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Abstract

This study utilises an experiment famous in quantum physics,
the Stern-Gerlach experiment, to inform the structure of an ex-
perimental protocol from which a quantum cognitive decision
model can be developed. The ’quantumness’ of this model
is tested by computing a discrete quasi-probabilistic Wigner
function. Based on theory from quantum physics, our hypothe-
sis is that the Stern-Gerlach protocol will admit negative values
in the Wigner function, thus signalling that the cognitive de-
cision model is quantum. A crowdsourced experiment of two
images was used to collect decisions around three questions re-
lated to image trustworthiness. The resultant data was used to
instantiate the quantum model and compute the Wigner func-
tion. Negative values in the Wigner functions of both images
were encountered, thus substantiating our hypothesis. Find-
ings also revealed that the quantum cognitive model was a
more accurate predictor of decisions when compared to pre-
dictions computed using Bayes’ rule.
Keywords: quantum cognition; decision-making; complex
Hilbert space; binary response; cognitive modelling

Introduction
A generally accepted notion is that we can approximately
access cognitive states through questioning and observation,
and whilst this measurement is not deemed to be perfect, it
is a standard means of experimental practice in the psycho-
logical discipline. This notion relies on the fact that these
internal states hold distinct values and by measuring them,
we are merely attempting to record what is already there.
Often, probabilistic outcomes of these measures appear to
be illogical and do not follow the laws of classical proba-
bility, for example, cognitive biases identified in decision-
making (Tversky & Kahneman, 1974). Quantum cognition
has emerged as an alternative means of analysing probabilis-
tic outcomes that do not follow these classical laws. Its poten-
tial derives from an alternative probability which has success-
fully been used to address human decision making considered
paradoxical, generate non-reductive understandings of human
conceptual processing, and provide new understandings of
perception and human memory (Bruza, Wang, & Busemeyer,
2015; Busemeyer & Bruza, 2012). The present paper extends
current approaches to quantum modelling by means of two
new aspects: 1) the Stern-Gerlach experiment, to inform an
experimental protocol from which a complex Hilbert space
model can be constructed and 2) the discrete Wigner function

Figure 1: S.G. Setup using colour-type measurements (C) and
shape-type measurements (S) in place of spin measurements
at different orientations.

to perform a check on ’quantumness’ of cognitive systems
being modelled.

The Stern-Gerlach Experiment
The Stern-Gerlach (S.G.) experiment (Sakurai & Commins,
1995) takes a beam of particles (for example, silver atoms)
and observes their spin using a device that creates an elec-
tromagnetic field (S.G. device). This device can be placed at
different orientations to observe spins at associated orienta-
tions. Due to the fact that a particle’s spin is a complex con-
cept to describe, we will substitute this property with colour
and shape in our description of the S.G. experiment in the
interests of clarity. For the following, we will describe the
experiment as having two orientations of S.G. devices: one
oriented one way to measure one type of spin (we will call
this a ’colour-type’ measure differentiating purple from yel-
low), and another oriented orthogonal to the first to measure
a second type of spin (we will call this a ’shape-type’ mea-
sure differentiating circular from rectangular). Each enable
measurement of separate aspects of the same object (two ori-
entations of spin, or colour and shape in our analogy).

The experiment involves a beam of atoms hitting an S.G.
device which splits it into two separate beams: one purple
beam and another yellow beam. A second S.G. device of the
same orientation as the first (colour-type) is placed in the path
of the purple beam. This time, the beam does not split, and
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only one beam of purple atoms come out, as one would expect
(i.e. we assume no yellow atoms to have entered it due to the
separation performed by the first S.G. device). We then place
a shape-type S.G. device in-between the two colour-type S.G.
devices, which splits the first purple beam into circular and
rectangular atoms before hitting the second colour-type de-
vice (see figure 1).

In a classical system, we would expect only one beam to
emit from the second colour-type device, as, again, we would
assume that only purple atoms were sent that way from the
first device. A quantum system, however, does not work in
this way. In a quantum system, the second colour-type de-
vice will emit two beams after the original beam of purple
atoms has passed through the shape-type device, as illustrated
in figure 1. This is because the shape-type measurement has
destroyed the first measurement of colour, essentially reset-
ting it. This can only happen if a particle’s properties are not
simply observed in a predefined definite state, but are deter-
mined at the point of measurement.

