {}
2: for all Pathi ∈ {CP} do
3: Di ←− CalDelay(Pathi, d);
4: Stressi ←− CalStress(Pathi, αi, f, Yi);
5: FOi ←− CalFO(Pathi,

−→
FO);

6: end for
7: delayrange ←− CalDelayRange();
8: for all Pathi ∈ {CP} do
9: if Pathi−delay ∈ delayrange then

10: RCPlist.Add(Pathi)
11: end if
12: end for
13:
−→
T ←− FindTemp(P );

14: for all Pathi do
15: Tempi ←− CalAvgTemp(Pathi, T );
16: end for
17: Tth ←− CalTempThreshold();
18: for all Pathi ∈ RCPlist do
19: if Tempi<Tth then
20: RCPlist.Remove(Pathi)
21: end if
22: end for
23: Stressth ←− CalStressThreshold();
24: for all Pathi ∈ RCPlist do
25: if Stressi<Stressth then
26: RCPlist.Remove(Pathi)
27: end if
28: end for
29: FOth ←− CalFOThreshold();
30: for all Pathi ∈ RCPlist do
31: if FOi<FOth then
32: RCPlist.Remove(Pathi)
33: end if
34: end for
35: RCPlist.Remove(Ph)

At this step, the RCPlist contains CPs that age faster than removed CPs. To reduce the

performance overhead due to sensor insertion on RCPs, it is better to remove CPs with
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smaller slack times and lower aging rates. Therefore, we find RCPs that have higher aging

rates than CPs with smaller slack times in comparison with the main CP of the circuit.

By monitoring such paths, we can detect aging sooner in order to react accordingly. This

is shown in Chapter 3 that selected RCPs may have higher aging rates than CPs with the

higher delay (i.e. smaller slack time). We define a delay range (delayrange) for RCPs selection.

The delay upper bound (β) is computed by the negation of critical path delay by the sensor

delay and the lower bound (γ) delay is defined by the user (e.g. 90% of critical path delay).

To avoid timing failure of CPs beyond upper bound (β) (including main CP), we consider

the aging rates. If their aging rates are slower than selected RCPs, then it is sufficient

(guarantee the timing failure will not happen, because aging will be captured sooner in the

already selected RCPs), otherwise that path will be in the RCPlist (line 21-26).

To fairly distribute the sensors among the chip and to reduce the number of RCPs we consider

their endpoint physical location (Ph) and average number of fanouts (FO) along a pathâĂŹs

nodes (i.e. slices) (line 27-32). The paths with higher average fanout will have higher

impact on the reliability of implemented circuit (aging propagation probability is higher).

More detailed explanation of Algorithm 1 and RCP selection method is in Chapter 3. In this

work, we improved the algorithm by changing the filtering steps in order to avoid removing

CPs with high aging rates. As mentioned earlier, we first keep CPs with higher aging rates

(line 11-20) then remove those ones from the list that do not satisfy the delay range threshold

(line 21-26). By online monitoring RCPs we can detect aging to react accordingly (change

the configuration bits) before timing failure happens. For instance, related works in [65, 170]

can use sensors aging monitoring.
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2.5 Experiment

2.5.1 Setup

Experiments using Aritx7-based FPGA board have been performed in order to evaluate,

validate, and analyze SENSIBLE. The implementation of the proposed sensor is feasible

with different versions of Xilinx tools (ISE) but can be adapted easily to other vendor or

third-party tools. Three benchmarks (DCT (large), AES (medium) and FIR (small)) have

been used in our experiments to evaluate the impact of SENSIBLE on area, power, and

performance, while assessing the results in term of accuracy and sensitivity. Using Algorithm

1 we find maximum number of required RCPs (sensors), which are 35, 21, 17 sensors (RCPs)

for AES, DCT and FIR, respectively. In our experiments, different numbers of sensors (5, 10,

and 15) are placed in the top selected RCPs of the circuits with the highest aging rate using

our placement tool that uses Xilinx Design Language (XDL). To extract power consumption

and performance overhead Xpower Analyzer and TRACE by Xilinx are utilized, respectively.

2.5.2 Sensor insertion

Our automated sensor insertion flow is shown in Fig. 2.7. First, a synthesis tool (Xilinx

ISE) gets the circuit description in a standard HDL format. Design parameters including

path delays (by timing analyzer), wire and node activities for aging estimation (by Xilinx

Power Analyzer), and nodes locations (by Xilinx PlanAhead) is extracted after the place and

route step. Now, paths are ranked based on their aging rates extracted by these parameters.

Using these analyses, RCPs selection will be done by Algorithm 1.

A greedy local search algorithm finds unused resources in the closest slice (for our sensor)

or closest CLB near the endpoint slices of selected RCPs. Hence, Data Flow Graph (DFG)
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Figure 2.7: Sensor insertion flow.

of the placed and routed design is extracted from the XDL file. Each node of the DFG is

a logic block (i.e. slice) that retains information about used and unused resources inside

it (e.g. LUT, FF, and etc.). Furthermore, each logic block (or node) is distinguished by

physical placement on the FPGA through its x- and y-coordinates. Using this information,

we can find the used or unused resources in neighbor logic blocks. Our greedy local search

algorithm looks for the first found closest unused resources for placing the sensors required

resources (e.g. FF and LUT) [67].

After placement of the sensor, we use the router of commercial tool (ISE R©) to route our

sensors’ resources. Before using the router, our tool routes the placed resource partially,

meaning it determines which inputs or outputs will be connected. This new DFG, after the

placement and routing of sensors (i.e. insertion), will be converted back to the XDL format

for generating the bit-stream of the FPGA based design. All the insertion steps are done on

the XDL file, which is compatible with commercial tools. Therefore, our sensor insertion is

independent of the implemented FPGA design and can be automated and embedded to ISE

or any third-party tools.

As shown in Fig. 2.7, sensor insertion will be done after original design implementation
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by commercial vendor tools which consider the worst case (considering process variation) in

their placement and routing algorithms. In other word, the sensor insertion flow is in-place

and tries not to change the optimized placement and routing by using unused resources after

placement and routing. Additionally, FPGA vendors do not release their device level informa-

tion in order to extract process variation details at the logic level. There are few techniques

to extract process variation information of FPGAs using Ring Oscillator (RO) [162, 32].

Using these techniques, we can extract process variation information and consider it in our

RCP selection algorithm.

2.5.3 Results and discussion

Table 2.1 shows the area (total number of slices), power (total dynamic and static power),

and performance overheads (sensor insertion on RCPs may introduce new critical path, thus

we will have performance overhead) for the proposed sensor architecture and design. For

fair comparison, area and speed are chosen as optimization goals in the synthesis phase for

area and performance overhead calculation, respectively. As shown in Table 2.1, the average

power overhead of AES, FIR, and DCT benchmarks for 5, 10, and 15 sensors is 0.90%,

1.03%, and 1.17%, respectively. This low power overhead is not only due to the fact that

the proposed sensor only occupies one slice but also regardless of number of sensors, we only

use one CMT (MMCM) for generating SCLK as well as MCLK (each MMCM can generate

7 different clock frequencies at the same time).

When ten sensors are inserted for monitoring aging in AES, FIR, and DCT, the area overhead

is 0.70%, 3.00%, and 2.30%, respectively. Our aging sensors are inserted in selected RCPsâĂŹ

endpoints with high aging rates and are designed using resources inside one slice only. Hence,

they are most likely placed in the same endpoint CLB (using available unused slice). The

performance overhead of sensor insertion is negligible (i.e., it does not introduce longer
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Table 2.1: SENSIBLE overheads for different numbers of inserted sensors.

Power(%) Area(%) Performance(%)
Benchmark 5 10 15 5 10 15 5,10,15

AES 0.61% 0.53% 0.65% 0.30% 0.70% 1.20% 0.30%
FIR 0.83% 1.10% 1.24% 1.50% 3.00% 4.60% 0.00%
DCT 1.26% 1.46% 1.61% 1.10% 2.30% 3.10% 0.00%
AVG. 0.90% 1.03% 1.17% 0.97% 2.00% 2.96% 0.10%

critical path to the circuit).

In Table 2.2, the average area, power, and performance overheads using SENSIBLE and

two other implemented aging sensors [148, 7] are reported for selected benchmarks when

15 sensors are inserted. Results show that our sensor has lower overhead compared to the

two other sensors. This is because that our sensor regardless of number of required sensors

only uses one CMT (MMCM) for generation of MCLK and SCLK (shared), while other

proposed sensors [148, 7], as shown in Table 2.2, require 2 MMCMs for 15 sensors. This

number increases by increment in the number of sensors (different SCLKs are required).

Additionally, our sensor only occupies one slice while other sensors require two slices (a

CLB). This also leads to lower overheads in terms of area, power and performance. If we use

larger designs in comparison to the mentioned benchmarks, they may need higher number

of sensors. Additionally, if we decide to monitor higher number of CPs, we need higher

number of sensors as well. Since SENSIBLE overhead is minimum (one slice and one clock

generator), it outperforms previous aging sensor design in every aspect of above-mentioned

overheads.

In order to measure and compare the sensitivity (accuracy) of SENSIBLE with prior works,

we implemented the circuits and inserted the aging sensors in the implemented benchmarks

on Artix7 FPGA and connected the sensorsâĂŹ flag to LEDs on the board. As shown in

the flow in Fig. 2.8, to emulate aging impact on the implemented benchmarks on FPGA, we
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Table 2.2: AVG. overheads comparison(for 15 inserted sensors).

Power(%) Area(%) Performance(%)
Architecture # slices #MMCM
SENSIBLE 1.17% 2.96% 1 0.10%

Proposed sensor in [148] 3.1% 7.20% 2 1.14%
Proposed sensor in [7] 4.43% 6.13% 2 2.26%

increase the delay on RCPs by small steps of ∆d. Next, we translate the delay degradation

(∆d = daged − d0) to frequency and increase clock frequency (MCLK) by ∆f = ∆ d
d0
× daged.

This occurs iteratively until the connected sensor outputs to the LED are set and the LED

turns on. By this means, we can find the amount of (∆d), or frequencies, at which the

implemented sensors will be triggered. Using HotSpot [137] for temperature simulation,

extracting the stress rate (duty cycle and activity) after running benchmarks, and delay

degradation ∆d resulting from on-board experiment, we calculate the earliest time the sensors

detect aging-induced delay degradation of ∆d using Eq. 2.5 and Eq. 2.6 in Section 2.6. Please

consider that we emulated aging by increasing clock frequency of the implemented design to

find the ”relative” (as opposed to exact) amount of improvement in accuracy of SENSIBLE

in comparison to previous works.
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Figure 2.8: On board sensor sensitivity-test flow.
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Figure 2.9: Aging sensitivity comparison.

Fig. 2.9 demonstrate the aging along top selected RCP in each application. The highlighted

points on the curve shows the earliest time and the amount of delay degradation detected by

three different aging sensors from the flow in Fig. 2.8. For example, in AES, our proposed

aging sensors will be triggered after 9.78 weeks when the induced delay is 122ps (point

(9.78, 0.122)). The proposed sensors in [148] detect aging after almost 33 weeks when the

degraded delay is 193ps. These values for sensors in [7] are 38 weeks and 238ps, respectively.

The results show that our sensor is more sensitive to aging induced delay degradation and

therefore, is more accurate.

Fig. 2.10 summarizes the distance between aging sensors and the endpoint flip-flop of the

paths under monitoring. While in our flow, we provide stringent constraints to design tools
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Figure 2.10: Aging sensor displacement (15 inserted sensors).

to place the aging sensors in the same CLB as endpoint flip-flop (distance of zero), the tool

will apply best effort but cannot guarantee and hence, in some cases, places the sensors in

nearby CLBs (so called sensor displacement). The results show that we can decrease this

displacement to zero by forcing RCP endpoint CLB to leave a slice unused. We are not able

to do this for sensors in [148, 7] since they need at least a CLB due to their multiple clock

design that cannot be supported using one slice. In the worst case, our proposed sensor is

placed in the adjacent CLB (max distance = 1 CLB).

Results show that aging sensor displacement in our design is significantly lower than dis-

placement for aging sensors in [148, 7]. The aging displacement results correlate with the

sensor sensitivity results as shown in Fig. 2.10. The higher is the average distance, the longer
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is the detection time. Since prior works need at least two slices for their implementation,

this forces to use inter-CLB routing (switch-boxes) resources to connect them to selected

RCP’s endpoint which impacts their sensitivity (accuracy). It should be noted that aging

induced delay degradation is very small that can be easily compensated by routing delay in

aging sensors.

Earlier aging detection of SENSIBLE in comparison to previous works results in better

balance of aging among resources on an FPGA and decreases the guardband of critical path.

As a result, earlier aging detection can be a better guidance to system level task dispatching

on implemented designs’ block in FPGAs. Furthermore, placement and routing tools (e.g.

ISE) can allocate smaller guardband which increases the implemented designs’ performance

drastically. In all, higher sensitivity results in faster online reaction in system level aging

mitigation techniques and higher system reliability.

As discussed in Algorithm 1, aging sensors will be inserted in different regions of the FPGAs

and the clock delay (clock skew) may occur to sensors. While, for our experiments on the

Artix-7 board we have not encountered such a problem, there are few techniques in the

literature to avoid this issue (so called clock deskew) [48, 59]. Furthermore, for the state-of-

the-art FPGAs clock network deskew is provided [75].

2.6 Utilized aging-induced delay degradation model

Delay degradation at transistor level due to BTI and HCI mechanisms results in delay

degradation in logic resources of FPGAs such as LUTs, FFs, and carry chains [142, 138,

8]. BTI is a static mechanism and occurs when temperature (T) is high and transistor is

constantly under stress (ON). BTI-based degradation depends on transistor’s duty cycle (Y)

and includes two phases. When the transistor is ON, it is in its stress phase, hence, increasing
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the threshold voltage (Vth) of transistor. This manifests itself as delay degradation on the

FPGA resources (i.e. FF, LUT, MUX, routing resources). When transistor is OFF, it is in

its recovery phase and Vth will partly decrease. This process manifests itself as partial delay

recovery of FPGA resources. The delay degradation due to BTI at time t is a function of

duty cycle (Y) and temperature (T) for intrinsic delay (d0) [114, 31]:

∆dBT I = ABT I × (Y )n × (t)n × e
−Ea
kT
×d0 (2.5)

where, ABT I is technology dependent factor, n is a constant depending on fabrication process,

k is Boltzmann’s constant, Ea is activation energy.

HCI is a dynamic mechanism that occurs when temperature is high and transistor is toggling.

HCI-based degradation depends on transistor switching activity. It changes the current-

voltage characteristic of transistor that increases Vth. The delay degradation due to HCI at

time t is a function of clock frequency (f), activity (α), and temperature (T) [114, 31]:

∆dHCI = AHCI × α× f × t(0.5) × e
−Ea
kT
×d0 (2.6)

where, AHCI is technology dependent factor, k is Boltzmann’s constant, Eb is activation

energy. BTI aging effect on delay degradation is more dominant than HCI aging effect [50,

31]. Duty cycle (Y) and clock frequency multiplied by activity (α × f) are known as stress

in BTI and HCI, respectively.

Since the device level information of the FPGA is not disclosed by vendors, we deployed

the proposed method in [50, 31] to calculate aging of nodes along a CP. Node is a basic

logic element and its corresponding routing resources (Slice and NET in Xilinx Artix). We

assume that all transistors inside a node experience similar stress and temperature. Delay

degradation along each path is dependent on the activity and temperature of the resources

along the path. As shown in Fig. 2.11, due to different temperatures and stress rates (duty
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Figure 2.11: Temperature map impact on critical path aging.

cycle, activity and clock frequency) of resources on FPGA, RCPs experience different aging

rates [50]. It is observed that such paths may experience higher aging rates than critical

paths and their delay may exceed critical paths’ due to aging.

2.7 Chapter summary

In this chapter, SENSIBLE, the architecture and design of a low-overhead aging (timing)

sensor was proposed along with the strategy for its clock design to increase its scalability in

multi-sensor applications. Then, we discussed and compared SENSIBLE with two available

aging sensors for FPGAs. We implemented these sensors in selected benchmarks on Artix7

FPGA board for real world comparisons. SENSIBLE exceeds prior works by lower overheads

and earlier detection of aging in designs (higher accuracy).
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Chapter 3

Aging-aware representative critical

path selection for FPGAs

By aggressive down scaling semiconductor technology, designing a reliable system becomes

challenging. BTI and HCI are two important phenomena causing accelerated transistor

aging [65, 7], which increase the magnitude of the transistor threshold voltage and reduce

the effective carrier mobility over time. Moreover, the rate at which supply voltage is scaling

is lower than that of transistor size scaling. This results in an increase in current density

and temperature, which causes acceleration in device degradation in future semiconductor

technologies. Aging effects not only considerably reduce the lifetime of the chip, but also

cause timing violations due to delay degradation (δdd) in transistor delay. Once the delay

of Critical Paths (CPs) exceeds the clock period, the correct functionality of the circuit

is affected and timing failures happen. Designers consider avoiding such a failure by on-

chip critical path delay monitoring using low overhead on-chip sensors in reconfigurable

architectures [7, 148].

The impact of aging and various solutions have been introduced in the context of ASIC-
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based design. However, limited research has been done for FPGA devices [142, 170]. As

opposed to ASIC designs, where designers are able to place sensors on a chip at the design

time, placement of sensors to monitor critical paths in FPGAs needs to be customized for

each design (rather than fixed locations). Each resource on FPGA can be potentially in

a critical path of target applications due to different temperature and Stress Rate (SR)

maps. Hence, sensor insertion and allocation need to be applied during place and route

phase. Aging sensor insertion in FPGAs is challenged by various factors: 1) Due to high

resource utilization locally (e.g., in a slice in Xilinx Virtex FPGA), sensor allocation at

nearest location to a critical path may not be possible, and 2) Due to a large pool of critical

paths in a design, it is impossible to allocate an aging sensor for each critical path, and

hence, only a subset of CPs must be selected for age monitoring.

This chapter presents a two-step methodology to find a list of Representative Critical Paths

(RCPs) among CPs. At first, paths with delay values close to critical path delay are selected.

This set of critical paths, named as Pseudo Critical Path (PCP) in the rest of this chapter,

are selected to have higher activity than CPs. Due to higher temperature and stress rate

along PCPs, aging is manifested sooner on these paths. In addition, the delay overhead of

sensors along PCPs does not cause timing violations compared to sensors inserted on critical

paths due to their intrinsic timing slack. In our proposed RCP selection algorithm, aging

prone path candidates for age monitoring, are first selected. This is based on path delay

(of PCPs), temperature, duty cycle, and switching activity. In the next step, a subset of

candidates (RCPs) will be selected based on Fan-out (FO), and physical location of path

endpoint in Logic Blocks (LBs). For Fan-outs, paths with larger FO will be selected. In

other words, while path delays, temperature, duty cycles, and activities are given higher

priorities to identify aging-prone paths, FOs and sensor distribution play a secondary role

in selecting representative paths for age monitoring. We will then present a sensor insertion

algorithm that will be used during placement phase to improve sensor accuracy to monitor

the path delay. To the best of our knowledge this is the first work that considers different
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characteristics of implemented circuit to find reliable numbers of RCPs among a large number

of CPs for aging monitoring in reconfigurable architectures.

3.1 Related works on RCP selection for age monitoring

Sensor-based online monitoring of aging-induced delay degradation in reconfigurable archi-

tectures have been proposed in [7, 148], while no strategy is presented for critical path

selection and sensor insertion in FPGAs. Aging-aware path selection strategies for ASIC

design have been proposed in [57, 153]. The approach proposed in [153] selects a small set

of CPs considering the delay degradation of the entire circuit due to aging, and not the local

causes of aging mechanisms such as temperature or stress rate. Two machine learning-based

feature selection approaches are utilized in [57] to find RCPs for aging monitoring in ASIC

design. Since the device level information of FPGAs is not available, these proposed meth-

ods cannot be deployed in the reconfigurable system design. Besides, these methods do not

propose any placement strategy for sensor insertion to tackle the challenges in reconfigurable

system design.

Some approaches against aging-induced delay degradation in reconfigurable systems at run-

time are proposed in [96, 13]. The method [96] does not propose any path selection strategy

and placement. To guide the online placement of modules on FPGAs, an algorithmic based

approach determines the aging of a region instead of using sensors [141], which not only im-

poses performance overhead but also will not be as accurate as using sensors for online mon-

itoring. Proposed methods for offline aging mitigation in reconfigurable systems [65, 141, 32]

are out of scope of this chapter.
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3.2 Aging model in reconfigurable architectures

Aging impact on transistors manifests as delay degradation (δd). The delay degradation

model of the BTI mechanism on transistor’s switching delay (d) can be simplified as [8, 114,

21]:

∆dBT I(t) = ABT I × (Y )n × (t)n × e( −Ea
kT

) × d0 (3.1)

Where d0 is the pre-aged delay of transistor, ABT I is technology dependent factor, t is the

transistor age, Y is the duty cycle of transistor, T is temperature, Ea is activation energy, k is

Boltzmann’s constant, and n is constant depending on fabrication process. Delay degradation

model of HCI mechanism on transistor’s switching delay (d) can be simplified as [8, 114, 21]:

∆dHCI(t) = AHCI × α× f × t0.5 × e( −Eb
kT

) × d0 (3.2)

Where d0 is the pre-aged delay of transistor, AHCI is technology dependent factor, t is the

transistor age, Îś is the activity factor of transistor, f is clock frequency, T is temperature, Eb

is activation energy, and k is Boltzmann’s constant. According to Eq. 3.1 and Eq. 3.2, delay

degradation in both BTI and HCI mechanisms is an exponential function of temperature

and a nonlinear function of stress (duty cycle in BTI or switching activity in HCI). Since

the transistor level information of the FPGA is not disclosed by vendors, we deployed the

proposed method in [142] to calculate aging of nodes along a CP. Node is a basic logic element

and its corresponding routing resources (Slice and NET in Xilinx Virtex). We assume that

all transistors inside a node experience similar stress and temperature.

As shown in Fig. 3.1, each node along a path may experience different temperatures (the

darker the color, the higher the temperature), hence leading to different aging rates for the

44



LB

CP1

CP2Node

LB: Logic Block NET: Routing CP: Critical Path

NET

Figure 3.1: Temperature map impact on critical path aging.

nodes along the path. For example, if all nodes have equal delay (one unit of time) and

experience equal stress rate, path CP2’s delay may exceed CP1’s over time due to different

temperature maps even if at the beginning DelayCP 1 > DelayCP 2.

3.3 The proposed path selection methodology

3.3.1 Path characteristic

Aging-induced delay degradation of each path originates from the delay degradation of each

node along it. Each node ages differently from other nodes for various reasons. The aging

in each node depends on functional complexity in logic delay as well as Fan-out (FO) in

corresponding net delay. In addition, given that temperature and stress on chip varies from

one region to another, the temperature and stress at each node varies as well. In this section,

we summarize the aging-related path characteristics that are deployed for our representative

aging-prone critical path selection algorithm.
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Considering Fig. 3.1, assume each CP i consists of mi nodes. Each node i can be interpreted

as a sextuple (dij, Tij, αij, Yij, Phi, FOij) where d is delay, T is temperature, α is the activity

factor, Y is duty cycle, Ph is physical location, and FO is Fan-out. These parameters play

an important role in the aging rate and are computed as follow:

Delay:

The total delay of a critical path is equal to:

Delay(CPi) =
mi∑
j=1

dij (3.3)

Because of resource limitation and exponential number of paths, it is impossible to monitor

all of the circuit’s paths. In addition, power and area overhead for each sensor should be

taken into account. Hence, we need to select paths which are more prone to aging and the

aging-induced delay degradation along those paths are more likely to cause timing violations.

The pseudo-critical paths are those with delay in the range of α% to β% of minimum clock

period. These bounds may change based on the sensor delay to avoid performance loss,

implemented circuit delay, and number of CPs.

Temperature:

The exponential impact of temperature on both BTI and HCI mechanisms are unavoidable.

In order to compute the aging rate at each node along CPs, we need to consider the temper-

ature in the corresponding region. Therefore, the temperature map of implemented design

on FPGA is extracted adapting HotSpot tool [137]. Unlike ASIC design, temperature map

of the chip changes by different configurations on the FPGA. This leads to the fact that

the resources on FPGA based on the implemented configuration experience different aging

46



Node

 i

Node 

i+1

Node 

i+2

Node 

i

Node 

i+1

Node 

i+2

….

….….

….

Figure 3.2: Impact of Fan-out (FO) for path selection .

rates at different times. As shown in Eq. 3.4, the temperature of a path is the average

temperature of its nodes.

Temp(CPi) =
∑mi

j=1 Tij

mi

(3.4)

Stress rate:

Based on Eq. 3.1 and Eq. 3.2 Stress Rate (SR) is equal to Y in BTI mechanism and equal

to α × f in HCI mechanism. BTI is a static mechanism and is triggered when transistor

in ON. HCI is a dynamic mechanism and occurs when transistor toggles. In both cases,

transistor is under stress and hence, aging causes delay degradation. Each node along a path

may experience different stress rates which results to different stress maps among different

configurations implemented on the FPGA. This consideration comes from the fact that paths

close to critical path delay but with relatively lower stress rate may not be prone to aging

as aggressively as others. As shown in Eq. 3.5 each path’s stress rate is a lexicographical

function of activity rate (α× f) and duty cycle (Y). C1 and C2 are chosen based on relation
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impact of BTI and HCI on aging-induced delay (C2 is three times greater than C1).

Stress(CPi) =
∑mi

j=1C1 × (αij × f) + C2 × Yij

mi

(3.5)

Fan-out:

In addition to closeness between CPs, another factor to be considered in our path se-

lection algorithm is Fan-out (FO) of nodes along the path. Assume CPi and CPi+1 in

Fig. 3.2 experience similar aging rate while based on Eq. 3.6 FO(CPi) is larger than

FO(CPi+1)(FO(CPi) = 6). The probability of aging propagation in paths with larger FO

is higher. FO calculated based on Eq. 3.6.

FO(CPi) =
mi∑
j=1

FOij (3.6)

Physical location:

To fairly distribute the limited number of sensors on the chip, physical location of nodes

along the path, especially the node that contains the endpoint flip-flop, is required to be

considered. Location filtering is for avoiding redundant and unnecessary sensor. Someone

may argue all the filtering phases are not for aging mechanism such as location but it needs

to be considered to further optimize the number of required aging sensors.

