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Regulation of NAD+ metabolism, signaling and 
compartmentalization in the yeast Saccharomyces cerevisiae

Michiko Kato and Su-Ju Lin*

Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of 
California, One Shields Ave. Davis, CA 95616, USA

Abstract

Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living 

systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the 

conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and 

metabolism and function as molecular links between cells and their environment. Maintaining 

NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has 

been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ 

metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the 

budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the 

production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is 

mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism 

and the PHO pathway has also been reported; however, detailed mechanisms remain to be 

elucidated. The PHO pathway also appears to modulate the activities of common downstream 

effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling 

pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which 

have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of 

these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, 

intracellular compartmentalization facilitates the regulation of enzymatic functions and also 

concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as 

mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss 

several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of 

NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear 

how NAD+ and NAD+ intermediates shuttle between different cellular compartments. Together, 

these studies provide a molecular basis for how NAD+ homeostasis factors and the interacting 

signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and 

genome stability.
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1. Introduction

Pyridine nucleotides NAD+(H) and NADP+(H) are essential coenzymes participating in 

many cellular redox reactions in all living systems. In addition, NAD+ and its derivatives 

also function as substrates and signaling molecules in key cellular processes such as 

regulation of Ca2+ signaling, chromatin structure, DNA repair and life span (1–5). Aberrant 

NAD+ metabolism has also been linked to cancer, metabolic disorders and 

neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease (6–10).

Although redox reactions do not alter the total cellular NAD+ levels, some cellular processes 

such as Sir2-mediated protein deacetylation, consume NAD+; therefore constant 

replenishment of NAD+ is essential for maintaining cellular fitness. Cells have developed 

complex interconnecting biosynthetic and signaling pathways to regulate intracellular NAD+ 

levels. However, factors regulating NAD+ metabolism and homeostasis remain unclear due 

to the dynamic and complex nature of the NAD+ synthesis pathways. In this review, we 

summarize recent studies on the link between NAD+ metabolism and other signaling 

pathways in the budding yeast Saccharomyces cerevisiae, and discuss our perspectives on 

these findings in the mechanisms underlying the regulation of NAD+ homeostasis.

2. Overview of NAD+ biosynthesis

Cellular NAD+ is synthesized from a number of precursor molecules. Eukaryotes utilize the 

amino acid tryptophan for de novo biosynthesis of NAD+. NAD+ metabolites such as 

nicotinamide (Nam), nicotinic acid (NA) and nicotinamide riboside (NR) can also be 

salvaged and re-assimilated into NAD+. In S. cerevisiae, NAD+ is synthesized from two key 

intermediates nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide 

(NMN) via the de novo and NA/Nam/NR salvaging pathways (Fig. 1). NaMN is produced 

by transferring the phosphoribose moiety of phosphoribosyl pyrophosphate (PRPP) to 

nicotinic acid (NA) or to tryptophan-derived quinolinic acid (QA), which is catalyzed by 

phosphoribosyltransferases Npt1 (NA phosphoribosyltransferase) and Bna6 (biosynthesis of 

nicotinic acid 6), respectively (11–13). QA is mainly derived from the amino acid 

tryptophan via five enzymatic reactions and a spontaneous cyclization (14,15). The five 

enzymatic reactions are mediated by Bna2 (tryptophan 2, 3-dioxygenase), Bna7 

(arylformamidase), Bna1 (3-hydroxyanthranilic acid dioxygenase), Bna4 (kynurenine 3-

mono oxygenase) and Bna5 (kynureninase). NA can be generated from Nam mediated by 

the Nam deamidase Pnc1 (pyrazineamidase and nicotinamidase) as part of the salvaging 

reactions. Both NA and QA can also be acquired from the environment by the NA 

transporter Tna1 (transporter of nicotinic acid) (16,17). De novo synthesis and NA/Nam 

salvaging pathways converge at NaMN, which is converted to deamido-NAD+ (NaAD) by 

transferring the AMP moiety of ATP by Nma1 and Nma2 (NMNATs). Amidation of NaAD 

by Qns1 (glutamine (Q)-dependent NAD+ synthetase) completes NAD+ synthesis (18). 

NMN is produced from NR by Nrk1 (nicotinamide riboside kinase) -catalyzed 
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phosphorylation (19,20) and is subsequently adenylylated to NAD+ by Nma1 and Nma2 

(nicotinamide mononucleotide adenylyltransferase) (21–25). Nrk1 can also convert nicotinic 

acid riboside (NaR), a deamidated form of NR, to NaMN (20). Unlike higher eukaryotes 

including mammals, yeasts do not possess the gene coding for Nampt (Nam 

phosphorybosyltransferase), the enzyme that converts Nam to NMN. Instead, Nam is 

deamidated to NA by Pnc1 (26).