A Cognitive Analogue
This concept can be applied to cognitive measures, however,
in a slightly more complex way. Due to the potential of mem-
ory effects inherent in repeating a question in a string of only
three total questions, we utilise a more complex version of
the S.G. experiment, where a third question is introduced.
The general concept, however, remains the same. When one
considers a question or makes a decision, they may simply
be accessing an internal state predetermined by a range of
variables such as past experience, knowledge, predisposition,
values, what they had for lunch that day, etc. On the other
hand, they may be creating the state only at the point of mea-
surement (i.e. considering a question or making a decision).
To place this in the context of the S.G. experiment, consider
three questions asked after presentation of an image: Do you
feel a sense of trust when viewing this (T), do you feel that
the person in this image is attractive (A), and do you feel that
the image may have been manipulated (M). Taking a clas-
sical position, one could describe this system in the follow-
ing way: A person views an image and this event interacts
with internal variables to create a variety of probable judg-
ments of this image, including judgments of trust, attractive-
ness and manipulation. A person then considers the sequen-
tial questions of trust, attractiveness and manipulation, each
time taking an internal measurement of the predefined values
that each of these hold in the person’s internal state. On the
contrary, taking a quantum position would instead describe
no definite judgments to be formed at the point of viewing
the image, but only at the point of considering each question.
This view would also posit that each question would destroy
the measurement of the prior question, in the same way the
shape-type S.G. device did in our above example.

This article presents an experimental protocol that is anal-
ogous to the S.G. experiment in order to derive a quan-
tum model of decision making. For this purpose a complex
Hilbert space is used.

Derivation of a Quantum Model of Decision Making
from the S.G. device
As described above, the basic idea behind the model is to
translate the S.G. device into cognitive science by way of
analogy; human subjects correspond to silver atoms and ques-
tions correspond to S.G. devices. As a running example we
will use an image trustworthiness task whereby subjects are
asked whether they trust (T) an image, whether they find the
subject of the image attractive (A) and whether they deem the
image to be manipulated (M) e.g., photoshopped. The par-
ticular order of questions is determined by the order of the
devices in the S.G. device as depicted in figure 2.

The derivation of the quantum model corresponding to the
S.G. device comprises two steps: In the first step, a complex
Hilbert space model with states and operators is constructed.
In the second step, a criterion for checking the ‘quantumness’
of the model is applied by using a discrete Wigner function.

The cognitive decision space is modelled by means of a
complex Hilbert space model (HSM), i.e., a complex vector
space, equipped with an inner product with a positive definite
metric (Sakurai & Commins, 1995). Any yes/no outcome of a
specific question X , is denoted by a ket |X ,±〉 using the Dirac
notation, where +/- respectively denotes a yes/no outcome :

|X〉= α|X ,+〉+β|X ,−〉, α,β ∈ C

in which |α|2 and |β|2, based on the Born rule, give the prob-
ability of observing the positive and negative answers. In ad-
dition, outcomes are orthogonal, 〈X ,±|X ,∓〉 = 0 and prob-
abilities are normalized, |α|2 + |β|2 = 1. Also, an observ-
able is defined as a Hermitian operator. Without going into
the technical details, a Hermitian operator Â is a special type
of matrix where the eigenstates correspond to outcomes that
are observed, and the corresponding eigenvalue relates to the
probability of observing that outcome. The Pauli matrices
σi, i = 1,2,3,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

along with the identity matrix I2×2, form an orthogonal basis
for the complex Hilbert space of all 2× 2 matrices. As a
consequence, any operator such as Â can be expressed by Â =
a0I +∑

3
i=1 aiσi, in which ai ∈ R with i = 0,1,2,3.

Steps to construct a complex HSM Based on the preced-
ing formalism, the following steps are used to derive the
quantum model from the S.G. depicted in figure 2:

1) A quantum state is defined by the first question T based
on relative frequencies of yes/no outcomes sampled from the
experimental data, |T 〉 =

√
Pt(+)|T,+〉+

√
Pt(−)|T,−〉, in

which Pt(+) and Pt(−) are respectively probability of finding
positive and negative responses to the question T . Also, we
can consistently define the projection or filtering-type quan-
tum cognitive operator π̂t(±) = |T,±〉〈T,±|, so that Pt(±) =
〈T |π̂t(±)|T 〉. The filtering-type operators π̂t(±) satisfy the
completeness relation, π̂

†
t (+)π̂t(+) + π̂

†
t (−)π̂t(−) = I2×2,

1725



Figure 2: A cognitive analogue to a S.G. experiment where Trustworthiness (T) is asked first, followed by Attractiveness (A),
then Manipulated (M).

and the operator T̂ is defined as : T̂ = π̂t(+)− π̂t(−) = σz,
where σz is the Pauli matrix in direction z.