3.3.2 Path selection algorithm

Algorithm 2 shows the pseudo code for the proposed critical path selection method. The

algorithm inputs are the activity matrix −→α , duty cycle matrix −→Y , power consumption matrix
−→
P , clock frequency f, and matrix of each node Fan-out along each critical path −→FO. The
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objective of this algorithm is to find the near minimum number of RCPs. The algorithm

is decomposed of two major steps. First, finding the aging-prone paths (finding PCPs,

temperature filtering, and stress rate filtering), followed by finding representative critical

paths for sensor insertion (Fan-out and endpoint physical location filtering).

Based on the fact that sensor inserting on Pseudo Critical Paths (PCPs) does not lead to

performance loss (no increase on CP delay), our proposed algorithm concentrates on PCPs

instead of critical paths. The pseudo-code in line 8-11 identifies PCPs. delayrange is the

range of critical path delay allowed for selecting CPs in the first round. The delay upper

bound is computed by the negation of critical path delay by the sensor delay and the lower

bound delay is defined by the user (85% of critical path delay).

At the next filtering, we consider temperature at each node along the selected paths (line

12) which is a dominant factor in both BTI and HCI mechanism. The FindTemp() function

calls HotSpot tool [15] for extracting the circuit’s temperature map. Temperature will be

calculated at node level as shown in Fig. 3.1, a path may route through different temperature

zones, which leads to different aging rates along a path. If average temperature along Pathi

(line 14) is less than a threshold (Tth), the path will be filtered and removed from the

candidates (lines 17-20). Selecting the appropriate value for Tth is a crucial factor that heavily

depends on temperature distribution of paths and varies from application to application. For

example, Fig. 3.3 shows the path temperature distribution of S38417 benchmark.

Among the paths, 131 paths have average temperature close to 361 and 148 paths have

average temperature of 362 (Kelvin). Tth is set to 361 Kelvin to include both sets of paths

with high temperature. In other words, aging rate of these paths (with respect to exponential

effect of temperature) can potentially exceed the others. After this filtering, CPs are further

filtered based on their stress (lines 22-25), another important factor in both BTI and HCI

mechanisms. In order to filter appropriate paths, value of Stressth is chosen based on

stress factor distribution of paths (similar procedure as temperature filtering). In the last
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Algorithm 2 The proposed RCP selection
Input: Critical paths list CP, Delay matrix −→D , Activity matrix −→α , Duty cycle matrix −→Y ,

Power consumption matrix −→P , Clock frequency f, Fan-out matrix −→FO, Path endpoints
list {Ph}

Output: List of representative critical paths {RCP}
1: RCPlist = {}
2: for all Pathi ∈ {CP} do
3: Di ←− CalDelay(Pathi, d);
4: Stressi ←− CalStress(Pathi, αi, f, Yi);
5: FOi ←− CalFO(Pathi,

−→
FO);

6: end for
7: delayrange ←− CalDelayRange();
8: for all Pathi ∈ {CP} do
9: if Pathi−delay ∈ delayrange then

10: RCPlist.Add(Pathi)
11: end if
12: end for
13:
−→
T ←− FindTemp(P );

14: for all Pathi do
15: Tempi ←− CalAvgTemp(Pathi, T );
16: end for
17: Tth ←− CalTempThreshold();
18: for all Pathi ∈ RCPlist do
19: if Tempi<Tth then
20: RCPlist.Remove(Pathi)
21: end if
22: end for
23: Stressth ←− CalStressThreshold();
24: for all Pathi ∈ RCPlist do
25: if Stressi<Stressth then
26: RCPlist.Remove(Pathi)
27: end if
28: end for
29: FOth ←− CalFOThreshold();
30: for all Pathi ∈ RCPlist do
31: if FOi<FOth then
32: RCPlist.Remove(Pathi)
33: end if
34: end for
35: RCPlist.Remove(Ph)

stage, to recognize the representative CPs, those paths that consist of nodes with high FO

will be chosen (lines 27-30). Finally, considering the location of endpoints, the paths with
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Figure 3.3: S38417 benchmark temperature histogram.

same endpoints but one will be removed from the final list, also at this filtering phase the

spatial distribution of the sensors will be considered to fairly distribute them around the

implemented circuit’s bounding box (line 31).

Algorithm for sensor placement

The proposed algorithm is based on a greedy local search (i.e. Breadth First Search (BFS))

algorithm that localizes unused slices near the Endpoint Slice (EPS) including the destination

flip-flop of the path under consideration for sensor insertion. We explain the algorithm using

an example shown in Fig. 3.4. The used resources are colored as black (Slices) or red (Switch

boxes) and the unused resources are left as white. Finally, Resources labeled SSi, are utilized

to place an aging sensor (SS).

In the placement algorithm, the best slice for sensor insertion is when the other slice in the

endpoint CLB is empty (CLB4 situation in Fig 3.4). When the other slice in the endpoint

CLB has been occupied, one of the unused slices in the nearby CLBs will be selected as the
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Figure 3.4: Sensor placement.

sensor slice (SS2 in CLB8 is utilized to place the sensor for EPS2). In this case, the general

interconnect through a switch box is utilized (red resource in Fig 3.4). We assume an aging

sensor occupies only one slice similar to SENSIBLE in Chapter 2.

Sensor placement challenge

Although, the placement algorithm can finally place each aging sensor, but its distance from

the corresponding endpoints of the path is a crucial factor. The sensor must be placed on

a slice in the same CLB of the destination slice or in the worst case, on a slice of adjacent

CLBs. Placing the sensor far from the destination slice leads to a significant increase in the

delay of the RCP which is monitored and affects the correct functionality of the sensor. In

such a situation we should reserve a slice for the sensor during place and route phase followed

by our proposed sensor insertion flow.
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3.4 Experiment

3.4.1 Insertion flow and setup

The implementation of sensor insertion is divided to several steps (Fig. 3.5):

1. The benchmark circuits are synthesized using synthesis tools (ISE 14.7). The synthe-

sizer generates post route information without considering aging effects.

2. Timing analysis is performed using Xilinx PlanAhead tool in order to obtain timing in-

formation including path delays. The path delays are extracted using a timing analysis

tool. For example, PlanAhead tool can generate a timing report file (.twr) containing

all of the logic objects and interconnects and their associated delay.

3. Activity rates and duty cycle of circuits are extracted using a power analyzer tool.

Xilinx Power Analyzer (XPA) receives implemented design description in ISE (using

the .ncd file generated after the place and route phase) and simulation activity files

(.saif or .vcd) generated by a simulation tool (ISim or Modelsim). The XPA generates

a power report file (.pwr) containing signal and I/O activity rates. Path stress rates are

calculated based on net activity rates extracted from power report file using a C-based

tool.

4. Our proposed critical path selection and sensor placement are applied to design.

5. PlanAhead tool provides user various placement constraints to be applied during place-

and-route tools. Using this tool, we reserve some locations in order to place the aging

sensors.
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Table 3.1: Number of sensors after applying filtering algorithm.

Benchmark S15850 S38417 B20 FIR AES
# of LUTs 582 1997 1912 108 3974
# of FFs 431 1387 430 400 261

# of Slices 245 929 557 83 1282
CLK frequency (MHz) 166 125 101 100 136

Delay filtering 12322 31359 58326 10235 12568
Temperature filtering 516 2804 6716 200 1122
Stress rate filtering 130 292 1754 182 757

Fanout filtering 82 121 735 72 301
Physical location filtering 71 60 291 53 263

# of Sensors 16 32 28 17 38

3.4.2 Results and discussion

In our aging model, the values for ABTI and AHCI are chosen such that the maximum delay

degradation in 5 years is 15% in worst case (PMOS transistors always ON, the maximum

frequency (AR=500 MHz) at temperature 380 Kelvin). The target FPGA device is Virtex6

at 40 nm technology.

To evaluate the impact of proposed filtering, five different benchmarks are selected from

different applications. The characteristic of each benchmark is shown in Table 3.1. For each

benchmark the number of selected RCPs is extracted by proposed algorithm 2. Table 3.1

shows that the number of paths filtered in each filtering phase of the algorithm. The results

show that the number of paths are reduced significantly at each filtering phase and the

impact of each filtering phase varies from one benchmark to another. For example, in AES,

the number of paths (delay filtering in Table 3.1) is very high, but the number of pseudo-

critical paths (PCPs) is only 1122. The other four filtering characteristics (temperature,

stress rate, FO, and physical location) reduce the number of selected paths and at the end,

38 sensors are required to monitor aging for this circuit.
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Figure 3.5: Temperature map impact on critical path aging.

Similarly, results are shown for S15850, S38417, B20, and FIR. The number of sensors

gradually increases when the circuits’ sizes are increasing. For S15850, S38417, and B20 the

numbers of critical paths that are required to be monitored are 16, 32, and 28, respectively.

For example B20 is a larger circuit with higher number of critical paths at first phase of

filtering (delay) but due to low stress rate and temperature of nodes (due to its behavior)

most of the critical paths are filtered out at temperature and stress filtering.

Finding empty slices for sensors determined for each circuit, is the next step. Table 3.2 shows

the output of greedy search algorithm representing number of sensor slices which placed in

the same CLB including endpoint slices (Case1) and the adjacent CLBs (Case2). In our

experiments, there was always an available slice for sensor insertion either in the same CLB

or adjacent CLB. Hence, there was no need to apply placement constraints and re-synthesize

the circuit in selected benchmarks (Case3).
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Figure 3.6: Aging-rate comparison of last selected RCP and top filtered out paths.
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Table 3.2: Number of sensors placed by the algorithm.

S15850 S38417 B20 FIR AES
Case1 9 25 15 14 30
Case2 7 7 13 3 8
Case3 0 0 0 0 0

3.4.3 Evaluation of the proposed filtering algorithm

To evaluate the effectiveness of the proposed method, we compared aging rates of RCPs with

those paths that are filtered out and removed from our proposed algorithm. As shown, in

Fig. 3.6, aging rate of the last selected RCP is higher than aging rate of the filtered paths.

In other words, RCPs will be aged sooner than the filtered paths. Hence, the inserted aging

sensors detect aging-induced delay degradation of circuit sooner while inserting sensors on

removed paths will only cost to the circuit without any meaningful usage.

Fig. 3.7 shows aging rate of the last selected RCP in comparison with aging rate of the

top-ranked critical paths (based on delay including main critical path, CP1). This result

shows aging rate of the last RCP is higher than them, although its pre-aged delay is lower.

Consequently, aging manifestation on these RCPs happens sooner than that of the top-

ranked critical paths. Hence, by monitoring RCPs we are being able to detect aging before

any timing violations.

3.5 Chapter summary

In this chapter, we proposed an aging-aware critical path selection methodology for online

aging monitoring using sensors in reconfigurable architecture. Our objective is to reduce

the number of required sensors and to avoid unnecessary sensor insertion due to its cost and

overhead. We first present a novel representative critical path selection based on major causes
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Figure 3.7: Aging-rate comparison of last selected RCP and top critical paths.
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in aging mechanisms such as temperature, duty cycle and switching activity. Furthermore, to

avoid performance loss due to sensor insertion a performance-aware placement is proposed.

To the best of our knowledge this is the first work that considers path selection for aging

monitoring in FPGAs, considering not only aging effects, but also delay, physical location

and impact of aging on net delay paths.
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Chapter 4

Aging-aware physical planning for

FPGAs

While aging mechanisms and process variation lead to performance degradation, permanent

faults, and increase in power dissipation, reconfigurable systems such as FPGA-based em-

bedded systems can benefit from underutilization of resources and runtime reconfiguration

to mitigate aging effects. Researchers have proposed various techniques to exploit such flex-

ibility in FPGAs [138, 167, 102]. This chapter focuses on aging-induced delay degradation

in FPGA logic and routing resources and presents a physical planning and reconfiguration

scheme to reduce aging-rate and delay degradation in FPGA resources and to slow down the

aging effect on application performance.

Although, aging mechanisms decrease the Signal Noise Margin (SNM) of the SRAM cell

configuration bits, but the focus of previous works and the proposed method here as well is

to decrease aging-induced delay degradation of transistors inside FPGA logic and/or routing

resources. We study the impact of aging on SNM in Chapter 5.

Among various mechanisms of aging, i.e., Negative/Positive Biased Temperature Instability
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(NBTI/PBTI), Hot Carrier Injection (HCI), Electromigration (EM), and Time-dependent

Dielectric Breakdown (TDDB), BTI and HCI are dominant mechanisms on delay degradation

of resources [8, 142]. Aging rate in BTI and HCI mechanisms are highly dependent on

Temperature (T) as well as Stress Time (ST)(when transistors are toggled). Since aging-

induced delay degradation is an exponential function of temperature and depends on ST in

non-linear fashion, ignoring any of the two has significant impact on accuracy of aging rate

estimation and may lead to impaired solutions [115].

Spatial distribution of temperature and critical paths of a design is affected by mapping and

physical planning on FPGA resources. Runtime reconfiguration enables multiple physical

mappings on resources temporally and hence, it has a critical role in balancing aging rate. In

system-level design flow for FPGAs, high-level physical planning tools such as floorplanner

maps each component at block- (e.g., datapath components) or IP-level (e.g., soft processor)

on the device. High level physical planning tools are more effective and powerful than

placement tools (CLB-level and/or logic level) [138, 167, 141, 32] to migrate thermal hot spots

or highly active blocks globally across the chip. Hence, aging mitigation can be achieved

more effectively using an aging-aware floorplanner while aging-aware placement tools due to

stringent timing constraints of blocks are only limited to swap used and unused resources

locally.

In this chapter, we propose an aging-aware floorplanner tool, which allows global migra-

tion of blocks in design to underutilized resources. Moreover, a fine-grain Aged-delay Map

(
−−−−−−−→
ADmap(t)) is proposed to capture the aging delay history effects of underlying resources.

Our tool finds a new configuration with minimum aging rate given the aging history of

the resources from the past configurations. Also,
−−−−−−−→
ADmap(t) leads our tool for surpassed

performance awareness by intensifying aging effect in wirelength cost.

Using aging-aware floorplanner, the proposed framework generates a sequence of configura-

tions to be mapped on FPGA in order to decelerate aging-induced performance and delay
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degradation. Fig. 4.1a demonstrates that aging rate of resources in a configuration is faster

at the beginning of execution. Hence, checkpoints are generated aperiodically (unequal tim-

ing steps) to capture fast aging rate early in time as well as to avoid unnecessary checkpoints

later in time. At each checkpoint, if the new floorplan has a lower aging rate than the cur-

rent floorplan and the critical path delay of design is not degraded beyond given performance

constraint, the new configuration is accepted. Generating the configurations sequentially us-

ing the aging history (
−−−−−−−→
ADmap(t)) not only allows the flooplanner to balance aging among

resources but also to consider recovery phase in BTI-induced aging.

Experimental results show improvement in the delay degradation of underlying FPGA re-

sources and in the degradation of critical-path delay on average by 53.2% and 17.5%, respec-

tively compared to aging-aware floorplanner without reconfiguration in 3 years of execution.

4.1 Related work

Generating multiple configurations within the same region for balancing stress is proposed

in [138, 167, 141, 32]. [138] proposes periodic swapping between two configurations. [167]

presents multiple placements which swap between unused CLBs and used ones. Due to per-

formance constraints, the swap is local and is limited to adjacent used and unused CLBs.

[141] proposes various placement ideas to generate new configurations but mostly are lo-

cal changes without using aging estimation models. A process variation and NBTI-aware

placement strategy is proposed in [32]. The aforementioned works aim to reduce stress time

without considering the impact of temperature on aging rate. Reconfiguration scheme in

[167] does not provide any schedule for reconfiguration. Since aging history affects delay

degradation, sequentially generating the configurations and scheduling each configuration is

necessary to provide effective aging mitigation.
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(a) Aperiodic checkpoints for 3 years. (b) HCI-induced delay degradation mechanism.

Figure 4.1: Aging-induced Average Delay Degradation, ∆d(t), in FPGA (BTI and HCI).

4.2 Aging-induced delay degradation estimation in FP-

GAs

The delay degradation of transistors due to aging is modeled as: d(t) = d0 + ∆d(t). d0

is the pre-aged delay of transistor before any stress (never used before) and ∆d(t) is delay

degradation function due to HCI and BTI aging effects until time t. Next, we describe how

induced ∆d(t) due to BTI or HCI is computed for FPGA resources.

4.2.1 BTI aging effect

BTI has two phases named as stress phase and recovery phase. When a transistor is ON,

it is in stress phase. At high temperature, BTI suggests trap generation which manifests as

gradual increase in Vth. When a transistor is OFF, it is in recovery phase, which suggests trap

recovery to decrease Vth gradually. Based on [8, 114, 21], the switching delay degradation

(∆d) due to BTI is:

∆dBT I(t) = ABT I × (STt0→t)n × e( −Ea
kT

) × d0 (4.1)
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where, ABT I is technology dependent factor, n is a constant depending on fabrication process,

k is Botlzmann’s constant, Ea is activation energy, T is temperature, d0 is the pre-aged

switching delay of the transistor, and STt0→t is the stress time till time t. STt0→t in BTI

is equal to SR × (t − t0). Essentially, Stress Rate (SR) for BTI is equal to Y, which is the

duty cycle, i.e. the ratio of time that transistor is ON. Given, Signal Probability (SP ), Y is

equal to 1 − SP in NBTI, and equal to SP in PBTI. Since the stress phase is faster than

recovery phase, increasing the duration of recovery phase helps to heal defected transistors

better. ∆dBT I(t) can be expressed as ∆dBT I(STt0→t, T ).

4.2.2 HCI aging effect

HCI changes the current-voltage characteristic of transistor caused by acceleration of carriers

within the electric field inside transistor channel. This increases Vth. Based on [8, 114, 21],

delay degradation (∆d) due to HCI is:

∆dHCI(t) = AHCI × (STt0→t)× t−0.5 × e( −Eb
kT

) × d0 (4.2)

where, AHCI is technology dependent factor, t is time, k is Botlzmann’s constant, Eb is

activation energy, T is temperature, d0 is the pre-aged switching delay of the transistor, and

STt0→t is the stress time till time t. STt0→t in HCI is equal to SR × (t − t0). SR refers to

activity rate, i.e., α × f , where α is activity factor of transistors and f is clock frequency.

∆dHCI(t) can be expressed as ∆dHCI(STt0→t, T ).

4.2.3 Aged-delay map

We introduce Aged-Delay Map matrix (
−−−−−−−→
ADmap(t)) to record delay history of underlying

nodes inside region R in FPGA. According to high level aging model for FPGA resources
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Figure 4.2: Aged-Delay Map, ADmap(t), of region R at time ti

presented in [8], a resource node is defined as a basic logic element and its corresponding

routing resources in FPGA architectures (e.g. slices in Xilinx Virtex). Each node is composed

of set of LUTs, FFs, NETs, and a Carry chain. As shown in Fig. 4.2,
−−−−−−−→
ADmap(t) shows aged

delay at time t corresponding to each resource node j in region R.

−−−−−−−→
ADmap(t) =

−−→
d(t0) +

−−−→
∆d(t) (4.3)

The method in [8], along with Eq. 4.1 and Eq. 4.2, is deployed to compute ∆dj(t) for each

node j. Delay of each used node j is the longest path delay before aging (dj(t0)) inside the

node plus its delay degradation until time t. Delay of each used node (colored as red or green

in Fig. 4.2) either increases (ages) due to BTI and HCI mechanisms or decreases (recovers)

if it is in recovery mode (only for BTI). Unused node (colored as white in Fig. 4.2) is referred

to a node that has never been used (ST = 0). Its delay does not degrade (Eq. 4.1 & Eq.

4.2) until it is used for the first time (ST 6= 0). Delay degradation at each node j at time t

is:

∆dj(t) = ∆dBT Ij
(t) + ∆dHCIj

(t) (4.4)
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As shown in Fig. 4.1a, when a node is used in one configuration (C1), delay degradation is

computed based on Eq. 4.4. When the node is used in two configurations (C1 for t < t1 and

C2 for t > t1 in Fig. 1.b), delay degradation at t1 is:

∆dj(t1) = ∆dBT Ij
(STt0→t1 , T1) + ∆dHCIj

(STt0→t1 , T1) (4.5)

where STt0→t1 and T1 refers to stress time and temperature of the nodes under first config-

uration (C1). Delay degradation at time t > t1 is:

∆dj(t) = ∆dBT Ij
(STt0→t, T1, T2) + ∆dHCIj

(STt1→t, T2) +∆dHCIj
(STt0→t1 , T1) (4.6)

where T1 and T2 refer to the node temperature under configurations C1 and C2, respectively.

STt0→t1 and STt1→t are stress time under C1 and C2, respectively. ∆dHCIj
(t) calculation is

divided for C1 and C2. In order to consider recovery effect from BTI aging effect, we compute

delay degradation from t0 (before stress time). Hence, we estimate ∆dBT Ij
as:

∆dBT Ij
(t) = ∆dBT Ij

(t1
t
STt0→t1 + (1− t1

t
)STt1→t), TAvg.) (4.7)

where TAvg. refers to average temperature from t0 → t. If a node is idle in a configuration,

the weighted average ST in Eq. 4.7 can capture the recovery during idle time. Assume t

and t1 are 8 and 6, respectively. If ST0→6 and ST6→8 are 3 and 0, respectively, ST0→8 is 2.25.

This decrement in ST helps the node’s delay to recover.

−−−−−−−→
ADmap(t) is deployed to guide the floorplanner to recognize the nodes that are aging faster

due to high temperature and/or higher ST so that the floorplanner would avoid mapping

the new configuration to such stressed nodes.
−−−−−−−→
ADmap(t) needs to be updated at each time

a new floorplan (i.e., configuration) is generated according to equations provided in this

section. Given that the critical path in a design is composed of a series of the nodes, similar

equations are deployed to compute delay degradation in critical paths. However, when a
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Figure 4.3: Aging-aware high-level physical planning and reconfiguration framework

new configuration is implemented, critical paths are changed and hence, the function in Fig.

4.1b is a discontinuous function at time t1.

4.3 Problem formulation

• Given application description (block level), stress rate (node level), aging model (BTI

and HCI), region R on FPGA and its corresponding
−−−−−−−→
ADmap(t) at t0, and time interval

[t0, tn],

• Generate and schedule multiple configurations such that average aged-delay in region

R at tn is minimized and critical path delay degradation is bounded by α.

4.4 The proposed aging-aware physical planning and

reconfiguration policy

Fig. 4.3 provides an overview of proposed framework which is composed of offline high level

physical planning (floorplanning) and reconfiguration policy coupled with runtime reconfig-

uration to mitigate aging effects in region R. In FPGA device, region R is allocated for

mapping the target application. The size of region R is assumed to be slightly larger than
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minimum area required for application (e.g., 10%-20%). In offline phase, region R is checked

for delay degradation of underlying resources (chip lifetime) as well as aging-induced critical

path (performance) degradation of application running in this region. At each checkpoint,

ti, a new floorplan is generated by aging-aware floorplanner. The new floorplan is evaluated

based on its impact on delay aging rate of resources as well as delay degradation along crit-

ical paths in design. The decision step decides whether to reconfigure region R to the new

floorplan or to continue the execution on current configuration.

According to aging-induced delay model in Section 4.2, delay degradation is at much higher

pace shortly after t0 and is at much lower pace later in time (Fig. 4.1). Instead of periodic

checkpoints (equal timing steps), we introduce checkpoints when delay degradation of re-

sources or critical path degradation has reached a threshold (aperiodic checkpoints). After

checkpoint ti, the next checkpoint is at ti + ∆ti+1 referred to as checkpoint ti+1.
−−−−−−−→
ADmap(t)

is updated at each checkpoint ti+1 based on the accepted configuration.

The outcome of offline phase is a sequence of aging-aware configurations and reconfiguration

schedule time table for execution time window of [t0, tn]. During runtime, reconfigurable

system is reconfigured according to time table sequentially. Generating the configurations

sequentially enables to include aging history and current delay degradation in generating the

next configuration. This method is more effective to avoid highly stressed resources and to

migrate hotspots across the region R.

The proposed aging-aware floorplanner considers aging effect in two ways:

1. It is guided by
−−−−−−−→
ADmap(t) to avoid resources that are currently aged higher and to

prefer under utilized resources;

2. The thermal simulation inside the tool allows to select configurations with fewer

hotspots and more balanced thermal behavior which leads to decrease in aging rate.
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Algorithm 3 Aging-aware floorplanner and reconfiguration policy
Input:

−−−−−−−→
ADmap(t), Power consumption matrix −→P , stress-rate matrix −→SR, Clock frequency f , Duration of application execution

D, number of checkpoints n

Output: Aging-aware floorplans list {F P}, Scheduling time-table {t}

1: i← 1;

2: while i ≤ n do . SA-based floorplanner with adapted cost function (Step 1)

3: fp← FindFp (F Pi−1);

4: cost← FindCst(fp,
−−−−−−−→
ADmap(t)) . Eq. 4.10

5: while T is not Frozen do

6: fp← FindFp(fp);

7: newcost← FindCst(fp,
−−−−−−−→
ADmap(t)) . Eq. 4.10

8: if newcost < cost or exp(-(newcost − cost)/T) > Random[0,1) then

9: cost = newcost;

10: end if

11: {kbestF P}←FindkBestFps(fp, cost); . Select k best candidates floorplans

12: end while

13: for all Floorplan F Pk in {kbestF P} list do . Find the best aging-aware floorplan (Step 2)

14: tmpk← FindTmp(F Pk,
−→
P ) . call HotSpot

15: agcostk← CalAgCst(F Pk, tmpk, −→SR, f , D) . Eq. 4.5 and Eq. 4.6

16: Qcostk ←
agcostk

n
;

17: end for

18: bestF P ti← FindBestFp({kbestF P}, −−→tmp, −−−→Qcost);

19: ∆ti←FindRecTime(bestF P ti , QcostbestF Pti
);

20: chagcost
bestF Pti
ti+∆ti

← CalChpAgCst(bestF P ti ,
−−−−−−−→
ADmap(t)) . Eq. 4.11

21: if i > 1 then

22: if chagcost
bestF Pti
ti+∆ti

< chagcost
bestF Pti−∆ti−1
ti+∆ti

then

23: frequency ←ExFreq(bestF P ti );

24: if f − frequency <= threshold then

25: Add bestF P ti to {F P} list;

26: UpADmap(bestF P ti ,
−−−−−−−→
ADmap(t), ti + ∆ti);

27: else

28: UpADmap(bestF P ti−∆ti−1 ,
−−−−−−−→
ADmap(t), ti + ∆ti) ;

29: end if

30: else

31: UpADmap(bestF P ti−∆ti−1 ,
−−−−−−−→
ADmap(t), ti + ∆ti) ;

32: end if

33: end if

34: ti ← ti + ∆ti;

35: {t} ← ti;

36: i← i + 1; . Go to next period

37: end while
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Algorithm 3 shows the pseudo code for the proposed method. The algorithm inputs are
−−−−−−−→
ADmap(t), matrix of power consumption (−→P ) of nodes, −→SR, clock frequency (f), Duration

of application execution D, and number of checkpoints n. The objective function is a lexico-

graphic function. It first minimizes total aging-aware wirelength, and next, it minimizes the

average delay degradation in region R. The algorithm’s output is a sequence of floorplans

and the corresponding reconfiguration schedule time table.

