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THE CELL TRANSM SS| ON MODEL. PART |
A SI MPLE DYNAM C REPRESENTATI ON OF H GHWAY TRAFFI C*

by
CARLGCS F. DAGANZO

Departnment of Civil Engineering and
~ Institute of Transportation Studies
University of California, Berkeley CA 94720

Abstract

Thi s paper presents a sinple representation of traffic on a
hi ghway wth a single entrance and exit. The representation can
be used to predict traffic's evolution over tinme and space,
i ncl udi ng transient phenomena such as the building, propagation and
di ssi pation of queues. The easy-to-solve difference equations used
to predict traffic's evolution are shown to be the discrete anal og
of the differential equations arising froma special case of the

hydrodynamic nodel of traffic flow The proposed nethod
automatically generates aﬁpropriate changes in density at |ocations
where the hydrodynam c theory would call for a shockwave; i.e. a

junmp in density such as those typically seen at the end of every
queue. The conpl ex side cal culations required by classical methods
to keep track of shockwaves are thus elim nated. The paper al so
shows how the equations can mmc the real-life devel opnent of
stop-and-?o traffic within noving queues. The nodel predicts that
the oscillation pattern is independent of the initial inmpulse from
downstream (as one woul d expect), and that oscillations should not
increase delay unless they result in car stalls or other incidents.

The results in this paper can be used for sinple traffic
engineerin? anal yses. Mbst inportantly, they are a fundanmenta
building block for traffic prediction over networks. The ability
to make such predictions can lead to better strategies for ra
nmetering and Incident detection. A sequel to this paper wl
exam ne highmay net wor ks. The representation's sinplicity should
make it possible to keep track of each vehicle's final destination
t hroughout a simulation, even for conplex networks. This
capability should help inmprove traffic control packages and dynam c
traffic assignment methods.

* Research supported by PATH MOU 90, Institute of Transportation
Studies, Berkeley, CA
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updated with every tick of a clock

To this end the road is divided into honbgeneous sections
(cells), nunbered consecutively starting with the upstream end of
the road, fromi =1 to I. The |l engths of the sections are not
chosen arbitrarily; they are set equal to the distances traveled in
light traffic by a typical vehicle in one clock tick. Under light
traffic then, all the vehicles in a cell can be assuned to advance
to the next with each tick; it is unnecessary to know where within

the cell they are located. Thus, the systenmis evolution obeys:

ni+1(t+l) = nj (t),

where ni(t) is the nunmber of vehicles incell i at tinme t. W
w ||l assume that the above recursion holds for all flows, unless
traffic is slowed down by queueing froma downstream bottl eneck.
This seens reasonabl e because, for crowded conditions as m ght
arise during the rush hour, nost of the delays can be attributed to
queuei ng at bottlenecks where flow tenporarily exceeds capacity;
rather than to any dependence between flow and speed. (It has been
enpirically observed that the space-nmean speed of freeway traffic
remains relatively constant, independent of flow, wunless flowis
close to capacity.)

To incorporate queueing we introduce two constants: Nj(t), the
maxi mum nunber of vehicles that can be present in cell | at tinme
t, and Qj(t), the maxi mum nunber of vehicles that can flow into
cell i when the clock advances fromt to t+1 (tinme interval t).

The first constant is the product of the cell's length and its "jam



density", and the second one is its "maximum flow (or capacity)".
We allow these constants to vary with time to be able to nodel
transient traffic incidents. The number of vehicles that can flow
fromcell i-1 to cell i when the clock advances from t to t+1
(the flow into "i" for the tine interval after "t"), yi(t) , is

assumed to be the snallest of three quantities:

nj-1 (t) , the nunber of vehicles in cell i-l at time t,
Q; (t) , the capacity flowinto i for tine interval t, and
Nij(t)-ni(t) , the amount of enpty space in cell i at time t.

(This last quantity ensures that the vehicular density on every
section of the road remains below jam density.) Qur proposed

sinulation, called the "cell-transm ssion nodel", will be based on
a recursion where the cell occupancy at tine t+1 equals its

occupancy at tine t, plus the inflow and mnus the outflow, i.e.
nj(t+1l) = nj(t) + yi(t) - yi+1(t) (1a)

where the flows are related to the current conditions at time t as

i ndi cated above:

Yi(t) = min{ nj_3(t) , Qj(t) , Nj(t)-nj(t) }. (1b)



The sinulation would step through tinme, updating the cel
occupancies (for all i) with each tick of the clock.

Boundary conditions can be specified by nmeans of input and
output cells. The output cell, a sink for all exiting traffic,
shoul d have infinite size (Nyy; = o) and a suitable, possibly
ti me-varying, capacity. Input flows can be nodeled by a cell pair.
A m"source" cell nunbered "oo" with an infinite nunber of vehicles
(ngo (0) = ) that discharges into an enpty "gate" cell ™"o" of
infinite size, NQ(t) = o». The inflow capacity Q (t) of the gate
cell is set equal to the desired link input flow for time interva
t+1. The gate cell then acts as a netering device that rel eases
traffic at the desired rate while holding (as a parking | ot woul d)
any flow that is unable to enter the |ink

Note that the result of the sinulation is independent of the

order in which the cells are considered at each step. Thi s

i nportant property of the cell-transmssion nodel will permt the
anal ysis of conplex networks, e.g. with [oops. The property arises
because we are specifying that the nunber of vehicles that enter a
cell is unrelated to the nunber of vehicles that will |eave it;
thus, only current conditions influence the inflowto a cell.
Al though the first two restrictions ( Yi(t) < nj-q(t) and
yi(t) € Qi(t) ) are reasonable in this regard, one may argue that
if a cell is rapidly being enptied then the third (occupancy)
restriction yi(t) < Nj(t)-nj(t) may be overly conservative.
The counterargunment is that enpty slots for cars can only trave
backwards at a finite speed (the wave propagation speed) unlikely

to be greater than the free flow speed. Therefore the effects of



the outflow should only be noticed upstream after sone tine.
Because this lag is one tick of the clock for our nodel, this is
akin to assum ng that density waves propagate backwards at the free
fl ow speed. Sections 3 and 4 denonstrate that our sinulation

i ndeed behaves as a hydrodynam c nodel of traffic flowwth this

property.

