UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Effect of Format on Information and Problem Solving

Permalink
https://escholarship.org/uc/item/0b60g54f

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors

Patel, Mukesh .

du Boulay, Benedict
Taylor, Christopher

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/0b60q54r
https://escholarship.org
http://www.cdlib.org/

Effect of format on information and problem solving*

Mukesh J Patel, Benedict du Boulay and Chris Taylor
School of Cognitive and Computing Sciences,
The University of Sussex,
Falmer, Brighton BN1 9QH, UK.
Email: mukesh@cogs.sussex.ac.uk

Abstract

This study reports the effect of differences in for-
mat of Prolog tracers on Prolog problem solving
tasks. Three different tracers (Spy, TPM, and
EPTB) in different formats were tested to check
for their relative effectiveness in solving five dif-
ferent Prolog problems. 43 subjects attempted to
solve each problem with each trace (15 problems in
total). Preliminary analysis of solution times and
response data indicate that EPTB performed best
across all problems. An account for this finding is
presented, as is one for a number of interesting in-
teractions between the effects of problem type and
trace format, which supports the general conclu-
sion that while format is a significant determiner
of access to information, it can also constrain the
sorts of problems that could be solved readily with
that information.

Introduction

The basic aim of this study was to examine differences
in user performance due to differences in Prolog tracer
format. The results of the effect of format, particu-
larly on the text-graphics dimension, on the utility of
information in solving specific problems encountered
by novice programmers are reported. A tracer is a ba-
sic tool employed in a wide variety of programming
tasks as well as being used by beginners to help them
learn how to program. In particular, a tracer can ex-
plicate the relation between a program as a piece of
text and the actions that it describes. So a trace of
specific program is a sequence of changes in the data
structures and control flow decisions that have caused
changes during program execution. In Prolog the tu-
torial function of the tracer is more marked than in
other programming languages because of the complex
nature of the underlying mechanisms of this language.

*This work was supported by a grant from the UK Joint
Research Council Initiative in Cognitive Science/HCI. The
experimental work was conducted using the POPLOG pro-
gramming environment.

852

Important aspects of any tracer are (i) what informa-
tion about internal mechanisms and transient states it
is designed to show, (ii) the notation or format in which
the information is shown, (iii) the method of control-
ling the tracer i.e. its interface, and (iv) the intended
users and expected tasks for which it will be employed
(Taylor, du Boulay & Patel, 1991).

In order to be fully conversant with Prolog it is nec-
essary to understand its complex, internal and largely
hidden mechanisms. These operations can be de-
scribed and/or explained in more than one way (Pain
& Bundy, 1987) with different perspective emphasising
different aspects, such as variable binding, flow of con-
trol, recursion, search space, ete., though most tracers
usually provide the minimum information necessary for
reconstructing the whole ‘story’ of a program’s execu-
tion. Tracers are typically evaluated in terms of vari-
ance in ezrplicit information about these aspects, and
not whether such information is present or absent. The
explicitness of information is partly affected by format,
and that interaction was taken into account in design-
ing this study.

Differences between Prolog Tracers

This study concentrates on investigating two dimen-
sions on which Prolog tracers vary; the overall amount
of explicit information, and, the format of presentation
of the information. Three tracers were evaluated. The
first tracer, Spy (or Byrd Box) is rather basic with lim-
ited explicit information presented in a textual format
which is not always easy to comprehend (Byrd 1980).
The second one, Enhanced Prolog Tracer for Beginners
(EPTB), also textual, was developed by Dichev and du
Boulay (1989) to overcome some of the obvious short-
comings of Spy. The third tracer, Transparent Prolog
Machine (TPM), is an idealised version of a commercial
product based on work by Eisenstadt and Brayshaw
(1988) which displays certain information such as flow
of control and backtracking in graphical representa-
tions of AND/OR trees.

How do tracers vary in terms of explicit information?
In this context, the term information refers to informa-
tion about when, how and which clauses are matched,

mailto:mukesh@cogs.sussex.ac.uk

how variables are bound to (and unbound from) partic-
ular values at certain points in the running of the pro-
gram, and the overall flow of control, including back-
tracking, together with the success or failure of goals.
Tracers provide such information more or less explicitly
in different ways. For example, Spy does not explicitly
indicate which clause of a predicate is being used at any
point, whereas EPTB and TPM do. And, Spy refers
to program variables by their internal names such as
‘405’ while, TPM systematically labels variables with
letters, and unlike both, EPTB uses the names chosen
by the programmer appended with a numerical sub-
script to distinguish between copies. Though all three
methods serve the same function, they are not equally
useful.