The traditional cost function of floorplanners (Eq. 4.8) does not consider aging influence on

underlying nodes inside the chip. Hence, finding a floorplan based on this cost function may

cause timing violation in critical paths over time. The nodes along a path age differently due

to different temperature, stress time and aging history. The accumulation of heterogeneously

aged delays of nodes causes timing failure. This implies that avoiding highly-aged nodes can

reduce aging rate along critical paths.

cost = α× area+ β × TotalWirelength (or timing) (4.8)

An aging-aware coefficient, defined as γ, is proposed as new weight for wirelength (timing)

in cost function. This guides the floorplanner to avoid highly aged nodes. Also, highly aged

nodes may get chance to recover partly due to BTI recovery mechanism. γ is formulated as:

γt=ti
l = ( 1

L

L∑
j=1

dt=ti
j

dt=t0
j

) (4.9)

where, L is number of nodes along each net l and dt=ti
j is delay of node j at time ti. γt=ti

l

is average aging rate of nodes along net l at time ti. To intensify the impact of γti
l , it is

powered by m. Hence, the aging-aware new cost function is:

AgeAwareCost(ti) = α× area+ β ×
∑

l∈Nets

(γti
l )m × wirelength (timing) (4.10)
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The aging-aware floorplanner is a Simulated Annealing floorplanner (lines 3-16), which is

composed of two steps:

1. Find k best floorplan candidates based on Eq. 4.10 using aging history,
−−−−−−−→
ADmap(t),

until ti (lines 3-11).

2. Find the one between candidates that minimizes the aging-rate delay for ti+1 (lines

12-16).

Additionally, the amount of delay degradation for each application not only depends on

its behavior (signal activities) that affects its power consumption and accordingly its tem-

perature but also depends on where each block is floorplanned considering
−−−−−−−→
ADmap(t). In

other words, different floorplans for same application with same behavior (signal activities

and inputs) have different temperature maps considering the history of the chip. Different

power consumption of blocks inside the floorplan and their relative position to each other

will change the temperature map of the design. For instance, assume a trivial floorplan with

four blocks inside it that are named as A,B,C,D at positions PSA
x,y, PS

B
x,y, PS

C
x,y, PS

D
x,y re-

spectively. Any acceptable permutation of the positions lead to different temperature maps

of the final floorplan.

The selected aging-aware floorplan candidates, {kbestFP}, in step 1 are sorted based on

aging-aware cost function (Eq. 4.10). However, they have different permutation of blocks’

position that results to different temperature maps and different aging rates. Using tem-

perature maps (−−→tmp), the tool is able to find the best aging-aware floorplan between the

candidates. Due to time consuming temperature extraction, k best floorplan candidates are

selected by FindkBestFps() (line 10). To find the best aging-aware floorplan between can-

didates aging costs (Eq. 4.6) are calculated. The FindTmp() function uses HotSpot tool

[137] for thermal simulation. Temperature matrix (−−→tmp) is used by CalAgCst() to calculate

the aging cost of each candidate.
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To find the next checkpoint, quantized aging costs for each candidate is required to be

calculated. Dividing the aging cost of each candidate floorplan (agcostk) by the number of

demanded checkpoints (n) results Qcostk. Based on these quantized costs, Qcostk, the best

aging-aware floorplan, bestFPti
, for period i is found using FindBestFp() function.

Finally, a reconfiguration policy (lines 17-30) decides whether to stay on current configuration

or reconfigure to the new one. The quantized cost of best floorplan at time ti, QcostbestF Pti

is passed to FindRecT ime() to find the time of next checkpoint, ∆ti (line 17). Next,

CalChpAgCst() calculates the average aging cost of the new floorplan in Region R as follows:

chipagcostF P
ti

= ( 1
No. used nodes

)
No. used nodes∑

j=1
(dti

j ) (4.11)

where, No. used nodes refers to the total number of used nodes by different floorplans till

time ti, and dti
j is the delay of node j at ti. If the new floorplan aging effect on the chip

is less than the current running floorplan (line 20) and critical path delay (maximum clock

frequency) meets application timing constraints (line 22), it is accepted for reconfiguration

and it is added to time table. Otherwise, current floorplan will continue its execution until

next checkpoint (ti+1 = ti + ∆ti). In both cases, the
−−−−−−−→
ADmap(t) of region is updated based

on accepted new floorplan or current floorplan at (ti+1). The list of checkpoints {t} will be

stored at the end of algorithm (line 30).
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Figure 4.4: Generation of required data for aging-aware floorplanner

4.5 Experiments

4.5.1 Setup

Layout-level information of FPGA resources is extracted using Xilinx Design Language

(XDL) format of placed-and-routed application. This information along with power and

timing information of the application (i.e., switching activity, signal probability, and clock

frequency) is fed into algorithm 3 as input in order to generate list of aging-aware floorplans

and their timing table.

As illustrated in Fig. 4.4, an initial floorplan is generated by PlanAheadXilinx tool. After

place-and-route, the back-annotated Native Circuit Design (NCD) into HDL-based language

is fed to the logic simulator tool (ModelSim or ISim) accompanied with test-bench to ex-

tract activity file (.vcd/.saif). Using XDL file, placement and corresponding routing infor-

mation of used nodes (SLICE) are stored in a table. This table is used along with power

report by XpowerAnalyzer, activity file, and timing report by TRACE to generate matrices
−→
P , −→SR, and

−−−−−−−→
ADmap(t) for each used and unused node inside a predetermined region R in

FPGA.

Finally, the description of each block, i.e., the number of used nodes, interconnects, size

of each block (number of nodes), aspect ratio, and the possibility of rotation during floor-

planning is generated from XDL file. These data are fed into the proposed aging-aware
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Table 4.1: Selected benchmarks characteristics

App. # LUTs # FFs # Nodes # Blocks Power Cons. (mw) TCrit(ns)

AES 2622 530 870 20 460.3 7.3 (136.9 MHz)

DCT 6790 3709 1960 65 850.2 7.8 (128.2 MHz)

JPG 14331 4755 4300 67 1270.2 9.4 (106.4 MHz)

floorplanning and reconfiguration policy to find the list of best aging-aware configurations

at each checkpoint and their sequential time-table ordering considering aging history of the

chip, temperature, and stress time (ST) for each node. In aging model, the values of ABT I

and AHCI are defined such that the maximum amount of degradation in 5 years is 15% at

worst case (PMOS transistors always ON (SP = 1), maximum frequency (AR=500 MHz)

at temperature 380 Kelvin). The target FPGA device is Virtex6 (xc6vlx240t) at 40 nm

technology.

To investigate the impact of proposed method, three different benchmarks are selected from

multimedia and security applications. The characteristics of these benchmarks are shown in

Table 4.1. Each block is a datapath component such as multiplier and adder (generated by

CoreGen in ISE 14.7).

4.5.2 Results and discussion

For each benchmark, the average node delay degradation in region R (∆d) and performance

(application critical path degradation) (∆Tcrit) in 3 years (9.3E+7 seconds) of execution are

evaluated. The following four aging-aware schemes are compared:

1. Our proposed aging-aware floorplanner without reconfiguration (FP, w/o,Rec.): The

first configuration runs for 3 years without any reconfiguration. The aging-aware floor-

plan is executed for 3 years in region R (Scheme 1).

74



2. Our proposed aging-aware floorplanner and reconfiguration scheme (FP,w/, Seq.,Rec.,and,

Aper.,Chk.): The proposed method in this paper (Scheme 2).

3. Our proposed aging-aware floorplanner and reconfiguration scheme (FP,w/, Seq.,Rec.,and,

Per., Chk.): The proposed method in this paper, but with periodic checkpoints at every

6 months (Scheme 3).

4. Multiple configuration generation using floorplanner and LP-based combinational con-

figuration scheduling (FP, w/, Com.,Rec.): Using conventional floorplanner, we first

generate multiple configurations. Next, using their Stress Rate (SR) matrices, we ap-

ply the LP-based optimization as presented in [168] to find the percentage of total

execution time assigned to each configuration for 3 years (Scheme 4).

Table 4.2 summarizes the results. The results show that our proposed approach (scheme 2)

slows down node delay degradation (chip lifetime) by 53.2%, on average, compared to aging-

aware floorplan without reconfiguration (scheme 1). Hence, the proposed reconfiguration

scheme using multiple aging-aware floorplans mitigates the aging rate further, even when

an aging-aware floorplan has been used in scheme 1. In addition, the proposed method

improves the maximum aged node delay of AES, DCT and JPG by 15.7%, 17.8%, and

18.0%, respectively.

Furthermore, scheme 3, in comparison to scheme 1, reduces node delay degradation (chip

lifetime) by 46.7%, on average. Moreover, this scheme improves the maximum aged node

delay of AES, DCT and JPG by 14.1%, 16.2%, and 16.6%, respectively. Since the checkpoints

are predetermined steps (every 6 months) by user in scheme 3, it is not able to detect the

high aging rate at the beginning of stress and it also applies redundant checkpoints later in

lower aging rate phase.

In comparison with scheme 1, the average node delay degradation has reduced only 11%, on

average, in scheme 4, while the reduction in our approach (scheme 2) is 53.25%. In scheme 4,
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the combinational reconfiguration scheme does not impose any ordering on the configurations

and hence, it does not consider the history of aged nodes on the chip to generate the next

configurations. In addition, the recovery from BTI-induced aging cannot be captured using

this technique. As a result, our aging-aware framework is able to mitigate the aging effect

on the delay degradation more effectively.

(a) AES (b) DCT (c) JPG

Figure 4.5: Critical path delay with aperiodic checkpoints for reconfiguration

(a) AES (b) DCT (c) JPG

Figure 4.6: Critical path delay with periodic checkpoints for reconfiguration

The last five columns in Table 4.2 show the effectiveness of our proposed method on critical

path delay degradation over 3 years of execution. Compared to the scheme 1, our proposed

methods (scheme 2 and scheme 3) show 17.5% and 16% less degradation in critical path delay

on average. Given that scheme 4 does not consider critical path delay during reconfiguration,

the results show that the critical path delay degradation after 3 years is higher than scheme

1. To the best of our knowledge, this is the first work that has considered and investigated

the impact of aging on critical path in aging-aware physical planning.

To further investigate the impact of proposed method on the performance of different designs,
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Figure 4.7: Power consumption of different accepted configurations in each benchmark

Fig. 4.5 and Fig. 4.6 illustrate critical path delay for aperiodic (scheme 2) and periodic

(scheme 3) checkpoint approaches respectively. The vertical lines show the checkpoint times,

while the dotted lines show when a new floorplan is accepted based on proposed algorithm 1

and decision making for reconfiguration. In scheme 2, the required number of reconfigurations

for AES, DCT and JPG benchmarks are 2, 2 and 3, respectively. As a result, 3 (AES), 3

(DCT), and 4 (JPG) sequences of configurations are accepted for runtime reconfiguration.

Although newly accepted configuration at each checkpoint may have a higher critical path

delay at the beginning, the aging rate is lower and hence, the critical path delay degrades

more slowly.

As shown in Fig. 4.5, our proposed scheme results in less critical path delay degradation

(∆Tcrit) compared to scheme 1 after 3 years. In comparison with scheme 3 (as shown in Fig.

6), our proposed scheme is able to slow down aging rate earlier, which results in less delay

degradation with fewer reconfigurations. In Fig. 5.a, the configurations generated at second

and third checkpoints are rejected due to degradation in performance. At fourth checkpoint,

a configuration with lower aging rate and acceptable performance is implemented on FPGA.

Fig. 4.7 shows the power consumption of different configurations of each benchmarks in
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aperiodic checkpoint approach. This graph shows that transition to different aging aware

configurations does not impose significant power cost. The reconfiguration time using ICAP

(32-bitwidth), at 60 MHz is around 2.3 ms on average for selected benchmarks, which is a

negligible time for 3-year continues operation on FPGA. Same trend happens for regular

checkpoint approach.

4.6 Chapter summary

In this chapter, an aging-aware floorplanner and a reconfiguration policy to mitigate aging

on the chip lifetime and performance are proposed. Aged Delay Map matrix,
−−−−−−−→
ADmap(t), is

introduced to record aging history of FPGA resources considering temperature and stress

time in order to guide the aging-aware floorplanner and reconfiguration policy. Our method

is able to mitigate aging-rate of resources and critical path delay by 53.25% and 17.56%,

respectively, in selected computationally intensive benchmarks.

79



Chapter 5

Stress-aware Boolean matching to

protect SRAM cells in FPGAs

Runtime reconfigurable architectures are broadly employed to accelerate applications ranging

from datacenters, vision, and safety critical applications such as medical, automotive, and

space applications [67, 66, 65, 50, 168]. Aging mechanism in transistors, as a major challenge

in advanced silicon technology, jeopardizes the reliability, lifetime, power, and performance

of SRAM-based reconfigurable architectures, as well [2, 138, 169, 65]. The amount of stress

(S) in BTI is measured as the time ratio that transistor is ON to the total time (i.e. it is

the duty cycle of the transistor in a time period and 0 ≤ S ≤ 1).

BTI leads to Static Noise Margin (SNM) reduction of SRAM cell. SNM, which is a function

of Vth [133, 38], is the stability and reliability measurement of SRAM robustness against

noise. As shown in Fig. 5.1a, if the SRAM content is one, Q=1, then (p1, n2) are under

stress (i.e. SNM1 reduces) and if the SRAM content is zero, Q=0, then (p2, n1) are under

stress (i.e. SNM0 reduces). We defined S1 and S2 as the amount of stresses on (p1, n2)

and (p2, n1) transistor pairs, respectively. Additionally, SNM of an SRAM cell is equal
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Figure 5.1: Architecture of SRAM and its SNM.

to min(SNM1, SNM0). This means that the balanced stress, i.e. S1=S2=0.5, leads to

optimal and balanced SNM reduction during a period of time (Fig. 5.1b). To this end,

flipping the content of SRAM balances stress as well as SNM. Otherwise, as shown in Fig.

5.2, imbalanced stress (S1 6= S0) results in imbalanced SNM1 and SNM0 and consequently

SNM reduction of the SRAM cell. The higher the SNM, the more stable and reliable the

SRAM.

SRAM cell is the main element in an FPGAs as configuration bit to implement the desired

logic inside Look-up-Tables (LUTs). The SNM reduction in SRAM cells leads to data cor-

ruption and Soft Error Rate (SER) raise in FPGAs [84, 95, 157, 34]. This makes FPGAs

more susceptible to high energetic particles and noise, that can flip the content of SRAMs

and change the implemented logics in LUTs.

This chapter presents STABLE, a three-step post-synthesis stress aware method to reduce

the impact of BTI on the SNM of SRAM cells in FPGAs. To this end, we extract the Data

Flow Graph (DFG) of the placed-and-routed design. We then partition the DFG to different

cones in a cone construction phase. Each cone represents a function and is composed of a
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Figure 5.2: SNM reduction in different scenarios.

root LUT and the connected LUTs of that root. Through SAT-based Boolean matching,

we find a new configuration (C2) as apposed to the main configuration (C1), where all the

bits are flipped (C2 = C1) and the application’s functionality is maintained (F2 = F1). C2

will be swapped with C1, through periodical FPGA reconfiguration, in order to recover and

balance SNM reduction fo SRAMs.

At step 1, the possibility of flipping all configuration bits inside each cone is explored, if their

functionalities are preserved. Obviously, configuration bits of all the cones cannot be flipped

due to change in their functionality. In addition, all LUTs could not be included into a cone

in the cone construction phase. Therefore, at second step, for the remaining LUTs, we check

if they have unused SRAM cells (i.e. they are partially-used LUTs). These unused SRAM

cells can be utilized to store flipped configuration bits of such LUTs that can be swapped

with them. Till the end of step two, LUTs’ configurations are flipped without impacting the

optimized design on FPGA. This is due to either STABLE flips LUT’s configuration bits

inside the cones (step 1) or swaps them with flipped ones in their unused cells (step 2). At

third step, if an LUT has not passed any of the two previous steps (i.e. they are fully-used

LUTs), we look for a nearest unused LUT as spare, where its flipped configuration bits is

stored.
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Our proposed methodology is deployed after placement and routing (i.e. post-synthesis)

of the optimized design by commercial tools on FPGA. Therefore, the area, power, and

performance overheads are negligible. Our extensive experimental analysis on Xilinx Virtex-

6 (40nm technology) for several benchmarks demonstrates 66.32% and 67.23% improvements

on average in SNM reduction (∆SNM) and Soft-Error-Rate raise (∆SER), respectively. To

the best of our knowledge, this is the first effort to reduce the impact of BTI on SRAMs in

FPGA LUTs through Boolean matching and unused cells inside each LUT.

In next section, the BTI impact on SRAM cells is detailed. Section 5.1 elaborates suscep-

tibility of FPGA to BTI. In Section 5.3, we review the related works. Section 5.4 and 5.5

discuss the Boolean matching preliminaries and the problem formulation, respectively. In

Section 5.6 we present STABLE, our stress-aware post-synthesis method. After that, the

experimental analysis comes in Section 5.7. Finally, Section 5.9 summarizes the chapter.

5.1 BTI aging impact on SRAM

In this section the BTI aging analytical model is elaborated, which shows how BTI can

increase the Vth of a transistor. Moreover, we show that how delay degradation at transistor

level due to BTI can impact the SRAM cell characteristic and how aging manifests itself at

SRAM’s logic level.

5.1.1 BTI aging modeling

BTI is the dominant aging mechanism in the advanced silicon technology [2, 138, 169, 65],

which increases the threshold voltage (Vth) of a transistor where it will be manifested as delay

degradation at logic level. BTI is a static mechanism that happens when the transistor is ON

for a prolonged time. It is composed of two phases: a stress phase and a recovery phase [156,
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21]. During the stress phase (i.e. when transistor is ON), and in high temperature, BTI

occurs due to the generation of traps at the Si-SiO2 interface, which gradually increase

Vth. While, during the recovery phase (i.e. when transistor is OFF), some of these traps

are eliminated and partially recover the shift on Vth. Based on [156, 151, 143], the delay

degradation due to BTI stress phase can be simplified as:

∆Vth S
= (Kv

√
tS + 2n

√
Vtht0

)2n (5.1)

where, tS is the amount of time that transistor is under stress; Kv is dependent to temper-

ature (T), Vdd, and electrical field; n is the time exponent parameter which is 1/6 for H2

diffusion; and Vtht0
is the intrinsic Vth of transistor at time zero. The delay recovery is:

∆Vth R
= Vth S

(1− 2ζ1te +
√
ζ2CtR

(1 + δ)tox +
√
Ct

) (5.2)

where, tR is the time that transistor is OFF and under recovery, tox is the oxide thickness, te

is the effective oxide thickness, t is the total time, C is dependent to the temperature, and

ζ1, ζ2, and δ are constants. A long term cycle-to-cycle model is derived in [21]. Hence, the

Vth degradation and recovery for clock cycle i based on Eq. 5.1 and Eq. 5.2 can be computed

as ∆Vth Si
and ∆Vth Ri

as (3) and (4), respectively:

∆Vth Si
= (Kv

√
αTclk + 2n

√
Vth Ri−1

)2n (5.3)

and,

∆Vth Ri
= Vth Si

(1−
2ζ1te +

√
ζ2C(1− α)Tclk

(1 + δ)tox +
√
iCTclk

) (5.4)

where, α is the duty cycle of the transistor for the time period of Tclk and i = t/Tclk.

The duty cycle of a transistor is the ratio of time that it is ON and under stress (S), i.e.
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Figure 5.3: Impact of different stress (S) amount on SNM reduction at worst case (T=375K)
after three years in 40nm technology. SNMt0 = 250mV.

S = α, 0 ≤ α ≤ 1. It should be noted that NMOS transistors are affected by Positive

BTI (PBTI) and PMOS transistors are affected by Negative BTI (NBTI). The Table 2 in

Appendix A shows more details about BTI.

5.1.2 BTI-induced SNM reduction in SRAM

As shown in Fig. 5.1a, 6-transistor SRAM cells is composed of two inverters which store

complementary values of a bit (Q in Fig. 5.1a). Increase in Vth of SRAM’s transistors,

reduces its SNM [84, 95, 157, 34]. SNM is the minimum DC noise voltage that is able to

change the state of the SRAM cell (i.e. flip it). SNM can be estimated by the proposed

graphical method in [133]. As shown in Fig. 5.2, SNM is computed as the maximum side

of largest square enclosed between the two static characteristics curves of SRAM cells. i.e.

SNM = Min(SNM0, SNM1).

Based on Fig. 5.1, when the SRAM value is one (Q=1), p1 and n2 transistors are under

stress. Therefore, SNM1 reduces due to BTI. Similarly, when the SRAM value is zero (Q=0),
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p2 and n1 transistors are under stress. Therefore, SNM0 reduces due to BTI. Based on Eq.

5.3 and Eq. 5.4, S (or α) is a measurement for stress of a transistor. We define S1 and S0

as the duty cycle of under stress transistors when Q=1 and Q=0, respectively. Since the

two pairs of transistors in SRAM cell (Fig. 5.1a) are complement of each others, we can

conclude that S1 = 1−S0 for a period of time t and S = Max(S0, S1). For example if S1 is

0.25 then S0 is 0.75, which means 25% of the time SRAM value is one and 75% of the time

SRAM value is zero. In this scenario, SNM0 is less than SNM1 and SRAM’s SNM will be

equal to SNM0 (Fig. 5.2b). It can be concluded that when S1 and S0 are equal (i.e. 0.5)

is the fair, and optimum, case which all transistors experience the same amount of stress as

well as recovery (Fig. 5.2c). In such as case, SNM has its maximum possible value which is

equal to SNM1 (or SNM0). In all, balanced stress leads to balanced SNM0 and SNM1 and

maximum amount of SRAM’s SNM.

Therefore, the reduction of SNM is the sign of aging in SRAM cells, which decreases their

hold, read and write stability that may result in timing failures. This leads to a Soft Error

Rate (SER) increment in SRAM-based FPGAs by a factor of two [156]. âĂĲThe SER is

measured in Failure in Time (FIT) given by the number of errors per billion hours of device

operationâĂİ [150]. SER and SNM correlation due to variation in Vth of SRAM’s transistors

is evaluated using the Pearson correlation coefficient [150]:

SER = −a× SNM + b (5.5)

where a = 1.2× 103 and b = 1.3× 103 for 40nm technology.

In sum, flipping the value of SRAM gives an opportunity to stressed transistors to recover

and balance aging by transferring stress to other pair transistors (Fig. 5.1 and Fig. 5.2).

However, as detailed in [33, 71], with the balanced stress, in 40nm technology, 12% to 16%

reduction in the SNM is unavoidable after 5 years, which leads to 3.6% to 4.8% raise in
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SER. This is worse when SNM reduction is imbalanced, which necessitates a proper stress

leveling. For example, in our experiments as shown in Fig. 5.3, in the worst case scenario

(temperature = 375K) when the stress is balanced (S=0.5) the SNM reduction is more than

7% after 3 years. Additionally, when the stress is imbalanced S=S1=0.7 (i.e. S0=0.3) the

SNM reduction is more than 12%. This amount is more than 17% if S=S1=1 (i.e. S0=0).

5.2 FPGA susceptibility to aging

Millions of SRAM cells are used to store configuration bits in the state-of-the-art reconfig-

urable architectures (e.g. FPGA) for customizing logic in LUTs and switch boxes. As shown

in Fig. 5.4, each LUT is composed of configuration bits, which are basically SRAM cells to

store the logic, and a Mux-tree to select the proper bit as an output. The illustrated LUT

has two inputs and four SRAM cells as configuration bits, which are programmed as an XOR

logic. Both components, Mux-tree and SRAM cells, are susceptible to aging mechanism (red

thunders in Fig. 5.4). Aging impact on Mux-tree increases the delay of LUT which can affect

the critical path delay of implemented circuit along it. This will result in lower performance

or timing failure. While aging in SRAM leads to lower SNM and higher SER. Moreover,

the implemented logic by SRAMs inside LUT does not change for a prolonged time unless a

reconfiguration happens. This makes them even more susceptible to BTI aging mechanism,

as elaborated in Section 5.1. The constant stress (S=1) on SRAM cell configuration bits

reduces their SNMs and increases SER.

Runtime reconfiguration in FPGAs gives the opportunity to the designer to change the

implemented design on FPGA. This specification has been utilized to increase the reliability

of FPGAs [67, 65]. As discussed in Section 5.1, by flipping the SRAM content we can balance

stress in a given period of time t. To this end, the SRAM content should be altered for half

of the time, t
2 . Since by flipping SRAM values we basically invert the logic inside LUT, the
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Figure 5.4: LUT components and their sensitivity to aging.

question is how to preserve the circuit’s functionality at the same time.

5.3 Related works and motivation

Soft error happens due to high energetic particles and noise in SRAM cell of FPGAs and

changes implemented application’s functionality, which can cause failure in the system. This

necessitates FPGA reconfiguration for scrubbing the faults [140]. When Soft Error Rate

(SER) is high in harsh environments such as space or automotive applications we need to

reconfigure FPGAs more frequently. This impose significant overheads to the system. There

have been extensive studies for reliable design on SRAM-based FPGAs against soft error to

reduce the overhead and cost of fault detection and correction [67, 139, 28, 55]. For example,

authors in [67] proposed HAFTA, which duplicates the application on FPGA and stores its

latest correct state in history FFs. When Multiple Bit Upset (MBU) happens in SRAM cells

and are manifested in main FFs, HAFTA detects them and reconfigure the FPGA without

loosing the last correct state of the implemented application. RoRA in [139] is a reliability

aware placement and routing technique to protect Triple Modular Redundancy (TMR)-based

designs on FPGAs against Single Bit Upset (SBU).
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In addition, the authors in [138, 169, 65] proposed offline or online reconfiguration techniques

to mitigate aging-induced delay degradation in FPGAs to avoid timing failure in the sys-

tem. An aging-aware floorplanner and reconfiguration policy for FPGAs is proposed in [65].