3. EQUIVALENCE TO A HYDRCDYNAM C MODEL

W now consi der a honpbgeneous hi ghway and show that Egs. (1)
are a discrete approximation to the Lighthill, whitham, R chards
hydrodynam c nodel with a density-flow (k-q) relationship in the
shape of an isosceles trapezoid, as in Fig. 1. This relationship

can be expressed as:

9 = min{ vk , dpax , V(kj-k) }, for 0 <k < k4, (2)
where v is the free-flow speed (and the speed of all backward
noving waves), Kkj is the jamdensity, and gmax < kgv/2 is the
maxi mum f1 ow.

|f Eq.(2) is replaced into the flow conservati on equation

Sq(x,t)/éx = -8k(x,t)/st

we obtain the differential equation that would define the evolution

of the system under the hydrodynam ¢ nodel :



§ min{ vk(x,t) , qgmax , v(kj-k(x,t)) }/sx = -8k(x,t)/8t. (3

We now show that Eq.(3) is equivalent to our simulation. Note
that for our honogeneous highway the cell characteristics would be
i ndependent of i and t: Nj(t) = N and Qi(t) = @ . To
denonstrate the equivalence of the discrete and continuous
approaches we now define the tick of the clock to be equal to dt
and choose the unit of distance such that vdt = 1. Then the cel
length is 1, v is also 1, and the follow ng equvalences hol d:
x =1, kj =N, gmax = Q, and k(x,t) = nj(t). Wth these

conventions, the variable in braces in Eq.(3) is equivalent to:

min{nj(t), Q , N-nj(t) ),

whi ch coincides with the definition of yij41(t) of Egs.(1b), except
for the subindex of n in the last term which should have been i+1
instead of i. This, however, is immterial unless the density is
di scont i nuous. Because the hydrodynamc differential equations are
only satisfied when the density is continuous wth x
(discontinuities — shocks — are treated outside of the
differential equations wth the hydrodynam c nodel) we can state
that the variable in braces is equivalent to yj4+1(t), and as a

result the left hand side of Eq.(3) is:

vi+1(t) - yi(t)



The right side of Eq(3), of course, is:

‘[ni(t+1) - ni(t)]

and the equality of these two quantities justifies the sinulation
recursion, Eq.(1la).

To be sure, there are other forms of Eq.(1ib) that would al so
be consistent with Eq.(3). For example, the flowinto cell i
yi(t) coul d have been specified only as a function of the occupancy

of the sending cell, i-l, so that Eq.(1b) would have been:

yi(t) = mint ny_q(t) , Qi(t) , Niy_1(t)-nj_1(t) ).

Alternatively, yi(t) could have been specified only as a function
of the occupancy in the receiving cell. \Wile these, and possibly
other specifications are consistent with Eq.(3) for any slow
varying density, their behavior in the face of discontinuities is
not equival ent and may not be reasonabl e.

That consistency with Eq.(38) is no guarantee of reasonable
behavi or across discontinuities is clearly illustrated by the
expressi on above. It should be clear frominspection that such an
expression would predict zero fl ow downstream of any di scontinuous
drop in density fromthe jam density to any |ower val ue. Thus,
such a nodel would predict that vehicles queued at a traffic |ight
woul d not advance even after the light turned green! (Unrealistic
predictions also arise if flows are based only on the status of the

receiving cell, as then a receiving cell would continue to attract
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vehicl es even after upstream occupancies have dropped to zero.)
Because discontinuities are common--arising spontaneously when
| ow density traffic catches up with denser, slower downstream
trafficfheir effect on nodel performance nust be exam ned. W
claim here that Eq.(1b) will replicate the behavior of the
conti nuous nodel even across discontinuities. Thus, it should be
possible to iterate Egs.(1) and automatically track varying
densities and the paths of any resulting shocks. This property,
very useful for automatic conputation, is discussed in the next two

sections.

4. PROPAGATI ON OF DI STURBANCES AND CREATI ON OF SHOCKS

Here we conpare the predictions of the hydrodynam c theory and
our nodel, when the density along the road is known at an initia
time (t = 0) and discontinuities nay be created.

Consi der a portion of road where the density varies within a
narrow range in the direction of travel; i.e. k(x,O changes with
x, but remains either: (i) between O and ka (in Figure 1), (ii)
between ka and kg, or (iii) between kg and kj. Then the
hydrodynam c theory predicts that the same density profile will be
preserved over time, except for a position shift; no shocks are
created. That is, k(x,t) = k(x-wyt,0), where wk is the wave speed
for the portion of the diagram corresponding to our initia
densities. For our chosen tine-distance units of neasurenent (wth
v = 1)-the wave speed is 1 for case (i), O for case (ii), and 4

for case (iii). (This result arises because in the special case we
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are considering the characteristics — loci of constant density in
time-space — are parallel straight lines with slope wg.)

It is not difficult to see that the cell-transm ssion nodel
al so satisfies k(x,t) = k(x-wgt,0): According to Eq.(1b) the nunber
of vehicles transmtted fromecell i-1 to cell i is either nj-q,

Qi, Or Nj-nj depending on whether k is in [O kA], [ka,kp] or

(kp,kj1; and as a result, it should be clear from Eq.(1a) that
nij(t+1) wll be either ni-lI(t), nj(t), or nj+i1(t) depending on
whether k is in [OQKA], ([ka,kp] or [kg,kj 1 . Thus the density

profile (vehicle counts) nmove with the wave speed.

If the initial density profile is not entirely within a narrow
range, the evolution is nore conplicated-discontinuities are
creat ed. We consider first situations when the density only

increases in the direction of travel.

4.1 Increasing density

Let us assunme that k(x,0 increases froma point slightly
below xp of Fig. 1 to a point above, and exam ne a range of x
where the increase is roughly linear.