Yeast cells appear to produce NAD+ predominantly via the NA/Nam salvage pathway 

during exponential growth (27) because standard growth media contain high concentrations 

(400 μg/l or ~ 3 μM) of niacin (NA and Nam) and budding yeast has a very efficient NA 

transporter Tna1 (Km for NA = ~ 1.7 μM) (17). Interestingly, although NR is an endogenous 

metabolite (28), standard yeast growth media do not contain NR because they do not support 

the growth of NAD+ synthesis mutants defective in both de novo and NA/Nam salvaging 

(for example, the qns1Δ mutant). It is possible that NR is degraded during the production of 

components of yeast media (for example, yeast extract) (29). Unlike NA and Nam, NR is 

more susceptible to heat and perhaps other stresses (Kato et al., unpublished results). 

Nevertheless, NR has been shown to be an efficient NAD+ precursor that contributes to the 

NAD+ pool and supports NAD+-dependent reactions (19,20). NR can be acquired from the 

environment by the high-affinity NR transporter Nrt1 (nicotinamide riboside transporter) 

(Km for NR = ~ 22 μM) (30) or by salvaging intracellular intermediates. Intriguingly, yeast 

cells constantly release NR to the growth medium and retrieve it back to cells (28) allowing 

NR to traffic between intracellular and extracellular compartments. It is possible that 

maintaining a flexible NR/NAD+ pool may facilitate prompt adjustments of cells in response 

to metabolic stresses (31). Intracellular level of NR in average wild type yeast cell is ~ 2–10 

μM (28,32). Level of released NR in the growth medium varies depending on the growth 

conditions and genetic background. For example, in a standard late log phase cell culture in 

YPD (10 mL, total cell number ~3×109), NR in the culture is estimated to be ~0.5 μM. 

Salvaging endogenously produced NR has been shown to be essential for maintaining 

NAD+ homeostasis and cellular fitness (28,33). An NR assimilation mutant 

(nrk1Δpnp1Δurh1Δ) is estimated to lose up to 0.3 mM of NR (28) and its NAD+ level is 

decreased by ~50% (20).

Recent studies have identified additional NR salvaging factors connecting NR metabolism to 

the NA/Nam salvaging pathway (Fig. 1). The nucleosidases Pnp1 (purine nucleoside 

phosphorylase), Urh1 (uridine hydrolase), and Meu1 (methylthioadenosine phosphorylase, 

originally identified as multicopy enhancer of UAS2) have been shown to convert NR to 

Nam, or NaR to NA (20). The nucleotidases Isn1 (IMP-specific 5′-nucleotidase) and Sdt1 

(suppressor of disruption of TFIIS) (33) and phosphatases Pho5 and Pho8 (28,34) have also 

been shown to contribute to NR metabolism by converting NMN to NR. Additional routes 

may exist to assist the interconversion of NAD+ intermediates. For example, although 

purified recombinant Pnc1 appeared to be specific for the conversion of Nam to NA (33), a 

cell lysate-based study indicated that Pnc1 might also deamidate NMN and NR (28). In 

addition, we recently observed unexpected opposite expression patterns of functionally 

linked PNC1 (Nam deamidase, converts Nam to NA) and NPT1 (converts NA to NaMN) 

(Fig. 1) in late log phase. A significant up-regulation of PNC1 gene expression was 
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accompanied by down-regulation of NPT1 (Kato et al., unpublished results), which 

contradicts the expectation that the expression levels of NPT1 and PNC1 are positively 

correlated based on the known function of these two genes. These observations suggest that 

Pnc1 might have additional substrates or functions, and further studies are required to 

explore these possibilities.

3. Crosstalk between NAD+ metabolism and nutrient/stress sensing 

pathways

3.1 Sir2, calorie restriction, and NAD+ metabolism

The Sir2 (silent information regulator 2) family proteins are highly conserved from bacteria 

to human (35,36). These proteins, collectively called sirtuins, harbor a conserved core 

domain required for its enzymatic activity. Many sirtuins have been biochemically 

characterized as NAD+-dependent protein deacetylases or ADP-ribosylases (37). Sir2 was 

first identified as a component of the Sir1/2/3/4 silencing complexes in yeast (38,39). The 

Sir silencing complexes are required for the maintenance and repression of three repetitive 

genomic regions: telomeres, the cryptic mating type loci (HML and HMR), and the 

ribosomal DNA loci (40–43). Each locus employs a unique set of DNA binding factors to 

recruit specific Sir proteins to mediate transcriptional silencing by generating a compact 

chromatin configuration. Among these Sir proteins, only Sir2 is required for maintaining the 

silencing of all three repetitive regions. The NAD+-dependent histone deacetylase activity of 

Sir2 provides a molecular mechanistic basis for Sir complex-mediated transcriptional 

silencing (44–46).