2) In the second step, we obtain the probability of find-
ing positive and negative responses to the second question A
through the first question T . Hence, we can define the cog-
nitive state regarding a decision of attractiveness A in the ba-
sis of the state of trustfulness T , i.e., |A,+〉= cos θa

2 |T,+〉+
sin θa

2 |T,−〉 and |A,−〉 = sin θa
2 |T,+〉 − cos θa

2 |T,−〉. The
filtering-type measurement operators πa(±) can be written as
follows:

π̂a(±) =
1
2

[
I2×2± sinθaσx± cosθaσz

]
.

Hence, the operator Â is given by

Â =

[
cosθa sinθa
sinθa −cosθa

]
(1)

in which θa characterizes a specific direction, which can be
computed from the experimental data. By applying the Born
rule, the conditional probabilities can be computed. For ex-
ample,

P(A =+|T =+) = |πa(+)πt(+)|T 〉|2 = Pt(+)cos2 θa

2
, (2)

3) A similar method to step 2) derives another filtering-type
operator corresponding to the third question M,

π̂m(±) =
1
2

[
I2×2± sinθm cosφmσx± sinθm sinφmσy± cosθmσz

]
in which θm can be obtained, despite of the fact that we must
have extra information for acquiring φm. Note that the states
of third question M are defined as follows:

|M,+〉 = cos
θm

2
|T,+〉+ eiφm sin

θm

2
|T,−〉,

|M,−〉 = e−iφm sin
θm

2
|T,+〉+ cos

θm

2
|T,−〉.

4) In the last step, probabilities of the third question M
are computed based in light of the outcomes from the second
question A:

P(M =+|A =+,T =+) = |πm(+)πa(+)πt(+)|T 〉|2

= Pt(+)cos2 θa
2 (+)

(
cos2 θa

2 cos2 θm
2 + sin2 θa

2 sin2 θm
2

+ 1
2 sinθa sinθm cosφm

)
. (3)

By using the previous equations, values of φm can be com-
puted.

Determining quantumness using the discrete Wigner dis-
tribution When we construct the Hilbert space structure of
the cognitive state and associated operators, we can examine
the quantumness of the cognitive state. Quantum physics has
a range of criteria for this. In this article we will employ one
such criterium, namely the negative discrete Wigner function,
where the negativity of the function can be interpreted as a
signature of quantum interference. In order to explain the
discrete Wigner function, the continuous Wigner function is
first introduced. For a continuous phase space (q, p), the con-
tinuous Wigner distribution is defined by

WΨ(q, p) =
1

2π

∫
∞

−∞

dx〈q− x
2
|x〉〈x|q+ x

2
〉eipx. (4)

Therefore, the expectation value of an arbitrary operator X̂ ,
by using the Wigner distribution, is given by

〈X̂〉= Tr[ρ̂X̂ ] =
∫ ∫

dx d pW (x, p)X̃(x, p), (5)

in which X̃(x, p) is the average of a physical quantity over the
phase space. Assuming two arbitrary states |ψa〉 and |ψb〉, it
can be verified that:

|〈ψa|ψb〉|2 = Tr[ρ̂aρ̂b] =
∫

dx d pWψa(x, p)Wψb(x, p). (6)

If we consider a situation in which two states are orthogonal,
i.e., ∫

dx d pWψa(x, p)Wψb(x, p) = 0, (7)
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at least in part of the region in phase space, one of the above
mentioned Wigner distributions has to be negative. The val-
ues in Wigner distributions still sum to 1 even when values
happen to be negative, which is why Wigner distributions are
termed “quasi-probability” distributions. The negativeness of
the Wigner distribution can be the result of the following two
facts: Firstly, the accessibility of information for a system
described by the quantum formalism is when the system is
described by classical probability (Goh et al., 2018; Vourdas,
2019). Secondly, the negativeness can be interpreted as quan-
tum contextuality (Huang, Yu, & Zhang, n.d.; Raussendorf,
Browne, Delfosse, Okay, & Bermejo-Vega, 2017; Kocia &
Love, 2017).