Wthout |oss of generality, we assune that the units of
measurenent for time and space are chosen so that v = 1 (as before)
and ék(x,0)/é6x = 1. Further, we assume that vehicles are counted

in units (e.g. pairs, halves, dozens...) such that the maxi num flow

IS gmax 50 units/tinme, and also assune that the origin of
(spatial) coordinates is located where the initial density is 50
count units per unit distance. Thus, without any |oss of

generality we have reduced all the problens of interest to a unique
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one for which the diagramof Fig.1l has only one free paraneter K]
(since gmax = 50, ka =50, and kg-kj - kp = ky - 50), and such
that the initial density profile is k(x,0 = 50 + x. Fur t her nor e,
because neither kg nor kj affect the evolution of our density
profile as long as the densities remain below kg, the free
paraneter doesn't need to be specified (we could select for exanple
kg = 100 and kj = 150).

Figure 2a depicts the map of characteristics for this problem
and the shockwave resulting from the convergence of the
characteristics. The shock path is defined by the line: x = t/2.
On one side of the shock the density is defined by the horizontal
characteristics and is k(x,t) =50 + x; the flowis g(x,t) = 50.
On the other side the density, defined by the slanted
characteristics, is: 50 + x -t; the flowis gq(x,t) = k(x,t). As
the reader can easily verify, the curve in the figure is the only

x(t) satisfying the vehicle conservation condition:

§x(t)/8t = [q1(x,t)-qa(x,t)]/[ki(x,t)-ka(x,t)], (&)

where the subscripts "i" and "2" refer to the state on either side
of the shock. (This condition ensures that vehicles don't
di sappear; i.e. those entering the shock on one side also [eave it
on the other side.)

Figure 2b depicts the density profile k(x,t) for different t.
Not e how the shock noves forward at speed 1/2, gradually increasing
in size.

Figure 2c depicts the result of the cell transm ssion nodel,
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Egs.(1), when the initial conditions are as stipulated and the
clock tick has been chosen to equal one time unit--this also
implies that cells are one distance unit long. Note the simlarity
of Figs. 2c (viewed sideways) and 2a. The arrows in Fig. 2c follow
the characteristics of constant density. The shock path,
hi ghlighted by circles between cells, alternates between 1 and 2
cells wide: as in Fig. 2a, it advances 1 cell (distance unit) for
every 2 clock ticks. The rows of Fig. 2c are also consistent with
the evolution pattern depicted in Fig. 2b.

The cl ose agreenent is not a result of the clock speed used.
If a clock that was 10 tines faster had been chosen, cells would
have been 10 tinmes shorter and the entries in the first row of
Fig.2c would have been 10 tinmes smaller. Because @ and N woul d
al so have been 10 tines snaller, the result of the recursion would
reveal the exact sane pattern of Fig. 2c, except that the entries
woul d have been 10 tines smaller. Note in particular that the
shock path would have remained 1 or 2 cells wide so that its actual
spatial range would have been 10 times smaller than before. Thus,
in agreenent with the continuous hydrodynam c nodel, the spatial
di mensi on of the shock could be nade to vanish with infinitely fast
cl ocks and negligible cell sizes.

A density profile k(x,O that increases past kg yields simlar
results. The sane set of paranmeters for Fig. 1 (Wth kg = 100 and
ky = 150) also suffices to describe this case exhaustively as |ong
as the upstream density renmains above ka. As the reader can
verify; the map of characteristics nowis sinply an upside down

version of Fig 2a, with backward noving characteristics ahead of
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stationary ones and a shockpath defined by x = -t/2. The numnerica
results of a sinulation with first row cell contents increasing
past "100" (... 98, 99, 100, 101, . ..) are also consistent with
this pattern; as a whole they resenble an upside down version of

Fig. 2c, including a backward noving shock that is 1 or 2 cells

wi de.

Suppose now that the density profile k(x, O increases past kp
and then past Kkg. Then, the forward-noving shock generated when
the density increases beyond kx will eventually be net by the

backward novi ng shock generated by the growth past kg. The shocks
woul d coal esce into a (forward or backward) noving shock that woul d
separate upstream traffic states with density in the interva
[0,kp] from downstreamtraffic states with density in [kB,kJ]. The
speed of the coal esced shock woul d be governed by Eq.(4).

The nunerical nodel replicates the behavior of the coal esced
shock with a 1 or 2 cell interface that noves at the correct speed.
That the interface nmust nove at the speed given by Eq.(4) should be
obvious since Eq.(4) is a direct result of vehicle conservation,
and the nunerical nodel conserves vehicles.1 This fact 1is

illustrated by the exanple in Sec. 5.

1 To see that the interface only spans 1 or 2 cells, start with an

initial set of occupancies such as ( . . n’,n’, ng, n", n", .
where n’ would correspond to a den5|ty bel ow ka, n" to a den5|ty
above kg, and ng would be in the interval [n’,n"]. Then, it

suffices to check that at the next iteration there would be at nost
one cell with an occupancy different fromn’ and n", and that that
cell could only be the cell previousuy contai ning ng, or one of its
nei ghbors. Care nust be exercised in checking this property,
because the flows between cells depend on the nagnitude of ng
relative to n’, Q NQ n" and N
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4.2 Decreasing densitv

Wth the flexibility to choose the units of measurenment for
counts, tine and distance as described in Sec. 4.1, the diagram of
Fig. 1 with qgpax = 50, ka = 50, kg = 100, and kj = 150  still
suffices to describe exhaustively the evolution of any density
profile decreasing snoothly past either kpa or kg. The origin of
spatial coordinates is chosen so that k(OO =50 if the initia

density profile decreases past kp, and k(0,0) = 100 if it decreases

past kg.

