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Introduction
Molecular genetic analysis in Drosophila melanogaster has  
revealed that G1–S transition in mitosis can be modulated by 
the metabolic status of the cell (Mandal et al., 2005; Owusu-
Ansah et al., 2008). Cells harboring a mutation in the gene  
encoding cytochrome C oxidase subunit Va (CoVa) of complex 
IV of the electron transport chain display a reduced level of cel-
lular ATP and a consequent increase in the levels of cellular 
AMP. A signaling pathway that involves AMPK and p53 is then 
activated to reduce cyclin E protein level and cause G1–S arrest 
(Mandal et al., 2005). Unlike the results obtained in mammalian 
systems upon DNA damage induced by -irradiation (el-Deiry 
et al., 1993; Levine, 1997), this p53-mediated cyclin E effect in 
flies is not a consequence of Cdk inhibitor up-regulation, as the 
expression of dacapo, the p27 homologue in flies (de Nooij et al.,  
1996; Lane et al., 1996), is not affected in CoVa mutant cells 
(Mandal et al., 2005). The mechanism by which p53 controls 

cyclin E protein under conditions of metabolic stress was not 
well understood and forms the central focus of this study.

Progression from G1 to S phase of cell cycle is primarily 
regulated by the activity of the cyclin E–Cdk2 complex (Hwang  
and Clurman, 2005). An intricate balance between its timed 
synthesis and rapid degradation by the ubiquitin–proteasome 
system maintains the oscillating level of cyclin E during the 
cell cycle and ensures unidirectional and irreversible transi-
tion of a cell through the G1–S checkpoint (Reed, 2003). Pro-
cessing by the ubiquitin–proteasome system involves the 
covalent attachment of ubiquitin molecules to the target pro-
tein followed by its degradation by the proteasome (Hershko, 
2005). In flies, as well as in mammals, the ubiquitinylation of 
cyclin E is mediated by the Skp1–Cul1–F-box protein (SCF) 
complex (Nakayama and Nakayama, 2006). During normal 
cell cycle progression in mammals, recruitment of cyclin E to 
the SCF complex can be achieved by either of the two F-box 
proteins Fbxw7 or Skp2 (Nakayama et al., 2000; Koepp et al., 
2001; Strohmaier et al., 2001), whereas in flies, only the Fbxw7 

Cell cycle progression is precisely regulated by  
diverse extrinsic and intrinsic cellular factors.  
Previous genetic analysis in Drosophila melano-

gaster has shown that disruption of the mitochondrial 
electron transport chain activates a G1–S checkpoint as a 
result of a control of cyclin E by p53. This regulation does 
not involve activation of the p27 homologue dacapo in 
flies. We demonstrate that regulation of cyclin E is not at 
the level of transcription or translation. Rather, attenuated 

mitochondrial activity leads to transcriptional upregula-
tion of the F-box protein archipelago, the Fbxw7 homo-
logue in flies. We establish that archipelago and the 
proteasomal machinery contribute to degradation of  
cyclin E in response to mitochondrial dysfunction. Our 
work provides in vivo genetic evidence for p53-mediated 
integration of metabolic stress signals, which modulate 
the activity of the ubiquitin–proteasome system to degrade 
cyclin E protein and thereby impose cell cycle arrest.
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Consistent with the synchronous entry of wild-type cells 
into S phase posterior to the MF, cyclin E is expressed in a nar-
row stripe of cells immediately posterior to the furrow (Fig. 1 E; 
Richardson et al., 1995). This expression of cyclin E is signifi-
cantly reduced in CoVa clones (Fig. 1 F) but can be restored to 
normal levels if the cells are also mutant for p53 (Fig. 1 G). 
Loss of cyclin E in CoVa mutant cells is not at the level of tran-
scription because wild-type amounts of cyclin E transcripts are 
expressed in CoVa-null mutant clones and in S2 cells in which 
CoVa is knocked down by RNAi (Fig. 1 L; Mandal et al., 2005). 
Consequently, in this study, we sought to describe a posttranscrip-
tional mechanism that could account for the loss of cyclin E 
protein in CoVa mutant cells.