The binary nature of the responses implies a discrete, rather
than continuous phase space. We apply a generalized ver-
sion of the continuous Wigner function (Wootters, 1987). In
fact, by defining a geometrical structure on the discrete phase
space, such as parallel line, etc., and using a Finite Field Fn,
a discrete Wigner distribution can be defined (Gibbons, Hoff-
man, & Wootters, 2004; Galvao, 2005; Di Matteo, Sánchez-
Soto, Leuchs, & Grassl, 2017).

Due to the fact that we have binary responses, the discrete
phase space occupies a 2× 2 array of points where q runs
along the horizontal axis and p runs along the vertical axis,
as shown in figure 3. We place the origin, (q, p) = (0,0), at
the lower left-hand corner. We define a line λ in the 2× 2
phase space as the set of two points satisfying an equation of
the form aq+ bp = c, where a, b, and c are elements of Z2
(Z2 constraints numbers to binary 0s and 1s) where a and b
cannot both equal zero. It has the following conditions: (i)
given any two distinct points, exactly one line contains both
points;(ii) given a point α, if a line λ does not contain α, there
is exactly one line parallel to λ that does contain it (iii) two
lines that are not parallel intersect in exactly one point. In
the preceding conditions, two lines can be considered paral-
lel if they can be represented by equations having the same
values for a and b but different values for c. In the case of a
binary response, therefore, a line connecting (0,0) and (0,1)
is parallel with the line that connects (1,0) and (1,1). More-
over, two equations p+q = 0 and p+q = 1, with p,q ∈ Z2,
give the lines connecting points (1,0) and (0,1) and the par-
allel line connecting (0,0) and (1,1). Finally, the line (0,0)
and (1,0) is parallel with the line (0,1) and (1,1). Figure 3
demonstrates these striations in (1), (2), and (3) respectively.
Note that the lines drawn in (2) are technically parallel based
on the equation described above. As is the case in the con-
tinuous phase space, the integral of the Wigner function over
the strip of phase space bounded by the lines aq+bp= c1 and
aq+bp = c2 is the probability that the operator aq̂+bp̂ will
take a value between c1 and c2 (Wootters, 1987), the discrete
Wigner function has to satisfy the following equation:

Tr (|αi, j〉〈αi, j|ρ) = ∑
α∈λi, j

Wα, (8)

Figure 3: The striations of the 2×2 phase space. Each point
occupies a quadrant.

in which ρ is density matrix,

ρ̂ =
1
2
(I +~r ·σ) = 1

2

(
1+ rz rx− iry

rx + iry 1− rz

)
. (9)

and |αi, j〉 are three mutually unbiased bases for a two-
dimensional Hilbert space, with the following property:

|〈αi, j|αk,l〉|2 =
1
2

if i 6= k, (10)

where i = 1,2,3 indexes the mutually unbiased bases and j =
1,2 indexes the basis vector in each mutually unbiased bases,
with the following condition 〈αi, j|αi,k〉|2 = δ j,k. Naturally,
we can consider a one-to-one map between Pauli matrices σi
and striations Si.

Experiment
Participants
Participants consisted of 300 members of the crowdsourcing
platform Prolific, 187 of which were male, 110 female, and 3
who preferred not to disclose their gender. Participants were
over 18 years and from a variety of countries across North
America (39.7%), Europe (32.3%), UK (22.9%), Australia-
sia (4.0%) Middle East (0.7%) and Asia (0.3%). Participants
were randomly assigned to one of 4 conditions, each with 75
participants. All participants had been verified as proficient
in English by Prolific. Remuneration was in the form of a
small payment (£.23), as per Prolific convention, and an in-
formed consent page was presented to participants prior to
commencement.

Materials
Questions asked were as follows: While viewing, did you
feel a sense of trust? (T), Did you feel that this person was
attractive? (A), and Did you feel that this image may have
been photoshopped? (M). Question orders were TAM and
T MA for each image. Questions were selected based on the
likelihood that the operators associated with these variables
would be non-commutative. In other words, we were expect-
ing some order effects between variables/operators, meaning
that they are not entirely independent of one another. For ex-
ample, we expect the probabilities associated with the ques-
tion of attractiveness (A, given T) and the probabilities asso-
ciated with the question of manipulated (M, given T & A) to
be different if the order of A and M were to be reversed (i.e.,
T MA, with M|T , and A|T & M). The image stimuli used to
gather ratings of the above dimensions are shown in Figure 4.
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(a) Image 1: Unedited. (b) Image 2: Edited.

