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THE CELL TRANSMISSION MODEL. PART I:
A SIMPLE DYNAMIC REPRESENTATION OF HIGHWAY TRAFFIC*

CARLOS F. DAGANZO

Department of Civil Engineering and
Institute of Transportation Studies

University of California, Berkeley CA 94720

Abstract

This paper presents a simple representation of traffic on a
highway with a single entrance and exit. The representation can
be used to predict traffic's evolution over time and space,
including transient phenomena such as the building, propagation and
dissipation of queues. The easy-to-solve difference equations used
to predict traffic's evolution are shown to be the discrete analog
of the differential equations arising from a special case of the
hydrodynamic model of traffic flow. The proposed method
automatically generates appropriate changes in density at locations
where the hydrodynamic theory would call for a shockwave; i.e. a
jump in density such as those typically seen at the end of every
queue. The complex side calculations required by classical methods
to keep track of shockwaves are thus eliminated. The paper also
shows how the equations can mimic the real-life development of
stop-and-go traffic within moving queues. The model predicts that
the oscillation pattern is independent of the initial impulse from
downstream (as one would expect), and that oscillations should not
increase delay unless they result in car stalls or other incidents.

The results in this paper can be used for simple traffic
engineering analyses. Most importantly, they are a fundamental
building block for traffic prediction over networks. The ability
to make such predictions can lead to better strategies for ramp
metering and incident detection. A sequel to this paper will
examine highway networks. The representation's simplicity should
make it possible to keep track of each vehicle's final destination
throughout a simulation, even for complex networks. This
capability should help improve traffic control packages and dynamic
traffic assignment methods.

* Research supported by PATH MOU 90, Institute of Transportation
Studies, Berkeley, CA.
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updated with every tick of a clock.

To this end the road is divided into homogeneous sections

(cells), numbered consecutively starting with the upstream end of

the road, from i = 1 to I. The lengths of the sections are not

chosen arbitrarily; they are set equal to the distances traveled in

light traffic by a typical vehicle in one clock tick. Under light

traffic then, all the vehicles in a cell can be assumed to advance

to the next with each tick; it is unnecessary to know where within

the cell they are located. Thus, the system's evolution obeys:

ni+l(t+l) = ni(t),

where ni(t) is the number of vehicles in cell i at time t. We

will assume that the above recursion holds for all flows, unless

traffic is slowed down by queueing from a downstream bottleneck.

This seems reasonable because, for crowded conditions as might

arise during the rush hour, most of the delays can be attributed to

queueing at bottlenecks where flow temporarily exceeds capacity;

rather than to any dependence between flow and speed. (It has been

empirically observed that the space-mean speed of freeway traffic

remains relatively constant, independent of flow, unless flow is

close to capacity.)

To incorporate queueing we introduce two constants: Ni(t), the

maximum number of vehicles that can be present in cell i at time

t, and Qi(t) , the maximum number of vehicles that can flow into

cell i when the clock advances from t to t+l (time interval t).

The first constant is the product of the cell's length and its "jam



5

density", and the second one is its tVmaximum flow (or capacity)".

We allow these constants to vary with time to be able to model

transient traffic incidents. The number of vehicles that can flow

from cell i-l to cell i when the clock advances from t to t+l

(the flow into t*ilt for the time interval after "t"), yi(t) , is

assumed to be the smallest of three quantities:

ni-1 (t) I the number of vehicles in cell i-l at time t,

Qi (t) I the capacity flow into i for time interval t, and

Ni (t) -ni (t) I the amount of empty space in cell i at time t.

(This last quantity ensures that the vehicular density on every

section of the road remains below jam density.) Our proposed

simulation, called the "cell-transmission model", will be based on

a recursion where the cell occupancy at time t+l equals its

occupancy at time t, plus the inflow and minus the outflow; i.e.:

ni(t+l) = ni(t) + Yi(t) - Yi+l(t) (la)

where the flows are related to the current conditions at time t as

indicated above:

Yi(t) = min{ ni-l(t) , Qi(t) , Ni(t)-ni(t) }. (lb)
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The simulation would step through time, updating the cell

occupancies (for all i) with each tick of the clock.

Boundary conditions can be specified by means of input and

output cells. The output cell, a sink for all exiting traffic,

should have infinite size (NI+l = 00) and a suitable, possibly

time-varying, capacity. Input flows can be modeled by a cell pair.

A ttsourcett cell numbered ItOOtt with an infinite number of vehicles

(n00W = 00) that discharges into an empty ttgatett cell "0" of

infinite size, NO(t) = 00. The inflow capacity Qo (t> of the gate

cell is set equal to the desired link input flow for time interval

t+1. The gate cell then acts as a metering device that releases

traffic at the desired rate while holding (as a parking lot would)

any flow that is unable to enter the link.

Note that the result of the simulation is independent of the

order in which the cells are considered at each step. This

important property of the cell-transmission model will permit the

analysis of complex networks, e.g. with loops. The property arises

because we are specifying that the number of vehicles that enter a

cell is unrelated to the number of vehicles that will leave it;

thus, only current conditions influence the inflow to a cell.