For a vast majority of known examples, regulation at the 
level of mRNA translation is achieved through the interaction  
of factors with untranslated sequences (5 and 3 untranslated 
regions [UTRs]) of the mRNA (de Moor et al., 2005; Pickering 
and Willis, 2005). We cloned the 5 and 3 UTRs of cyclin E 
mRNA and placed them upstream and downstream, respec-
tively, of a reporter GFP coding sequence and expressed it in S2 
cells under the control of an inducible metallothionein promoter  
(Fig. 1 H). These cells were transfected with either CoVa double- 
stranded RNA (dsRNA) or GST dsRNA (as control). No change 
in GFP expression was detected in CoVa dsRNA–treated cells 
compared with the control (Fig. 1, I–L). However, the CoVa-
depleted cells showed a clear reduction in the level of endog-
enous cyclin E protein (Fig. 1 L). Consistent with earlier results, 
the expression of cyclin E transcript remains unchanged in 
CoVa dsRNA–treated cells (Fig. 1 M). These results reiterate 
that the control of cyclin E in the context of mitochondrial  
dysfunction is posttranscriptional, and based on these results, 
we consider it unlikely that the UTRs of the cyclin E transcript 
are involved in this regulation.

To investigate whether the loss of cyclin E protein in the 
CoVa mutants resulted from its proteasomal degradation, we 
used a mutation in the gene l(3)73Ai, which encodes the 6 
subunit of the 20S proteasome core complex (Saville and  
Belote, 1993). One copy loss of l(3)73Ai suppresses the CoVa 
mutant phenotype and causes the restoration of the normal pat-
tern of BrdU incorporation (Fig. 1 N) and cyclin E expression 
(Fig. 1 O) in CoVa mutant clones. Interestingly, the glossy adult 
eye phenotype of CoVa mutant clones (Fig. 1, P–Q, marked by 
the absence of red pigmentation) is also significantly suppressed 
(Fig. 1, R and R). These results establish that cyclin E proteins 
can be restored to sufficiently high levels, allowing CoVa  
mutant cells to overcome the G1–S block upon attenuation of 
proteasomal function.

To further investigate a possible role for the ubiquitin–
proteasome degradation pathway in the loss of cyclin E, we ana-
lyzed the genetic interaction between CoVa and genes that 
encode members of the SCF complex. One copy loss of archi-
pelago (ago) could significantly suppress the BrdU defect in 
CoVa mutant clones (Fig. 2 A) and restore the normal expres-
sion of cyclin E (Fig. 2 B). A significant suppression of the 
CoVa adult eye phenotype was also seen in a genetic back-
ground that is heterozygous for ago (Fig. 2, C and C) in addi-
tion to being CoVa/CoVa. In contrast, loss of one copy of 

homologue archipelago is involved in this process (Moberg 
et al., 2001). Further studies revealed the existence of a second 
cyclin E degradation mechanism involving Cullin 3, which 
occurs in an SCF-independent manner (Singer et al., 1999; 
Wimuttisuk and Singer, 2007). Together, these pathways are 
instrumental in achieving a rapid turnover of cyclin E during 
early S phase of the normal cell cycle.

In human and murine systems, p53 acts as a cellular hub 
for integrating diverse stress signals to generate different cellu-
lar responses that range from a block in cell cycle progression 
to the induction of apoptosis (Vousden and Lane, 2007; Jones 
and Thompson, 2009). In flies, the role of p53 has mainly been 
studied with relation to radiation-induced damage (Brodsky  
et al., 2000; Sogame et al., 2003). Based on those findings,  
coupled with the fact that there is no identified p21 homologue 
in flies and that dacapo (p27) is not responsive to irradiation  
(de Nooij et al., 1996), it was believed that in Drosophila, the 
p53 response to stress is primarily restricted to the activation  
of apoptosis and does not involve cell cycle control. However, 
our previous experiments indicated a role for p53 in promoting 
G1–S arrest in response to mitochondrial dysfunction (Mandal 
et al., 2005).