This offline method reduces the joint impact of BTI and Hot Carrier Injection (HCI) aging

mechanism on the performance of the implemented application. Furthermore, the proposed

technique in [138] swaps two different configurations for same application in two different

regions of the FPGA, which impose area and power overheads. Similarly, a stress-aware

placement proposed in [169] for acceleration application on different regions of the FPGA.

Additionally, effects of different LUT logics on the BTI-induced delay degradation in LUT’s

Mux-tree is inspected in[123]. [88] investigates the BTI impact on different structures for

Mux-tree of an LUT. Also, [6] investigates the BTI impact on different switch box structures

of routing resources in an FPGA. In sum, the studies on aging impact on FPGAs more

concentrated on performance degradation, that happens due to aging in Mux-tree (Fig. 5.4)

or routing switch boxes. However, as discussed in Section 3, BTI can impact the SRAM cells

inside the LUT and reduce their stabilities and SNMs.

Furthermore, the impact of BTI on SRAM cells in memory block has been studied in [135,

112, 126]. For example, in [135], a periodic flipping technique is proposed for mitigating

aging in SRAM-based memories. [112] proposed an aging aware register file allocator for

GPGPU to improve SNM. An adaptive cache size technique is proposed in [126] to mitigate

the SNM reduction of their SRAM cells. In addition, some related works studied the impact

of aging on an SRAM cell, such as read and write stability reduction, and increase in leakage

power [95, 157, 34, 91, 54, 16, 151]. These works show that BTI can significantly reduce the

SNM of an SRAM which results in lower SRAM stability, reliability and performance.

Frequent recovery phase (removing stress) in transistors leads to their lower age in long

term [76]. Therefore, the impact of BTI on SRAMs in FPGAs is more severe than memory

because the logic inside SRAM of an FPGA does not change until next reconfiguration (i.e.
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S=1). Whilst, the logic inside SRAM cells in block memories changes more frequently in

every several cycles (i.e. S < 1). This may corrupt the SRAM value and\or raise the SER in

FPGAs by a factor of two [84]. For example, in [84], the impact of voltage scaling and aging

mechanisms on SER of SRAM configuration bits in FPGAs is studied. This study shows

that SER in FPGAs increases by a factor of two. Additionally, [87] proposed a stress aware

routing to preserve SRAMs’ switch boxes in FPGAs against aging. As occlusion, aging in

SRAM cells not only jeopardizes the usage of FPGAs in safety critical applications, but also

in mainstream applications. Hence, we proposed a stress-aware Boolean matching technique

for LUTs in order to increase FPGA’s lifetime and decrease SER.

5.4 SAT-based Boolean matching (BM) overview

Boolean matching is a well-known technique that has been deployed in logic re-synthesis

and technology mapping for FPGAs [42, 127]. This technique is utilized to investigate the

equivalence of two functions f(X) and g(Y ) using input permutation and logic or wiring

reconfiguration. For solving this problem, we need to search a possible mapping ψ in such a

way that f(ψ(X)) = g(Y ). However, searching all possible mappings due to the huge time

complexity O(n!×2n+1) is not practical, where n is the number of input variables. Therefore,

search space pruning techniques are required to reduce the time complexity [81].

For instance, consider a cone ζ as a reconfigurable template with inputs x1, ..., xk, output

G, LUT configurations c1, ..., ck, and their internal wires w1, ..., wm as shown in Fig. 5.6.

Additionally, let F be a Boolean function of k inputs, given as a truth table. Let Ψ(ζ) be

a set of constraints that define the cone ζ characteristics, e.g. internal and output wires,

number of LUTs, end etc. Hence, the Boolean matching problem for (ζ, F ) can be formalized

to a Boolean formula question that asks is there any setting for LUT configuration c1, ..., ck
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such that for all inputs x1, ..., xk, the output G of ζ is equivalent to F :

∃c1...cn∀x1...xk∃w1...wm

ω(−→x ,
−→
x′ ) ∧ Ψ(ζ) ∧ Ψ(F ) ∧ (G↔ F )

(5.6)

where ω(−→x ,
−→
x′ ) expresses a mapping function for input permutation −→x of the Boolean

function to the input pins
−→
x′ of the cone. It needs to be noted that the mapping functionω can

be altered. For example, instead of input permutation we can change the LUT configurations

c1, ..., ck, change the internal wiring w1, ..., wm, or combination of them to G satisfy (SAT)

F . In sum, SAT-based Boolean matching is an effective solution to map a function to a

given reconfigurable template such as cones.

5.5 Problem formulation

In this work, our goal is to generate a new configuration for already placed and routed

design on FPGA in such a way that all the LUT configuration bits values are flipped but

functionality is preserved. The main configuration and the new configuration are exchanged

periodically (i.e. each P time) through FPGA reconfiguration to mitigate BTI-induced SNM

reduction of SRAM cells in FPGAs’ LUTs. Therefore, the data flow graph, DFG, of the

placed and routed design is extracted. Each node in DFG is an LUT. After that, the cone

construction step partitions DFG to different cones with specific functionalities. Through

SAT-based Boolean matching a flipped configuration for each cone is found in such a way

the cone’s functionality is preserved. The problem is stated formally as:

• Given the placed and routed design, and time interval of [t0, tn],

• Extract the Data Flow Graph (DFG) of the design, partition it to cones, and then

generate a new configuration such that all LUTs’ bits are flipped, while the functionality
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of each cone is preserved. The main configuration will be replaced by the flipped

configuration at each period of time, P, from t0 to tn.

For instance, consider the DFG Γ is partitioned to set of cones ζ1, ..., ζm with the Boolean

function of F1, ...Fm and configuration of π1, ..., πm. Each cone’s configuration πr is a set

of LUT configurations cr
1, ..., c

r
k, as well. Additionally, as elaborated in previous section, let

Ψ1(ζ1), ..., Ψm(ζm) be a set of constraints sets that define the cones’ characteristics, such as

their number of inputs, its number of LUTs, the internal connections, and its output G.

Then:

∀ζ1...ζm∃F1...Fm

ϕ(π, π′) ∧ Ψ(ζ) ∧ Ψ(F ) ∧ (G↔ F )
(5.7)

where ϕ(π, π′) expresses a Boolean matching procedure on each cone ζ that flips all LUT

configurations c1, ..., ck to c1, ..., ck considering that its output G is SAT (i.e. equivalent to

F ). In the next section we elaborate our proposed stress-aware Boolean matching (STABLE)

technique.

5.6 STABLE, stress-aware Boolean matching

The key idea behind the STABLE is to utilize SAT-based Boolean matching technique at cone

level or LUT level to flip LUT contents while functionality is preserved, without changing

the placement and routing of the optimized application on FPGA. This method is applied

after placement and routing of the desired application on FPGA using commercial tools

(e.g. Xilinx ISE c©) in order to induce minimal overheads in term of rerouting, placement,

area, performance, and power. STABLE consists of three steps, which are elaborated in the

following subsections. After these steps, the generated flipped configuration (i.e. bitstream)
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Figure 5.5: Partitioning the Data Flow Graph (DFG) to cones.

is stored to be used in periodical reconfiguration of the system.

5.6.1 Cone construction

We partition the implemented design to a set of cones. For example, the DFG in Fig. 5.6.1

is portioned to four different cones {ζ1, ζ2, ζ3, ζ4}. Each cone consists of a set of LUTs with

known functionality, {F1, F2, F3, F4}. A cone has only one output and consists of a root LUT

and its fan-in LUTs. By definition, a cone must have at least two levels of LUTs (its root

and its fan-in LUTs) and represents one and only one function. Note the number of levels

can be n. A cone with m inputs is an m-cone. For instance, in Fig. 5.6.1 the cone 1, which
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includes three LUTs (one root at level K and two LUTs at level K − 1) has 5 inputs, thus it

is a 5-cone that represents function F1. As shown, all LUTs inside a DFG cannot be part of

a cone due to the cone characteristics and limitations. For example, a should have cone only

one output and avoids LUTs with more than one fanout to be included into a cone, unless it

is a root. Additionally, if the cone size (number of LUTs inside it and number of inputs to it)

is high the Boolean matching search space will be huge (As elaborated in Section 5). Hence,

we have to limit the size of cone to at most three or four LUTs. An LUT only belongs to

one cone.
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The motivation behind partitioning a DFG to cones is illustrated in Fig. 5.6. As can be seen,

the cone consists of three LUTs (one root LUT and two fan-in LUTs). The cone has 4 inputs

which means it is a 4-cone that represents function F (i4, i3, i2, i1). The LUT configuration

bits in (a) and (b) are full complement of each other while both configuration represent

the same function for a cone. Therefore, using in-place Boolean matching (i.e. without

interfering with the placement and routing), we find alternative flipped configuration bits

for each cone and preserve the cone’s function. Briefly, the first step in STABLE looks for

an opportunity of finding the maximum hamming distance (i.e. flip all configuration bits)

without changing the placement and routing of LUTs inside the cone. LUTs that are not

included in a cone or their cone cannot be flipped (due to not maintaining the coneâĂŹs

function) will be considered in the second or third steps in the STABLE.

Fig. 5.7 illustrates the STABLE. It is shown that each cone ζi represents function Fi and

each LUT Lj is represented by a tuple (cj, fj), where cj is its configuration bits and fj is its

function. Algorithm 4 shows the pseudo-code for cone construction phase. The algorithm’s

input is the DFG (i.e. list of LUTs (or nodes) in the implemented design and their connections

(or edges)) and its output is the list of cones. The algorithm looks for those LUTs that only

have one fan-out using RetFanOut() function (line 4). This function returns number of

fan-outs of an LUT. Then, using FindOutput(), the connected LUTs to the target LUT’s

output will be set as the root of its cone (Line 5). The root LUT can have more than one

fan-outs, obviously. Basically, at this step of the algorithm we tag LUTs with more than

one fan-out as roots. Next, the target LUT, and its root, will be added to the cone list (line

6). This process continues until all the LUTs are investigated. As previously discussed, all

LUTs cannot be included in a cone. However, the LUT inside a cone has a higher chance

of flipping without any impact on the implemented design. Section 5.8 elaborates more on

cone construction step.
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Algorithm 4 Cone Construction
Input: DFG as an LUT list {LUT}
Output: List of Cones {Conelist}

1: Conelist = {};
2: for all LUTi ∈ {LUT} do
3: if LUTi /∈ {Conelist} then
4: if RetFanOut(LUTi) = âĂĲ1âĂİ then
5: Rootj ←− FindOutput(LUTi);
6: Conelist.Add(Rootj, LUTi);
7: end if
8: end if
9: end for

10: Return {Conelist}

5.6.2 Cone-flip Boolean matching (Step one)

As shown in Fig. 5.7, in the first step of STABLE, we want to flip a cone configuration bits

entirely based on the motivation in Fig. 5.6 using Boolean matching technique. Algorithm

5 elaborates this step. The algorithm’s input is the generated list of cones {Conelist} from

construction phase and its output is the list of flipped cones {FlippedConelist}. Hence, using

GetFunc(), the function of each cone is found for each cone (line 2). Then, all LUTs inside

the cone are flipped by FlipConf() (line 3-5). After that, if the new flipped configuration

bits of the cone satisfy (SAT) the original Boolean function of the cone (line 6), then the

cone is added to the flipped cone list and removed from the original list of cones (line 8-9).

Otherwise, configuration bits are reset to the original setting of the cone (line 11-13).

The core of Algorithm 5 is expressed in lines 6-9, where determines that flipped configura-

tion’s function is SAT or not (Section 6). Since we want the new configuration bits be the

complement of main configuration bits thus it is not required to explore the whole (or part

of) the search space. This is not usually a case in SAT-solvers. Therefore, here, the time

complexity of SAT-based Boolean matching is decreased considerably and we only look for

a known configuration bits, the flipped one. Through that, a flipped configuration for each

LUT inside the cones with 100% hamming distance are obtained. This step impose no over-
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Algorithm 5 Cone-flip Boolean Matching (Step 1)
Input: Cone list {Conelist}
Output: List of flipped Cones {FlippedConelist}

1: for all Conei ∈ {Conelist} do
2: F ←− GetFunc(Conei);
3: for all LUTj ∈ {Conei} do
4: FlipConf(LUTj);
5: end for
6: Fnew ←− GetFunc(Conei);
7: if Fnew = F then
8: FlippedConelist.Add(Conei);
9: Conelist.Remove(Conei);

10: else
11: for all LUTj ∈ {Conei} do
12: FlipConf(LUTj);
13: end for
14: end if
15: end for
16: Return {FlippedConelist}

head to the system, while all SRAM cells in cones’ LUTs are flipped and cones functionality

is preserved. As shown in Fig. 5.7, the flipped LUTs inside the cone are colored as black

and the cone’s that their functionalities is SAT are determined. For next steps these cones

and their LUTs are classified as processed (red lines hachure in Fig. 5.7).

5.6.3 Partially-used LUT-flip Boolean matching (Step two)

Based on Fig. 5.7, in this step, we investigate partially-used LUTs, that do not belong to any

cone (Fig. 5.6.1) or were inside a cone but have not been covered during step 1. Partially-

used LUTs have one or more unused inputs, that are connected to either Vdd or ground. For

example, in a 6-input LUT (contains 64 configuration bits), if one of the inputs is not used

then there are 32 unused SRAM cells, inside the LUT, that can be utilized for reliability

purposes (i.e. as redundancy). This technique is a low-cost, effective, and efficient usage of

wasted SRAM cells inside partially-used LUTs. Due to optimization purposes or application
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Figure 5.8: C1 and C2 represent the same function using different configuration bits inside
on LUT.

characteristics, academic and/or commercial synthesis tools left behind many LUTs that are

partially used, that some of their SRAM cells are wasted.

Assuming the original LUT’s configuration bits’ functionality is f and input k is one of the

unused inputs, we change the configuration from kf + k̄f̄ to kf̄ + k̄f and k is set to Vdd.

For example, as illustrated in Fig. 5.8, we connect the unused inputs (i3) to a flip state

(Vdd) to access unused cells and configure them with the complement (C2) of the original

configuration bits (C1). Both configurations represent the same function (i.e. i1xori2) while

different parts of the LUT are used and configuration bits are flipped entirely. In comparison

to step 1, we have to rewire (connect) the free input (here i3) from ground to Vdd. The first

part in algorithm 5.8 (line 2-16) elaborates on this step. The inputs are the remaining list of

cones {Conelist} from the previous step and the list of LUTs {LUTlist} that are not part

of any cone.

Our algorithm iterates through each LUT, inside the remaining cones, and checks if they

have unused (free) inputs using the InputIsFree() function (line 4). If the LUT has unused

cells, the configuration bits will be flipped and the main configuration will be stored in the

unused cells using FlipConfUnused() based on Fig. 5.8. LUTs that pass this step will

be added to the list of flipped LUTs and will be removed from the cone (line 6-7). Same
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Algorithm 6 LUT-flip Boolean Matching (step two and step three)
Input: List of Cones {Conelist}, List of LUTs that not in any cone {LUTlist}
Output: List of flipped LUTs {FlippedLUT list}

1: FlippedLUTlist = {};
//Flip partially-used LUTs (step 2)
2: for all Conei ∈ {Conelist} do
3: for all LUTj ∈ {Conei} do
4: if InputisFree(LUTj) then
5: FlipConfUnused(LUTj);
6: FlippedLUT list.Add(LUTj);
7: Conelist.RemoveLUT (Conei, LUTj);
8: end if
9: end for

10: end for
11: for all LUTj ∈ {LUTlist} do
12: if InputIsFree(LUTj) then
13: FlipConfUnsed(LUTj);
14: FlippedLUT list.Add(LUTj);
15: end if
16: end for
//Flip fully-used LUTs (step 3)

17: for all Conei ∈ {Conelist} do
18: for all LUTj ∈ {Conei} do
19: SpareLUT ←− SearchUnsedLUT ();
20: StoreLUT (LUTj, SpareLUT );
21: FlipConf(LUTj);
22: FlippedLUT list.Add(LUTj);
23: end for
24: end for
25: for all LUTj ∈ LUTlist do
26: SpareLUT ←− SearchUnsedLUT ();
27: StoreLUT (LUTj, SpareLUT );
28: FlipConf(LUTj);
29: FlippedLUT list.Add(LUTj);
30: end for
31: Return {FlippedConelist}

investigation and operation are also done to the list of LUTs which do not belong to any cone

(line 10-14). In all, at this step by using the unused SRAM cells inside the LUT we flip the

LUT configuration while the Boolean functionality of each cone is satisfied. Furthermore,

it can be concluded that till this step the LUTs are flipped with negligible overhead on
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the design without affecting the optimized placement and routing. The remained LUTs are

fully-used LUTs that were not included to any cone at the cone construction phase. Hence,

in step 3 we cover remained fully-used LUTs. As shown in Fig. 5.7, at the end of step two

partially-used LUTs are flipped (colored as black). Whilst, their functionalities are SAT by

swapping configuration bits inside the LUTs with their complement.

5.6.4 Fully-used LUT-flip Boolean matching (Step three)

To flip fully-used LUTs inside the cone, which are remained from step 1, we determine the

fully-unused LUTs inside each neighboring logic block (i.e. slice in Xilinx) as a spare for

them (Fig. 5.7, step 3). Each LUT belongs to a logic block. Logic block is a reconfigurable

component in FPGAs that is a set of LUTs, FFs, Carry chain, and etc. Usually, each two

logic blocks belong to a Configurable Logic Block (CLB) that is connected to other CLBs

through switch boxes. FPGA is a 2D matrix of CLBs. Therefore, we can find the physical

location of each LUT and its neighboring LUTs.

The second part in algorithm 5.8 (line 17-30) elaborates this step. Using a greedy Breadth

First Search (BFS) algorithm we find the closest fully-unused LUT and configure it as the

spare LUT by the flipped configuration of main LUT (line 19). Then, using StoreLUT (),

we store original configuration bits to the spare LUT (line 20) and the original configuration

will be flipped (line 21). Similarly, for fully-used LUTs that do not belong to any cone the

same process is done (line 25-30). In all, at this step we flip the fully-used LUTs using

fully-unused neighboring spare LUTs, that are left behind after placement and routing of

the design inside the logic blocks, with negligible rewiring overhead.
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5.7 Experimental evaluation

In this section we review our experimental setup for verification of STABLE and the extracted

result for different sets of selected benchmarks. At the end we discuss and analyze STABLE.
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5.7.1 Setup

Implementation flow of the proposed method, STABLE, is abstracted in Fig. 5.9. At first,

the benchmark’s description (e.g. as HDL format) is synthesized using the Xilinx synthesis

tool, ISE 14.7 c©. Our target FPGA device is Virtex6 (xc6vlx240t) which is fabricated in

40nm technology. At next step, the placement and routing is done. After that, we can

generate the .bit format of the main configuration (C1) that can be loaded into the FPGA.

In addition, the synthesizer generates post-route information in Xilinx Design Language

(XDL) format. From XDL we can extract the DFG of the implemented design and find the

required information such as each configuration of LUTs, functionalities, their connections,

and unused resources. Then, the cone construction phase is done (Section 5.6.1).

Next, our implemented tool (in Python) for the STABLE methodology (Section 5.6) applies

the three Boolean Matching (BM) steps. The XDL file is required to be updated based on

the new DFG. For example, LUTs configuration bits are flipped and the new connection and

LUTs are added for spare LUTs in step 3. Then we run the placement and routing tool for

these new added resources. Finally, the flipped configuration bits is generated (C2.bit). C2

has the exact functionality as C1, while its configuration bits are flipped to put their SRAM

cells in the recovery phase. Through periodical FPGA reconfiguration, (e.g. using ICAP in

Xilinx board) we can swap between C1 and C2 to mitigate BTI-induced SNM reduction in

SRAM cells (i.e. configuration bits).

To evaluate the impact of STABLE, 14 benchmarks are selected from different suites of

applications (including ISCAS89, ITC99, multimedia, security, and etc.). Each benchmark’s

floorplan along with power information (i.e. after running test benches on them), from

Xilinx XpowerAnalyzer, are fed into HotSpot[83] to extract the temperature map. Based

on Eq. 5.3 and Eq. 5.4 for BTI, temperature analysis and stress (S) is required to extract the

delay degradation to consequently compute SNM using proposed method in[133]. In SNM
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analysis, we considered the worst case for temperature. Therefore, the extracted SNMs for

each benchmark is based on the maximum temperature of the application. This is because

for reliability analysis and Mean Time to failure (MTTF) we consider the worst case. Eq.

5.5 is used to extract the SER based on the proposed method in [150]. Another way of

exacting SNM for an SRAM cell is proposed here [38].

Table 5.1: Cone construction result for each benchmark

Bench. # LUT # Cone # LUT in Cone Coverage (%)
AES 3729 652 2125 56.99
DCT 9862 800 1887 19.13
JPEG 20141 1545 4225 20.98
AVA 4609 512 1247 27.06
FPU 4774 535 1371 28.72
S641 60 6 14 23.33
S5378 325 42 104 32.00
S38417 2454 237 727 29.63
S15850 723 88 223 30.84

b10 40 7 16 40.00
b14 1013 200 532 52.52
b18 16325 2530 6137 37.59
b20 2336 340 881 37.71
b22 3393 463 1241 36.58

Total 69784 7957 20730 29.70

5.7.2 Results

As discussed earlier we partition DFG of the implemented design to cones. Table 5.1 shows

the number of LUTs in each benchmark and the number of cones that are constructed

using Algorithm 1, in the second and third columns, respectively. The last two columns

of Table 5.1 report the coverage of cones in number of LUTs and percentage, respectively.
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Figure 5.10: LUT Coverage in each step of STABLE.

Our proposed algorithm for cone construction covers from ∼ 19% up to ∼ 57% of LUTs in

different benchmarks. The average coverage in all 14 benchmarks is 29.70%.

In Fig. 5.10, the LUT coverage of STABLE in different steps for different benchmarks is

illustrated. The selected benchmarks due to diverse characteristics have different amounts

of LUT coverages at each step. For the selected benchmarks, ∼ 93% of LUTs are covered

till the end of steps one (∼ 4.2% is covered) and step two (∼ 89% is covered). The remained

fully-used LUTs (∼ 7%) are covered at step three. For instance, in DCT, 1026 LUTs out

of 9862 LUTs (∼ 10%) are covered at step one. (∼ 86%) of LUTs are covered at step two.

The remaining (∼ 4%) are covered during step three. It can be concluded that most of the

LUTs are partially-used LUTs and will be covered during the second step. The second step

in STABLE is an effective and straight forward technique which imposes negligible overhead

to the system.

Fig. 5.11 demonstrates the SNM rate reduction of SRAM configuration bits for different

benchmarks for 3 years of execution (i.e. 9.6E+7 seconds) in their worst case situation

(maximum temperature). The dotted blue line (STABLE W/ Rec.) is when the application

104



Ta
bl

e
5.

2:
SN

M
(m

V
)

re
du

ct
io

n
an

d
SE

R
(F

IT
/M

bi
t)

ra
ise

co
m

pa
ris

on
s

in
3-

ye
ar

of
ex

ec
ut

io
n

(A
t

tim
e

ze
ro

,S
N

M
=

25
0m

V
an

d
SE

R
=

10
00

FI
T

/M
bi

t)

B
en

ch
.

A
ES

D
C

T
JP

EG
AV

A
FP

U
S6

41
S5

35
8

S3
84

17
S1

58
50

B
10

B
14

B
18

B
20

B
22

AV
G

.

∆
S

N
M

ST
A

B
LE

10
11

14
10

11
8

9
14

10
8

9
11

11
14

10
.7

1
N

R
ec

.
31

33
36

32
34

24
28

36
33

25
28

33
34

36
31

.6
4

I
m

p
.(%

)
67

.7
4

66
.6

7
61

.1
1

68
.7

5
67

.6
5

66
.6

7
67

.8
6

61
.1

1
69

.7
0

68
.0

0
67

.8
6

66
.6

7
67

.6
5

61
.1

1
66

.3
2

∆
S

E
R

ST
A

B
LE

11
12

16
12

13
9

11
16

12
9

11
12

13
16

12
.3

6
N

R
ec

.
37

39
43

37
40

29
33

43
39

30
33

39
40

43
37

.5
0

I
m

p
.(%

)
70

.2
7

69
.2

3
62

.7
9

67
.5

7
67

.5
0

68
.9

7
66

.6
7

62
.7

9
69

.2
3

70
.0

0
66

.6
7

69
.2

3
67

.5
0

62
.7

9
67

.2
3

105



(a) Tmax = 360K (b) Tmax = 358K

(c) Tmax = 355K (d) Tmax = 353K

(e) Tmax = 350K (f) Tmax = 356K

Figure 5.11: SNM degradation comparison in 3 years (9.6E+7 seconds).

main configuration (C1) will be reconfigured by the generated flipped configuration (C2) by

STABLE. Red line is when there is no reconfiguration technique (NRec.). For example, in

JPEG benchmark using our proposed technique with periodical reconfiguration the SNM

reduction is ∼ 5.6% as opposed to ∼ 14.4% in non-reconfiguration (NRec.) at Tmax = 360K.

As mentioned in Subsection 5.6.1, the temperature map of each benchmark is extracted using

HotSpot tool. SNM reduction is improved by ∼ 63%, ∼ 46.27%, and ∼ 69% in JPEG, FPU,
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and B10, respectively. In Table 5.2, the amount of SNM is reported for different benchmarks

after 3 years of simulated execution. As shown, SNM for SRAM in the 40 nm technology (in

Xilinx Virtex 6) is calculated to be ∼ 250mV at time zero (i.e. before aging happens) [150].

SNM reduction is improved by ∼ 66%, on average after employing STABLE along with the

periodical FPGA reconfiguration to swap between two complement configurations.