Figure 4: Image Stimuli

Figure 5: Table (A) and (B) correspond to Image 1 (unedited).
Probabilities relating to the first question (T ) are depicted in
the first columns; the second column states conditional prob-
abilities of the second question given first one, i.e., P(A =
±|T =+) in Table (A) and P(M =±|T =+) in Table (B); the
third column indicates conditional probabilities of the third
question given the first and second questions.

Design
Each image was presented with two question orders, creating
a between subjects design with four conditions. The depen-
dant variables were ratings of trustworthiness, attractiveness
and image manipulation.

Procedure
In all conditions, participants completed an online experiment
by first perusing a short description on the Prolific site, if de-
ciding to continue, they then clicked a link to the project page
which begins with short instructions and a link to the consent
form to read before continuing. The design of the experiment
was aimed at accessing fast intuitive responses, rather than re-
sponses based on analytical thinking, as this was believed to
be analogous to the short distances between measurement de-
vices in the S.G. experiment (i.e. fast measurements restrict-
ing interacting influences). To this end, instructions included
a notice to look out for a button popping up for some partic-
ipants that afforded a bonus (distraction to assign less cogni-

Figure 6: Table (A) and (B) correspond to Image 2 (edited).
Probabilities relating to the first question (T ) are depicted in
the first columns; the second column states conditional prob-
abilities of the second question given first one,i.e., P(A =
±|T =+) in Table (A) and P(M =±|T =+) in Table (B); the
third column indicates conditional probabilities of the third
question given the first and second questions.

tive resources to the decision task), questions were asked with
emotive wording (to help prompt intuitive thinking), and both
image display and questions included a time limit (2 seconds
for the image and 4 seconds for each question). Participants
could only view one question at a time, with each subsequent
question hidden until an answer had been given for the pre-
ceding one. Lastly, participants were asked to provide one or
two words to describe their first impressions of what they saw,
as well as a confidence rating for their combined judgments,
and were asked their gender and the country they resided in.

Results
Based on the probabilities shown in Table 5 (A), (B) and Ta-
ble 6 (A), (B), the cognitive states associated with the first
question T are given by:

|T1〉 =
√

0.85|T1,+〉+
√

0.15|T1,−〉, (11)

|T2〉 =
√

0.59|T2,+〉+
√

0.31|T2,−〉. (12)

where the subscripts respectively denote the unedited and
edited images.

According to probabilities in the second column in Table
5 (A), (B) and also by using the equation (2), the angles be-
tween operator T̂ and Â, as well as T̂ and M̂, are respectively
given by θ

(1)
a = 51.42 and θ

(1)
m = 99.79 for the unedited im-

age. By using the same method, in the second column of
Table 6 (A), (B), the angles between the operators T̂ and Â,
as well as T̂ and M̂, are obtained respectively by θ

(2)
a = 71.20

and θ
(2)
m = 87.70 for the edited image. By using equation (3)

together with the third column of Table 5 (A), (B) and Table 6
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Figure 7: Comparison of actual probabilities (Experimental Data) of the third question Attractiveness (A) to predicted proba-
bilities computed by the Born rule (Quantum Probabilities) and Bayes’ rule (Classical Probabilities).

(A), (B), we obtain respectively φ
(1)
m = 85.99 and φ

(2)
m = 85.30

for the unedited and edited images.
Comparison of prediction of decision: quantum proba-
bilities vs. classical probabilities For the prediction com-
parison, we consider a new situation in which the the order
of questions is altered. According to operators Â and M̂ and
new preparation state |T 〉, we obtain the probability of posi-
tive and negative answers and compare them with the experi-
mental data. Indeed, as defined in equation (3), the phase in-
terference φm appears in the probability of the third question.
The predictions of the quantum model are compared to clas-
sical probabilities in the following way: The cognitive S.G.
device depicted in Figure 2 can be modelled by using the
chain rule: P(T,A,M) = P(T )P(A|T )P(M|A,T ). The three
distributions on the RHS are empirically collected from the
S.G. device. Similarly, in the new situation the order of the A
and M magnets are reversed so the chain rule is written out as
follows: P(T,M,A) = P(T )P(M|T )P(A|M,T ). Therefore,

P(M|A,T ) = P(M|T )P(A|M,T )
P(A|T ) (13)

P(A|M,T ) = P(A|T )P(M|A,T )
P(M|T ) (14)

The LHS of both equations constitute predictions based
on classical probability theory. As evidenced by Figure
7 (A) and (B), the predicted results calculated based on
the HSM are generally closer to the actual probabilities
than the classical predictions. Figure 7 compares results of
probabilities of the decision regarding manipulation given
attractiveness and trustworthiness, for the unedited and
edited images respectively.