The following results unravel the mechanistic basis for 
this p53-induced G1–S block under conditions of attenuated 
mitochondrial function. Based on in vivo genetic analysis as 
well as in vitro studies involving CoVa mutants, we demonstrate 
that the activation of p53 under conditions of metabolic stress 
causes transcriptional up-regulation of the F-box protein archi-
pelago. We establish a role for archipelago and the proteasomal 
machinery in the degradation of the cyclin E protein during  
mitochondrial dysfunction.

Results and discussion
The developing eye disc of Drosophila has been extensively 
used as a genetic model to understand mechanisms of intercellu-
lar signaling, pattern formation, and cell cycle control (Edgar 
and Lehner, 1996; Baker, 2001; Nagaraj and Banerjee, 2004). 
During the third larval instar, patterning of the retinal epithelium 
begins at the posterior end of the eye disc and progresses as a 
wave toward the anterior (Wolff and Ready, 1991). An indenta-
tion termed the morphogenetic furrow (MF) marks the leading 
edge of this wave (Fig. 1 A). Cells anterior to the furrow divide 
asynchronously but are arrested in the G1 phase at the MF.  
As the furrow progresses, a subset of these cells synchronously 
enters the S phase of a terminal round of cell division commonly 
termed the second mitotic wave (SMW; Fig. 1 A). These two 
distinct phases of cell division become apparent upon BrdU  
incorporation, a process that specifically marks cells in S phase 
(Fig. 1 B). This stereotyped pattern of incorporation is disrupted 
in eye discs bearing clones of CoVa mutations as the mutant  
tissue, either anterior or posterior to the MF, fail to incorporate 
BrdU (Fig. 1, compare B with C). However, a significant recov-
ery in BrdU incorporation occurs in clones that are mutant for 
both CoVa and p53 (Fig. 1 D), suggesting that p53 functions 
downstream of CoVa in the pathway that is involved in the  
mitotic checkpoint control (Mandal et al., 2005).



475p53-mediated metabolic control of G1–S progression • Mandal et al.

dosage-sensitive interactions with ago suggest that the archi-
pelago protein functions upstream of cyclin E and is therefore 
a potential target for p53. Consistent with this observation, 

Cullin 1 or Cullin 3, other potential members responsible for 
ubiquitinylation of cyclin E, did not rescue the defects in BrdU 
incorporation (Fig. 2, D and E) in CoVa mutant clones. These 