Furthermore, utilizing Eq. 5.5, we extracted Soft Error Rate (SER) of SRAM which is 1000

FIT/Mbit (0.001FIT/bit) at time zero for 40nm technology. After three years of simulated

execution, after using STABLE, SER degradation, as compared to time zero, is improved by

∼ 67% on average for different benchmarks. Table 5.2 summarizes this result, as well. For

example, in B22, SER increases 16FIT/Mbit and 43FIT/Mbit in STABLE W/ Rec. and

NRec., respectively. Higher FIT rate results in lower reliability and lower MTBF.

5.7.3 Analysis and discussion

The first two steps, cone-flip Boolean matching and partially-used LUT-flip Boolean match-

ing, impose negligible overhead to the design. This is because they either flip LUTs inside

a cone or use unused SRAM cells of partially-used LUTs. In step three, we find the nearest

fully-unused LUTs as a spare for the remained fully-used LUTs using a greedy BFS search

algorithm to reduce overhead. Let’s assume that only step three is utilized to find a spare for

each LUT to store their flipped configurations, then area overhead will be 2X. Because each

LUT requires a spare. This imposes power overhead to the system since we need two times

of main benchmark’s assigned region on FPGA. This even imposes performance overhead to

the system, since we need to pair each LUT to a spare LUT that might change the critical

path of the design.

Additionally, STABLE is deployed after placement and routing of the design on FPGA.

Therefore, the area, power, and performance overheads are negligible as compared to opti-

107



Figure 5.12: Comparison of average distance of spare LUT from main LUT between Step 3
and STABLE (Step 1, Step 2, and Step 3).

mized and obtained design by commercial tools. The STABLE overhead to the system may

occur at step three for fully-used LUTs that could not be covered at step one (cone-flip).

Therefore, spare fully-unused LUTs are found at the nearest distance using the greedy BFS

on the DFG. Fig. 5.12 illustrates the average number of CLB in the way from main LUT to

the identified spare LUTs, for each benchmark. This number on average is 1.66 Configurable

Logic Blocks (CLBs) for different benchmarks in our proposed method. If we eliminate the

first two steps and only use step three the distance overhead will be 4.2 CLBs. Moreover,

in DCT benchmark step 3 only is required for less than 1% of the LUTs (Fig. 5.10), while

average spare-LUT distance is ∼ 7.5 CLBs (Fig. 5.12). On the other hand, these numbers

are ∼ 45% and ∼ 1, respectively. Although, the percentage of required LUTs in B10 is higher

than DCT, but it seems our greedy BFS algorithm finds spare LUTs inside same slice as the

main LUTs for step 3. This is not the case in DCT benchmark that the unused spared LUTs
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are not available in nearer CLBs.

Table 5.3: The required time for STABLE steps in seconds

Bench. Cone construction Step 1 Step 2 Step 3
AES 23.75 100.20 0.02 0.02
DCT 0.73 9.69 0.06 0.02
JPEG 4.56 18.06 0.14 0.04
AVA 0.53 65.86 0.03 0.02
FPU 0.59 92.40 0.03 0.01
S641 0.01 1.05 0.02 0.02
S5378 0.07 8.06 0.03 0.01
S38417 0.35 40.85 0.01 0.01
S15850 10.32 17.67 0.01 0.01

b10 0.03 1.57 0.01 0.01
b14 0.05 31.70 0.01 0.02
b18 1.03 378.60 0.10 0.06
b20 0.14 78.67 0.01 0.03
b22 0.35 119.80 0.02 0.01

Amean 3.04 68.87 0.03 0.02
Gmean 0.41 27.19 0.01 0.01

Furthermore, Fig. 5.12 proves that our greedy BFS algorithm which looks for spare LUTs

in the nearest possible distance always finds required spare LUTs in step 3. Although,

implemented designs on FPGAs are optimized from placement and routing points of view,

but usually there are unused resources inside the CLBs. Our experiment shows that the

performance overhead is less than ∼ 1% in different benchmarks on average.

The long term BTI impact is independent of switching frequency in transistors [149, 9]. For

example, as long as the stress value is optimum (S=0.5) then the switching frequency of an

SRAM state will not impact the long term aging impact (e.g. SNM reduction). This means

during the lifetime of T if SRAM’s content flips at each T/2 or T/4 and so on the long term
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BTI impact is fixed and is independent of different waveforms with same duty cycle (same

S). hence, it can be concluded that only one time reconfiguration of design on the FPGA at

time T/2 is enough to reach the optimal S. However, the designer can choose different period

of the reconfiguration to swap between two configurations based on desired constraints. The

only constraint from BTI point of view is to keep the stress optimal (S=0.5).

The required execution time of STABLE for each benchmark is shown at Table 5.3 in seconds.

The average required time for cone construction phase, step 1, step 2, and step 3 are 3.04,

68.87, 0.03, 0.02, respectively. As it was expected step 1, cone-flip BM, has the lion’s share

of the running time. It needs to be noted that SAT-based Boolean matching is usually an

expensive step in logic design, while in STABLE it runs in a reasonable speed. The main

reason is that we do not need to investigate the whole search space and we only need to

find the flipped configuration bits in a constant time, as explained in Algorithm 1. In all,

STABLE runtime overhead is negligible in comparison to the whole process of implementing

a design on FPGA from synthesis level all the way down to placement and routing. Therefore,

STABLE can be easily embedded into the commercial tools.

5.8 Cone size impact on the run time of step 1

Each cone has an LUT as its root as well as a set of connected LUTs to it. Algorithm 1

elaborates on the cone construction phase. The cone size is defined as number of inputs

to it plays an important role on the running time of step 1 in STABLE. Here we want to

show how increase in the number of inputs to a cone can drastically increase the SAT-based

Boolean matching process on it. Therefore, we need to put a constraint on the size of a

cone to not exceed a certain size of it and avoid high running time overhead. For instance

as shown in Fig. 5.13, the required time to run SAT-based BM on cone a with 10 inputs is

around 0.2 seconds while in cone b is more than 20 seconds.
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Figure 5.13: Cones with different size

The reason behind is that by increasing number of inputs the required time to extract the

functionality of the flipped cone increases exponentially. Therefore, we limit the cone size to

avoid such cases and if adding an LUT to a root LUT cause to exceed the number of inputs’

threshold, which is 11 inputs in our experiment, we do not add that LUT to the cone. Table

5.4 summarizes the approximate required running time for different cone sizes in seconds.

Table 5.4: BM running time on cones with different number of inputs in seconds

#inputs 10 11 12 13 14 15 16
running time 0.2 0.5 1.2 2.3 4.7 11.8 20
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5.9 Chapter summary

In this chapter, a post-synthesis three-step flipping LUTs’ configuration bits’ methodology

named as STABLE is proposed. STABLE finds an entirely flipped configuration for the

implemented design on FPGA. The new configuration is swapped by the main configuration

to reduce the impact of aging on SRAM cell configuration bits in FPGAs for half of the

lifetime. Flipping SRAM content periodically helps to mitigate BTI-induced SNM reduction

by putting SRAM transistors in recovery phase. Our objective is to flip bits inside each LUT

while preserving the original functionality of the implemented design using SAT-based BM.

Therefore, we partition DFG of the implemented design to cones. Each cone is investigated

for flipping their LUTs’ configuration bits. At first, the possibility of flipping all the LUTs’

inside the cones are explored, while maintaining the cone’s functionality. Next, unused

SRAM cells inside partially-used LUTs are utilized for flipping original configuration bits’

of remaining LUTs from previous step. At the end, we can leverage nearest unused LUTs

as flipped configuration spares for the main fully-used LUTs that did not pass the first two

steps. We chose 14 different set of benchmarks to show the effectiveness of STABLE. Our

results show 66% and 67% improvement in SNM reduction (∆SNM) and SER increase

(∆SER), respectively, with negligible overhead on the implemented design.

112



Chapter 6

ADAMANT, aging-aware task

mapping in heterogeneous

multiprocessor architectures

Present day mobile devices (e.g., Smartphones, laptop, wearables, IoT platforms) continue to

execute an increasingly wider range of applications and workloads. In this scenario, single-

ISA heterogeneous multiprocessor architectures (HMPs) (e.g. ARM’s big.LITTLE [73] with

both simple and complex single-ISA core types in the same chip) are becoming pervasive

due to their ability to simultaneously provide performance for computationally intensive

applications (e.g. gaming, data mining) and power efficiency for IO-driven or interactive

applications (e.g. web, email, body sensing).

Effectively exploiting power-performance tradeoffs requires smart task management mech-

anisms that are able to properly map workloads to the appropriate core type [14, 130, 99]

(e.g. mapping a task to the most power efficient core type that satisfies its performance re-

quirements). This necessity, however, has the side effect of overutilizing specific core types,
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Figure 6.1: (a) Traditional task mapping. (b) Aging-aware task mapping with DVFS. Due
to wearout caused by the aging imbalance in (a), the circuit critical path delay may violate
its operating frequency guardband.

which may lead to decreased system reliability due to excessive stress on that core type.

For instance, [147] shows that the current model for task load balancing in Linux leads

to premature aging and wearout of overutilized cores in multicore platforms as shown in

Fig. 6.1 (a). This happens due to device-level aging mechanisms such as Bias Temper-

ature Instability (BTI) [22] and Hot Carrier Injection (HCI) [31]. These mechanisms are

highly dependent on factors such as temperature and core utilization (i.e. stress), which

causes transistor-level delay degradation and reduces core performance throughout its life-

time. Several works have attempted to mitigate these issues and proposed runtime aging-
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aware dynamic voltage/frequency scaling (DVFS) and load balancing schemes to increase

platform reliability [39, 147, 121, 106, 70]. However, these approaches are limited to homo-

geneous architectures and cannot be directly applied to HMPs since they do not consider

the workload affinity towards specific core types.

This chapter closes this gap by applying aging-aware load balancing to effectively explore the

power-efficiency of HMPs. We propose, ADAMANT, an Aging Driven tAskMAppiNg tool

that uses aging, performance, and power sensing and prediction in order to map tasks to the

most appropriate core type while balancing out aging towards increased lifetime as shown

in Fig. 6.1 (b). In contrast to previous works, ADAMANT is designed only to replace the

load balancing mechanisms in Linux-like runtime systems and works in tandem with other

components such as the widely used Completely Fair Scheduler (CFS) and on-demand DVFS

governor. In summary, this chapter makes the following contributions:

• ADAMANT leverages performance/power predictive models as well as core-level aging

models to perform online characterization of the tasks’ workload across all core types

in the HMP.

• ADAMANT’s run-time task mapping algorithm finds energy efficient mappings that

simultaneously meets the task’s performance requirements and reduce platform aging.

• Experimental results on typical mobile workloads executing on a big.LITTLE archi-

tecture demonstrate up to 2x improvement in lifetime with negligible overheads.

6.1 Related work and motivation

In multicore scenarios, task mapping/scheduling policies that are unaware of aging may

lead to reduced lifetime due to the over-utilization of the same core. In current hetero-

geneous architectures such as ARM’s big.LITTLE [74], task mapping policies attempt to
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Figure 6.2: Relative difference between the most and the least aged cores in homogeneous
and heterogeneous architectures.typical workload (Table 6.2). GTS scheduling [14]

improve energy efficiency by establishing an affinity between workloads and different core

types [14, 130, 99, 163], which further intensifies the aging imbalance. An example of such

policy is the Global Task Scheduling (GTS)[14] targeting ARM’s big.LITTLE. GTS mi-

grates tasks between big and little cores when the task load reaches a certain threshold.

GTS-based policies has been implemented on Linux and deployed by multiple SoC vendors

that support the big.LITTLE technology (e.g., Linaro’s/ARM’s big.LITTLE MP imple-

mentation used by Samsung Exynos[122], MediaTek’s CorePilot[101], Qualcomm’s Energy

Aware Scheduling[110]). Fig. 6.2 illustrates this by showing the difference of delay degrada-

tion (aging imbalance) between the most and the least aged cores in an 8-core big.LITTLE

heterogeneous architecture and a 4-core (big-only) homogeneous architecture (refer to Sec-

tion 6.6.1, Table 6.1 for platform details). After three years, the difference in degradation

between the most aged core and the least aged core is ∼ 46% on the homogeneous platform,

while on the heterogeneous platform this difference reaches 100% for the same workload,

despite having a larger number of cores to map tasks to.

Previous works [121, 106, 70] are able to reduce aging imbalance by prioritizing the least aged

cores during task mapping in homogeneous architectures. [121] proposed an adaptive runtime
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task allocation to meet performance constraints while minimizing energy and maximizing

system lifetime. They focused on reducing BTI aging impact for soft realtime multimedia

applications and do not consider scenarios with DVFS in which the workload is not known.

Furthermore, [121] does not consider the effect of HCI which is one of the dominant aging

factors. [106] proposes a joint task mapping/DVFS algorithm for multicore mobile scenarios.

They use a combination of aging sensors and aging models to define which cores can run

foreground performance-demanding tasks (and the target frequency) Their goal is to balance

out cores’ aging induced delay degradation while maintaining performance. [70] proposes

a similar strategy assuming a dark silicon scenario [77], i.e., not all cores can be active at

the same time due to power/thermal constraints. They leverage this availability of unused

cores to dynamically redistribute the workloads according to the chip thermal profile and

estimated aging rates. [124] proposes a task mapping approach in which tasks are compiled

to multiple versions tradeoffs performance and error resilience. The code version to use

is selected at run time considering the cores’ soft error rates and performance variations.

[44] also proposes a compile-time approach. Multiple task maps are statically generated for

tasks modeled as directed cyclic graphs (DAGs) or synchronous data flow (SDF) models

considering different sets of available cores and their mean time to failure. At runtime, one

of pre-generated mapping is chosen for each application depending on the total number of

active applications. [128] improves over [44] by detecting intermittent faults at run time in

order to make mapping decisions.

The aforementioned works perform aging mitigation through task mapping, however, they

are not suitable for heterogeneous architectures since they do not consider the difference in

power/performance tradeoffs that different core types can provide. Balancing out workloads

without considering these tradeoffs may lead to impaired energy efficiency solutions [130].

[104] assumes that all cores provide the same performance (given the same frequency) which

is unsuitable for HMPs. Furthermore, their approach assumes core-level DVFS domains,

while current mobile platforms employ cluster-level DVFS [74]. [70] requires offline profiling
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of the target applications, which limits its applicability to general purpose mobile devices

(e.g. Smartphones); DVFS is also not supported, instead, the task mapping is chosen based

on the cores’ maximum supported frequency given the current aging state and temperature

constraints. [44] and [128] also target scenarios in which the tasks are known and

their formal DAG/SDF models are available. [124] has similar limitations and uses custom

compiler support. ADAMANT, on the other hand supports generic workload without prior

characterization and is orthogonal to DVFS (core-level and cluster-level). When compared

to state-of-the-art works that address task mapping for heterogeneous architectures [130, 99,

163], ADAMANT is the first to consider online sensing of BTI and HCI aging mechanisms.

Also, current solutions for performance and power prediction [108, 163] currently do not

consider dynamic frequency variability due to DVFS. ADAMANT addresses this issue with

predictive DVFS models for synergistically coupling task mapping with frequency scaling to

mitigate aging effects.

6.2 ADAMANT framework overview

As shown in Figure 6.3, the ADAMANT framework for HMPs is composed of three parts: 1)

Sensing exploits readily accessible hardware performance counters (HPCs), power sensors

and aging sensors distributed throughout the chip to monitor the workload behavior and

chip aging; 2) this information is aggregated at the end of each mapping epoch and is used

as input for performance/power prediction and estimation models to characterize

tasks’ performance and power across different core types in the HMP; 3) a task mapping

phase uses the predicted values to select the task mapping that best satisfies the aging-aware

system goal.

An important aspect of ADAMANT is that its design considers the current scenario of HMP-

powered mobile platforms that use Linux/Unix-like operating systems such as Android and
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iOS. In such models, applications can enter and leave the system at any time and their total

execution time is unknown. Therefore, as opposed to previous works that assume a fixed set

of known applications [121, 70], we consider the case of dynamic task-to-core assignments.

In ADAMANT, we use a dynamic task assignment model in which thread-to-core mapping

decisions are fixed and re-evaluated at periodic time intervals or control epochs, similar to

[99, 130].

In the context of Linux-like operating systems, ADAMANT replaces the load balancing

mechanisms and is orthogonal to the completely fair scheduling (CFS) policy which is used

to distribute processing time amongst tasks mapped to the same core. Unlike previous

works that attempt to select both task-to-core assignments and core’s operation frequency,

ADAMANT leverages Linux’s ondemand DVFS governor to set the core frequency according

to the current processing time utilization of each core. ADAMANT works synergistically

with DVFS by deploying performance estimation models that predict the DVFS governor

behavior and uses this information during task mapping.

Section 6.3 provides a detailed definitions of ADAMANT workload model, performance met-

rics, and execution platform assumptions. Section 6.5 describes the ADAMANT predictive

task mapping approach.

6.3 System model and metrics

Workload model: We assume a set of applications composed of a single or multiple

threads. For uniformity, in this paper the term task is used interchangeably for both single-

threaded processes and for individual threads of the same process. Tasks can be dynamically

created and there is no prior knowledge of their requirements or execution time. As described

previously, we perform task mapping at fixed periods called epochs. We denote the duration
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Figure 6.3: ADAMANT aging-aware tasks mapping for heterogeneous architectures.

of an epoch as τmap and define the set P (tk) = {p1, p2, . . . , pm} of the tasks active at any

given time, where tk = τmap ∗ k denotes the time at the kth mapping epoch.

Platform model: In this work, we consider HMP platforms consisting of multiple cache-

coherent cores that share the same ISA and memory address space. Throughout the paper,

we define the set of cores as C = {c1, c2, . . . , cn} and the microarchitecture type of a core

cj as y(cj). Cores are grouped into clusters, such that all cores in the same cluster support

the same voltage/frequency pairs and share the same frequency domain, therefore DVFS is

always performed at cluster granularity. This is the model used by current implementations

of the ARM’s big.LITTLE architecture. We define the set of clusters as Z = {z1, z2, . . . , zs}.

Fine-grained (per-core) DVFS is supported in our model by defining a different cluster for

each core (|C| = |Z|). We use F cj (t) and V cj (t) to refer to the average frequency and voltage,
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respectively, of core cj during a time period t.

Performance and power sensing model: Our approach does not require a prior pro-

file of the applications, so we assume that each core provides hardware performance coun-

ters(HPCs) and power sensors, which allow us to characterize task’s workload and system

efficiency. We consider that the following generic metrics can be extracted from HPCs

and sensors to characterize the task’s workload and system state during a time period t:

IPSpicj (t) is the average throughput of pi when executing at cj in terms of instructions per

second; Upicj (t) is the average task processing time utilization; IPScj (t) is the average core

throughput across all tasks that executed on cj; U cj (t) is the average core utilization; and

W cj (t) is the average core power consumption.

Aging sensing model: We assume the availability of per-core critical path aging sen-

sors [85] which enable us to evaluate aging in terms of the relative critical path delay degra-

dation at any given time t: ∆Dcj

rel(t) = Dcj (t)/Dcj

0 , where Dcj

0 is the initial critical path

delay (measured when the system is first deployed) and Dcj (t) is the current critical path

delay of core cj at time t, such that Dcj (t) < D
cj

gb, where Dgb is the maximum delay in which

the core can operate at its maximum frequency. Throughout the text, we use the terms

frequency guardband or guardband slack to refer to the difference Dcj

0 − D
cj

gb; we also refer

to D
cj

gb as the core’s guardband delay. Critical paths may age at different rates, therefore

multiple aging sensors may be deployed [154]. In the remainder of this paper, we assume

that ∆Dcj

rel(t) corresponds to the most aged critical path.

6.4 System-level delay degradation model

For platforms that do not feature critical path sensors or for offline estimation of aging

effects, aging can be assessed using aging models for critical path delay degradation. Using
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aging models at runtime to replace sensors is usually overhead-less since transistors age at a

slow rate and therefore it is not necessary to update ∆Dcj

rel(t) at the granularity of mapping

epochs (typically between 50ms-300ms). Throughout the rest of this paper, τaging refers to

the period of core aging assessment, i.e., the aging epoch, while τ k
aging denotes the time at

the kth aging epoch. When using this aging estimation model, we assume the availability of

temperature sensor that all allow us to obtain the average core temperature T cj (t).

Aging-induced delay degradation in transistors is caused mostly due to BTI and HCI ef-

fects [22, 31], therefore we can define the delay degradation during the period of duration t

as Dcj (t) = D
cj

0 + ∆Dcj

BT I(t) + ∆Dcj

HCI(t), where ∆Dcj

BT I and ∆Dcj

HCI is the delay degrada-

tion due to BTI and HCI since Dcj

0 was measured. Given that technology and fabrication-

dependent factors are known, the degradation of the delay of the cores’ critical paths can be

estimated at runtime using the BTI models from [22] and HCI models from [31] by deter-

mining duty cycle δ, switching activity α, and temperature for all transistors in the critical

path. Since such information is not available at system-level, we follow a similar approach to

[115], in which we assume all transistors in a component experience similar stress rate and

temperature, thus similar aging rates. For core-level aging estimation, temperature can be

obtained from sensors, while the average δcj
(t) and αcj

(t) for a core cj throughout a period

of duration t can be defined as [115]:

δcj
(t) = time

cj

active(t) + time
cj

idle(t)
time

cj

active(t) + time
cj

idle(t) + time
cj
pg(t) (6.1)

αcj
(t) = F cj (t) ∗ time

cj

active(t)
time

cj

active(t) + time
cj

idle(t) + time
cj
pg(t) (6.2)
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where timecj

active(t) denotes the amount of time the core is running a task, timecj

idle(t) denotes

the amount of time the core is clock gated, and time
cj
pg(t) denotes the amount of time the

core is on a power gating state during the period t. This models the core at the worst case

aging since we assume that duty cycle δcj
(t) = 1 during the entire period the core is not

power-gated and that switching activity αcj
(t) = F cj (t) during the entire period the core is

not clock-gated. Next, we describe in more details how BTI and HCI aging are periodically

computed as a function of δ and α.

BTI aging impact: BTI is a two-phase effect: stress and recovery. During stress phase

the transistor is ON and traps may be generated at the interface between channel and gate

oxide. This effect is accentuated at higher temperatures and gradually increase the threshold

voltage (Vth). On the other side, when the transistor is OFF, a recovery phase starts in which

some traps are filled, thus leading to a partial decrease of Vth. Based on the models from

[22, 115, 65], we define the delay degradation due to BTI during period of duration t as:

∆Dcj

BT I(t) = ABT I × (δ(t)× t)n × e( −Ea

k×T
cj (t)

) × (V cj (t)− Vth)× e( V
cj (t)−Vth

E0
) ×Dcj

0 (6.3)

where ABT I and E0 are technology dependent factors, n is a constant depending on the

fabrication process, k is a Boltzmann’s constant, and Ea is the activation energy.

In order to capture the recovery phase in BTI degradation, ∆Dcj

BT I(t) is always computed for

the period t since the system was first deployed (Dcj

0 was measured) and the current aging

epoch τ k
aging, averaging out the stress and temperature. Therefore, we need to consider the

aging history from the previous aging epoch τ k−1
aging for each core cj to compute the delay due

to changes in temperature and stress rate. Equation 6.4 shows that BTI degradation is a

weighted function of stress and temperature for current aging epoch τ k
aging based on history
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(previous aging epoch τ k−1
aging):

∆Dcj

BT I(τ k
aging) = ∆Dcj

BT I(
τ k−1

aging

τ k
aging

× δ(τ k−1
aging) +

τ k
aging − τ k−1

aging

τ k
aging

× δ(τ k
aging),

τ k−1
aging

τ k
aging

× T cj (τ k−1
aging) +

τ k
aging − τ k−1

aging

τ k
aging

× T cj (τ k
aging))

(6.4)

where τ k
aging denotes the time period since the system was first deployed and the kth aging

epoch. Using this equation we can keep track of aging history as well as recovery phase in

case that stress or temperature are decreased in the new epoch.

HCI aging impact: HCI is a dynamic mechanism that happens when the transistor is

switching, when accelerated electrons inside the channel collide with the oxide interface, cre-

ating electron-hole pairs. Hence, the current-voltage characteristic of the transistor changes

and leads to increase in Vth. The models from [31, 115, 65] define the delay degradation due

to HCI for the period t since the system was first deployed as:

∆Dcj

HCI(t) = AHCI × t0.5 × α(t)× F cj (t)× e( −Eb

k×T
cj (t)

) × e( V
cj (t)−Vth

E0
) ×Dcj

0 (6.5)

where AHCI is a technology dependent factor and Ea is the activation energy. For HCI

degradation there is no recovery period, so define ∆Dcj

HCI(t) as the HCI delay degradation

of the current epoch and the accumulated aging saved from previous epochs:

∆Dcj

HCI(τ k
aging) = ∆Dcj

HCI(τ k−1
aging) + ∆Dcj

HCI(τ k
aging − τ k−1

aging) (6.6)

where τ k
aging denotes the time period since the system was first deployed and the kth aging

epoch.
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6.5 Aging-aware task mapping

The objective of ADAMANT mapping phase is to find a task mapping that satisfies each

task’s performance requirements while reducing the total system power consumption and

balancing aging across cores.

Problem formulation: Given the set of tasks P (tk) = {p1, p2, . . . , pm} that are active at

the kth mapping epoch, our goal is to find the set of all tasks pi to be mapped to a core cj

during the next mapping epoch, defined as Xcj , such that the total power consumption is

minimized, tasks performance constraints are satisfied, guardbands are not violated, and all

tasks are mapped to cores. The objective function is defined by Equation 6.7:

minimize
∑
∀cj∈C

W cj (t)

constr : IPSpicj (t)× Upicj (t) ≤ IPSpi
max, ∀pi ∈ Xcj ,∀cj ∈ C

constr : Dcj (t) < D
cj

gb,∀cj ∈ C

constr : P =
⋃

cj∈C

Xcj

(6.7)

where t is the time period until the next mapping epoch. We consider the performance

constraint met if the task’s effective throughput, defined as IPSpicj × Upicj (i.e. the average

throughput including periods the task was not executing), cannot be increased by moving

the tasks to a faster, i.e. the effective throughput is saturated (defined as IPSpi
max). This

saturation is the typical case for interactive tasks with computation—IO/sleep cycles. By

providing a faster core to such task, its IPS during the computation cycles (IPSpicj ) increases,

which in turn decreases the computation time and the core utilization (Upicj ), thus limiting

the task’s effective throughput. For tasks that we do not observe IPS saturation, we assume

that in the best case its performance constraint can only be met by the fastest core. This
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is the typical case for non-interactive compute-intensive tasks with only computation cycles.