So tracers can provide useful information in different
ways depending on emphasis on particular perspective
of Prolog, which affects their relative informativeness.
Because information is partly implicit (e.g., down the
screen ordering) and partly explicit (numerical goal
numbers) it is hard to determine the unavailability of
information. In order to avoid confusion due to this
it was assumed that, as far as the experimental task
was concerned, all three tracers provide the same sort
of information, and that any main differences in their
usefulness is due to format. More realistically, it is ob-
vious that in most cases there would be some interac-
tion between format and information content, and so
any explanation of helpfulness of tracers would have
to give an account of such an interaction. But our
strong assumption of information equivalence is justi-
fied because the stimuli problems were designed and
tested to ensure a fair evaluation of similar features of
each tracer. Further, the same rigour in designing the
task material enabled us to determine more clearly the
source of such interaction.

So assuming that the information content of tracers
is fixed for all relevant aspects of Prolog, how can they
vary in terms of format? Tracers can present informa-
tion in a mainly graphic or text format. Aside from
trivial cases, the distinction between graphic and tex-
tual format is rarely clear cut; even in a fully textual
format the serial ordering of information about states
at each step in a program run reflects an implicit no-
tion of temporal ordering; information at any step n
is partly dependent on information at step n-1 and
will itself determine the information content of step
n+1. Serial ordering information is such a case is not
textual but graphical. Conversely, a graphical tracer
would be of limited value without textual information
such as the value of bound variables at particular steps
in the run. However, for our purposes a crude distine-
tion between the two categories of tracers is sufficient
because our aim is to concentrate on differences in use-
fulness due to very broad parameters; for example, the
difference due to the representation of flow control as
graphical AND/OR trees or as linear ordering of tex-
tual information.

853

The following list of general advantages of graphic
format also serves to highlight the disadvantages of
text format. It is included to anchor some of the basic
differences between graphic and text formats. Some of
the advantages such as items 7 and 8 are dependent on
the extra degrees of freedom provided by computers
and bit-mapped screens.

1. Impact.

2. Proportional spatial display can represent degree of
relatedness.

3. Clarity in display of non-linearly ordered informa-
tion such as loops and backtracking.

4. A degree of abstraction can help overcome ambiguity
in information.

5. Can display more than one perspective, if informa-
tion points are related between dimensions. Also
possible in textual format.

6. Enables zooming in and out to access essential rela-
tionship between information points.

7. Greater possibility of displaying dynamic process
(animation) with real time updates. Though pos-
sible in text formats they would lack clarity.

8. More direct access to information though this de-
pends on the versatility of the display method.

Note that some advantages are not exclusive to graphic
formats, and others are of limited value unless aug-
mented with textual information. Aesthetic aspects
of graphic representations can improve communication
efficiency (Shu 1988), but such improvement often de-
pends on the nature of information being displayed. In
the case of Prolog programs there is a limited number
of ways in which information about flow of control and
backtracking can be graphically displayed. For exam-
ple, flow of control can be represented as AND/OR
trees, OR-trees (Hook, Taylor and du Boulay, 1990)
or in terms of flow of satisfaction arrows (Clocksin &
Mellish 1981). In such cases the spatial arrangement
of certain aspects of information plays a crucial role
in capturing essential and important relationships be-
tween different parts of a program. This would be ex-
pected to be more helpful in solving problems related
to flow of control and backtracking. However, major
advantages of graphic formats combined with graphic
terminals, may be adversely affected by modality mis-
match between textual source code and graphic trace,
which is a possible source of ambiguity that could af-
fect ease of access to information. Our results indi-
cate that modality mismatch has some adverse effect
on subjects’ problem solving performance. Thus ad-
vantages of graphic format should not be regarded as
uniformly beneficial.

Details of tracers

While 1t seems that a graphic format has certain ad-
vantages over more conventional textual format, other

factors can affect their usefulness for particular tasks.
Tracers used in this evaluation study are briefly de-
scribed to illustrate major differences between them.
Most of the emphasis is on highlighting the effect of
format on information about certain aspects of Pro-
log, because, though the degree of differences between
tracers is partly influenced by how explicit an aspect
of Prolog is presented in a trace output, solutions to
problems used in this study depend to a very large
extent on the effect of format on ease of access to in-
formation. Note that the tracers were not used truly as
tracers in a dynamic way. In each case an appropriate
screen dump of the relevant trace output was shown in
its entirety, so users could not ‘grow’ the trace nor add
or delete information from it. Thus, variation between
method of control between tracers was eliminated. Our
intention was not to examine the tracers ‘in the round’
but to focus on the influence of format on clarity and
accessibility of information.