Wigner functions for both images By using equation (9):

rx = 2
√

Pt(+)(1−Pt(+)), ry = 0, rz = 2Pt(+)−1,

The discrete Wigner distribution that is obtained is the fol-
lowing:

W =
1
4

(
1+ rx + rz 1− rx + rz
1− rx− rz 1+ rx− rz

)
(15)

Therefore, the Wigner distributions for both unedited (W1)
and edited (W2) images are given as follows:

W1 =

(
0.63 0.13
−0.13 0.36

)
, W2 =

(
0.53 0.03
−0.03 0.47

)
(16)

Discussion
The Wigner function of both images showed negative values.
Therefore, the cognitive analogue of the S.G. experiment that
produces quantum models in physics, also produces a quan-
tum model for cognitive decision making.

It is known from physics that negative values in the Wigner
function are a consequence of quantum interference effects.
The negative values are a consequence of the fact that once a
particle has passed through a magnet its polarization (either
+ or -) is not retained when it arrives at the next magnet. This
is a consequence of the the fact that a particle is always in a
superposed state each time it interacts with a magnet. As a
result of the interaction, a particular polarization will be ob-
served. In terms of the cognitive analogue depicted in Figure
2, the preceding can be translated as follows: Even though
a subject has already decided that they trust (T=+) the im-
age and have deemed the face to be attractive (A=+), when
they are presented with the decision about whether the im-
age is manipulated, at that decision point they are necessar-
ily superposed with respect to trust and attractiveness. This
can only occur when the decision perspectives are incompat-
ible. Incompatibility is indeed present in the HSM as the op-
erators corresponding to decisions of trustworthiness T̂ , Â,M̂
do not pair-wise mutually commute: [T̂ , Â] 6= 0, [T̂ ,M̂] 6= 0,
[Â,M̂] 6= 0.

Incompatibility generates interference effects which gen-
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erate probabilities of outcomes, that is they are fundamen-
tally different from standard probabilistic models (Bruza et
al., 2015). As stated above, the cognitive S.G. device de-
picted in Figure 2 can be modelled by using the chain rule:
P(T,A,M) = P(T )P(A|T )P(M|A,T ). This expresses that the
underlying probabilistic model of the device is simply the
joint probability distribution P(T,A,M). The critical point is
that the structure of the event space underpinning P(T,A,M)
assumes that the variables are jointly measurable, e.g., the
subject can simultaneously access information regarding the
attractiveness of the face and whether the image is manipu-
lated. The previously mentioned incompatibility in the HSM
[Â,M̂] 6= 0 implies that this assumption does not hold. Con-
sequently, the subject cannot cognitively form the joint distri-
bution P(T,A,M). In short, the HSM provides a probabilistic
framework which does not rely on the assumption that vari-
ables are jointly measurable. This has been one of the key fea-
tures of quantum models of cognition (Busemeyer & Bruza,
2012).

The use of three operators is crucial in the derivation of the
two-dimensional Hilbert space because three operators neces-
sarily entail that a complex Hilbert space must be used. The
use of less than three operators necessarily implies that the
cognitive decision model can be expressed as a real-valued
Hilbert space, which has been the practice thus far in quantum
cognition research. The significance of this difference lies in
the complex phase factor exp(iφm) which cannot be derived
unless there are three operators. We speculate that it is this
phase factor which generates the interference effects for the
Wigner function to go negative and hence become quantum.
To the best of our knowledge, this study is the first to: a) de-
velop a specialised protocol to genuinely exploit the complex
Hilbert space by constructing three operators and states, and
b) utilise the Wigner function to determine the quantumness
of a cognitive state.

Moreover, this determination is straightforward and does
not suffer from the challenges and controversies associated
with using contextuality to determine whether the cogni-
tive system is quantum-like (Dzhafarov, Kujala, Cervantes,
Zhang, & Jones, 2016; Bruza & Fell, 2018).

Conclusions and future work
This article has demonstrated the specification and valida-
tion of a quantum decision model by employing an experi-
mental protocol derived from quantum physics. The proto-
col involved three binary decisions in a forced choice design.
Future studies may investigate the measurement of decisions
by asking binary questions of any number of points within a
spectrum of responses by extending the quantum model de-
scribed in this paper.
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