Our choice of IPS saturation metric as the performance target is motivated by the fact

that in our workload model tasks do not explicitly define deadlines or performance targets.

Some works in [111, 63] use additional libraries such as the Heartbeat framework [79] to

define throughput targets for task mapping. In ADAMANT we chose to use the implicit

throughput target defined by the IPS saturation point in order to support unmodified Linux

applications.

6.5.1 Task mapping algorithm

Optimally solving Equation 6.7 is an NP-hard combinatorial problem of complexity O(|C||P |)

(multiple tasks can be mapped to the same core in any order)[62]. Therefore, heuristic

solution to efficiently find a task assignment at runtime is developed. The rationale of

the ADAMANT task mapping algorithm is to map each task to a core that satisfies the

target throughput IPSpi
max and results in the smallest increase in total power while keeping

the relative aging of cores balanced. This is achieved using a list scheduling [41] heuristic.

The general idea of list scheduling is to order the processes/task to be scheduled/mapped,

according to their priorities and map them in order.

Our heuristic is described in Algorithm 7. First, the throughput of all tasks across all core

types is predicted (section 6.5.2) and the saturation IPS is set as the throughput constraint

(line 3). Note that we correct the throughput constraint by a constant 0 < ω < 1. We

currently use ω = 0.95 to account for prediction errors. We compute the availability Api

for a thread pi as the number of core the task can be mapped to without violating its per-

formance constraint. Tasks are added to a list which is sorted according to the maximum

energy efficiency that can be obtained (in terms of IPS/Watt) and the given task avail-

ability (lines 5, 7), so tasks that are more constrained are mapped first. Finally, the tasks

126



Algorithm 7 ADAMANT task mapping algorithm
1: . Obtain tasks max. IPS as performance target
2: for all pi ∈ P do
3: IPSpi

max ← maximum(IPSpicj (t)× Upicj (t),∀cj ∈ C)× ω
4: Api ← |{c : IPSpi

max ≤ IPSpicj (t)× Upicj (t)}|
5: task list.add(pi)
6: end for

7: sort IP S/W att
Api

(task list)
. Power minimization given aging penalty and perf. constraint

8: for all pi ∈ task list do
9: c← cj : IPSpi

max ≤ IPSpicj (t)× Upicj (t)×∆Dcj
norm(t) ∧W system(t) is minimized . If

perf. constraint cannot be met. Find the best effort perf. given the aging penalty
10: if c = ∅ then
11: c← cj : IPSpicj (t)× Upicj (t)×∆Dcj

norm(t) is maximized
12: end if
13: Xc ← pi

14: end for

are mapped in the order defined by the sorted list to the core that satisfies the described

conditions above (lines 8–14).

In order to account for aging we apply a penalty 0 ≤ ∆Dnorm(t) ≤ 1 in the computed perfor-

mance when optimizing towards the objective. The aging penalty is defined by Equation 6.8

as the core’s relative delay degradation normalized to the difference between the maximum

and minimum relative degradation across all cores in the system. Equation 6.8 computes the

final penalty by balancing the normalized delay degradation with the difference between the

current delay Dcj (t) and the guardband delay Dcj

gb. The Dcj

gb ratio is taken into account in or-

der to avoid an excessive penalty for cases when there is aging imbalance but the guardband

slack is high. The computation of the overall system power also incurs an aging penalty as

shown in Equation 6.9. σ is a constant that can be used to control the tradeoff between aging

balancing and power optimization as well as to set an upper bound to the power penalty

applied. We employ σ to avoid excessively high W system values as ∆Dcj
norm approaches 0.

The rationale is to avoid having a single core completely dominating the value of W system,

which may have a significant adverse impact on the mapping energy efficiency since power
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variations caused by other cores would be negligible. We empirically set σ to 0.1.

∆Dcj
norm(t) =

1− ∆Dcj

rel(t)−min(∆Drel)
max(∆Drel)−min(∆Drel)

2 +
1− Dcj (t)−Dcj

0

D
cj

gb −D
cj

0

2
(6.8)

W system(t) =
∑
∀cj∈C

W cj (t)
max(∆Dcj

norm(t), σ) (6.9)

6.5.2 Iterative performance/power prediction

As described in Sections 6.2 and 6.3, during the sensing phase hardware performance counters

(HPC), power sensors and aging sensors are sampled and all tasks are characterized in terms

of average IPS and power, i.e, IPSpicj (t), Upicj (t), U cj (t), and W cj (t). In the mapping

phase, we explore candidate mappings for the next epoch. In this case, task execution

metrics such as IPSpicl(t),∀cl 6= cj are therefore required. These values are not directly

available (we only have pi information regarding cj and core types may differ thus yielding

different performance) and must be estimated during the prediction phase.

We use the models proposed by [108] in order to obtain these performance metrics for any core

type based on measurements from the sensing phase. IPSpicl(t) is predicted using a linear

regression model of the form IPSpicl(t) = A
y(cl)
y(cj) ∗ B

cj
pi (t), where Bcj

pi (t) is a characterization

vector containing the performance counter measurements of pi at cj. Ay(cl)
y(cj) is a coefficient

vector for predicting from core type y(cj) to y(cl) obtained through offline profiling. The

prediction of W cl(t) is performed in a similar manner.

Upicl(t) and, U cl(t), on the other hand, are not predicted using a regression model since they

are a function of IPSpicl(t), the temporal activity of the other tasks to be mapped to the
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Algorithm 8 DVFS prediction algorithm
1: iter ← 0
2: repeat
3: F̂ cl(t)← F cl(t)
4: Predict {U cj (t),∀cj ∈ zs} given F̂ cl(t) . zs is cl’s DVFS cluster
5: F cl(t) ← predict frequency for cluster zs using ondemand threshold for the {U cj (t)}

loads
6: iter ← iter + 1
7: until iter > τmap/τdvfs or F̂ cl = F cl

same core cl, and the scheduling policy adopted by the operating system[108]. In this paper,

we assume that Linux’s CFS policy is used to schedule tasks mapped to the same core and

use the CFS performance estimation model proposed by [108] to predict U cl(t). However,

in contrast to [108], we consider the use of DVFS, therefore we extended [108] method in

order to adjust U cl(t) according to frequency variations. In this paper we assume Linux’s on

demand DVFS governor is used. Algorithm 8 is used to estimate the frequency F cl(t) that

will be set by the governor in the next epoch assuming τmap as the length of the task mapping

epoch and τdvfs as the length of the DVFS epoch. The frequency prediction is performed

based on the previous core load prediction. Since the updated frequency prediction might

affect the core load, this process is repeated until the predicted frequency becomes stable or

a maximum number of predictions are made (defined by τmap/τdvfs).

It is important to note that the prediction routines are continuously called in Algorithm 7(lines

8–14), since mapping decisions from previous iterations affect the available processing time

on each core (for cases when multiple tasks are mapped to the same core) and the predicted

frequency due to DVFS. Total system power also has to be recalculated to capture power

changes resulted from coarse-grained DVFS (e.g. cluster-level).
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6.5.3 Complexity analysis

Given the number of cores |C|, core types |Y |, and tasks |P |, Algorithm 7 has complexity

of |P | × |Y | for the target throughput detection (lines 2–6), |P |2 for sorting, and |P | × |C|

for the mapping phase (lines 8–14). If we assume |P | >> |Y |, an average case performance

of |P | × log(|P |) for sorting (if quick sort is used), and that |C| ≥ |Y |, then the runtime is

bound by O(|P | × |C|) defined by the mapping phase.

6.6 Experimental evaluation

6.6.1 Setup

We developed a trace-based aging simulation framework to enable the evaluation of the effects

of task scheduling in long term wearout (Fig. 6.4) without long periods of live execution.

Applications are executed using gem5 [25] integrated with McPAT [98] to simulate an HMP

consisting of the core types described in Table 6.1. Each application executes individually as

a single thread in gem5 full system mode on every possible core type and frequency. Temporal

traces with periodic simulation statistics and power estimation are produced (every 1ms of

simulated time), and used as input for the trace-based aging simulator.

The trace-based simulator works at the granularity of DVFS epochs and emulates the ex-

ecution of each core in four steps: 1) The trace information produced by gem5/McPAT

is used to obtain maximum amount of processing time a task would use during the DVFS

epoch and the average length of the task’s computation—IO/sleep, i.e., the task’s duty cycle;

2) the current task-to-core assignment and the tasks’ duty cycles are used as input for to

which simulates the behavior of the Linux CFS scheduler and produces the exact runtime

allotted by the OS scheduler to each task; 3) the execution of each task is emulated (using
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Figure 6.4: Relative difference between the most and the least aged cores in homogeneous
and heterogeneous architectures.typical workload (Table 6.2). GTS scheduling [14]

the performance/power traces) for the time allotted by LinSched; 4) The DVFS governor

algorithm sets the frequency for the next epoch according to the emulated load.

The trace-based simulation is repeated τmap/τdvfs times until the mapping epoch, when

Algorithm 7 uses the information collected from the trace simulation to find a new task

mapping for the next epoch. This process is repeated until the end of an aging epoch

(τaging), when the critical path delays are updated. At this time critical path aging sensors

are simulated using the aging model described in Section 6.4. We use Hotspot [137] to obtain

the temperature estimation required for aging estimation.
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In this paper we consider an 8-core platform with two core types: large 4-way out-of-order

(OoO) cores with speculative execution (Big cores) and small in-order cores (Little cores),

which are representative of current HMPs for mobile devices. However, our model is not

restrictive with respect the degree of heterogeneity (i.e. |Y | > 2).

Table 6.1: Heterogeneous Core Parameters

Parameter1 Big Little
Issue width 4 (OoO) 2 (in-order)
LQ/SQ size 16/16 8/8
IQ size 32 16
ROB size 128 64
Int/float Regs 128 64
L1 I$/D$ size (KB) 32/32 32/32
L2 $ size (KB)2 512 128
VF pairs 2GHz,1V 1.5GHz,0.8V

1.5GHz,0.8V 1GHz,0.7V
1GHz,0.7V 500MHz,0.6V

6.6.2 Workloads

In our experimental evaluation, we define workload based on the analysis performed by

[60], which characterizes popular mobile applications in terms of potential for thread-level

parallelism and core utilization. They verified that in a typical scenario only one core is

utilized 70% of the time in an 8-core big.LITTLE platform, even when multiple applications

are running simultaneously. Based on the observations from [60], we used the x264 (x2),

bodytrack (bt)(compute intensive) and blackscholes(bs) (memory intensive) applications from

PARSEC [23] to devise the mobile-like core utilization scenarios shown in Table 6.2. The

applications are executed periodically in order to generate the average load shown in Table 6.2

during an aging epoch. We define two typical mobile scenarios: typical and typical(heavy),

while the other cases represent more extreme scenarios in terms of both stress and system
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Figure 6.5: Delay degradation. In the (f)Idle case, only background OS services are running
with no active tasks

idleness.

Table 6.2: Workload patterns: Benchmark Name/Number of Tasks/Max

Typical Typical(heavy) Light load Heavy load All cores used
bt/5/0.04/0.17 bt/5/0.04/0.17 x2/4/0.97/1.00
x2/1/0.30/0.96 x2/1/0.30/0.96 bc/8/0.06/0.11 x2/8/0.97/1.00 x2/4/0.30/0.96

x2/4/0.97/1.00

6.6.3 Results and discussion

We used our framework to simulate three years of aging on our 8-core platform composed of

a cluster of four Big cores and a cluster of four little cores. We compare ADAMANT against

Linux GTS scheduling for heterogeneous architectures. For fairness of comparison, we also

extend GTS with aging-awareness (GTS AW). GTS AW uses our aging penalty ∆Dnorm as

a baseline virtual load when performing load balancing (i.e., aged cores tend to have less

compute intensive tasks mapped to them). GTS AW illustrates the case in which aging

mitigation is applied only within clusters of cores of the same type. For these experiments

we assume a guardband of 8% with respect to the maximum frequency of each core. The
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Figure 6.6: Performance degradation under DVFS frequency capping

aging epoch length is 1 day, task mapping epoch is 200ms, and the DVFS epoch is 50ms. σ

(Equation 6.9) is set to 0.1. We simulate aging for a time frame of 3 years.

Fig. 6.5 shows the relative delay degradation for the representative workloads described

in Table 6.2. For the Typical(heavy) workload (Figure 5.a), GTS violates the guardband

within less than a year of runtime. With ADAMANT, we are able to increase the time to

guardband violation ∼ 100% (about 8 months). Figures 6.5.b-c show aging scenarios under

high stress. For these cases, the guardband is violated at the very beginning of execution due

the simultaneous utilization of all Big cores. ADAMANT is able to adapt and mitigate aging

by prioritizing the use of the little cores. It’s worth mentioning that under nominal behavior,

the system would be throttled due to violation of thermal constraints [136]. Figures 6.5.d-f

show the low stress scenarios. ADAMANT delay degradation is slightly higher than GTS

since the relnorm∆d penalty is also proportional to the distance of the sensed delay and the

guardband violation delay. For these scenarios, ADAMANT is able to adapt to the available

guardband slack and prioritizes other metrics for task mapping (such as IPS and energy

efficiency) as shown in Figure 6.6.

Figure 6.6 shows the effects of aging when aging-aware DVFS is applied, and also compares

ADAMANT with GTS in terms of performance and energy efficiency. For these cases, the

frequency is reduced when the guardband is violated in order to allow continuous operation.

In general ADAMANT yields better performance and energy efficiency. For example, for

the typical case (no guardband violation) ADAMANT improves performance by ∼ 10%.
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For the case when frequency capping was applied, ADAMANT improves performance by

∼ 7% after three years of aging. One exception can be seen for the typical case, in

which ADAMANT improved performance by trading off energy efficiency. In this case the

bt/5/0.04/0.17 should have been mapped to the little core cluster, however, it is possible

that due to IPSpi
max mispredictions, some tasks were moved to the big cluster, thus reducing

the energy efficiency.

Figure 6.6 also shows that GTS and GTS AW yield the same performance and energy for

both aging scenarios. GTS first chooses to which cluster a task will be migrated and then

performs either load balancing (GTS) or aging-aware load balancing (GTS AW) within the

cluster, therefore performance and/or power degradation resulting from forcing a task to a

different cluster is not expected since GTS AW won’t take this decision. For the cases GTS

AW is able to reduce the aging rate (Figures 6.5.a-c), we also observe identical performance

after 3 years for both GTS and GTS AW since both will have the same frequency capping

in the Big cluster (from 2GHz to 1.5GHz — Table 6.1) after 3 years.

Overheads: The total overhead of each phase in ADAMANT is negligible when compared

to the 200ms mapping epoch and the 1 day aging epoch. In order to measure sensing

overhead of ADAMANT, we modified the schedule() function of the Linux kernel used in

the gem5 full system simulator to sample performance counters every time there is a task

context switch, which allows us to collect the per-task performance metrics required in the

subsequent ADAMANT’s phases. The total sensing overhead varies between 13µs (on a

Big core) and 22µs (on a Little core) per epoch and per core. We also executed our aging

simulation framework within gem5 in order to measure the latency of the prediction and

task mapping phases. Across the workload runs described previously, the average measured

latency of these phases is 12µs (measured on a Big core 2GHz).

In a platform that utilizes critical path aging sensors, delay degradation monitoring time is

very fast and imposes negligible overhead [65, 50]. Otherwise, induced aging delay degrada-
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tion can be estimated using the models from Section 6.4. Estimating the aging for 8 cores in

our experimental platform takes 60µs on average. If temperature sensors are not available,

temperature must be estimated by using, for instance, Hotspot [137], which would incur an

additional overhead of 10ms. The latency of aging estimation can be high when compared

to the latency of the mapping phase, but, as mentioned previously, aging only needs to be

assessed at the end of an aging epoch (1 day), therefore we consider this overhead to be

negligible.

Limitations: As mentioned previously, we implemented a trace-based offline simulator in

order to allow us to simulate long periods of aging (e.g., 3 years) without long periods of live

execution. Therefore, it is important to mention that this approach has limitations when

compared to live execution. Our trace-based offline simulator does not model contention on

shared data and thread synchronization, thus only workloads with independent threads are

simulated in order to avoid these effects. Additionally, our offline simulator does not capture

cache warmup latency caused by thread migration as well as runtime voltage/frequency

switching overhead when DVFS is applied. However, at the granularity that task migration

and DVFS (every 200ms and 50ms, respectively) are performed, we assume their impacts

in the accuracy of the results are negligible. The main source of inaccuracy that we do

not capture with our offline simulations is contention on the main memory bus. In the

simulated 8-core big.Little configuration with all cores running identical workloads (which

maximizes the contention on the main memory due to coincidental workload memory phases),

we observed a maximum performance difference of 5% (across the PARSEC workloads x264,

bodytrack, and blacksholes) when we compare performance of offline traces against a live

8-core gem5 simulation (which captures all memory contention affects). We believe this to

be a worst-case performance difference since during the aging simulations not all cores are

active and/or with coincidental memory phases, therefore we believe this would not have a

significant impact on the observed results and conclusions.
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6.7 Chapter summary

Heterogeneity in multicore systems provides better energy efficiency but are more prone to

unbalanced workload distribution and premature wear-out in mobile platforms. To miti-

gate this issue, ADAMANT, an aging-aware task mapping approach for HMP is proposed.

ADAMANT is orthogonal to other system-level mechanisms such as DVFS by employing

sensing and predictive models for runtime workload characterization. Our experimental eval-

uation using workloads derived from realistic mobile scenarios shows that ADAMANT im-

proves both lifetime and performance when compared to both the vanilla and an aging-aware

implementation of Linux’s GTS load balance for HMPs. For typical workloads, ADAMANT

improves lifetime by up to 2x without performance degradation. Under DVFS frequency

capping scenarios, ADAMANT improves performance by about 7% when compared to the

modified aging-aware GTS.
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Chapter 7

AROMa, a novel aging-aware

adaptive routing and online

monitoring for 3D and 2D NoCs

To cope with the complex on-chip interconnection issues in many-core systems, the three

dimensional NoC has been proposed by applying die stacking technology for performance,

energy efficiency and power consumption gains. Furthermore, 3D NoCs become a promising

solution to many-core systems for its scalability which integrate large number of homogeneous

or heterogeneous intellectual properties (IP)s, e.g. processing units [4, 15, 80]. Nevertheless,

the reliability challenges in advanced silicon technology may jeopardize the performance

gain as well as scalability of many-core systems. One of those arising challenges is aging

mechanisms which are escalated in high density stacked die integration, [121, 82, 45, 40].

Aging happens when a transistor is under stress and temperature is high. Bias Temperature

Instability (BTI) and Hot Carrier Injection (HCI) are the dominant aging mechanisms that

gradually increase the threshold voltage (Vth) of transistors [2, 45, 64, 66]. The shifted Vth
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leads to undesired increase in system critical path delay which ultimately exacerbates per-

formance loss and timing failure within the system components in the long run. Therefore,

designers have to allocate considerable guardband to the critical path for avoiding timing

failure. This imposes power, area, and performance overheads to the system [40, 149, 107].

Hence, NoC requires careful aging investigation to maintain high bandwidth, parallelism, and

scalability in many-core systems. Aging-induced routers’ performance degradation yielding

to timing failure and connectivity loss in the NoC [64, 19, 20, 12, 10]. In addition, tem-

perature is currently a controversial challenge in 3D design which compels further aging

investigation as compared to 2D NoC. As shown in Fig. 7.1, we observed that even after

running uniform random distribution of tasks, routers in different layers of a 4×4×4 3D NoC

experience different temperatures and stresses. This leads to imbalanced aging degradation

of routers at different layers and cause some routers to age more than the others.

Stress in BTI is the transistor’s duty cycle. BTI-induced delay degradation is partially

recoverable when transistor switches OFF. Stress in HCI is switching activity of transistors.

Therefore, aging is a function of workload that changes both temperature and stress on

the routers’ critical paths’ transistors. Since flits are the only stimuli in a router, both

temperature as well as stress are functions of flits. Moreover, the router’s capacity of flits for

a given period of time is limited and also predictable. This means we can predict temperature

and stress as well as aging of a router based on flits. To this end, we count number-of-flits

(fl) and their residence-times (rs) in a given period of time t = ε. Therefore, we proposed

Centralized Aging Table (CAT) in [64]. CAT is populated by the amount of aging degradation

for different ranges of fl and rs in a router from zero up to the router’s capacity for a specific

time ε. All in all, various pairs of (fli, rsj) corresponds to different temperature amounts,

stress values, and thus aging rates. This allows us to monitor aging independent from the

running workload.

The inter-layer temperature difference of stacked die causes imbalanced aging between them
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(a) Age in L0 (%) (b) Temp. in L0 (K) (c) Stress in L0

(d) Age in L1 (%) (e) Temp. in L1 (K) (f) Stress in L1

(g) Age in L2 (%) (h) Temp. in L2 (K) (i) Stress in L2

(j) Age in L3 (ns) (k) Temp. in L3 (K) (l) Stress in L3

Figure 7.1: Age, temperature (Temp.) and stress maps in each layer Li of 3D NoC (4×4×4)
for uniform random distribution.
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(Fig. 1). In this work, we propose Distributed CAT (D-CAT) to quantify the gap due

to temperature change in different perpendicular distances of layers from the heat sink.

Therefore, each layer has its own D-CAT to increase the aging monitoring system scalability

and catch the temperature variation of different layers. This means that the same pair of

(fli, rsj) results in different aging rates due to varying temperature amounts of layers in 3D

NoCs. Our proposed aging monitoring system is independent from the diverse behavior of

running application and is able to monitor aging online for routers at different layers of the

network.

In addition, because fl and rs pairs are stimulated by network routing algorithm, routers’

ages also have direct correlation to it. Since, there are different shortest paths between source-

destination pairs in an NoC, the network can adaptively swap between them to decrease the

stress and temperature on the routers. To this end, we proposed AROMa, which is an

aging-aware adaptive routing coupled with our novel online monitoring system to avoid

aging imbalance in routers and ultimately increase lifetime of the system.

The proposed techniques in [19, 20, 152, 11] focused on BTI-induced aging delay degradation

in 2D NoC. These techniques are either offline [19, 20], while aging is significantly affected

by runtime operation conditions, or impose large overhead to the systems [152, 11]. The

proposed techniques in [19, 20, 152] assign lifetime budget to each router that results in

their premature routers failure. Starting with unchanged biased budgets assignment to each

router incurs imbalance and unfair aging which results in over-aged routers. Furthermore,

the proposed budgeting techniques in [19, 20] are dependent on the benchmark characteristic

used in profiling phase which reduce their applicability. Additionally, a complex circuitry

is required to compute budgets in [152] as well as a parallel network to propagate budgets

in the network that sustain significant overhead. We implemented the proposed OFfline

budgeting for adaptive Aging-aware Routing (OFAR) method based on [19, 20, 152], which

assign lower budgets to highly utilized routers during profiling to lower their load at runtime
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and utilized our online monitoring system for tracking the aging rates of routers.

The main contributions of this work can be summarized as follows:

• We formulate aging effects due to HCI and BTI for 3D NoCs using our proposed online

monitoring distributed centralized aging table (D-CAT) in AROMa. D-CAT is able

to quantify the gap due to temperature change in different perpendicular distances of

layers from the heat sink and system’s conditions expressed by stress in 3D NoC. Using

D-CAT, routers are able to keep track of their ages at each determined time ε.

• We proposed AROMa, an online adaptive aging-aware routing algorithm and online

monitoring system for 3D NoCs. AROMa chooses one of k-best shortest paths between

each source-destination pairs, which has least aged routers by avoiding the maximum

aged ones. This adaptivity happen at each period of time P = n× ε.

• We implemented the proposed strategy using gem5 full system mode and compare it

to OFAR and Non-Aging aWare routing (NAW) for both 2D and 3D NoCs.

Our extensive experimental analysis using gem5 full system mode for PARSEC and SPLASH-

2 benchmark suits is done for both 2D (4 × 8) mesh topology and its respective 3D NoCs

(4×4×2) version. These results for three years of execution show that AROMa outperforms

state-of-the-art works (OFAR) when they are compared to non-aging aware XY and XYZ

routing (NAW). On average, AROMa improves maximum aging by 33% and 34% in 2D

and 3D NoC, respectively, in comparison to NAW while OFAR worsens it by 31% and 51%.

Similarly, AROMa improves age imbalance significantly by 61% and 72% in 2D and 3D NoC,

respectively, while in OFAR age imbalance is worsened by 69% and 120%. We can conclude

that since OFAR assigns budgets offline and is not able to adaptively change between shortest

paths. Also, OFAR’s main purpose is to transfer traffic to less loaded routers and over-

utilize these routers to the point that some of them fail. Although, OFAR shows acceptable
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improvements for certain benchmarks, it fails on others. This shows that the previous

techniques are application dependent and less flexible. Moreover, the experimental results

show that 3D NoCs are more robust against aging as compared to 2D NoCs, since the

paths are shorter and routers experience less stress. AROMa imposes negligible overheads

in comparison to OFAR.

The rest of this chapter is organized as follows. In Section 7.1, the 3D NoC background is

demonstrated. After that, an overview of the impact of aging mechanisms in NoC is detailed

in Section 7.2. Section 7.3 discusses problem formulation. AROMa aging monitoring system

is proposed in Section 7.4. Section 7.5 elaborates AROMa’s adaptive routing. Section 7.6

studies related work. Then, experimental setup and results are discussed in Section 7.7.

Finally, the chapter is summarized in Section 7.8.

7.1 3D NoC background
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Figure 7.2: Comparison of 2D and 3D NoC area overheads.

Communication between cores in systems with many cores play a significant role [2, 78, 15].

With system design evolution throughout the decades, in order to integrate more cores in
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the same chip, the demand for more scalable and structural interconnect grew. Moving to

NoC paradigm introduced better alternative to the old crossbar or bus model. Therefore,

several researches related to 2D NoC interconnect can be found such as [80, 90].

As shown in Fig. 7.2, the 2D mesh can be converted to 3D corresponding NoC by stacking

layers (4 layers in the figure) on top of each other and decrease area overhead roughly by 4×

in the horizontal direction [89, 100]. The design of the 2D router has up to five ports in each

direction (N, S, E, W and local). A direct extension to 3D NoC is to add two more ports in

the up and down direction forming vertical links that connect different layers. These vertical

links are shorter compared to horizontal links and are called Through Silicon Vias [166, 92].