Spy

Spy is a very basic textual (linear) tool and is included
in this study because subjects were familiar with it.
The version used in this study did not show system
goals. This tracer provides most of the basic informa-
tion necessary for programming or debugging in Pro-
log, but much of it is implicit. In particular, the rela-
tionship between the source code and the trace output
is not as clearly displayed as it is in TPM and EPTB,
which are both designed to overcome some of the obvi-
ous shortcomings of Spy. Given the basic lack of clarity
in information presentation, Spy was not expected to
perform better than TPM and EPTB.

Transparent Prolog Machine

TPM tracer makes use of a modified and extended
AND/OR tree representation, and is an interesting il-
lustration of how graphical techniques can be utilised.
The trace outputs used in this study were modified
to include all the relevant details which are normally
optionally selected by the user. The spatial layout of
TPM provides a great deal of information at a glance,
particularly on the flow of control and search space.
The trace also seems a lot less cluttered than Spy or
EPTB; it gains in clarity by exploiting some of the
advantages of graphic format outlined above. How-
ever, the use of a graphical representation of AND/OR
trees restricts the screen space available for information
about predicates with a large number of arguments
and/or long lists, or variables with long names. This
constraint is a consequence of the tracer format. This
problem can be overcome by including a scrolling facil-
ity but the display of essentially textual information is
still poor compared to more conventional textual trac-

ers such as EPTB and Spy.

854

Enhanced Prolog Tracer for Beginners

EPTB is a textual (linear) tracer (Dichev and du
Boulay, 1989) with a strong emphasis on giving in-
formation about data structures and variable binding
in the trace output. It also has some other features
not present in Spy, such as information on reasons for
failure of goals. The tracer generally makes more use
of labels and symbols to describe different sections of
a trace output, and a wide range of options for adjust-
ing the degree of detail shown. It is expected to be
more helpful (than Spy or TPM) for solving problems
involving data structures and variable binding,.

Task and Motivation

The task was designed to evaluate differences in per-
formance due to tracer type. Problems used in this
study can be roughly divided into two distinct groups.
Their grouping was crudely determined by how the so-
lution depended on certain aspects of Prolog. Solution
to three problems depended on information related to
backtracking, clauses tried and undefined predicates.
And solution to two more problems depended on as-
pects of information about recursion, system goals,
goals with variables, and list manipulation. The reader
need not be fully conversant with these aspects of Pro-
log. It will suffice to comprehend that these categories
refer to distinct aspects of Prolog and that ease of ac-
cess to information about them is helpful in program-
ming and debugging tasks in Prolog. The experiment
examined differences in performance due to tracer (or
format) type. Since information about certain aspects
of Prolog varied across tracers, as far as possible prob-
lems were designed to address information about as-
pects of Prolog which were common to all three trac-
ers. So, for example, no problems directly involving
cuts were included because the big difference between
the information provided by Spy (which is implicit)
and TPM (which is very clear). Similarly solutions to
problems that depended on explicit information about
system goals were excluded because Spy and EPTB,
unlike TPM, do not provide explicit information about
them. Problems related to such obvious differences in
the extent and quality of information were avoided.
Reference to quality is important because often what
is not explicitly stated in a tracer can often be de-
rived from available information on other aspects of
the trace. This makes it more difficult to distinguish
clearly between explicit and implicit information in
trace outputs, which is also affected by format.

The null hypothesis is that there will be no differ-
ence in time or response due to trace output. In other
words, format is expected to have no effect on either
the speed or accuracy of performance. If, however, a
significant difference in subjects’ performance is evi-
dent then it was assumed that this would be due to
format and its effect on accessibility to information.
This follows from the assumption outlined above that
none of the problems were biased in favour of a partic-

Problem Group 1 Group 2

Tracer 1 2 3 4 5 | Mean
TPM 55.2 87.1 60.2 75.3 1319 81.9
Spy 63.8 102.7 773 | 1074 163.9 | 103.1
EPTB 70.4 75.8 81.7 69.7 1124 82.0
Mean 63.1 88.6 73.1 84.2 136.1

Table 1: ST’s (secs.) of Problem by Tracer (n=43)

ular type of tracer. The preliminary results presented
here suggest an interesting interaction between format
and information.