Wth these conventions, the maps of characteristics for both
cases are as depicted in Fig. 3a. Because the characteristics
di verge no shocks are formed; instead, constant-density, wedge-

shaped regions appear in the time-space continuum As shown in the
figure, for a density decreasing past kp the densities predicted by

t he hydrodynam c theory are:

k(X,t) = k(X,O) ’ ifX< O
= Kp if 0 <x ¢t
= k(x-t,0) , if x>t.

For a density decreasing past kg, the densities are:

kK(x,t) = k(x+t,0) , if x<-t.
:kB ' |f't.<.XSO

k(x,0)

, I f x>o0.
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The figure also displays the density profile predicted by the
hydrodynam c theory at t = 0 and 1 for both cases. In the first
case densities below kp are propagated forward at speed 1, and
hi gher densities remain stationary; an expanding road section with
density kp separates the high and | ow densities. In the second
case the low density section renmains stationary and the high
density section is propagated backward at speed -1.

Figure 3 also displays the results of the cell-transm ssion
model, using as before a one tinme unit clock tick. The results
closely replicate the hydrodynamc predictions. Note in particular
t he wedge-shaped regions of constant count and the direction of the
characteristics.

We have thus established that if the density changes gradually
over space, the cell transm ssion nodel is equivalent to the
conti nuous hydrodynam c nodel. Discontinuities in this density
(shocks) are also captured adequately by the cell-transm ssion
model ; they are represented by transition sections conparable wth
the lattice width and spanning 1 or 2 cells.

The next section presents an exanple involving the build-up
and di ssi pation of a queue. Besides illustrating the phenonena
di scussed in Sec. 4, the exanple is also used as a venue to
denonstrate the ease with which the numerical predictions can be

aut omat ed.
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5. | MPLEMENTATI ON AND EXAMPLE

As an illustration, we consider here a 1.25 mle honbgeneous
road with v = 50 MPH, kj = 180 VPM and gmax = 3000 VPH. Initially
traffic is flow ng undisturbed at 80% of capacity: q = 2400 VPH.
Then, a partial |ane blockage lasting 2 mn occurs 1/3 of the
di stance from the end of the road. The bl ockage effectively
restricts flowto 20% of the maxinum Cearly, a queue is going to
build and di ssipate behind the restriction. W wsh to predict the
evolution of the traffic density on the road before, during and
after the incident: both upstream and downstream of it.

| f we choose a 6 second clock tick (1/600th of an hour), then
the length of a cell nust be 1/12 nile and there will be 15 cells.

The cell constants are:

N = 15 and Q = 5.

The incident is nodeled by linmiting the capacity of the 11th cel

to 1/5 of the maximum for the first two mnutes; i.e.: Qi1(t) =1
for t < 20. Initially, each cell contains nj(0) = (1/12)(q/v) = 4
vehi cl es. The output cell flow constant is Q31(t) = 5, and the

maxi mum flow into the input "gate", Q(t) = 4.

Wth this information, it is a sinple matter to iterate
Egs.(1). The result is displayed on Fig. 4. A though the figure
was devel oped with a conputer spreadsheet, the reader can easily

verify nmanually that Eqs.(1) are satisfied by checking a
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representative sanpling of cells. The spreadsheet program,
docunented in the Appendix, can be easily copied by the interested
reader; with minor nodifications, it can be applied to other
(single link) problens.

Figure 5 displays the vehicle trajectory-shockwave diagram
that is obtained fromthe hydrodynam c theory. It has been plotted
using the same scale as in Figure 4, so that direct conparisons can
be made. The thin broken line starting at the origin represents a
vehicle trajectory; the dark lines represent abrupt transitions
between traffic states2. The capital letters identify the traffic
states prevailing in each region of the tine-space diagram Note
the close match of both the shockpaths and the densities in the
different portions of both diagrans. The reader is encouraged to
sol ve other problens with the spreadsheet provided in the Appendix,
and to perform simlar conparisons. As explained earlier, in
exam ning the results one shoul d expect discrepancies conparable to
the size of a cell between the sinmulation and the continuous
soluti on — discrepancies that would be undetectable on a scale

| arge conpared with a tick of the clock.

2 The reader mmy recall that a graphical procedure involving the
k-q diagram (shown in the corner) can be used to determne the
slopes of the vehicle trajectories and the interfaces between

different traffic states. Vehicle trajectories in a given state
(e.g. "E") nust be parallel to the line of the k-qg diagram
connecting the origin to the appropriate state (e.g. "E")

By virtue of Eq.(4), interfaces between two states must be parallef
to the line in the k-q diagram connecting the two states in
questi on.
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6. THE CELL- TRANSM SSI ON MODEL: CGENERAL CASE

Al t hough the equation of state in Fig. 1 allows one to choose
three basic engineering paraneters (the free flow speed, the
maxi mum fl ow and the jam density), the relationship forces the
backward wave speed to match the free flow speed. This is sonewhat
unrealistic because in reality waves nove several times nore slowy
than free flowng traffic, changing the manner in which vehicles
approach the bottleneck and the |ocation of queues. (Wth slow
waves, queues persist for a longer tine behind a tenporary
bottl eneck and are dissipated further upstream) On the other
hand, the wave speed di screpancy can be shown not to change the
time when approaching vehicles would pass a bottleneck and, hence,
not to influence the resulting vehicle delay.