Although the first two restrictions ( Yi(t) 5 ni-l(t) and

Yi(t) 5 Qi(t) 1 are reasonable in this regard, one may argue that

if a cell is rapidly being emptied then the third (occupancy)

restriction Yi(t) 5 Ni(t)-ni(t) may be overly conservative.

The counterargument is that empty slots for cars can only travel

backwards at a finite speed (the wave propagation speed) unlikely

to be greater than the free flow speed. Therefore the effects of
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the outflow should only be noticed upstream after some time.

Because this lag is one tick of the clock for our model, this is

akin to assuming that density waves propagate backwards at the free

flow speed. Sections 3 and 4 demonstrate that our simulation

indeed behaves as a hydrodynamic model of traffic flow with this

property.

3. EQUIVALENCE TO A HYDRODYNAMIC MODEL

We now consider a homogeneous highway and show that Eqs.(l)

are a discrete approximation to the Lighthill, Whitham, Richards

hydrodynamic model with a density-flow (k-q) relationship in the

shape of an isosceles trapezoid, as in Fig. 1. This relationship

can be expressed as:

q = min{ vk , qmax , V(kj-k) 1 r for 0 I k I kj, (2)

where v is the free-flow speed (and the speed of all backward

moving waves), kj is the jam density, and qmax 5 kjV/2 is the

maximum flow.

If Eq.(2) is replaced into the flow conservation equation:

Sq(x,t)/Gx = -6k(x,t)/&t

we obtain the differential equation that would define the evolution

of the system under the hydrodynamic model:
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S mint vk(x,t) , qmax t v(kj-k(x,t)) )/Sx = -sk(x,t)/st  l (3)

We now show that Eq.(3) is equivalent to our simulation. Note

that for our homogeneous highway the cell characteristics would be

independent of i and t: Ni(t) = N and Qi(t) = Q . To

demonstrate the equivalence of the discrete and continuous

approaches we now define the tick of the clock to be equal to dt

and choose the unit of distance such that vdt = 1. Then the cell

length is 1, v is also 1, and the following equvalences hold:

XEi, kj EN, qmax E Q9 and k(x,t) 5 ni(t). With these

conventions, the variable in braces in Eq.(3) is equivalent to:

mid ni(t> , Q , N-q(t) ),

which coincides with the definition of yi+l(t) of Eqs.(lb), except

for the subindex of n in the last term, which should have been i+l

instead of i. This, however, is immaterial unless the density is

discontinuous. Because the hydrodynamic differential equations are

only satisfied when the density is continuous with x

(discontinuities - shocks - are treated outside of the

differential equations with the hydrodynamic model) we can state

that the variable in braces is equivalent to Yi+lW* and as a

result the left hand side of Eq.(3) is:

Yi+l(t) - YiW l
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The right side of Eq(3), of course, is:

-Cni(t+l> - q(t>l

and the equality of these two quantities justifies the simulation

recursion, Eq.(la).

To be sure, there are other forms of Eq.(lb) that would also

be consistent with Eq.(3). For example, the flow into cell i,

yi(t) could have been specified only as a function of the occupancy

of the sending cell, i-l, so that Eq.(lb) would have been:

Yi(t) = mint q-l(t) , Qi(t) , Ni-l(t)-q-l(t)  ).

Alternatively, yi(t> could have been specified only as a function

of the occupancy in the receiving cell. While these, and possibly

other specifications are consistent with Eq.(3) for any slow

varying density, their behavior in the face of discontinuities is

not equivalent and may not be reasonable.

That consistency with Eq.(3) is no guarantee of reasonable

behavior across discontinuities is clearly illustrated by the

expression above. It should be clear from inspection that such an

expression would predict zero flow downstream of any discontinuous

drop in density from the jam density to any lower value. Thus,

such a model would predict that vehicles queued at a traffic light

would not advance even after the light turned green! (Unrealistic

predictions also arise if flows are based only on the status of the

receiving cell, as then a receiving cell would continue to attract
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vehicles even after upstream occupancies have dropped to zero.)

Because discontinuities are common--arising spontaneously when

low density traffic catches up with denser, slower downstream

trafficfheir effect on model performance must be examined. We

claim here that Eq.(lb) will replicate the behavior of the

continuous model even across discontinuities. Thus, it should be

possible to iterate Eqs.(l) and automatically track varying

densities and the paths of any resulting shocks. This property,

very useful for automatic computation, is discussed in the next two

sections.

4. PROPAGATION OF DISTURBANCES AND CREATION OF SHOCKS

Here we compare the predictions of the hydrodynamic theory and

our model, when the density along the road is known at an initial

time (t = 0) and discontinuities may be created.

Consider a portion of road where the density varies within a

narrow range in the direction of travel; i.e. k(x,O) changes with

x9 but remains either: (i) between 0 and kA (in Figure l), (ii)

between kA and kg, or (iii) between kB and kj. Then the

hydrodynamic theory predicts that the same density profile will be

preserved over time, except for a position shift; no shocks are

created. That is, k(x,t) = k(x-wkt,D), where wk is the wave speed

for the portion of the diagram corresponding to our initial

densities. For our chosen time-distance units of measurement (with

V= l)-the wave speed is 1 for case (i), 0 for case (ii), and -i

for case (iii). (This result arises because in the special case we
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are considering the characteristics - loci of constant density in

time-space - are parallel straight lines with slope wk.)