Method

All subjects had been exposed to the Spy tracer and
were given a computer-based tutorial designed to ex-
plain TPM and EPTB. On reaching a required level of
competence in using these tracers subjects had to solve
15 Prolog problems with the aid of trace outputs. The
same problem, suitably disguised, was presented three
times; each time with a different trace output. Prob-
lems were presented in a pseudo-random order. All
problems had multiple choice responses. Subjects were
asked to solve the problems by referring to the accom-
panying trace output and to do so as accurately and
as quickly as possible. Forty-three subjects completed
this task, which together with the initial tutorial took
about one hour. Data on time spent on solving each
problem and correct response were collected.

Results

Solution times (ST) ANOVA was carried out with sub-
jects as the random factor and Tracer (3 levels) and
Problem (5 levels) as fixed factors. All the data was
included in the analyses. There was a significant main
effect of tracers, F(2,84) = 11.32, p < 0.001, indicat-
ing that ST is dependent on tracer type. Overall, sub-
Jects spent significantly more time on attempts to solve
problems with Spy, than TPM or EPTB. There was a
significant main effect of problems, F(4,168) = 42.14,
p < 0.001. Variance in problems difficulty would be
expected to have this effect on ST. Broadly speaking,
Group 1 problems (1, 2 and 3) were easier to solve
than Group 2 problems (4 and 5), as is evident from
ST’s in Table 1. However, far more interesting is the
significant interaction between tracers and problems,
F(8,336) = 3.53, p < 0.001. ST’s vary according to
tracers for each problem, and these differences are not
consistent across tracers. For example, TPM aided so-
lutions to problems 1 and 3 require less time EPTB .
The reverse is the case for the remaining 3 problems.
Subjects are particularly slow at solving problems 2,
4 and 5 with Spy. These sorts of differences in mean
ST’s reflect differences in format, and therefore, ease in
access to information necessary to solve problems. For
instance, subjects’ faster solutions to problems 1 and 3
with TPM is probably due to their superior display of

855

Problem Group 1 Group 2

Tracer 1 2 3 4 5 | Mean
TPM 90.7 884 721 349 41.9 66.6
Spy 93.0 58.1 T6.7T | 11.6 27.9 53.5
EPTB 86.1 T6.7 T79.1 | 814 T2.1 79.1
Mean 89.9 744 T76.0 | 42.6 47.3 =

Table 2: % Correct Response of Problem (n=43)

information which can be taken in ‘at a glance’ which
is particularly useful for solving those problems.

Differences in ST’s are more interesting when jointly
considered with response data. An ANOVA similar to
that of ST data was carried out on responses. There
was a significant main effect of problems, F(4,8) =
32.89, p < 0.001, which reflects the varying level of dif-
ficulty of problems. On average subjects found Group
1 problems easier to solve. There was also a signifi-
cant main effect of tracers, F(2,8) = 23.06, » < 0.001.
Overall subjects performed best with EPTB and worst
with Spy, as illustrated in Table 2. There was a signifi-
cant interaction between tracer and problem, F(8,336)
= 8.92, p < 0.001. Subjects performed less well in solv-
ing Group 2 problems with with TPM and Spy than
they did with EPTB. Taking into account the ST's for
EPTB, the correct response data indicates that the ex-
tra time was well spent. For Spy, the results show an
inverse relationship; higher ST’s for problems 2, 4 and
5 are reflected in far fewer correct responses. Even
when trying hard subjects were encountering severe
difficulties in solving problems (particularly, problem
4) with Spy. Similarly, TPM was less helpful than
EPTB for solving problems 4 and 5, though there is
no consistent correlation (inverse or otherwise) with
ST’s.

Apart from Spy accompanied with problem 2, all
tracers seem to be equally useful for solving Group 1
problems. But they take different ST’s, which indi-
cates that though all three traces have the informa-
tion necessary to solve these problems, access to it is
significantly affected by format. Given that Group 1
problems are less difficult to solve than Group 2 prob-
lems, this indicates EPTB is particularly helpful when
solving more difficult or intricate problems in Prolog.