Sir2 homologs in yeast include Hst1, Hst2, Hst3 and Hst4 (homologous to Sir two) (35). 

Among those, Hst1 has the closest homology to Sir2 and has been shown to suppress 

silencing defects at the mating type loci of a sir2Δ mutant when overexpressed (35). 

However, it is suggested that Hst1 mediates transcriptional regulation independent of the 

SIR silencing complex by interacting with another transcription regulator Sum1 (47,48). 

Hst2 is the most abundantly expressed Sir2 homolog in yeast and accounts for most of the 

intracellular NAD+-dependent deacetylase activity (45). Hst2 appears to shuttle between the 

nucleus and the cytoplasm to regulate rDNA and telomeric silencing (45,49–52). Hst3 and 

Hst4 have also been linked to the regulation of genome stability (35,53).

Overexpression (one-extra copy) of Sir2 has been shown to extend yeast replicative life span 

(54). In metazoa, tissue-specific overexpression of Sir2 homologs has been shown to extend 

life span and ameliorate functional defects associated with aging (55–60). It appears that the 

expression of metazoan Sir2 must be temporally regulated and controlled at a moderate level 

in specific tissues to exert beneficial effects (55–57,59,61). The role of Sir2 in yeast life 

span regulation is also complex. Yeast life span has been defined and studied in two distinct 

ways: replicative lifespan (RLS) measures the division potential of individual cells (62), 

whereas chronological lifespan (CLS) measures the rate of post-mitotic survival of a non-

dividing cell population (63,64). Various longevity factors (which affect either RLS, CLS or 

both) have been identified in S. cerevisiae, and some of these factors are associated with 

Sir2 function. These factors include mitochondrial function (65–70), stress response/
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hormesis/mitohormesis (64,66,68,71–74), the NAD+-dependent deacetylase Sir2 family 

(75,76), partitioning of damaged proteins (77,78), genome stability (79–81), homeostasis of 

NAD+ and other metabolic factors (1,6,31,82,83), vacuolar function (84,85), ribosome 

biogenesis (86), cell hypertrophy (87–89), proteostasis (90–92) and metabolites-induced 

toxicity (93–97). Although whether and how these factors contribute to Sir2 mediated life 

span extension remain debatable, it is clear that Sir2 promotes RLS under normal conditions. 

The role of Sir2 in CLS is less clear and in certain genetic backgrounds, deleting SIR2 

appeared to extend CLS (98), highlighting the complex role Sir2 in life span regulation.

Sir2 has also been described as a key factor that mediates the beneficial effects of calorie 

restriction (CR); however, its role in CR is also highly debatable. In yeast, CR is often 

defined as the moderate reduction of glucose concentration in the growth medium from 2% 

to 0.5% (1,51,99–103). This moderate CR regimen extends both RLS and CLS. 

Interestingly, although moderate CR largely requires the Sir2 family proteins for RLS 

extension (51), Sir2 appears to be dispensable for RLS extension mediated by more severe 

CR condition (0.05% glucose, 10X further reduction of glucose compared with moderate 

CR, 0.5%)(104). In fact, severe CR extends RLS even more significantly without the Sir2 

family (100). This phenomenon is reminiscent of the Sir2 effect on CLS: under nutrient 

deprivation, deleting SIR2 further extends CLS in certain genetic backgrounds (98). It is 

likely that cells respond to these two CR regimens differently. For example, severe CR may 

additionally trigger gluconeogenesis, since gluconeogenesis is activated upon glucose 

starvation. It has been suggested that gluconeogenesis is induced in the sir2Δ mutant and 

therefore contributes to CLS extension (98). Supporting this, a key gluconeogenesis enzyme 

Pck1 was found to be a substrate of Sir2. In sir2Δ mutant, Pck1 remains active and 

gluconeogenesis is promoted (105). On the other hand, age-enhanced gluconeogenesis has 

been shown to shorten CLS and Hst3 and Hst4 down-regulate age-enhanced 

gluconeogenesis (106). In addition, human Sirt1 has been reported to deacetylate PGC1-α, 

which leads to induction of gluconeogenesis (107). Together, these studies demonstrate the 

complex roles of gluconeogenesis and Sir2 in CR, which are not surprising for metabolic 

longevity factors. In addition to the Sir2 family, CR is suggested to function through 

reducing the activities of conserved nutrient-sensing pathways to extend life span. Such 

pathways include the Ras-cAMP/PKA (cyclic-AMP activated protein kinase A) pathway, 

the nutrient-responsive Sch9/AKT (homolog of mammalian S6K kinases) and TOR (target 

of rapamycin) kinase pathways (Fig. 2) (108,109). CR also induces the shunting of carbon 

metabolism from fermentation towards the mitochondrial TCA cycle, and a concomitant 

increase of respiration (110). The Sir2 family proteins have been shown to interact with or 

modulate the activity of these CR-associated longevity factors. We await future studies to 

further detail the mechanisms underlying the complexity of Sir2 functions in CR.