Here, thus, we exam ne an extension of the cell-transm ssion
nodel that woul d approxi mate the hydrodynam ¢ nodel for an equation
of state that allows backward waves w th speed W<V, Said

equation of state, depicted in Fig. 6, is:

q = min{ vk , gmax , w(kj-k)}, for 0 < k € Kkj, (5)

where w<v and gmax < kj/[1/v + 1/w].
The cell-transm ssion nodel intended to represent this
relationship is identical in all respects to the one in Sec. 2,

except-that Eq. (Ib) is nodified slightly and now is:
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yi(t) = min{ nyj_1(t) | Qi(t) , (w/v)[Ni(t)-ni(t)] ). (6)

6.1. Equivalence to the hvdrodvnam ¢ theory
For a honogeneous highway, the differential equation defining

the evolution of the system under the hydrodynam c nodel, fornerly

given by Eq.(3), is now :

§ min{ vk(x,t) , qgmax , w(kj-k(x,t)) }/8x = -8k(x,t)/st. (7)

In our discrete representation the cell characteristics should
be independent of i and t, so that in Eq.(6), Nj(t) =N and
Qi(t) = Q. As in Sec. 3 we define the tick of the clock to be
equal to dt and choose the unit of distance such that vdt = 1.
Theref ore, the followng equivalences hold: x =1, kj = N,
gmex = Q w=wyv, and k(x,t) = nj(t). Wth these conventions, the

variable in braces in Eq.(7) is equivalent to:

mnt g(t) , @, (w/v)[(N-nj(t)] )},

whi ch except for the subindex of n in the first termis the

definition of yij(t) according to Eqs.(6). For continuous density
profiles the discrepancy in subscripts is immterial; hence, the

left hand side of Eq.(7) is equivalent to:

Vi+1(t) - yi(t)
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The right side of Eq.(7), of course, is equivalent to:

—-[nj (t+1) - nj(t)]

Clearly then, Eg. (7) and the finite difference recursion (la) nust
be equival ent when the density is continuous, since both sinply
state the equality of the above two quantities.

As before, the subindices chosen for Eq.(6) ensure that the
recursion behaves properly in the presence of discontinuities. The

follow ng subsection explores this fact in nore detail

6.2 Behavior of difference equations with finite clock ticks

As happened for the basic cell-transmission nodel, finite
difference equations (la) and (6) solve the continuous hydrodynam c
model of Fig. 6 when an infinitesimally small clock tick is used.
W now explore the nodel behavior with finite clock ticks and
di scontinuous densities. Sections 4 and 5 denonstrated that for
finite clock ticks the difference between the continuous and
di screte solutions to the basic nodel is mnimal: the |argest
di screpancy between the two arises W th the representation of
shocks, which take no space in the continuous nodel but span either
1 or 2 cells in the discrete nodel. The generalized nodel
al t hough equivalent to the continuous nodel in the limt, is not as
wel | behaved for finite clock ticks.

To illustrate the issues, the current subsection describes the
evol ution of both a shock and an accel erati on wave, as predicted by

both the continuous and discrete equations. Then, the follow ng
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sub-section introduces a nodification to Eq.(6) that inproves the

finite clock tick performance of the nodel.

In this subsection we will use the diagramof Fig. 6 with
v =1 and ka = 50 (no loss of generality here), and wll also
assune when an illustration is needed that w = 0.25 (a reasonabl e

value) and kg = k. Asa result, gmax = 50 and kj = 250.

Consider first a density profile, representing traffic running

into the back of a stationary queue at position x = 15; i.e.:
k(x,0 =k , if x <15
= kj , if x > 15.

The discontinuity at x = 15 is a shockwave that will propagate
backwar d. If k is greater than kg (e.g. k = 70), then the shock
wi || propagate at speed -0.25 (see Fig. 6).

In a plot of cumulative vehicle count (recall that we may be
counting vehicle pairs, dozens, etc) vs. distance, the shock wll
appear as a convex break in the slope of the curve. The position
of this break is independent of the count |abel assigned to the
vehicle at x = 0, and for this reason we wll always assign |abel 0

to the vehicle inmediately upstreamof x = 0; then the cunulative

count K(x,t), called fromnow on the "cunulative profile", is the
i ntegral over x of k(x,t). (Note that this schene does not
identify individual vehicles). For our exanple, the initial

cunul ative profile is:



23

K(x,0) = xk if x <15

15k + (x-15)kj , if x 2 15.

Because the shock travels at speed 0.25 the break in slope is at
X = 15-0.25t for any t > 0. Hence, for any t < 40, the cunulative

profile predicted by the hydrodynam c theory is:

K(x,t) = xk if x < 15-0.25t

= (16-wt)k + [x-(15-wt)]kj , if x 2 15-0.25¢.

The cumnul ative profile can also be evaluated with the cell-
transm ssi on nodel . If the clock ticks once every tinme unit and
cells are defined so that cell 1 extends fromx =0 to x = 1, then
the cumul ative profile at any (integer valued) x is sinply the sum
of the vehicle counts in cells 1 to x-I. For the case with
ky -250 and k =70, the initial cell contents would then be:
(..., 70, 70, 250, 250,...). Figure 7 displays the approximation
to K(x,t) at various times; dashed |ines show the exact result.
Notice how as tine passes the discrete approxinmation "softens” the
shock, so that it spreads to a grow ng nunber of cells.

A simlar spreading phenomenon occurs with accel eration waves
(i.e. concave bends in the cumulative profiles). Figure 8 depicts

the results when the initial density profile is:

K(x,0) = ky, if x < 10

= 50 if x 2 10,
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as if a blockage at x = 10, causing a stationary queue, had been
removed at t = 0.

W claim that the prediction errors caused by nunerical
spreading are m nor because as seen in Figs. 7 and 8. (1) t he
maxi mum error in the count increases at a decreasing rate with the
passage of time, (ii) the disturbances still travel at the
appropriate speed, (iii) the vehicle counts and densities on either
side of the shock (or wave) are not corrupted, and (iv) the
accuracy of the count near a shock (or wave) can be controlled by
nodi fying the clock tick — as per dinensional argunents already

seen.

6.3. A nmodification that elim nates spreading for certain shocks

We had seen at the end of Sec. 3 that Eq.(1b) was not the only
mechani sm for defining an inter-cell flow that was consistent with
Eq.(3) of the hydrodynamc theory, and that other fornulations
m ght not behave properly in the face of discontinuities.

Here we suggest a sinple nodification to Eq.(6) that behaves
properly in the face of discontinuities and yet elininates
spreadi ng of shocks separating a downstream density greater than kp
from an upstream density |lower than k. The nodified expression

IS:

yi(t) = min{ nj_9(t) , Qi(t) | alNj(t)-nj(t)]), (8a)

wher e
a =1 ‘ I nj-1(t) <Qi(t) (8b)
= wv , i f nj-1(t) >Qy(t). (8c)
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It is not difficult to see followng the logic of Sec. 6.1 that the
expression is still consistent with the hydrodynam c theory when
the ny vary slowy.