Figure 1. Regulation of cyclin E in CoVa 
mutant cells. (A) Schematic diagram of a  
developing third instar larval eye disc of  
Drosophila. Anterior is to the right. Scattered 
red dots anterior to the MF represent random 
BrdU incorporation, whereas the band of red 
dots marks the synchronous incorporation of 
BrdU along the SMW. (B–D) The defect in 
BrdU incorporation in CoVa mutants can be 
rescued by p53 mutation. BrdU incorporation  
(red) in third instar larval eye disc. Armadillo  
(blue) marks the MF, and the clones are 
marked by the lack of GFP. Bars, 50 µm.  
(B) The normal pattern of BrdU incorporation in  
a control eye disc in which both green and non-
green cells are wild type. (C) An eye disc with 
somatic clones of CoVa/CoVa cells (non-
green) fails to incorporate BrdU both anterior 
and posterior to the MF. (D) Somatic clones of 
CoVa/CoVa, p53/p53 cells (nongreen) 
are rescued for BrdU incorporation (compare  
with C). (E–G) p53 mutation restores cyclin E  
expression (red) along the SMW in CoVa 
mutant clones. Clones are marked by the ab-
sence of GFP. Bars, 25 µm. (E) Expression of 
cyclin E as a band posterior to the furrow in  
a control eye disc where both the green and  
the nongreen cells are wild type. (F) Cyclin E 
expression is significantly reduced in CoVa 
mutant clones (nongreen). (G) In double-mutant  
clones of CoVa and p53 (nongreen), cyclin E ex-
pression recovers to wild-type levels. (H) A re-
porter construct used to investigate possible 
roles of cyclin E 5 and 3 UTRs in transla-
tional regulation. This construct consists of 
a GFP-expressing fragment cloned between  
the 5 and 3 UTRs of cyclin E. The expres-
sion of GFP transcripts is under the control 
of a metallothionein-inducible promoter. 
(I–K) CuSO4-inducible GFP expression is not  
affected in S2 cells harboring the 5-3 cyclin 
E UTR-GFP reporter upon CoVa dsRNA treat-
ment. In I–K, the GFP expression is shown in 
green, and the overlap of GFP expression with 
the cell nuclei marked by TO-PRO 3 (blue) is  
shown in I–K. Bars, 20 µm. (I and I) Very low  
levels of basal GFP expression in cells that 
are not induced by CuSO4. (J and J) Reporter 
GFP expression in control cells that are trans-
fected with GST dsRNA. (K and K) Com-
pared with control, no change in reporter 
GFP expression is seen in cells transfected 
with CoVa dsRNA. (L) Western blot analysis 
performed 3, 5, and 7 d after treatment of 
S2 cells with GST dsRNA or CoVa dsRNA 
by using the indicated antibodies. Levels of 
GFP reporter expression are comparable in 
both GST and CoVa dsRNA–treated cells, but  
cyclin E expression is dramatically reduced 
in CoVa dsRNA–transfected cells. Actin was 

used as a loading control, and the lanes are as indicated. (M) Real-time RT-PCR analysis of cyclin E transcripts in S2 cells on 3, 5, or 7 d after treatment 
with either GST or CoVa dsRNA. Unlike the loss of cyclin E protein seen in L, cyclin E RNA levels remain unchanged. The data were normalized with 
respect to the expression of rp49 transcripts. (N) BrdU incorporation (red) in eye disc with clones of l(3)73Ai/ l(3)73Ai+, CoVa/CoVa cells (non-
green). A remarkable recovery of BrdU incorporation is seen in these clones (compare with C). l(3)73Ai encodes the 6 subunit of 20S proteasome core.  
Bar, 50 µm. (O) Expression of cyclin E (red) is also restored to wild-type levels in clones with l(3)73Ai/ l(3)73Ai+, CoVa/CoVa cells (nongreen; com-
pare with F). Bar, 25 µm. (P–R) Reduced dosage of l(3)73Ai partially rescues the glossy adult eye phenotype of CoVa mutant clones. Bright-field images 
(P–R) and the corresponding scanning electron micrographs (P–R) of the same adult eye with somatic clones (marked by the absence of red pigmenta-
tion). (P and P) Normal facets in control adult eye in which both red and white tissue are wild type. (Q and Q) Adult eye with clones of CoVa/CoVa 
cells. Facets are identifiable in the wild-type tissue (red), whereas the mutant tissue (white) appears glossy. (R and R) The glossy eye phenotype of CoVa 
clones is partially rescued in clones of l(3)73Ai/ l(3)73Ai+, CoVa/CoVa cells. Bars, 100 µm. Error bars indicate SEM.
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competed with unlabeled oligonucleotides or eliminated when 
the binding sequence is mutated. To find a functional correlate, 
we cloned the archipelago promoter having either a normal or 
mutated p53-binding site upstream of the firefly luciferase  
reporter gene (Fig. 3 F) and transfected S2 cells. We observed 
that upon knocking down CoVa while cells with a normal p53-
binding site in ago promoter lead to an increase in firefly lucif-
erase expression, cells with a mutated p53-binding site in ago 
promoter showed luciferase expression comparable with con-
trol cells. S2 cells having normal ago promoter upstream of  
luciferase treated with GFP dsRNA were used as controls  
(Fig. 3 G). These results strongly suggest that ago can function 
as a direct downstream target of p53.