NAD+ and its derivatives are important Sir2 regulators. NAD+ levels affect Sir2 activity and 

consequently the downstream events. Mutations that cause deficiency in NAD+ production 

affect Sir2-mediated processes. Deleting the NPT1 gene significantly reduces NAD+ levels 

and abolishes Sir2-mediated silencing (45) and CR-mediated life span extension (1). Nam is 

a by-product generated during Sir2-mediated deacetylation, which is also a potent non-

competitive inhibitor of Sir2 (111–113). The nicotinamidase Pnc1 is responsible for the 
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clearance of Nam by converting it to nicotinic acid (NA) (26). Increasing Nam concentration 

in the growth medium or blocking Nam clearance by deleting the PNC1 reduced Sir2-

mediated silencing and shortened life span (Fig. 2) (111,114), suggesting that preventing 

Nam accumulation is important for Sir2 function. NADH was reported to be a competitive 

inhibitor of Sir2, and lowering the NADH level by genetic modifications or CR increased 

Sir2-mediated silencing and life span (115). However, NADH is a weak inhibitor of Sir2, 

and reported in vivo NADH levels are too low to inhibit Sir2 activity (113). Therefore, it is 

possible that intracellular compartmentalization of NAD+ and NADH and/or specific 

protein-protein interactions create locally high NAD+/NADH ratios, thereby activating Sir2 

in vivo. It has been suggested that the affinity/sensitivity of Sir2 towards its substrates and 

inhibitors varied when Sir2 was in complex with different interacting partners (116). 

Interestingly, high concentrations of NMN could inhibit Sir2 activity in vitro (IC50 = ~ 3 

mM) (113). However, this inhibition is unlikely to be physiologically relevant considering 

low intracellular concentration of NMN (~ 60 μM) (32).

In addition to being regulated by NAD+ and its derivatives, both Sir2 and Hst1 have also 

been shown to regulate NAD+ metabolism. It has been reported that de novo NAD+ 

synthesis is regulated by Hst1-mediated repression and that deletion of HST1 raises the 

steady-state level of NAD+ (117). Hst1 has also been shown to repress the expression of NR 

transporter Nrt1 (118). Our recent studies suggested that Sir2 modulates the flux of NR 

salvage (28). The Sir2 family has been proposed to support the NA/Nam salvage pathway 

via producing Nam in deacetylation reactions (Fig. 1 and Fig. 2) (82). However, the precise 

role of Sir2 family proteins in NAD+ metabolism remained unclear. Increased NR release 

observed in the sir2Δ mutant suggested a specific role of Sir2 in NR salvage (28). It is 

possible that Sir2 helps to preserve the NAD+ pool by decreasing the pyridine nucleotide 

flux into the NR branch. Indeed, deleting SIR2 in cells lacking NR assimilation activity 

further decreased the size of the NAD+ pool (28). We await future studies to determine the 

molecular and biochemical roles of the Sir2 family in NR and NAD+ metabolism.

3.2 The PHO pathway and NAD+ metabolism

Our recent studies have uncovered a link between the regulation of NAD+ metabolism and 

phosphate signaling (34). In S. cerevisiae, phosphate homeostasis is regulated by the 

phosphate-responsive signaling pathway (PHO pathway), which monitors and responds to 

changes in the phosphate availability (119,120). The PHO pathway consists of regulatory 

components and downstream target genes whose expression is regulated by transcription 

factors Pho4 and Pho2. Activation of PHO pathway is influenced by intracellular phosphate 

(Pi) levels and phosphorylation state of Pho4 determines the gene expression of the 

downstream targets. In high Pi conditions, the cyclin-cyclin-dependent kinase (cyclin-CDK) 

complex Pho80-Pho85 phosphorylates Pho4, which is then exported out of the nucleus. 

Upon Pi starvation, the CDK inhibitor Pho81 binds the Pho80-Pho85 complex and inhibits 

Pho4 phosphorylation, allowing Pho4 to translocate to the nucleus and activate the 

expression of its target genes (119,120). Pho4-induced genes include those encoding 

repressible acid and alkaline phosphatases Pho5 and Pho8, high affinity phosphate 

transporters Pho84 and Pho89, and vacuolar proteins that mediate the utilization of stored 

polyphosphates (121).
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We previously reported that production of NR correlates with activation of PHO signaling 

(34). Intracellular NR level is increased under conditions that activate the PHO pathway 

(such as in low Pi growth media and deletion of PHO84), and is decreased in cells defective 

in PHO signaling (such as the pho4Δ mutant). Increased NR production under high PHO 

activity conditions is largely due to the activation of the vacuolar phosphatase Pho8, since 

deletion of PHO8 gene significantly decreases intracellular NR level (34). Our studies also 

demonstrated that utilization of extracellular NMN requires prior conversion to NR 

mediated by the PHO-regulated periplasmic phosphatase Pho5 (31). The cytosolic 

nucleotidase Sdt1, which plays an important role in NR production (by hydrolyzing NMN) 

(33), has also been suggested to be under PHO regulation (122). Together, these studies 

show evidence for PHO regulation of several components of NAD+ metabolism in yeast. 