W claim that wth this correction any errors in the
cumul ative count near a shock (wave) shoul d di sappear once upstream
light traffic (v =1, Kk < kp) catches up with the spreading
shock (wave), and that as a result any numerical errors should be
short |ived. We base this observation on the fact that the shock
preceeding the light traffic is of the non-spreading type, and that
it eventually nust separate accurate upstream and downstream
counts.

Perhaps, the above argument can be best understood if it is
illustrated with an exanple. Consider the followng initial
density profile:

k(X,O):kJ if 8 ¢ x <11

=25 ot her wi se.

A diagram of k(x,t) for this problem also displaying the
accel eration waves and shocks predicted by the hydrodynam c theory,
Is provided in Fig. 9b. It can be seen fromit that all the
changes in density for this problem are discontinuous, and that as
a result the cumulative profile K(x,t) at any t should be a
pi ecewi se |inear function, as shown in Fig. 9c. The solid |ines
in Fig. 10 are graphs of the cumulative profile for t = 0, 8, 16,
24 and- 32 as predicted with Egs.(1a) and (8); the dashed lines in

the figure are the (piecew se |linear) exact results. Al though the
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accel erati on waves spread (as shown by the concave bends of the
curves), the (convex) shocks remain sharp. The figure clearly
illustrates how the spreading wave is gradually "eaten up" by the
advanci ng shock, wuntil at time 24 and thereafter the exact and

approxi mate results essentially coincide.

7. INSTABILITY

So far we have argued that the cell-transm ssion nodel in one
of its forns <can easily produce results consistent wth the
hydrodynam c theory of traffic flow This section takes an extra
step; it shows that the cell-transm ssion nodel has the potentia
for capturing real-life instability phenonena, not included in the
hydr odynam c t heory.

Research on the stop-and-go phenonmenon of congested freeway
traffic dates back at least to Edie and Foote's (1961) and Edie’s
(1963) observations at the Lincoln and Hol |l and Tunnels, and the
Ceorge Washington Bridge in New York. Despite substantial efforts
on the subject since then (witness for exanple the extensive car-
followng literature of the 1960's) a nodel of traffic instability
that would account for the long periods of oscillation
(approximately 1 mnute |ong) observed in practice seens to have
el uded researchers.

Newel | (1963) had stated that an instability would arise if
drivers catching up with denser/slower traffic ahead were to del ay
braking, perhaps in the hope that traffic would clear up before

they had to sl ow down. Thi s behavior would result in average
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spacings shorter than usual when traffic was decelerating (as
observed by Edie) and would cause an instability. O course, a
m croscopic car-followi ng nodel to mmc this behavior would be
extremely difficult to build (and validate) because in making their
deci sions drivers consider the recent evolution of the traffic
stream i medi ately ahead, and not just the current status of one
vehi cl e. A macroscopi ¢ nodel, consistent with Edie's observation
t hat spacings are shorter when platoons are conpressing, may be a
nore sensi ble goal to pursue.

Per haps because of these difficulties, current efforts (see
for exanple Ferrari, 1991) typically avoid seeking a behavioral

explanation for instability and tend to focus instead on its

control, using on-line macroscopic traffic nmeasurenents. Thi's
section also examnes instability at the nmacroscopic level. It
shows that the «cell-transmssion nodel, with a very sinple

nmodi fication that nmakes it consistent with Edie's observations, can
duplicate real-life instability features.

Here we postul ate that drivers operate in one of two nodes
depicted by the two g-k diagrans of Fig.ila, depending on the
traffic conditions prevailing in a "l|look-ahead" road section
extending a fixed distance ahead of their current |location. If
the traffic density in this "look-ahead" section is greater than
the traffic density in the vehicles' i medi ate nei ghbor hood
(assumed to be smaller than the "look-ahead" section), then we wll
assune that the vehicles would advance position as if they were

regul ated by the top curve of the figure. Oherwise they will
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advance according to the |ower curve3.

The cell-transm ssion nodel can capture such conditions quite
naturally. Wthout |oss of generality we define the cell length to
be the distance of "the i nmedi at e nei ghborhood", and exam ne a
speci al case where the "look-ahead" di stance is two cells. Then,
only the occupancies of two neighboring cells need to be conpared
to determine any inter-cell flow For the purposes of illustration
the g-k curves are assuned to be of the special form depicted in
Fig.llb, as then no additional paraneters need to be introduced.
For this special case, the cell-transmssion nodel will capture the

desired behavior if the variable a of Eq. (8a) is redefined as:

a=1 | i f ny_1(t) < nj(t) or Qi(t) (9a)

=w/v ot herw se. (9p)
Al t hough much experinental evidence would be needed to make a
strong claimfor realism the results described bel ow at |east

seem to be qualitatively consistent with real-life behavior.

7.1 Results

Here we describe the nunerical results of a nunber of

S (Oher conditions for the on-off switching nmechani sm could have
been postul ated. For exanple we could have stipulated that drivers
wi || advance nore aggressively (according to the upper curve) if
the traffic density in their nel ghborhood has been increasing in
tine. Aternatively, aggressive behavior could be stipulated when
both conditions are met (or else either one of thenm). Fortunately
the specific trigger is not inportant because, w th backward novin

waves (relative to a vehicle) as result fromour nodel, if one o

the_fonditions is met so are the others; all the nodels should be
simlar.
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simul ations that were done with the cell-transm ssion nodel, using
Egqs. (8a) and (9). The tests involve a honpgeneous finite section
of highway with a large input flow and a restricted steady output.
Because the output is constant, the (stable) hydrodynam c steady
state solution is a spatially uniformdensity. (The value of said
density is given by the point on the congested part of the g-k
curve that has q -equal to the output flow) If the systemis
assuned to be in steady state at tinme t = 0, Egs. (9) don't
generate any instability; they produce the same result as Egs.(6)
and Egs.(8), of course matching the hydrodynam c prediction

We explore here the evolution of the system as predicted by
Egqs. (9) when a single random di sturbance to the exit flow is
introduced at tinet =0 (i.e a slightly larger or smaller output
flow for the first clock tick only). Experi ments have been
conducted for a nunber of exanples, and these will be discussed

here qualitatively. Nunerical results will be given for one of the

exanples (for illustration only) corresponding to the follow ng
parameters of Fig.11lb ! apax (Qi) = 50, k3 (Ni) = 150, wv = 0.5;
and the following initial conditions : Qoutput = 25 and ni = 100.