A schematic of the signaling pathway linking attenuated 
mitochondrial function to proteasomal degradation of cyclin E 
unraveled primarily based on loss of function genetic analysis is 
shown in Fig. 3 H. We conclude that AMP is used as a metabolic 
signal for distressed mitochondrial function to initiate a cascade 
that involves activation of AMPK and p53 (Mandal et al., 2005) 
followed by the transcriptional up-regulation of ago. This leads 
to ubiquitinylation of cyclin E by the SCF complex and its  
subsequent degradation by the proteasome. As a consequence, 
cell cycle progression is blocked at the G1–S transition. Such 
mitochondrially regulated checkpoints could be useful for a 
temporary arrest in the cell cycle to tide over conditions of  
energy deficiency or hypoxia. By initiating a G1–S checkpoint, 
a cell lacking in adequate ATP levels ensures that it is not irre-
versibly damaged during the S phase but can resume prolifera-
tion upon restoration of normal conditions.

Studies in mouse and human cell lines have demonstrated 
that the expression of CDC4b, the gene that encodes the Fbxw7 
isoform, is dependent on irradiation-induced p53 activation and 
have implicated this protein in p53-mediated cell cycle arrest as a 
result of radiation damage (Kimura et al., 2003; Mao et al., 2004; 

our experiments of differential gene expression profiling using  
microarrays showed an increase in the level of ago expression 
in S2 cells expressing RNAi for CoVa compared with those  
expressing GFP RNAi as control (Fig. 2 F). This up-regulation 
in ago expression in CoVa-depleted S2 cells was subsequently 
validated by real-time RT-PCR (Fig. 2 G).

As an in vivo correlate of this result, we observed that 
even in eye discs having clones of CoVa mutant cells, ago is  
expressed at a higher level compared with those discs having 
clones of wild-type cells (Fig. 3 A). Interestingly, this up-
 regulation in ago expression is dependent on p53, as its expres-
sion is restored to normal levels in eye discs having clones that 
are double mutant for CoVa and p53 (Fig. 3 A). Together, these 
results clearly establish that up-regulation of ago induced  
by metabolic stress in CoVa mutant cells is mediated by p53.  
To determine whether this up-regulation of ago is directly con-
trolled by p53, we initiated a biochemical approach. The p53 
protein functions as a sequence-specific DNA-binding factor 
and can activate genes whose promoters contain a p53 re-
sponse element (el-Deiry et al., 1992; Farmer et al., 1992). 
Within 100 bp upstream of the transcriptional initiation site of  
ago, we identified a 21-bp sequence (Fig. 3 B) that strongly re-
sembles the consensus for the p53 DNA-binding site (el-Deiry 
et al., 1992). Like those found upstream of the human target 
genes mdm-2 (Wu et al., 1993) and p21/WAF1 (el-Deiry et al., 
1993) or that of Drosophila apoptotic gene reaper (Brodsky 
et al., 2000), this putative p53-binding site upstream of ago con-
tains two tandemly arrayed 10 mers separated by a single nucleo-
tide spacer (Fig. 3 C). The putative p53-binding site upstream of 
ago is highly conserved among the members of the melanogaster  
subgroup of Drosophila that diverged over 10 million years  
ago (Fig. 3 D). Binding of p53 to this response element was  
investigated by EMSA. As shown in Fig. 3 E, p53 binds to the 
potential binding sequence, and this binding can be efficiently 