Some of these studies may be extrapolated to understanding NR/NAD+ metabolism in 

mammalian cells. For example, “conversion to NR” (and other smaller NAD+ intermediates) 

may represent a strategy for the transport and assimilation of large impermeable NAD+ 

precursors. Supplementing NAD+ precursors and intermediates has been shown to replenish 

NAD+ level and ameliorate functional defects associated with abnormal NAD+ metabolism 

in mammalian models (59,123–125). Because the structures of many NAD+ precursors are 

unfavorable for direct diffusion across the cell membrane, either specific transporters or 

extracellular catabolizing enzymes would be required to utilize exogenous NAD+ 

precursors. In a study using a system where Nam utilization is blocked (by Nampt 

inhibitors), it was suggested that extracellular NAD+ and NMN need to be converted to NR 

for cells to utilize them. Interfering with the enzymatic activities that mediate the 

degradation of extracellular NAD+ to NMN, or NMN to NR reduced the ability of cells to 

synthesize NAD+. Although the transport mechanism of NR has not been characterized in 

mammalian cells, pharmacological inhibition of plasma membrane nucleoside transporters 

reduced intracellular NAD+ production (126). Supporting this model, a recent study showed 

that CD73, an extracellular (periplasmic) nucleotidase orthologous to H. influenza NadN, 

could convert NAD+ and NMN to NR (127). In addition, it has been suggested that NR is 

circulated in the peripheral bloodstream in mammals (128). To date, the molecular aspects 

of phosphate signaling in mammalian cells remain unclear. Interesting future studies would 

be to determine whether NAD+ metabolism is also linked to phosphate signaling in higher 

eukaryotes.

In addition to regulating NAD+ metabolism, the PHO pathway was suggested to respond to 

intracellular NaMN levels (34). Npt1 is the major enzyme that mediates the production of 

NaMN from NA. Increased activity of a PHO-regulated acid phosphatase Pho5 was 

observed specifically in npt1Δ mutant, suggesting that depletion of NaMN leads to PHO 

activation (34). Mechanisms underlying the cross-regulation between PHO signaling and 

NAD+ metabolism remain unclear. The coupling of these two pathways may render a more 

efficient metabolic support under specific conditions. For example, the phosphate moiety of 

NMN is a putative target for phosphate scavenging during Pi limitation. Moreover, since 

NaMN is an important intermediate for NAD+ biosynthesis, low level of NaMN might 

reflect impaired NAD+ biosynthesis and lead to activation of an alternative NAD+ salvage 

route. Since NR-mediated NAD+ synthesis requires phosphate (in the form of ATP), a 
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coordinated activation of the PHO pathway is expected in supporting NAD+ synthesis and 

homeostasis.

3.3 Other PHO-interacting nutrient/stress sensing pathways and their potential roles in 
NAD+ metabolism

Research in recent years has also connected PHO signaling to other nutrient sensing 

pathways (Fig. 2). For example, it has been shown that, after prolonged Pi starvation, the 

repletion of Pi to cells leads to degradation of the high-affinity phosphate transporter Pho84 

via the activation of protein kinase A (PKA) (129–133), demonstrating a connection 

between the glucose and phosphate signaling pathways. These studies also support a role for 

Pho84 as a Pi transceptor, which can sense as well as transport Pi. Other components in the 

PHO pathway have also been associated with glucose metabolism (134,135). In addition, 

PHO signaling and Sch9/Akt and TOR pathways appear to converge on Rim15 to regulate 

stress response transcription factors such as Msn2 and Msn4 (103,136,137). However, these 

pathways also affect different targets and often synergistically or oppositely regulate specific 

targets (138). Complex crosstalk between these pathways may allow cells to quickly adapt 

to environmental changes.