The use of 3D mesh NoCs is intensively researched for its promising performance gain, less

power consumptions, reliability enhancement, design regularity, easy of implementation and

heterogeneous system support compared to 2D mesh network [129, 159].
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Figure 7.3: Router components and architecture.

In Fig. 7.3, the router architecture is depicted. We assume a pipelined router which is

composed of 5 stages [3, 90, 52]. Our router [1] pipeline stages, components and their

functionalities are summarized below:
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• Buffer Write and Routing Compute (RC): in this stage the incoming flits are stored in

input ports’ buffer slots. Simultaneously, the routing compute logic determine candi-

date output port and its respective virtual channel using routing table. At this stage,

routing can be precomputed at the upstream router if lookahead routing is imple-

mented.

• Virtual Channel Allocation(VA): its function is to assign available output virtual chan-

nels to waiting flits stored in input buffer respective virtual channel.

• Switch Allocation (SA): at which a flit in one of the input buffer slots which are ready

to be received wins the crossbar switch time slot after arbitrating between them.

• Switch Traversal (ST): at this stage, flits are sent through crossbar switch to their

appropriate output.

• Link Traversal (LT): transferring flits through links to their appropriate next router

happens at this stage.

7.2 Aging-induced delay degradation background

BTI and HCI are the most dominant aging mechanisms that cause aging-induced delay

degradation in transistors [2, 64, 105, 65, 45]. When a transistor ages, its threshold voltage

(Vth) increases that leads to slower switching and higher propagation delay. Transistors aging

along circuits critical paths deteriorates performance and/or causes timing failure at system

level. The delay of an aged transistor at time t can be shown as dt = d0 + ∆d(t), where d0 is

the intrinsic delay of transistor at time t = 0 and ∆d(t) is the amount of delay degradation

or transistor’s age. In the following, we elaborate BTI and HCI aging mechanisms and their

influences on transistor’s age, ∆d(t).
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Figure 7.4: BTI and HCI aging mechanisms dependency on stress.

7.2.1 BTI aging impact

As shown in Fig. 7.4.a, BTI is a two-phase mechanism: stress and recovery. During the stress

phase, the transistor is ON and its Vth increases gradually, while if the transistor turns OFF

recovery phase starts and the threshold voltage decreases gradually but partially. During

stress and recovery phases instantaneous BTI effects eventuate [149, 100] which leave per-

manent decay behind. According to [100, 147], BTI occurs due to interface trap generation,

hole trapping in available defects, and oxide bulk trap generation. While breaking in Si−H

bonds at Si/SiO2 interface results in trap generation, hole trapping in preexistent process

defects is a fast phenomenon that recovers fully after stress. Whereas, oxide trap generation

is dependent upon voltage drop across SiO2 interlayer. Works in [21, 116] demonstrate

additional elaborations. This generation and destruction of traps leads to fluctuations based

on stress and recovery phases yielding increase then lesser partial decrease of the Vth of tran-

sistors. Therefore, BTI is considered a static mechanism that depends on the stress imposed

by the so called duty cycle, i.e. the portion of time that transistors are ON.

The extensively studied literatures in [21, 116] are unanimous that the performance of

transistor deteriorates due to temperature and stress in BTI. We utilized the analytical
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closed form model based on them:

∆dBT I(t) = ∆dBT I(tstress)×
[
1−

√
η × trecovery

t
] (7.1)

∆dBT I(tstress) = CBT I × tnstress × e
(− Ea

K×T
) × d0 (7.2)

tstress = Y × t (7.3)

trecovery = (1− Y )× t (7.4)

where, T is temperature in Kelvin, Y is duty cycle, t is age in seconds, K is Boltzmann’s

constant, d0 is the transistor pre-aged intrinsic delay, Ea is activation energy, n is tech-

nology dependent parameter, η is a constant and CBT I is the technology dependent fitting

parameter.

7.2.2 HCI aging impact

Unlike BTI, HCI is a dynamic mechanism that depends on the switching activity of the

transistor, as demonstrated in Fig 7.4.b. HCI happens when accelerated electrons of the

channel collide with the oxide interface and create carriers (i.e. electron-hole pairs). Some

of the carriers are deposited into prohibited transistor areas (e.g. the gate oxide). During

time, deposited carriers alter the conductive properties of the transistor and eventually lead
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Figure 7.5: Temperature and stress impacts on delay degradation.

to increase in its Vth. Similar to BTI, and as depicted in Fig 7.4.b, transistor’s performance

degrades due to temperature and stress (switching activity) due to HCI. We utilized the

following model based on [145, 134]:

∆dHCI(t) = CHCI × tstress × t−0.5 × e(− Ea
K×T

) × d0 (7.5)

tstress = α× f × t (7.6)

where, T is temperature in Kelvin, α is switching activity, f is clock frequency in Hz, t is

age in seconds, K is Boltzmann’s constant, d0 is the pre-aged intrinsic delay of transistor,

Ea is activation energy, and CHCI is the technology dependent fitting parameter.

7.2.3 Joint impact of BTI and HCI

As described and shown in Eq. 1 and Eq. 5, BTI and HCI aging mechanisms are exponential

function of temperature (T ) and non-linear function of stress (S). It needs to be noted that

stress in BTI (SBT I) is duty cycle (Y ) and stress in HCI (SBT I) is switching activity (α).
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Fig. 7.5.a shows delay degradation (aging rate) for different temperatures but same stress.

Clearly, delay degradation commensurate with higher temperature because the transistor

experience increasing aging rate. This results to earlier failure due to missing the critical

degradation limit (i.e the so called guardband). Similarly, in Fig. 7.5.b, aging rate increases

in proportion with higher stress but same temperature. Based on Fig. 7.5, we can conclude

that different temperature and stress pairs leads to dissimilar aging rates. Accordingly, the

transistor’s age at time t for BTI and HCI aging mechanisms is equal to:

d(t) = d0 + ∆dBT I(t) + ∆dHCI(t) (7.7)

Since, the aforementioned modelings compute delay degradation for time t, it is required

to keep track of the aging history if we want to compute delay degradation in consecutive

periods of time. For example, in Fig. 7.6 it is shown that since in each time period ti−1 to

ti the running workload behavior and characteristics change, it will consequently affect the

temperature and stress as well. For instance, in first time period t0 to t1, temperature and

stress pair is < T1, S1 >, while in time period t1 to t2, it is < T2, S2 >. Therefore, Eq. 1 and

Eq. 5 for time period t0 till ti can be rewritten as Eq. 8 and Eq. 9, respectively:

∆dBT I(ti) = ∆dBT I(Ti, S
BT I
i , ti) (7.8)

∆dHCI(ti) = ∆dHCI(Ti, S
HCI
i , ti) (7.9)
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Figure 7.6: Different delay degradation due to temperature and stress in consecutive time
periods.

Utilizing Eq. 8, BTI-induced delay degradation can be computed for time period ti to ti+1

based on delay degradation for time period t0 to ti as follows:

∆dBT I(ti+1) = ∆dBT I( ti
ti+1
× Ti + ti+1 − ti

ti+1
× Ti+1,

ti
ti+1
× SBT I

i + ti+1 − ti
ti+1

× SBT I
i+1 , ti+1)

(7.10)

This weighted function of temperature and stress can capture the history and BTI aging

recovery due to reduction in stress or temperature. However, HCI does not have recovery

phase. Therefore, we can utilize Eq. 9 to compute HCI-induced delay degradation for time

period ti to ti+1 based on delay degradation for time period t0 to ti as follows:

∆dHCI(ti+1) = ∆dHCI(Ti, S
HCI
i , ti) + ∆dHCI(Ti+1, S

HCI
i+1 , ti+1)−∆dHCI(Ti+1, S

HCI
i+1 , ti)

(7.11)

In all,

∆d(ti) = ∆dHCI(Ti, S
HCI
i , ti) + ∆dBT I(Ti, S

BT I
i , ti) (7.12)

Since BTI is the dominant aging mechanism and almost is three times higher than HCI [18,

66, 109], therefore we define Si as:

Si = m1 × SBT I
i +m2 × SHCI

i (7.13)
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where m1 is three times greater than m2. From Eq. 12 and Eq. 13:

∆d(ti) = ∆d(Ti, Si, ti) (7.14)

Eq. 14 concludes that aging is a function of stress and temperature. By finding these two

characteristics of a router till time ti, aging rate can be predicted. Designers assign aging

guardband on critical paths by predicting worst case scenario which impose performance,

area and power overhead to the system [66, 40, 149]. Guardbands on critical paths also are

added due to process variation, voltage droop, and temperature. The focus of this work is

to increases lifetime of the NoC by preserving aging guardband after chip fabrication and

during runtime.

7.3 Problem formulation

The objective of AROMa is to find a set of source-destination paths that satisfies the per-

formance requirement while minimizing the maximum aged router’s age and balancing age

across all routers in 3D NoCs. Given the set of source-destination pairs P = {P0,1, P0,2, ...,

P0,n−1, P1,0, ..., Pn−2,n−1}, the list of routers R = {r0, r1, ..., rn−1}, the list of routers’ ages

RAge = {RAg0, RAg1, ..., RAgn−1} at time t, the list of number-of-flits (fl) and their

residence-times (rs) pairs FLRS = {(fl0, rs0), (fl1, rs1), ..., (fln−1, rsn−1)} for each router

ri ∈ R at time t, the objective is:

MinMax RAg(ri),∀ri ∈ R,

subject to RAg(ri) < RAgGB,∀ri ∈ R,

SP (Pi,j, RAge, t) ∈ {KSPi,j},∀Pi,j ∈ P,

(7.15)
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where, RAgGB is the critical path aging guardband, SP (Pi,j, RAge, t) is our proposed func-

tion to find shortest paths Pi,j among {KSPi,j} for each pair of i and j considering the

routers ages (i.e. {RAge}) along it at time t, and {KSPi,j} is the list of K-best shortest

paths between each pair of i and j.

7.4 Online aging monitoring in 3D NoC

We elaborated in Section 4 and concluded in Eq. 12 that BTI and HCI are functions of

temperature and stress. In addition, the only stimuli in a router, as a system, is flits. Hence,

temperature and stress are functions of flits. From system point of view flits characteristics

in a router are the number-of-flits (fl) and the amount of time that they reside inside router,

namely residence-time (rs), for a given period of time, epsilon (ε). These two parameters

impact the amount of stress, power, and temperature of a router. For instance, if the number

of flits is flj and their total residence time is rsk for a given period of time i, the temperature

Ti will be:

Ti = T (flj, rsk) (7.16)

Similarly, stress Si for time period i is a function of flj and rsk as follow:

Si = S(flj, rsk) (7.17)

Consequently, aging rate also is determined by these two parameters. Eq. 14 can be rewritten

as:

∆d(ti) = ∆d(flj, rsk, ti) (7.18)
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fl or rs is a range of numbers not certain numbers. If either fl or rs change, stress,

temperature and aging rate will change as well. Additionally, router’s capacity of flits is

limited in a given period of time, which means that maximum number of flits and their

residence time cannot exceed a certain amount. Based on the NoC characteristics such as

flit injection rate and topology, the maximum number of flits as well as their maximum

residence time in a predetermined ε is bounded by FLmax and RSmax, respectively. In all,

by monitoring fl and rs, they can be exploited to map their corresponding temperature and

stress of a specific router to predict its age.

Additionally, in 3D NoC, it is essential to distinguish between layers in terms of temperature

because distinct layers have different temperature maps. Usually, the bottom layer that is

next to the heat sink experiences lower range of temperature than the upper layers assuming

homogeneous NoC nodes. in other words, the farther distance from the heat sink the higher

temperature range. Fig. 7.7 illustrates that routers with same position in each layer have

different temperatures even though their stress values are equal. For instance, the average

temperature difference between different layers is approximately 2 Kelvin [37]. Consequently,

same fl and rs pair values correspond to different temperatures for each layer.

L0

L1

L2

L3

Te
m

pe
ra

tu
re

Heat sink

Equal stress 
values

Figure 7.7: Routers in different layers of 3D NoCs with equal amount of stresses have different
temperatures.

153



…….
0 P 2P nP

ε

0 RSmax

fl = 250

rs = 0.6RSmax

Time

ε

50 flits

= 10,000 cycles

Figure 7.8: Age monitoring at each period of P at each layer Li.

For example, in Fig. 7.8, it is illustrated that aging is monitored at each period of time

P , which is divided to smaller equal periods of ε. Therefore, a period P is equal to n × ε.

Assuming RSmax = ε equals to 10, 000 cycles, fl is equal to 250 and rs is equal to 0.6 of

maximum residence time (RSmax), which is 6,000 cycles. Their pair of fl and rs, namely

250 and 6000, corresponds to a specific stress value but different temperatures for each layer

in 3D NoC (Fig. 7.7). Therefore, same pair of fl and rs corresponds to same aging rate

for different routers in a layer but different aging rates for routers in different layers. For

example, in layer L2, stress is equal to H similar to other layers but temperature is equal to

C and the corresponding aging is w.

Fig. 7.9 illustrates our proposed architecture in AROMa for monitoring fl and rs. This

monitoring system is embedded into each router architecture [1]. Each core i is connected

to a router Ri. The upper counter which is a 12-bit counter [144] counts fl for each ε. It

monitors valid incoming flits to the router from different ports to the router using valid (v)

and ready (r) signals. Therefore, whenever a flit enters a router these two signals will be

active and the counter can count the number of incoming flits and find fl. This counter will

be reseted to zero at each ε (i.e. when the timer reaches ε).

The other parallel counter depicted in the lower section of Fig. 7.9, is responsible for counting

the number of cycles at which flits are residing inside a router. Basically this counter is a

timer which computes residence time, rs, of flits for each router during each ε. As regards

to that RSmax or ε, it can be represented by 14 bits if ε = 10, 000 cycles. The counter is
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preceded by 14-bit subtractors. Each subtractor subtracts the exit time (Ex) of an outgoing

flit, which is the current cycle when the flit exiting the router, from the en-queue time (Eq),

which is saved inside the flit when it enters the router. If we assume the maximum rs of a

flit inside a 5-stage router is 15 cycles, then a 4-bit MUX connected to the output of each

subtractor, in order to drop any possible negative subtractions in the boundaries of each

10,000 cycles. After that, it is fed to the parallel counter to keep accumulating residence

time (rs) of all flits exiting the router through all possible seven output ports (five ports in

2D architecture). Moreover, these two counters are reseted after ε cycles. We use a timer to

count ε and whenever it reaches to ε a reset signal is sent to the two parallel counters inside

each router to be ready for next ε. The number of control signals for each counter depends

on the position of the router inside the network. For instance, for a centered router in the

middle layers we have 7 ports with its corresponding control signals whereas for a router in

the corner of the upper layer it has only 4 ports with less control signals.

To minimize the distance between D-CATs and all routers, they must be located in one of

the middle routers in each layer. For example, as illustrated in Fig. 7.9 D-CAT3 for layer

three resides in core 53, similarly, D-CAT2 for layer two resides in core 42. For the other two

bottom layers also their D-CATs can be reside in the corresponding cores as upper layers.

The timer, which counts ε can be located in one of the middle layers to reset the counters

inside all routers when it is required.

Based on Eq. 18, D-CAT in each layer will be accessed using (fl, rs) pair from all routers

of that specific layer to read back their age degradation in each ε. Therefore, the 26 bits

data (14-bit rs and 12-bit fl) is decoded to access corresponding entry in D-CAT. Age

degradation of a router can be computed for each temperature and stress (Eq. 10 and Eq.

11). To this end, we determine conditions that may happen to a router. Each condition,

Ci,j, is represented by its respective rsi and flj. Each pair of (rsi, flj) corresponds to

temperature Ti,j and stress Si,j (i.e. (Ti,j, Si,j)). Hence, each condition is a function of rsi
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Figure 7.9: AROMa online aging monitoring architecture. Other cores (black circles) and
two D-CATs are not shown for clarity).

and flj and each condition corresponds to a specific aging rate. For example, in Fig. 7.10 for

layer L0, when number of flits is flj and they reside inside the router for queuing, processing

and traversal through the router for rsi cycles out of ε cycles, the delay degradation is ∆d0
i,j.

Same number of flits flj and residence time rsi in layer Lk leads to ∆dk
i,j delay degradation.

This is because the temperature varies at different layer as discussed earlier (Fig. 7.7). It

must be noted that when the router is not busy (fl and rs are equal to zero) and BTI

recovery phase happens, D-CATs returns a negative corresponding amount of recovery as

stated in their first entry.
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Figure 7.10: D-CATs for layer L0 and layer Lk.

7.4.1 D-CAT construction algorithm

The pseudo code for constructing D-CATs is shown in Algorithm 9. The inputs to this

algorithm are maximum residence time RSmax (or the updating time period (ε)), the steps

for each residence time rssteps, the number of steps for counting flits inside the router flsteps,

the injection rate to the system Ijrate, the number of layers in the 3D NoC L, and the

router’s floorplan RFLP . The algorithm’s output is the list of D-CATs which are found for

each layer in the 3D NoC and can be accessed from each router of its corresponding layer to

read back its own age based on fl and rs during each ε.

At the beginning, the maximum number of flits (FLmax) that can occupy a router during

RSmax (or ε) considering maximum Ijrate is extracted (line 1). After that, the list of

residence time (rs) and number of flits (fl) will be quantized based on their number of steps

(line 2, 3). As we discussed, each layer requires different D-CATs. Therefore, in a loop for

each layer lk, each different residence time rsi and number of flits flj, we have different power

maps (P k
i,j). We calculate power consumption using Mcpat [98] (line 7) for each pair of rsi,

flj values. Consequently, different temperature maps (T k
i,j) can be extracted for each layer k

using the HotSpot tool [137]. HotSpot takes the corresponding power consumption for rsi,

flj, and routers’ floorplan RFLP as inputs (line 8). Similarly, the stress will be extract as

157



Algorithm 9 D-CAT Construction
Input: Maximum resident time RSmax, number of resident time steps rssteps, number of

flits steps flsteps, injection rate Ijrate, number of layers L, Router floorplan RFLP
Output: List of {D-CAT}

1: FLmax ←− FindMaxF lit(Ijrate, RSmax);
2: {rs} ←− CreateRsList(RSmax, rssteps);
3: {fl} ←− CreateF lList(FLmax, f lsteps);
4: for all lk ∈ L do
5: for all rsi ∈ rs do
6: for all flj ∈ fl do
7: P k

(i,j) ←− CalPower(rsi, f lj);
8: T k

(i,j) ←− CalTempreture(P k
(i,j), RFLP );

9: S(i,j) ←− CalStress(rsi, f lj);
10: ∆dk

(i,j) ←− CalDelayDeg(T k
(i,j), S(i,j));

11: D-CATk ←− FillCAT (rsi, f lj,∆dk
(i,j));

12: D-CATlist.Add(D-CATk);
13: end for
14: end for
15: end for
16: Return {D-CAT};

Si,j based on HCI and BTI aging mechanism (line 9). As shown in Eq. 3 and Eq. 6, Stress

(S) is a function of duty cycle (Y ) in BTI and switching activity (α) multiplied by clock

frequency (f) in HCI. In this work, Eq. 13 is utilized to calculate S. For BTI mechanism, Y

is equal to the residence time rs and for HCI mechanism α is equal to the ratio between fl

and FLmax. The delay degradation is extracted for each temperature and stress pair using

Eq. 14 (line 10). After that, the D-CAT for each layer k will be filled for each pair of rsi

and flj by ∆dk
i,j using Eq. 18 (line 11). At the end, we add the D-CAT for layer k into the

D-CAT list and iterate for other layers in the network till all of them in 3D NoC are covered.

7.5 Adaptive aging-aware routing

Imbalanced aging between routers in a network can lead to performance loss or timing failure

in the system. If a highly aged router fails, it impacts the scalability and reliability of the
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whole system. However, there are different shortest paths between each pair for source and

destination in a network as graph. In addition, there are alternative paths with costs which

are very close to the shortest paths in term of delay. These paths use different routers

to transfer flits inside the network, which means a router can be along different source-

destination pairs’ shortest paths.

S

D

S

D

Aged

1
2

Figure 7.11: Swapping between different shortest paths that have different routers’ ages.

As illustrated in Fig. 7.11, two different shortest paths from source S to destination D are

chosen among a set of k-best shortest paths. Each of them uses five different routers and

there is no shared router between these two paths. Whereas in scenario number 1, one of the

routers along the shortest paths is aged more than the others and become the maximum aged

router. In this case, we can easily switch the shortest path to scenario number 2 without

losing performance while avoiding needless increase to the age of maximum aged router and

give it an opportunity to recover (i.e. in BTI). In this example there are ten different shortest

paths for the specified source-destination pairs that we can choose from for the purpose of

aging mitigation.

For more elaboration, we show how routing happens as it is depicted in Fig. 7.12, where a

4×4×4 3D NoC is demonstrated with source router 0 sending flits to destination router 63.

Every router maintains a routing table with size of O(N) where N represent the number of

routers, as it is shown in the figure for router 47. The first column represent the destination
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(DS) and the second one correspond to the next router (NR). For the other routers, only

the tuple where DS = 63 is shown. The left side of the Fig. 7.12 represent the NoC at

period iP . The flits follow the path defined by 0 → 16 → 32 → 48 → 52 → 56 →

60 → 61 → 62 → 63. After period iP is consumed and assuming router 47 and 52 are

aged more that the other routers, they should be avoided in the next period. Therefore, at

period (i + 1)P , the routing tables of the routers are adjusted to new values to avoid the

aged routers. Thus, at period (i+ 1)P as shown in Fig. 7.12 right side, the new path for the

flits will be 0 → 1 → 2 → 3 → 7 → 11 → 15 → 31 → 47 → 63.
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Figure 7.12: Updating routers’ routing tables’ entries for the new shortest path from S to
D considering high aging in routers number 48 and 52. Routing table is detailed for router
number 47.

160



Algorithm 10 Aging aware routing algorithm
Input: Src-Dest pair list {(Src,Dest)}, Router’s age list {RAg}
Output: List of shortest paths {ShortPathPair}

1: ShortPathPair ={};
2: for all Pairi ∈ {(Src,Dest)} do
3: k ShortPath{} ←− CalShortestPath(Pairi);
4: end for
5: for all Pairi ∈ {(Src,Dest)} do
6: for all Pathj ∈ k ShortPathi do
7: if (!MaxAgeR(Pathj, {RAg}) ∧
MinAge(Pathj, {RAg})) then

8: ShortPathPair.Add(Pathj);
9: end if

10: end for
11: end for
12: Return ShortPathPair;

7.5.1 Adaptive aging-aware routing algorithm in AROMa

Since, aging is a gradual and slow mechanism we can swap between different shortest paths

in each period of time P (e.g. each week) to avoid highly aged routers in the network. The

pseudo code in Algorithm 10 proposes an aging-aware routing algorithm. To this end, we

add a tag to each router as its age. This tag will be updated online using their corresponding

D-CATs, periodically (P = n× ε). The aging tag is leveraged for choosing best aging aware

shortest path between all available k-best shortest paths from each source-destination pairs.

When the new aging-aware shortest path is chosen among all k-best shortest path routing

table in each router will be updated adaptively at each period of time P (Fig. 12).

The inputs to Algorithm 10 are list of source-destination pairs, {(Src,Dest)} and list of

routers’ age, {RAg}. The algorithm’s output is the list of shortest paths for each source-

destination pairs, {ShortPathPair}. The routing table of each router will be updated

based on new shortest paths output from Algorithm 1. Using CalShortestPath() function,

we find k best shortest paths list for each pair of source-destination. Dijkstra’s shortest path

algorithm is leveraged to find this list. There are different algorithms that can be utilized
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for this purpose [53, 5]. After that, for each pair we check which paths do not include the

maximum aged router by calling MaxAgeR() function and then find the best paths based

on minimum summation of ages on their routers using the list of ages by calling MinAge()

function (line 7). The new shortest paths for each source-destination pairs are found for

the next P and are added to the list of shortest paths (line 8). At the end of each period,

the shortest paths are updated between all the pairs in the network using the proposed

algorithm.

The age of each router is obtained from their corresponding D-CATs. After that, the list

of routers’ ages {RAg} will be updated. As exemplified in Fig. 12, the routing table are

updated to swap to the new aging-aware shortest path, adaptively. In all, we intensified

Dijkstra’s algorithm to find k-best shortest paths by adding routers ages to it as cost. As

formulated in Section 4, in Eq. 15, our goal is to minimize the age of maximum aged router

and balance the aging among different routers in the network. It must be noted that when

the highly aged router is avoided, its links also are avoided which means our algorithm

inherently minimizes the age of links, as well.

7.6 Related work

The routing algorithm’s function is to forward the flit that arrives to an input port of a

router to one of its output ports. There are numerous routing algorithms for 2D [26, 113]

and 3D NoCs [97], each one leads to different performance and cost. Routing algorithms can

have three major criteria: decision location (source or distributed routing), the path length

(minimal or non-minimal routing), and path definition (deterministic or adaptive routing).

In source routing, the complete path is decided at the router connected to the source [29],

while in distributed routing each router receives, stores and then defines the direction of a

flit [125]. Therefore, source routing requires full knowledge about the network, which results
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in area and traffic overheads in routing tables and network. Contrary, routing decision in

distributed routing is spread among routers which impose less area and power overheads. In

minimal routing the shortest path from source to destination is greedily chosen, e.g. Breadth

First Search (BFS), Dijkstra, and Floyd-Warshall algorithms [43]. In contrast, non-minimal

routing algorithms allow flits to traverse longer source-destination pair distance to meet

other network objectives, e.g. aging or congestion avoidance [49, 146].

In deterministic routing, the path is completely specified based on the position of source

and destination offline, e.g. XY routing [26]. In adaptive routing, the path is a function of

online network variations, e.g. traffic in turn model [68]. Deterministic routing is easy to

implement and impose less area overhead while flits are blindly follow the same path without

considering the path congestion or age. In adaptive routing, we can enhance the routing to be

more intelligent to choose between different shortest-paths and guarantee certain objectives.

Plethora of researches are conducted that target the usage of adaptive routing for different

objectives such as performance, fault tolerance, congestion avoidances, load balancing and

aging mitigation. We review different proposed adaptive routing algorithms in the following.