In all the cases tested, and independently of the magnitude of
the initial inpulse, a flow disturbance was generated that grew in
duration and magnitude as it traveled backward. The disturbance is
first noticed by a tenporary increase in flow, which is then
followed by a shorter but sharp reduction, finally termnating with
a gradual return to nornalcy. The disturbance does not generate
any lasting effects; after its passage, vehicles are observed to

go by any location at the tine they woul d have passed w t hout the
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disturbance. However, affected vehicles are observed to pass...
earlier! We are not sure whether this would also occur in reality,
and unfortunately it seems difficult to design an experiment to
verify it. In a way the answer to this question is moot because,
with a constant output flow, every vehicle will pass the bottleneck
at its appointed time. A small disturbance cannot cause any
delay.*4

Figure 12a contains plots of cumulative count vs. time at 4
locations separated by 3 cells. Notice how the disturbance grows
as described, eventually including intervals with nearly zero flow.
From the time at which the shock front (the crest of each
cumulative count curve) passes the various locations we can infer
the disturbance's speed. In the figure, as in the other cases
tested, the disturbance traveled (roughly) with the wave speed w.
This should not be surprising for a disturbance that is no longer
growing: the disturbance must move with the speed of its decreasing
density portion, which must be w since Egs.(9) and (8) are
equivalent when the density decreases.

We also performed experiments in which a steady random noise
was added to the exit flow—the noise was 1dentical to the
described impulse at t = 0 but operating at all times. With such
noise, regularly oscillating waves would invariably develop
upstream from the exit, with a period of oscillation that was the

same at all locations and a phase shift of speed w. Both the wave

4 We are assuming here that there are no side effects due to
instability. In reality, oscillations could cause incidents and
car stalls which would cause occasional delays. This benefit—and
not wholesale reductions in delay due to an increased capacity—
should be the justification for controls to smooth traffic out.
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growth pattern and the oscillation period were surprisingly
reproducible, i.e.largely independent of the set of generating
impulses, perhaps providing an explanation for the regularity of
stop-and-go traffic waves. Figure 12b illustrates these comments;
the figure represents a situation identical in all respects to 12a,
except that the single impulse has been replaced by steady noise.
This figure can be compared with the flow-wave results of Edie and
Foote (1959), given in Fig. 13. Note that a certain regularity was
also observed in these experiments and that, as in Fig. 12, the
disturbances also grew with the distance from the tunnel's exit.
For the same combination of parameters, Fig. 14 depicts the
oscillations recorded in the g-k plane. Each point in the figure
corresponds to a combination of yj(t) and the average of the
occupancies in the sending and receiving cells during the two time

intervals immediately preceeding and following clock tick i:

(1/4) [nj-1(t)+nj(t)+nj_3 (t+1)+nj (t+1)].

The pattern of the figure, insensitive to the impulse set, is also
observed at other locations although, obviously, there will be a
scaling discrepancy wherever the disturbance is not fully grown.
Different patterns, also insensitve to the impulse set and the
specific location, are obtained for other wave speeds and initial
densities.

The number of ticks for one oscillation was found to decline
with w- and to depend on the metering rate; the number was close to

8/(w/v) for d ® dnpax/2- Thus, a period of a few minutes as
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observed in Fig. 13, would arise with w/v = 6 and a clock tick of
about 5 seconds — the "look-ahead" section would then be a few
hundred feet long.

our findings seem to be consistent with the observations of
Treiterer and Myers (1974) who documented the growth of one
disturbance. Interesting to note is the similarity of Fig. 14 and
Fig. 4 of this reference (reproduced here as Fig. 15a); the
similarity should be qualified, however, because Treiterer and
Myers' figure depicts the g-k oscillations seen by a moving
observer and Fig. 13 does not. Other comparisons can also be made.
From the trajectories in Treiterer and Myers' Fig. 2 (reproduced
here as Fig. 15b) the following parameters can be estimated: v = 54
MPH, dQpax = 1850 VPH, and kj = 240 VPM. For a diagram such as the
lower one of Fig. 11b this corresponds to a wave speed of about 9
MPH (consistent with the observed speed of the disturbance). We
used a cell-transmission model with a 1.0 sec. clock tick and 0.015
mi. cell length, which ensures that v = 1 cell per tick = 54 MPH.
With these basic features, the parameters of the cell-transmission
model are: N = 3.6, Q = .51 and w/v = 1/6. The original state
observed in the figure (k = 80 VPM > Kop) corresponds to n = 1.2.
In rough agreement with the trajectory pattern of Fig. 13, the
numerical results revealed a disturbance that grew in spatial
dimension by about 60 meters per minute, traveling at about 7 MPH
during this transitional phase.

The above comparisons are not meant to establish the validity
of the  model in Fig. 11b; only that it may have the potential for

reproducing real-life phenomena. A very large empirical effort
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would be needed to pinpoint more precisely a "correct" model.
After all, typical instability features such as a disturbance's
growth rate and its final equilibrium size may depend on local
conditions, perhaps even changing across facilities just as kj,
dpmaxs W and v do. Besides changing the clock tick (and cell size),
reducing the slope of the upper curve of Fig. 11b and increasing
the number of cells for the "look-ahead" section might also capture
these variabilities. The clock tick should be adjusted to match
observed oscillation periods and the upper slope to match the
disturbance's growth pattern. (We have found from our experiments
that with a shallower upper branch for the diagram in Fig.1l1lb the
system becomes more stable, and when disturbances grow they grow at
a slower rate.) We have not explored the effect of longer "look-
ahead" sections. Another generalization might involve a model

where the‘transition flows (8a) themselves include random noise.