How may these nutrient sensing pathways regulate NAD+ metabolism? The stress-

responsive transcriptional factors Msn2 and Msn4 have been shown to regulate PNC1 

expression, and are required for CR-mediated life span extension (139). Increased 

expression of PNC1 was also observed under various mild stresses such as glucose or amino 

acid restriction, and heat or salt stresses (140). In addition, correlation between mRNA 

mistranslation and PNC1 up-regulation has been shown (141). Given that mild stresses can 

mediate life span extension (99,140,142) and that CR induces mild stress signals (73), it is 

possible that Pnc1 is a key factor that connects stress signals (including CR) to the 

regulation of Sir2 (143) as well as NAD+ metabolism (Fig. 2). Interestingly, Nampt 

(nicotinamide phosphoribosyltransferase), the functional homolog of Pnc1 in higher 

eukaryotes, is also responsive to stresses and suggested to be the mediator of CR-induced 

benefits (144,145)

Considering Nam is a potent Sir2 inhibitor, mechanisms to control Nam concentration 

would be key to maintain Sir2 activity. In yeast, Nam clearance is also achieved by 

methylation catalyzed by the Nam methyltransferase Nnt1, a homolog of human NNMT (N-

nicotinamide methyltransferase) (115,140). NNT1 overexpression was shown to rescue a 

PNC1 null mutation and restore CR-mediated life span extension in this genetic background 

(115). A recent study in C. elegans suggests that methylated Nam can induce a transient 

hormetic response, which leads to life span extension (146). The worm amine N-

methyltransferase ANMT-1 contributes to the production of N-methylnicotinamide. 

Methylated Nam is a substrate of aldehyde oxidase, an H2O2-generating enzyme thereby 

inducing transient increase of ROS (reactive oxygen species) signal. Moreover, specific 

NAD+ synthesis components have also been shown to play a role in other cellular processes. 

For example, NMNAT family proteins were reported to affect cellular functions 

independent of their enzymatic function. Salmonella NadR is a multi-functional NMNAT 

with a role in transcriptional regulation (147). Drosophila NMNAT was shown to possess 
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chaperone activity that contributes to axonal protection (7). In S. cerevisiae, Nma1 and 

Nma2 have been shown to alleviate proteotoxicity in yeast models of proteinopathies (148). 

Overall, these studies have demonstrated that specific NAD+ intermediates as well as NAD+ 

metabolism components also play a role in other cellular processes, further highlighting the 

importance of NAD+ homeostasis factors.

4. Intracellular compartmentalization of the NAD+ intermediate pools

4.1 Mitochondrial compartmentalization of NAD+ (H)

In yeast, NAD+ synthesis seems to occur mainly in the cytosol. It remains unclear how 

NAD+ and NAD+ derivatives are transported in and out of various intracellular 

compartments. Transport of NAD+ into the mitochondria can be mediated by the NAD+ 

carrier proteins encoded by NDT1 and NDT2 (149). Our understanding of mitochondrial 

NAD+(H) homeostasis mostly derives from studying the NAD+/NADH shuttle systems. 

Since the mitochondrial inner membrane is impermeable to NAD+ and NADH, the NADH 

shuttle systems function to move small permeable redox equivalents of NAD+ and NADH 

across the mitochondrial membrane to balance the NAD+/NADH ratio between the 

mitochondrial and the cytosolic/nuclear pools (150,151). For example, respiration-induced 

increase in NAD+/NADH ratio in the mitochondria can be transmitted to the cytosol by the 

malate-aspartate shuttle (Fig. 3). In yeast, CR induces a metabolic shift from fermentation to 

mitochondrial respiration (110) and a concomitant increase in the NAD+/NADH ratio (115). 

Because respiration produces NAD+ from NADH and NADH can function as a competitive 

inhibitor of Sir2 activity (115), it has been suggested that increased NAD+/NADH ratio may 

activate Sir2 during CR. Supporting this model, genetic manipulations that decrease NADH 

levels are shown to increase Sir2 activity and extend life span (110,115). In addition, 

deleting NADH shuttle components abolishes CR-mediated life span extension whereas 

overexpressing NADH shuttle components extends life span (101). This model has remained 

controversial because reported in vivo NADH levels are probably too low to inhibit Sir2 

activity (113). It is possible that intracellular compartmentalization of NAD+ and NADH 

creates locally high NAD+/NADH ratios thereby activating Sir2 in vivo. It is also possible 

that when Sir2 forms specific protein-protein interactions with different partners, the 

affinity/sensitivity of Sir2 toward its substrates and inhibitors may vary (116). Another 

model (not mutually exclusive) is that the level of Nam, a much more potent Sir2 inhibitor, 

is decreased by CR (111) leading to Sir2 activation. CR has been shown to increase the 

expression of PNC1 (a Nam deamidase that converts Nam to NA) (140), which is expected 

to decrease Nam level, leading to Sir2 activation. However, since Nam is also a key NAD+ 

precursor in the NA/Nam salvage pathway, it is unclear whether CR-induced Sir2 activation 

is due to increased NAD+ availability, reduced Nam or both.

In mammals, CR has also been reported to affect NAD+/NADH ratio in a tissue-specific 

manner, and these changes correlate with the levels of SIRT1 expression/activity (152,153). 