Discussion

The results show a major effect of tracer format on sub-
jects’ ability to solve Prolog problems. Overall, and as
expected Spy had the most shortcomings. It does not
provide information on system goals, and the simple,
linear text format is not good at conveying information
about backtracking, more complicated retry clauses,
and information about variables involving list manipu-
lations. TPM is good at giving information about sys-
tem goals and provides list manipulations’ information
that looks less cluttered than Spy or EPTB. However,
EPTB is better at displaying information about retry
clauses which explains the high frequencies of correct

solutions to Group 2 problems. EPTB’s good perfor-
mance across all problems reflects the benefits of a for-
mat that eases access to a range of useful information.
This results in a modest increase in ST’s as users have
to work through a linear presentation of information,
not allowing them to be as selective about focusing on
specific chunks as in TPM. EPTB cannot exploit the
advantages of spatial representations for those aspects
of Prolog which can be better presented in graphic for-
mats such as TPM. However, this shortcoming is offset
by other advantages such as better display of informa-
tion on list manipulations and retry clauses, both of
which do not suffer from the constraints of graphic
format - this is particularly true for long list manip-
ulations.

The linear nature of textual formats imposes fewer
constraints which partly explains EPTB’s better per-
formance, and the remarkable difference in TPM’s per-
formance between Group 1 and Group 2. Preliminary
analyses of ST’s and responses highlight two major
effects of format on information accessibility. First,
graphic formats benefit from greater impact and clar-
ity, and perform best for solving problems associated
with the relationship with various clauses in a Prolog
program. Second, this advantage only holds for simple
programs with short list manipulations and relatively
few retry clauses; programs with long list manipula-
tions or many retry clauses severely test the limitations
of graphic tracers such as TPM version evaluated in
this study. Graphic formats are far more constrained
by a lack of space than linear textual formats. In the
latter more space is created by simply adding another
line; things are rarely that easy to fix in a graphic for-
mat tracers, particularly those, like TPM, which rep-
resent certain basic information in an AND/OR trees.
Augmenting AND/OR trees with textual information
can help overcome some of these constraints to a lim-
ited extent. However it is not clear that this difference
would scale up to large programs written by experts
where it has been argued (e.g., Eisenstadt & Brayshaw
1988) that information about the overall shape of the
Prolog execution tree is advantageous.

Given the findings reported here it seems that for the
presentation of information about Prolog programs ex-
ecutions, a textual format tracer would be adequate
for novice programmers. This does not imply that
graphic formats are inherently unsuitable, but the re-
sults indicate that advantages of graphic format vary
between different aspects of Prolog. For complicated
and inter-related information such as that of a Prolog
program execution, gains in clarity of graphic format
result in less than adequate treatment of related as-
pects (though a graphic based approach is probably
far more effective for teaching Prolog). Linear textual
formats are not similarly constrained; more than one
aspect of a complex piece of information can be simul-
taneously presented.! We are at present working on a

1This approach could increase the time required to as-

856

prototype (mainly textual) tracer tool which incorpo-
rates the relative advantages of each format type (Tay-
lor, du Boulay & Patel 1991). It seems that though
format has a significant effect on ease of access to in-
formation for problem solving, much of this effect is
modified by other variables such as the amount and
quality of information and its relevance to problem so-
lutions, and until we have a much better understanding
of this complex interaction, linear textual tracers such
as EPTB are more effective in helping Prolog program-
mers solve programming problems.

Acknowledgement

We acknowledge comments from R. Noble and M.
Eisenstadt.

References

Byrd, L. 1980. Understanding the control flow of Pro-
log programs in Tarnlund S. ed. Proceedings of the
Logic Programming Workshop, 127-138.

Clocksin, W.F. and Mellish, C. 1981. Programming
in Prolog, Springer Verlag.

Dichev, C., and du Boulay, J.B.H. 1989. An Enhanced
Trace Tool for Prolog. In Proceedings of the Third
International Conference, Children in the Information
Age, 149-163. Sofia, Bulgaria.

Eisenstadt, M. and Brayshaw, M. 1988. The transpar-
ent Prolog machine (TPM): An execution model and

graphical debugger for logic programming. Journal of
Logic Programming 5(4):277-342.

Hook, K., Taylor, J. and J.B.H. du Boulay. 1990. Redo
"Try Once And Pass”: the influence of complexity and
graphical notation on novices’ understanding of Pro-
log. Instructional Science 19 (4-5):337-360.

Pain, H. and Bundy, A. 1987. What stories should
we tell novice Prolog programmers? In Hawley, R. ed.
Artificial Intelligence Programming Environments. El-
lis Horwood.

Taylor, C., du Boulay, J.B.H., and Patel, M.J. 1991.
Outline Proposal for a Prolog "Textual Tree Tracer’
(TTT), Cognitive Sciences Research Paper-177, School
of Cognitive Sciences, The University of Sussex.

Shu, N. C. 1988. Visual Programming, New York: Van
Nostrand Reinhold.

similate all the information but that is a separate issue.

	cogsci_1991_852-856