Figure 2. Loss of ago rescues the CoVa mu-
tant phenotype. (A) Defects in BrdU incorpora-
tion (red) is significantly recovered in eye disc 
with clones of ago+/ago, CoVa/CoVa cells 
(nongreen; compare with Fig. 1 C). Armadillo 
(blue) marks the MF. Bar, 50 µm. (B) Loss of 
ago restores wild-type expression of cyclin E 
(red) along the SMW in eye discs with clones 
of ago+/ago, CoVa/CoVa cells (nongreen; 
compare with Fig. 1 F). Bar, 25 µm. (C and C) 
Bright-field image (C) and the corresponding 
SEM (C) of an adult eye with clones of ago+/
ago, CoVa/CoVa cells. Mutant clones 
are marked by the absence of red pigmenta-
tion. Loss of ago partially rescues the glossy 
adult eye phenotype associated with CoVa 
mutant clones (compare with Fig. 1, R and R).  
Bars, 100 µm. (D and E) Reducing the dosage 
of Cullin 1 (D) or Cullin 3 (E) in CoVa mutant 
cells (nongreen) fails to rescue the defects in 
BrdU incorporation (red). Bars, 50 µm. (F) Ex-
pression profile of ago in S2 cells treated with 
CoVa dsRNA or GFP dsRNA controls. Gene 
expression profiling was performed in three 
independent replicates (Exp.1–3) using Dro-
sophila genome 2 microarrays. The guide at the bottom of the figure indicates the fold difference of expression between the samples, with green indicating 
lower expression and red indicating higher expression. (G) Real-time RT-PCR analysis of ago transcripts in S2 cells treated either with CoVa dsRNA or GFP 
dsRNA (control) that were used for performing the microarray analysis. An up-regulation in ago expression is observed in cells knocked down for CoVa 
transcripts compared with the control. Error bars indicate SEM.
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Figure 3. ago is a direct downstream target of p53. (A) Real-time RT-PCR analysis of ago transcripts in third instar larval eye discs having somatic clones of wild-
type cells, CoVa mutant cells (CoVa/), or that of CoVa and p53 double-mutant cells (CoVa/, p53/). The up-regulation in ago transcripts as seen in eye discs 
with CoVa mutant cells is restored to almost wild-type level in eye discs with double-mutant clones of CoVa and p53. (B) Genomic structure of ago highlighting  
the p53 response element in the 5 regulatory region of ago-RB and ago-RC transcripts that share the same promoter region. Blue text denotes the putative  
p53-binding sequence and the mRNA, ago-RC, is shown in the figure. (C) Alignment of the consensus p53-binding sequence with the p53 response element 
found in the 5 regulatory region of ago. The invariant core nucleotides of each 10-mer motif matches at seven of eight positions, whereas the other mismatches 
(shown in lower case) occur at the outer positions of the 20-bp element. (D) Conserved sequence in the 5 regulatory region of ago across the members of the 
melanogaster subfamily of Drosophila with the p53 response element highlighted in blue. (E) EMSA demonstrating the binding of purified p53 to its putative bind-
ing sequence in ago. (lanes 1 and 2) A shift in the migration of the biotinylated p53 response element of ago is seen in the presence of p53 protein. (lane 3) This 
binding is competed by unlabeled oligonucleotide. (lane 4) Mutating the core nucleotide sequence of the two 10 mers within the p53 response element prevents 
binding of p53. (lanes 5 and 6) As a control, a shift in the migration of a biotinylated oligonucleotide representing the p53 response element of mammalian p21 
is seen in the presence of p53 protein. (F) The reporter constructs used to investigate p53-dependent activation of ago promoter in CoVa mutant cells. Construct i 
consisted of the 200-bp of the ago promoter with normal p53-binding site cloned upstream of the firefly luciferase reporter gene. Construct ii is similar to construct i  
except for the p53-binding site being mutated. (G) Relative folds of activation of the reporter firefly luciferase in GFP dsRNA or CoVa dsRNA–treated cells. The 
datasets were normalized to the expression of Renilla luciferase, and mean values with standard deviation of three independent experiments are displayed. Com-
pared with GFP dsRNA–transfected cells, CoVa dsRNA–transfected cells show almost 1.7-fold increase in the expression levels of firefly luciferase. However, this 
increase is not seen when the p53 site in ago promoter is mutated. Asterisks indicate a mutation in the P53-binding site (p53BS). (H) A model for the p53-mediated 
pathway linking attenuated mitochondrial function in CoVa mutants to G1–S block caused as a result of degradation of cyclin (E). Error bars indicate SEM.
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Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia), guinea pig 
anti–cyclin E (1:150; T. Orr-Weaver, Massachusetts Institute of Technology, 
Cambridge, MA), mouse anti-GFP and rabbit anti-GFP (1:500; Invitrogen), 
and mouse anti-Armadillo, (1:250; Iowa Hybridoma Center). CY3, FITC, or 
CY5-conjugated secondary antibodies (1:400; Jackson ImmunoResearch 
Laboratories, Inc.) were used. Acquisition of images was performed with a 
confocal microscope laser-scanning system (Radiance 2000; Bio-Rad Labo-
ratories) and processed with a confocal assistant (Bio-Rad Laboratories).