Molecular mechanisms underling CR-induced changes in the NAD+/NADH ratios and the 

subsequent events remain to be elucidated. In yeast, CR increases NAD+/NADH ratio by 

decreasing the NADH level (115), whereas in mouse, CR triggers different responses in 

different tissues (152,153). In muscle and white adipose tissues, the increase in NAD+/
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NADH ratios appeared to be due to increased NAD+ levels (152). In liver, CR actually 

decreases NAD+/NADH ratio by increasing the NADH level (152). In pancreas, fasting 

decreases NAD+/NADH ratio by decreasing NAD+ level (153). Despite the complexity of 

the regulation of NAD+/NADH ratios and Sir2 activities as well as the controversies 

whether Sir2 is activated by CR, there is no doubt that sufficient NAD+ level (i.e. functional 

NAD+ biosynthesis) is required for Sir2 activity and certain CR-induced beneficial effects. 

Functional NADH shuttles may confer metabolic flexibility to support multiple CR-induced 

molecular changes. In mammals, impairments of mitochondrial metabolism and NADH 

shuttles have also been implicated in age-associated diseases such as diabetes (154,155). 

Overall, these studies suggest that the NADH shuttles play important roles in mitochondrial 

metabolism and metabolic fitness by regulating NAD+ homeostasis. Identification of 

additional mitochondrial NAD+ homeostasis factors including the pyridine nucleotide 

transporters will provide insights into the understanding of the roles of mitochondria in 

NAD+ homeostasis.

4.2 Vacuolar and cytosolic compartmentalization of NMN and NR

Our recent studies suggest that NAD+ metabolism is connected to the PHO pathway. In 

particular, PHO-activated Pho8 and Pho5 contribute directly to NR production by releasing 

phosphate from NMN (28). Since Pho8 is a vacuolar membrane protein whose activation 

requires a vacuolar peptidase (156), we speculate that the vacuole is a cellular compartment 

for NR production and storage (Fig. 3). Supporting this possibility, our previous genetic 

screens searching for mutants that show altered NR release have identified factors involved 

in vacuolar ATP synthase (v-ATPase) assembly (34). These v-ATPase-related factors are 

known to function in establishing and maintaining the acidity of the vacuolar matrix. We 

found that 12 mutants harboring deficiencies in the regulation or the structure of v-ATPase 

complexes released more NR (2- to 3-fold higher than the wild type). Furthermore, 19 

mutants with deficiencies in vesicle-mediated transport also manifested increased NR 

release (2- to 3-fold higher than the wild type). Collectively, these results reinforced the idea 

that the vacuole and vesicle-mediated transport might play a role in NR metabolism and 

homeostasis.

If the vacuole is a cellular compartment for NR production and storage, how do cells salvage 

vacuolar NR to synthesize NAD+ in the cytosol? Fun26 may function to balance NR 

between the cytosolic and the vacuolar pools, enabling assimilation of NR originating from 

the vacuole into cytosolic NAD+ synthesis (Fig. 3) (34,157,158). Fun26 is the only yeast 

homolog of the human equilibrative nucleoside transporter (hENT) protein family, which 

mediates bi-directional transport of specific nucleosides across the plasma membrane and 

intracellular membranes (159–161). In yeast, the Fun26 protein was reported to have a 

minor role in NR transport relative to Nrt1 (30). However, the fun26Δ mutant displayed a 

level of NR release increase (3- to 4-fold higher than the wild type) comparable to that seen 

for the nrt1Δ mutant (34). In addition, a significant increase in intracellular NR level was 

also observed in the fun26Δ mutant (4- to 5-fold higher than the wild type) but not in the 

nrt1Δ mutant (similar to the wild type) (34). Therefore Fun26 may play a significant role in 

balancing the NR pools produced and stored in the vacuole and the NR pools used for 

NAD+ synthesis in the cytosol.
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These studies also suggest that for each individual cell, the level of released NR reflects the 

size of its dynamic cytosolic NR pool, and that the steady state NR level (determined in total 

cell extract) reflects the size of the stored pool (Fig. 3) (34). Supporting this idea, deletions 

of genes encoding cytosolic nucleotidases Isn1 and Sdt1 (33) significantly decreased NR 

release (~40 % decrease) (33,162) but only slightly affected intracellular NR level (~15 % 

decrease) (34,162). Conversely, deleting PHO8 largely decreased intracellular NR level 

(50–70 % decrease) but only slightly affected the level of NR release (20–30 % decrease) 

(34,162). To date, the mechanisms of NR uptake and its transport between cellular 

compartments in higher eukaryotes are still unknown. Four Fun26-related human ENT 

(equilibrative nucleoside transporter) proteins have been characterized (159). Given the role 

of Fun26 in NR metabolism in yeast, it is possible that the plasma membrane-localized 

hENT1 and hENT2 and lysosome membrane-resided hENT3 also participate in NR 

homeostasis and NAD+ metabolism in human. One additional potential NAD+ homeostasis 

compartment is the peroxisome. Peroxisomal Npy1 has been shown to function as a 

NAD+(H) pyrophosphatase (or Nudix hydrolase) which could produce NMN(H) from 

NAD+(H) (163) and contribute to NAD+ homeostasis. Future studies on the identification of 

novel NAD+ homeostasis factors will further our understanding of how these compartments 

and associated factors regulate NAD+ metabolism and cell functions.