8. CONCLUSION

Although the results in Secs. 6 and 7 have been developed for
the specific form of the g-k relationship depicted in Fig. 6, the
form is rather general. It offers 4 degrees of freedom: the free
flow speed, the maximum flow, the jam density and the wave speed.
As pointed by Newell (1991), these are the most important
determinants of traffic evolution; and even if a more general model
was available, it is unlikely that in any practical application an
engineer would have reliable data beyond these parameters.

Arguably, thus, a model with so much flexibility should be accurate
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enough for modeling complex networks. This section presents some
ideas that should be useful for network modeling; it first
discusses the efficient calculation of various measures of

performance, and then the possibility of using large clock ticks.

8.1 Measures of performance

From the information in a diagram such as Fig. 2 it is
possible to recover any information. For network simulations,
however, we would like to avoid storing in memory all the cell
occupancy information for the duration of the simulation. The
following shows how three important measures of performance can be
calculated without using any extra memory.

The total number of vehicle-hours. The total number of
vehicle-hours spent in any cell is simply the addition of nj(t)
across t. The addition across cells yields the total time in the
system for all users.

The total delay. The total number of vehicles to have left

cell i is the addition of yj+1(t) across t. If the number of
vehicles to have left cell i is equal to the number to have
entered, then the added quantity represents the number of vehicles
to have flowed through cell i. This is likely to happen for long
periods of observation. Because in our measurement units v = 1,
this number is also the total time that vehicles would have spent
in cell i had they been able to travel freely. Therefore, the

"delay" in cell i is:
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Tt { nj(t) - yi(¥) }.

As with total time, the addition across cells yields the total
delay.

The virtual time. We also define the "virtual time" in cell
j as the time that would be spent in the cell by a vehicle about
to enter it, if the current cell discharge rate was maintained.
This virtual time may be useful in the planned sequel, for dynamic
route guidance.® The ratio nj(t)/yj+1(t) is the "virtual time";
it represents the number of ticks of the clock needed to empty cell
i at the current emptying rate. Note that Eq.(1b) guarantees that
the numerator is no smaller than the denominator. Logically then,
the virtual time is never smaller than 1. (We define the ratio to

be 1 if both the numerator and denominator are zero).

8.2 Large clock ticks

The method is very robust and returns accurate results, even
for long clock intervals and large cell sizes. Errors in timing
are comparable to the clock interval and errors in location are
comparable to the cell size. Thus, in any practical application
one should choose the longest clock step consistent with one's
cbjectives.

To illustrate this property, the example of Figs. 4 and 5 can
be repeated with a clock interval 5 times larger (30 sec.). In that

case there will only be 3 cells (two upstream and one downstream of

5 Recent research has cast some doubt on the usefulness of this
concept.
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the incident) and we will not be able to pinpoint precisely the
location of vehicles within the highway. We are interested in
assessing the impact of this lack of information on the flows that
would be predicted at the entrance and exit to the highway, and on
the total user time spent in the system.

Because 1less than 20 <clock ticks are necessary, the
calculations can be easily done manually. The cell constants are
Q = 25 and N = 75; initially there are 20 vehicles in each cell.
The reader can verify that the result in Table I is obtained. From
the table we can verify that: (1) the flows through the restriction
and at the exit vary in the same manner and return to normal at the
same time as with the more detailed partition; (ii) as with the
more detailed partition, the disturbance is not felt at the
generator cell and hence the input flow into the road is steady in
both cases; (iii) the total time in the system is the same in both
cases — an obvious consequence of (i) and (ii). As in Newell's
method, it seems that the system evolution (including flows and
total time) can be predicted without tracking precisely the

location of the vehicles within the highway.
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TABLE 1
Result of a simulation with a 30 sec. clock.
(Numbers indicate the number of vehicles in each cell).
Clock ticks Cell number
(30 sec.)

0 1 2 3

1 20 20 20 20

2 20 20 35 5

3 20 20 50 5

4 20 20 65 b

b 20 30 70 5

6 20 45 50 25

7 20 40 50 25

8 20 35 50 25

9 20 30 b0 25

10 20 25H 50 25
11 20 20 50 25
12 20 20 45 25
13 20 20 40 25
14 20 20 35 25
15 20 20 30 25
16 20 20 25 25
17 20 20 20 25
18 20 20 20 20

40
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APPENDIX

spreadsheet documentation

Table II displays the first few rows of the spreadsheet used
to simulate our 1link. The remaining rows up to row 115 are
similar. All the entries of the spreadsheet are data, except for
range E17..T115. 1In particular, note rows 12 and 13, which contain
the cell constants. The maximum flow for highway section 11 is not
provided because that is the section with the time varying
capacity. The pertaining information is instead provided on column
nyn, By changing the entries to this column, one can model
incidents of different duration and severity. Row 16 represents
the initial conditions.

The formula for cell E17, the equivalent of Egs. (1), is:

+E16-@MIN(E16,F$12,F$11-F14)+@MIN(D16,E$12,E$13—E16).

It is copied to range E17..T115, except for columns "o" and "P",
which cannot address spreadshhet cell "p$12". This argument should
be replaced by the capacity given in column Vv for the prior clock
tick: "vieé" is used for row 17. calculation of the spreadsheet will

then produce the data displayed in the table (and in Fig. 2).
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TABLE IT
Structure of the spreadsheet program
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Figure 1. Flow-density relationship for the basic cell-transmission
model.
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Hydr odynani ¢ solution to an exanple with a generalized
flowdensity relationship. (a) The g-k relationship. (D)

The resulting density map, k(x,t). (c) Cumul ative density
profiles at different tines.
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density hysteresis.

(b) Vehicle trajectories.
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