Cell culture, RNAi, and microarray analysis
To prepare dsRNA, a coding sequence specific to CoVa, GST, or GFP was 
PCR amplified with primers carrying a 5 T7 RNA polymerase-binding site. 
dsRNA was purified by using a Megascript RNAi kit (Ambion). S2 cells 
were transfected with 20 µg dsRNA as described previously (Clemens  
et al., 2000). Cells were harvested on 3, 5, and 7 d after transfection for 
protein analysis. Total RNA was isolated from the cells 7 d after transfection 
and was used to generate microarray probes that were hybridized to the 
Drosophila genome 2 arrays (Affymetrix). The Gene Chip Operating system 
(Affymetrix) and dCHIP program (Harvard University) were used to define 
absent/present calls and to generate pairwise comparisons between the 
transcription profile of GFP and CoVa dsRNA–treated S2 cells. The  
sequences of the primers to generate dsRNAs are provided in Table S1.

EMSA
This assay was performed using the Lightshift chemiluminescent EMSA kit 
(Thermo Fisher Scientific). Synthetic oligonucleotides containing the puta-
tive p53-binding sequence in ago, either wild type or mutated for both the 
core sequences, and the p53-binding sequence in mammalian p21 were 
biotinylated at their 5 ends (IDT). The complementary oligonucleotides 
were then annealed. The probes were incubated for 20 min at room tem-
perature with 20 ng of purified recombined p53 protein (Active Motif) in 
the buffer supplied with the kit. This was followed by electrophoresis in 5% 
native gels and subsequent transfer onto a nylon membrane. Signals were 
detected using the standard protocol mentioned in the kit. The sequences 
of the different oligonucleotides used are provided in Table S2.

Real-time RT-PCR
RNA was extracted using the RNeasy Mini kit (QIAGEN) and reverse tran-
scribed with reverse transcription (Superscript II; Invitrogen). Real-time PCR 
was performed on the cDNa according to the manufacturer’s protocol using 
iCycler (iQ; Bio-Rad Laboratories) with SYBR green as the fluorophore.

Firefly luciferase reporter assay
The proximal 200 bp up to and including the TATA box of the ago pro-
moter having the p53-binding site either normal or mutated were cloned 
into the pGL3 basic vector containing firefly luciferase (Promega). S2 cells 
were transfected with either of these reporter constructs in conjunction with 
dsRNA for GFP (control) or CoVa using the calcium phosphate transfection 
method (Clemens et al., 2000). Transfection also included a luciferase re-
porter containing a minimal promoter linked to Renilla luciferase for nor-
malization purposes. 7 d after transfection, cells were assayed for firefly 
and Renilla luciferase activities in triplicate per the manufacturer’s protocol 
(Glomax Bioluminescence system; Promega).