5. Conclusion and Perspectives

Intracellular concentrations of many of the NAD+ intermediates are maintained at low levels 

(32), which is characteristic of signaling molecules. NR and NMN, similar to other NAD+ 

intermediates, may function as signaling molecules to regulate NAD+ homeostasis or other 

cellular processes. We have previously discovered that low NaMN level is associated with 

the activation of the PHO pathway (34). Moreover, nicotinic acid adenine dinucleotide 

phosphate (NAADP) has been shown to function as a signaling molecule to regulate calcium 

homeostasis in variety of organisms (164,165). In addition to functioning as signaling 

molecules, high concentrations of intracellular NAD+ intermediates may be unfavorable for 

certain cellular processes. For example, NAD+-dependent DNA ligase in bacteria is 

inhibited by NMN and it is suggested that NMN deamidase contributes to maintaining small 

intracellular NMN pool (166). As discussed earlier, Nam is known as an inhibitor of Sir2 

and clearance of Nam is critical for maintaining Sir2 activity and life span (114). Nam 

clearance is facilitated by a Nam deamidase Pnc1 in yeast or Nampt, a Nam 

phosphoribosyltransferase in mammals (111,167). Also, methylation of Nam offers 

beneficial effects by clearing Nam and providing stress resistance (146). Studies in yeast 

suggest that cells may constantly convert NMN to NR, which is more mobile and can be 

readily excreted, stored or re-assimilated (28,34). Ohashi et al. showed that quinolinic acid 

(QA) is also produced and excreted like NR (16). Thus, it is possible that pyridine 

nucleotides and their metabolites are involved in a variety of cellular processes and 

balancing their concentrations would be critical for the regulation of these processes. Future 

studies on the identification and characterization of additional signaling factors that regulate 

and/or crosstalk with NAD+ homeostasis are highly anticipated. Overall, these studies have 

contributed to the understanding of the complex NAD+ homeostasis pathways, and may also 
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provide insights into the underlying mechanisms of diseases related to defects in NAD+ 

metabolism.
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Highlights

• Pyridine nucleotides and their metabolites play important roles in variety of 

cellular processes

• Crosstalk between sirtuins, NAD+- and nutrient-sensing pathways renders 

metabolic flexibility

• Compartmentalization helps regulate the homeostasis of pyridine nucleotides
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Figure 1. 
A simplified model of the Saccharomyces cerevisiae NAD+ synthesis pathway. In yeast, 

NAD+ is synthesized de novo from tryptophan (Trp) and by salvaging nicotinic acid (NA), 

nicotinamide (Nam), quinolinic acid (QA) and nicotinamide riboside (NR). Cells can also 

salvage nicotinic acid riboside (NaR) by converting it to NA or NaMN (nicotinic acid 

mononucleotide). For simplicity, NaR salvaging is not shown in this figure. NaAD, deamido 

NAD+. NMN, nicotinamide mononucleotide. NAD+ and NAD+ intermediates are italicized. 

Abbreviations of protein names catalyzing each step are shown in bold.
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Figure 2. 
Interactions of NAD+ metabolism and multiple cellular signaling pathways contribute to the 

regulation of cell function. NAD+ and NAD+ intermediates are italicized. Abbreviations of 

protein names catalyzing specific steps are shown in bold. Dashed lines indicate that 

additional evidence is required to reveal the molecular mechanisms.
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Figure 3. 
Compartmentalization of intracellular NAD+ and its derivates regulates NAD+ homeostasis. 

Intracellular compartments contribute to the storage and supply of NAD+ intermediates such 

as NR and NMN. Vacuole is a plausible site for NR storage supported by the discovery of a 

putative NR transporter Fun26 and a NR producing nucleotidase Pho8. Periplasmic 

nucelotidase Pho5 and plasma membrane localized NR transporter Nrt1 facilitate the 

utilization of extracellular NMN and NR pools, respectively. The NADH shuttle systems do 

not directly affect NAD+ metabolism, instead, they function to balance redox equivalents 

between the mitochondrial and the cytosolic/nuclear pools to regulate the NAD+/NADH 

ratio. The malate-aspartate shuttle is shown here as an example. Abbreviations of protein 

names catalyzing specific steps are shown in bold. Dashed lines indicate that additional 

evidence is required to reveal the molecular mechanisms.
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