7.6.1 Congestion aware adaptive routings

Table based adaptive routing is among the method to ensure high degree of adaptivity for

better performance [103, 120, 146, 49, 72]. In [120], authors propose a compression technique

using graph coloring to shrink the large routing table size. [103] proposes a routing algorithm

based on partitioning routers into different regions that could be accessed only through

certain routers. HARAQ utilizes Q-learning method to provide alternative paths between

each source-destination pairs using Q-tables in each router for local and global congestion

information [49]. Additionally, [72] proposes Region Congestion Awareness (RCA) technique

to improve global network balance using a monitoring network to estimate congestion. The
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monitoring network added circuitry to each router to aggregate and propagate congestion

information to other routers. A channel pressure model is adopted in [146] to quantify

and predicts traffic in order to implement an offline method for designing deadlock free

adaptive minimal routing to address local congestion. In all, considering only local congestion

information may not choose less congested paths and lead to congestions in other parts of

the NoC. However, if global information is considered area and power overheads are imposed

due to larger routing tables. In addition, congestion information broadcasting imposes traffic

overhead.

7.6.2 Fault tolerant adaptive routings

Adaptive routing algorithms have been implemented for reliability and fault tolerance pur-

poses in NoC [56, 93, 131]. In [56], a routing algorithm for 2D mesh and torus topologies

reconfigures the routing table of each router to avoid faulty components. However, they

need a fixed amount of hardware per router to achieve that. In addition, [93] proposes an

adaptive routing which forces the traffic to be distributed across the whole network. The

algorithm distributes traffic uniformly to avoid overloading the links and faulty routers in

case of failure. Furthermore, [131] aims to provide connectivity of 2D mesh NoCs even after

some network components are out of service by deflective routing using a router design based

on nostrum architecture. They use fine grain functional fault model and a methodology to

diagnose and determine routers’ status using Cyclic Redundancy Checks (CRC) hardware

components. Also, the adaptive routing algorithm can employ the remaining functionality

of partially defective routers. They support graceful degradation by retransmitting messages

suffering from transient faults using Error Correcting Codes (ECC). In all, these techniques

require additional hardware to the router as well as overhead bits (checksum) in each flit to

implement EEC/CRC.
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7.6.3 Aging-aware adaptive routings and motivation

Adaptive routing can be used for aging mitigation and overcoming delay degradation effects

in routers [10, 19, 20, 11, 152]. The authors in [10] propose an aging aware adaptive

routing algorithm and router micro-architecture to route flits in paths that are experiencing

minimum aging degradation. The routing algorithm have a shortest path selection stage

and a recovery cycles insertion stage in overloaded routers. They used a circuitry through

a series of delay buffers to measure a router delay degradation, which imposes considerable

hardware overhead for that purpose.

Authors in [19, 20] proposed offline methods to avoid highly aged routers in 2D NoC. Deploy-

ing Mixed Integer Linear Programming (MILP) based on power-performance the optimized

routing is obtained [19]. This technique assigns a budget to each router offline by profiling

the benchmark traces. A routing algorithm finds the source-destination pairs’ shortest paths

considering router’s budgets to mitigate aging. A similar approach is proposed in [20], where

budgets are assigned offline for different epochs of time. These methods not only limits the

usage of routers at runtime which can impact the system performance but also still leaves

the unbalanced aging among the routers by assigning unbalanced budgets. Another impor-

tant shortcoming is that aging strictly influenced by runtime variation in the workload that

affects the stress and temperature on routers. While profiling and budgeting are done based

on some specific benchmarks.

Exploiting architecture level criticality of flits, [11] presents a routing policy for 2D NoC with

heterogeneous routers (i.e. routers are either buffered or buffer-less). Utilizing their Wearout

Monitoring System (WMS), this method monitors aging in routers to deflect non-critical

flits. Beside the large area overhead due to the complex WMS, deflecting flits degrades

Quality of Service (QoS) at system level. Furthermore, flits’ criticality designation not only

is a challenging issue but also does impose overhead to the system. The performance of

165



this technique will be questioned in regular NoC. Furthermore, a dynamic programming

based aging-aware routing is proposed in [152], which employs lifetime budget computation

unit. This technique requires a parallel dynamic programming network to propagate routers’

lifetime budgets and a complex circuitry for their calculations, which impose significant

overhead to the system. All the proposed methods are either offline or impose large overhead

to the system. Besides, the proposed methods are considered in 2D NoC, that can be modified

for 3D NoC, but new challenges in 3D NoC such as higher temperature can impact them. In

this work, we fill these gaps based on our low overhead online monitoring system that can

capture workload behavior and update the routing. Authors in [58, 12] proposed aging-aware

router architectures which out of scope of this work.

7.7 Experimental evaluation

In this section we evaluate our methodology. First, our simulation environment setup is

explained. After that, we describe our results for AROMa in 2D and 3D NoC as compared

to non aging-aware (NAW) technique and state-of-the-art work. Finally, we analyze AROMa

from different aspects.

7.7.1 Setup

All of our simulations are done in the full system simulation mode using gem5 [24] that runs

on Linux operating system to support scheduling benches for three years (9.3E+7 seconds)

of execution time. In addition, we adopt a ruby memory model with 2D and 3D mesh

interconnect network. Also, Garnet [3] network model is used with 5-stage routers that is

embedded inside gem5. In order to extract power estimation results for these stages, we used

Mcpat [98] for different ranges of fl and rs. HotSpot [137] is used to extract temperature
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Table 7.1: Simulation platform configuration

item Description

Processor X86 based 1.0 GHz in order cores.

L1-iCache private, 32KB, 2-way set associative,

64B blocks, 4 cycles latency, pseudo LRU replacement.

L1-dCache private, 32KB, 2-way set associative,

64B blocks, 4 cycles latency, pseudo LRU replacement.

L2-Cache private, 16MB, 8-way set associative,

64B blocks, 12 cycles latency.

Main Memory 512MB. DRAM

NoC 4× 8 2D mesh, 4× 4× 2 3D mesh,

each node consists of 1 router,

1 core, 1 private L1 i/dcache, and 1 private L2 cache.

MOESI cache coherence protocol, 5-stage pipeline router.

Flit size 16B

Buffer size 4× 16B or 4 flits per virtual channel.

maps of a router for different extracted powers. To get the router’s floorplan for temperature

analysis, the architecture in [1] is used. The floorplan is extracted for 45nm technology using

Cadence tool chain.

SPLASH-2 and PARSEC benchmarks are adopted for our experiments. Each experiment run

with 32 cores interconnected via 4× 8 2D mesh or 4× 4× 4 3D topology. All routers accept

16-byte flit sizes and assume a virtual channel architecture that has four virtual channels

which holds four flits. Each 2D router in the system has five input ports for (N, E, S, W and

local). 3D routers have seven input ports for (N, E, S, W and local). The local ports are
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connected to one core with one L1 instruction cache, one L1 data cache, and one private L2

cache with sizes of 32kB, 32kB, and 16M, respectively. Since the clock frequency is equal to

1GHz (critical path will be 1 ns) and the guadrband is chosen to be 16% (0.16 ns) for 3-year

worst case execution. Worst case happens when the temperature is 380K and the transistor

is always ON. The rest of the simulation setup is listed in Table 7.1.

In modeling stage, RSmax = ε is assumed to be 10, 000 cycles which can be counted using a

14-bit parallel counter (Fig. 9 & Fig. 10). To get the maximum number of flits, FLmax, we

use a representative synthetic traffic patterns with flit injection rate equals to 0.05 flits/cycle

for ε (or RSmax), as depicted in Fig. 7.8. we found that FLmax cannot exceed 2, 400 which

can be counted by 12-bit counter. This injection rate is chosen based on the maximum

possible traffic.

7.7.2 Results

For each benchmark, the aging-induced delay degradation of routers as well as the age

imbalance (∆d) between routers are extracted for both 2D and 3D NoC in 3 years (9.3E+7

seconds) of execution. The following three schemes are compared:

• XY routing, which is not-adaptive and therefore non-aging aware routing (NAW). This

method is intensified by our monitoring system using D-CAT to extract routers’ ages

online. For 3D case, we used XYZ routing.

• Offline aging-aware routing through assigning budgets (OFAR), which is based on state-

of-the-art works in [19, 20] and enhanced by our proposed online aging monitoring

system for fairness. It assigns a lifetime budget for each router and defined as the

fraction of the traffic that a stressed router should accept. Each routers’ budget is

predetermined using profiling for each benchmark.
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• AROMa, our aging-aware adaptive routing and proposed online aging monitoring sys-

tem.

Table 7.2 and Table 7.3 summarize the results for 2D NoC and 3D NoC, respectively. As

shown in Table 7.2, AROMa improves the age of maximum-aged router by 33.5% on average

compared to non-aging aware routing (NAW). For example, in RADIX the age of maximum

aged router in NAW scheme is 0.14487 ns while in our proposed method the maximum-

aged router age is 0.098993 ns, which is equal to 31.43% improvement. Moreover, the

age imbalance (∆) between the maximum-aged and minimum-aged routers is improved by

61.31% in AROMa as compared to NAW. This shows how AROMa balances routers’ ages

fairly.

OFAR scheme assigns budgets to each router based on their load through profiling and then

finds new source-destination shortest paths. Therefore, OFAR is not necessarily able to

balance age properly and reduce maximum-aged routers age. Our results in Table 7.2 also

shows that maximum age and age imbalance (∆) become worse by 31.19% and 69.03%, on

average. For example, in X264 benchmark, the maximum age is improved by 29.67% and

age imbalanced is improved by 30.23%. On the other hand, in LU NON CONT benchmark,

there is no improvement and these values are -12.85% and -12.85%, respectively.

Similarly, Table 7.3 shows the results for 3D NoC. It is shown that on average the maximum

age and age imbalance are improved by 34.26% and 71.80%, respectively. For example,

in LU CON benchmark the age of maximum aged router is 0.124743 ns in NAW while in

AROMa it is 0.076545 ns, which means 36.80% improvement. In addition, the age imbalance

(∆) in NAW is 0.088748 ns and 0.009424 ns in AROMa, which is equal to a significant

improvement of 89.38%.

In OFAR, both of 3D NoC and 2D NoC maximum age and age imbalance (∆) are worsening

by 31.19% and 69.03% as compared to NAW, respectively. Although, maximum age in
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(a) In 2D NoC (b) In 3D NoC (c) In 2D NoC

(d) In 3D NoC (e) In 2D NoC (f) In 3D NoC

(g) In 2D NoC (h) In 3D NoC (i) In 2D NoC

(j) In 3D NoC (k) In 2D NoC (l) In 3D NoC

Figure 7.13: Age imbalance in 3 years for different routers in the network.
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FFT is improved by 26.71% but it is increased by 75.66% in CHOLESKY. Similarly, age

imbalance is improved by 43.99% in CANNEAL while it is worsen by 110.20% in LU CON

benchmark. These results shows that AROMa outperforms state-of-the-art works (OFAR)

significantly. The main reason is that AROMa monitor age online and adaptively changes

source-destination shortest paths to avoid maximum aged routers. In contrast, OFAR finds

shortest paths and assigns age budgets to router offline. Therefore, it cannot balance ages

and reduce maximum ages properly. More will be detailed in the next subsection.

(a) NAW in 3D NoC (b) OFAR in 3D NoC

(c) AROMa in 3D NoC (d) NAW in 2D NoC

(e) OFAR in 2D NoC (f) AROMa in 2D NoC

Figure 7.14: Age imbalance between different routers in X264.
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7.7.3 Analysis and discussions

AROMa’s main purpose is to balance ages between different routers in the network. It is

done by avoiding highly aged routers and finding new shortest paths in each period P . This

not only reduces the age of maximum aged router (through BTI recovery) but also decreases

the difference between different router’s ages, so-called age imbalance. Fig. 7.13, illustrates

the age imbalance (∆) for both 3D and 2D NoCs between all the routers in AROMa, NAW,

and OFAR. The horizontal axis shows each router number in the network and the vertical

axis shows the age (aging-induced delay degradation) of each router in the network. It can

be seen that AROMa balance ages properly as compared to NAW and OFAR. For example,

in RADIX on 3D NoC all routers ages are around 0.1 ns while in NAW the different routers

are aged differently which is not fair. This becomes even worse in OFAR since the age of

highly aged routers passed the guardband (0.16 ns). These routers are considered faulty and

also pass their assigned offline budgets.

Furthermore, Fig. 7.13 shows that in OFAR scheme some routers for certain benchmarks

are overstressed due to offline budgeting. This will cause some of the routers to become

faulty and pass the threshold of aging guardband (i.e. 16 ns). The reason is that in the

offline profiling stage they were barely utilized. Hence, they are assigned higher budgets to

diminish the utilization of highly overloaded routers. This unfair budgeting is not able to

balance the age of routers to avoid aging other routers. For example, as shown in Fig. 7.13.j,

for CHOLESKY in 3D NoC, seven routers are highly stressed and become faulty. However,

some of the routers are rarely used due to unfair budgeting. Nevertheless, we continued the

simulation of the network after these routers become faulty, which leads to unpredictable

network behavior.

The color map in Fig. 7.14 illustrates the age imbalance of routers in X264, as an example for

both 2D and 3D NoC using NAW, OFAR, and AROMa for 3-year execution. Each square
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represents a router’s age. The lighter color, the higher age. It can be seen that the bottom

layer (layer 0) in NAW is aged more than the upper layer (layer 1) (Fig. 7.14.a). Therefore,

OFAR assigns more budgets to layer 1 routers to reduce the age in layer 0 but increases

the age in layer 1 routers (Fig. 7.14.c). As shown in Fig. 7.14.c, by swapping between

different shortest-paths, AROMa balances ages among both layer 0 and layer 1, uniformly.

In contrast, routers ages in 2D NoC for both NAW and OFAR schemes are not uniformly

distributed (Fig. 7.14.d and Fig. 7.14.e), while AROMa distributes ages between routers in

the network properly.

Furthermore, it can be observed from Fig. 7.13 and Fig. 7.14 that routers age more in 2D

NoC than 3D NoC even though the temperature is higher in 3D NoC upper layers. The

main reason is that in 2D NoC the shortest paths between each source and destination are

usually longer. This means that a flit requires more time to traverse the NoC through more

routers. This results in more usage of routers and subsequently more delay degradation for

them. All in all, it can be concluded that 3D NoC architecture performs better in term of

aging as compared to 2D NoC.

Fig. 7.15 illustrates the trend of maximum aged router’s delay degradation in 3 years (9.3E+7

seconds) of execution in both 3D and 2D NoCs for three selected benchmarks. It can be

seen in all of them that the maximum age after 3 years of execution for 2D NoC is higher

than 3D NoC. For example, the maximum age of routers in 2D NoC is 12.89%, 11.24%, and

14.28% higher than 3D NoC for FFT, X264, and SWAPTIONS, respectively. Fig. 7.15.c and

Fig. 7.15.d show the delay degradation trend for FFT. As depicted in the figure AROMa

outperforms OFAR by 14% and 8.9% in 3D and 2D NoC, respectively. Based on the holistic

results in Table 7.2 and Table 7.3 and also the result is Fig. 7.13 and Fig. 7.15, we can

conclude that AROMa performs better in 3D NoC and decreases maximum age even more.

In contrary, on average OFAR shows better performance in 2D as compared to 3D in term

of lowering the maximum age.
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(a) In 2D NoC (b) In 3D NoC

(c) In 2D NoC (d) In 3D NoC

(e) In 2D NoC (f) In 3D NoC

Figure 7.15: Delay degradation for 3 years (9.3E+7 seconds) for maximum aged routers in
the network.
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7.7.4 Overhead

Area

As shown in Fig. 7.9, for online monitoring system we need to add two parallel counters

(12-bit and 14-bit), seven 14-bit subtractors (Maximum number of ports in a 3D NoC is

seven), seven 4-bit MUXes, and seven AND logic gates. We embedded them into our router

architecture from [1] and used Xilinx ISE synthesis tools to extract area overhead. Our

analysis shows that the area overhead is negligible (∼ 0.55%). The area overhead for previous

methods, that OFAR deployed them, in [20] and [152] is (∼ 4%) and (∼ 1.2%), respectively.

This means that our online monitoring system imposes a negligible area overhead to each

router as compared to state-of-the-arts.

As shown in Fig. 7.9 and Fig. 7.10, each D-CAT has three columns of information. The first

one corresponds to residence-time (rs) which can be represented by two bytes. Similarly,

the second column represents number-of-flits (fl), which is also can be represented by two

bytes. In addition, to store the aging-induced delay degradation corresponding to each fl

and rs pair four bytes in third column is used. In our experiments, the number of steps is

482 (in Algorithm 2), which means our D-CATs have 482 entries considering that each step

is 50 flits. We observed that a change in number of flits by 50 does not change the power

consumption and temperature noticeably. Therefore, the total amount of memory that is

required for each D-CAT is 482× (2 + 2 + 4) bytes which is equal to (∼ 3.8KB).

Energy-Delay-Product-Per-Flit

In Fig. 7.16, we illustrate the Energy-Delay-Product-Per-Flit (EDDPF) of each benchmark

for AROMa and OFAR schemes compared to NAW in both 2D and 3D NoCs. The EDDPF

on average is 1.53%, 1.88%, 1.67%, and 6.91% for AROMa in 2D NoC, AROMa in 3D,
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Figure 7.16: EDPPF for 3-year (9.3E+7 seconds) execution time in each benchmark for
different schemes.

Figure 7.17: Average network latency for 3-year (9.3E+7 seconds) execution time in each
benchmark for different schemes.

OFAR in 2D, and OFAR in 3D, respectively. It can be concluded that OFAR has higher

EDDPF overhead as compared to AROMa for both 2D and 3D NoCs on average. However,

in some of the benchmarks the EDPPF is improved in OFAR scheme. It should be noted

that in OFAR, there are faulty routers since they are overstressed (i.e. overaged) due to

offline budgeting. As we mentioned in Subsection 8.3, the overstressed routers due to unfair

budgeting in OFAR make network behavior unpredictable. For example, in RADIX, the

EDDPF overhead is improved while in LU NON CON it is increased.

In addition, EDPPF in 2D NoC is performing better than 3D NoC for all benchmarks

expect LU NON CON in AROMa. Even though for 3D NoC the delay is decreased but due

to increase in power and energy consumption the EDDPF will increase as compared to 2D.
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Figure 7.18: Link utilization for 3-year (9.3E+7 seconds) execution time in each benchmark
for different schemes.

Network latency

Fig. 7.17 shows the average network latency for different benchmarks in both 2D and 3D

NoC for our three different schemes. The average network latency is 1.31%, 0.12%, -6.24%,

and -2.96% for AROMa in 2D NoC, AROMa in 3D NoC, OFAR in 2D NoC, and OFAR in

3D NoC, respectively as compared to NAW schemes. However, in the benchmarks such as

FFT that do not have any faulty routers, the OFAR average network latency is higher for

both 2D and 3D NoCs. In addition, the average network latency for AROMa in 3D NoC

is slightly better than 2D NoC, which is expected. However, due to the unfair budgeting

in OFAR the flits may traverse longer paths which include highly aged routers and leads to

higher average network latency even in 3D as compared to 2D NoC. OFAR is not able to

follow the online behavior of the workload in the system which can impact both temperature

and stress as well as aging of routers. This is because OFAR does not adaptively change the

source-destination pairs’ shortest paths considering aging and eventually overstress highly

aged routers.

Link utilization

Fig. 7.18 demonstrates link utilization of AROMa and OFAR schemes for 2D and 3D NoC.

The average link utilization is 0.7%, 0.53%, 2.32%, and 14.69% for AROMa in 2D NoC,

AROMa in 3D NoC, OFAR in 2D NoC, and OFAR in 3D NoC, respectively. Except
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LU NON CON benchmark OFAR in 3D NoC has higher link utilization as compared to

AROMa. Similarly, 2D NoC OFAR has higher link utilization in comparison to AROMa

except in RADIX benchmark. Link utilization depends on benchmarks’ behaviors as well

as the routing algorithm. OFAR uses certain paths to traverse flits to avoid highly utilized

routers that are determined by offline budgeting. This leads to lower utilization of connected

links to such routers but migrates it to other set of links connected to low utilized routers,

that are determined in offline budgeting. Therefore, OFAR may choose longer paths to tra-

verse flits which results in more unnecessary misleading higher link utilization (Fig. 7.18)

in comparison to AROMa and NAW for same traffic. In all, OFAR is not able to fairly

utilize resources in the NoC and transferring the load (age or problem) from one region to

another. As our results shows, AROMa outperforms OFAR in term of fair utilization of

network resources which leads to better balance of ages.

7.8 Chapter summary

In this work, we proposed AROMa, an adaptive aging-aware routing algorithm along with

an online aging monitoring system for 3D NoCs. Temperature is a fundamental challenge in

3D NoCs which can significantly change both BTI and HCI aging mechanisms. In addition,

aging induced delay degradation is a function of stress quantified by usage. We introduce

Distributed Centralized Aging Table (D-CAT) which stores delay degradation for each tem-

perature and stress pairs. Our online monitoring system utilizes D-CAT for each layer of

the 3D NoC to keep track of each router’s age. Moreover, AROMa finds different shortest

paths between each source-destination pair to avoid highly aged router at each period of

time. Therefore, highly-aged routers may get a chance to recover from BTI-induced delay

degradation due to our adaptive and aging-aware routing. Our extensive experimental eval-

uation for SPLASH-2 and PARSEC benchmarks using gem5 in full system mode for both 2D
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and 3D NoC shows that AROMa outperforms state-of-the-art work. AROMa significantly

is better than OFAR not only in terms of age imbalance between different routers but also

minimizing maximum aged router age. Furthermore, our results shows that 3D NoC is more

resistance against aging as compared to 2D NoC even though the temperature may go higher

in upper layers. The main reason is that in 3D NoC paths are shorter and router’s usage

(stress) decreases. AROMa improves age imbalance by 60% and 72% in 2D and 3D NoC,

respectively, in comparison to non-aging aware technique. In addition, the maximum age of

routers decreases by 33.51% and 34.26% in 2D and 3D NoC, respectively.
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Chapter 8

Conclusion

Aging-induced delay degradation of transistor leads to longer critical paths and lower clock

frequency or performance of the system. Designer have to add considerable time margin as

guardband to the main critical path at design time to avoid timing failure at runtime. The

key point is that at design time there is not enough information to have a viable approach.

This information includes temperature and stress (or usage), two major sources of aging,

which are highly workload dependent and vary at runtime. We believe both design time (i.e.

proactive) and runtime (i.e. reactive) approaches are required to cope with aging issues in

nanometer scales computing platforms.

The usage of reconfigurable architectures such as FPGAs is increasing in both mainstream

and safety critical applications ranging from the data-center acceleration to the space and

avionic applications. Also the system evolution toward 3D many-core heterogeneous archi-

tectures increases the workload’s behavior’s variation. The variation in running workload on

the system leads to imbalance aging of the circuit’s components which results in premature

aging of unfair highly aged resources. We studied and devised proactive as well as reactive

methods to cope with aging in such systems.
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To monitor aging we proposed SENSIBLE, which is a highly scalable and low overhead

aging sensor. SENSIBLE only uses one clock generator as timing source for all the required

sensors on the system. This and the low area overhead due to occupying only one slice on

FPGA lead to higher accuracy and sensitivity of SENSIBLE. To find the number of required

Representative Critical Paths (RCPs) for age monitoring, we proposed a two-step application

dependent methodology. This methodology filters out large pool of critical paths based on

the application’s behavior such as temperature, stress and user constraints to find minimum

number of required RCPs and insert aging sensors on their endpoints. After finding RCPs

and inserting aging sensors such as SENSIBLE then system level designers can monitor aging

to react accordingly.

Two proactive methods are proposed in this thesis to protect delay degradation of critical

paths of implemented applications on reconfigurable architectures and the Static Noise Mar-

gin (SNM) of SRAM cells in such architectures. The former is a high-level physical design

which is able to find the k-best aging-aware floorplans to be altered by each-others at runtime

for aging mitigation. The latter is STABLE, a post-synthesis SAT-based Boolean matching

to find new configuration for the implemented application while all the logic SRAM cells

are flipped but the functionality is preserved. Flipping SRAM cells’ contents allows their

transistors to turn off and enjoy BTI recovery phase to partially recover their SNMs. SNM

degradation reduces SRAM’s stability and increases its Soft Error Rate (SER).

To monitor and mitigate aging in both 2D and 3D components in NoC we proposed AROMa.

AROMa is an adaptive aging-aware routing algorithm which finds k-best source-destination

shortest paths to alter them at runtime based on aging information of routers along them.

Through this, we are able to balance aging among NoC components and minimize the age of

maximum aged router. To find aging information of routers we proposed Centralized Aging

Table (CAT) and Distributed CAT (D-CAT) for 2D and 3D NOCs, respectively. CAT is

able to convert transistor level aging information to the running workloads’ behaviors (i.e.
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flits) in NoCs. D-CAT is able to capture the inter-layer temperature variations of 3D NoCs.

We proposed ADAMANT, which is an aging-aware task mapping for heterogeneous many-

core systems. This technique balances aging between different cores that have various char-

acteristics. ADAMANT exploits on-chip sensing of aging, performance, and power in order

to enable online workload characterization to select task-to-core mappings that yield both

increased system lifetime and energy efficiency.

8.0.1 Future work

As mentioned earlier both proactive and reactive methods are required to protect computing

platforms against aging. As shown in Fig. 8.1, the proposed methods in this dissertation

can be applied and integrated in a framework to avoid performance degradation in many-

core heterogeneous NoC-based platforms. It is illustrated that all the proposed methods are

Inserting aging sensors                 
(Chapter 2&3)

Aging-aware floorplanning           
(Chapter 4)

Stress-aware Boolean matching 
(Chapter 5)

Aging-aware routing            
(Chapter 7)

Aging-aware task mapping 
(Chapter 6)

Figure 8.1: The proposed framework for aging mitigation and monitoring in many-core 3D
heterogeneous architectures.
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required to avoid performance degradation because of aging. This framework connects the

aging information across the layers from sensor insertion and synthesis levels all the way up

to the system level task mapping.

Another future direction that can be pursued is to consider aging degradation in approx-

imation computing applications. Since adding guardband increases the area, power and

performance overheads for approximation computing the imposed inaccuracy due to aging

can be leveraged to reduce overheads and energy consumption. This can be performed and

studied by reducing guardband and accepting some level of errors.
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