Online supplemental material
Table S1 shows the list of PCR primers used for synthesis of dsRNA.  
Table S2 shows sequences of the oligonucleotides used for EMSA. Online 
supplemental material is available at http://www.jcb.org/cgi/content/ 
full/jcb.200912024/DC1.
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Perez-Losada et al., 2005; Matsumoto et al., 2006; Minella  
et al., 2007). In this study, we provide in vivo evidence for a 
similar pathway used by the cell under conditions of metabolic 
stress to regulate the levels of cyclin E protein to impose  
a G1–S block. These results provide an alternate means in  
Drosophila where p53 does not seem to cause p21-mediated 
cell cycle arrest.

Interestingly, activation of ago by p53 is very specific  
to this pathway, as we do not find any up-regulation of the  
proapoptotic gene reaper, a known downstream target of p53 
that is activated upon radiation-induced damage in flies (Brodsky 
et al., 2000). We deduce that this is possible because the function 
of p53 in a cell depends on its threshold level. At the p53 activity 
level maintained in CoVa mutants, most cellular functions, such 
as differentiation and viability continue normally, but a cell  
cycle checkpoint is specifically activated. Presumably, higher 
levels of p53 activation would trigger cell death pathway genes 
as recovery becomes untenable.

Involvement of the ubiquitin–proteasome system in tran-
scriptional regulation of a large number of genes associated 
with cell cycle progression and apoptosis (Bhaumik and Malik, 
2008) has drawn significant attention in recent years to under-
stand the mechanism by which the activity of this system is reg-
ulated. Although it is imperative that the metabolic condition of 
a cell would have a control over the activity of the proteasome 
system, only a handful of reports have provided insight into  
the processes by which glucose metabolism can modulate the 
proteasomal function in flies and mammals (Zhang et al., 2007). 
From that perspective, this work provides the evidence of an  
independent mechanism that links the functioning of oxidative 
phosphorylation to transcriptional regulation of the E3 ligase 
ago. Interestingly, these two mechanisms differ from one 
another, as they regulate the activity of the ubiquitin–proteasome  
system at two different levels. Although the cellular glucose 
level directly regulates the function of the proteasome, the  
cellular ATP level modulates the process of ubiquitinylation.

Materials and methods
Drosophila stocks and genetics
The following Drosophila strains were used: y, w, ey-flp; FRT82B, CoVa/
TM6B, Tb; and y, w, ey-flp; FRT82B, CoVa, p53/TM6B, Tb (Mandal et al., 
2005); l(3)73Ai1/TM6B, Tb (Saville and Belote, 1993); ago1, FRT80B/TM6B, 
Tb (Moberg et al., 2001); cul1EX/Cyo (Ou et al., 2002); gftHG39/Cyo (Cullin3; 
Mistry et al., 2004). Adult eye clones were made by using flies of the geno-
type y, w, ey-flp; FRT82B P[w+]cl-R3/TM6B Tb, y+. Mutant clones were marked 
by the absence of pigmentation. Clones in third instar larval eye discs were 
generated by using flies of the genotype y, w, ey-flp; FRT82B, Ubi-GFP, RpS3/
TM6B Tb, y+, and the clones were marked by the absence of GFP.

Immunohistochemistry
BrdU incorporation in the third instar larval eye imaginal disc was performed 
as described previously (de Nooij and Hariharan, 1995). In brief, the freshly 
dissected eye discs were incubated for 30 min in 400 µl 75 µg/ml BrdU in 
PBS followed by fixation in 4% formaldehyde. The tissues were incubated in 
primary antibody overnight at 4°C. Incubation in the corresponding second-
ary antibody was performed for 2 h at room temperature, and the tissues 
were refixed in formaldehyde for 15 min before DNA denaturation by 2 N 
HCl. Subsequent incubations in anti-BrdU antibody and the corresponding 
secondary antibody were performed for overnight at 4°C and for 2 h at 
room temperature, respectively. The following antibodies were used: 
rat anti-BrdU (1:100; Abcam), mouse anti–cyclin E (1:50; H. Richardson, 
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