It is not difficult to see that the cell-transmission model

also satisfies k(x,t) = k(x-wkt,O): According to Eq.(lb) the number

of vehicles transmitted from cell i-l to cell i is either ni-1,

Qi, or Ni-ni depending on whether k is in [O,kA], [~A,~BI or

[kB,kjl; and as a result, it should be clear from Eq.(la) that

ni(t+l) will be either ni-l(t), ni(t) r or ni+l(t) depending on

whether k is in [O,kA],
Ck AIk Bl Or  ☯k B,k j I l

Thus the density

profile (vehicle counts) move with the wave speed.

If the initial density profile is not entirely within a narrow

range, the evolution is more complicated-discontinuities are

created. We consider first situations when the density only

increases in the direction of travel.

4.1 Increasins density

Let us assume that k(x,O) increases from a point slightly

below kA of Fig. 1 to a point above, and examine a range of x

where the increase is roughly linear.

Without loss of generality, we assume that the units of

measurement for time and space are chosen so that v = 1 (as before)

and Jk(x,O)/Jx = 1. Further, we assume that vehicles are counted

in units (e.g. pairs, halves, dozens...) such that the maximum flow

is qmax = 50 units/time, and also assume that the origin of

(spatial) coordinates is located where the initial density is 50

count units per unit distance. Thus, without any loss of

generality we have reduced all the problems of interest to a unique



12

one for which the diagram of Fig.1 has only one free parameter kj

(since qmax = 50, kA = 50, and kg-kj -kA=kj - 50), and such

that the initial density profile is k(x,O) = 50 + x. Furthermore,

because neither kg nor kj affect the evolution of our density

profile as long as the densities remain below kg, the free

parameter doesn't need to be specified (we could select for example

kg = 100 and kj = 150).

Figure 2a depicts the map of characteristics for this problem

and the shockwave resulting from the convergence of the

characteristics. The shock path is defined by the line: x = t/2.

On one side of the shock the density is defined by the horizontal

characteristics and is k(x,t) = 50 + x; the flow is q(x,t) = 50.

On the other side the density, defined by the slanted

characteristics, is: 50 + x - t; the flow is q(x,t) = k(x,t). As

the reader can easily verify, the curve in the figure is the only

x(t) satisfying the vehicle conservation condition:

lix(t)/St = Cq1(xJ)-q2( x,t>l/Ckl(x,t)-k2(xtt)l, (4)

where the subscripts "1" and "2" refer to the state on either side

of the shock. (This condition ensures that vehicles don't

disappear; i.e. those entering the shock on one side also leave it

on the other side.)

Figure 2b depicts the density profile k(x,t) for different t.

Note how the shock moves forward at speed l/2, gradually increasing

in size.

Figure 2c depicts the result of the cell transmission model,
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Eqs.(l), when the initial conditions are as stipulated and the

clock tick has been chosen to equal one time unit--this also

implies that cells are one distance unit long. Note the similarity

of Figs. 2c (viewed sideways) and 2a. The arrows in Fig. 2c follow

the characteristics of constant density. The shock path,

highlighted by circles between cells, alternates between 1 and 2

cells wide: as in Fig. 2a, it advances 1 cell (distance unit) for

every 2 clock ticks. The rows of Fig. 2c are also consistent with

the evolution pattern depicted in Fig. 2b.

The close agreement is not a result of the clock speed used.

If a clock that was 10 times faster had been chosen, cells would

have been 10 times shorter and the entries in the first row of

Fig.2c would have been 10 times smaller. Because Q and N would

also have been 10 times smaller, the result of the recursion would

reveal the exact same pattern of Fig. 2c, except that the entries

would have been 10 times smaller. Note in particular that the

shock path would have remained 1 or 2 cells wide so that its actual

spatial range would have been 10 times smaller than before. Thus,

in agreement with the continuous hydrodynamic model, the spatial

dimension of the shock could be made to vanish with infinitely fast

clocks and negligible cell sizes.

A density profile k(x,O) that increases past kB yields similar

results. The same set of parameters for Fig. 1 (with kB = 100 and

kJ = 150) also suffices to describe this case exhaustively as long

as the upstream density remains above kA. As the reader can

verify; the map of characteristics now is simply an upside down

version of Fig Za, with backward moving characteristics ahead of
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stationary ones and a shockpath defined by x = -t/2. The numerical

results of a simulation with first row cell contents increasing

past " 10 0 " ( . . . 98, 99, 100, 101, . ..) are also consistent with

this pattern; as a whole they resemble an upside down version of

Fig. 2c, including a backward moving shock that is 1 or 2 cells

wide.

Suppose now that the density profile k(x,O) increases past kA

and then past kg. Then, the forward-moving shock generated when

the density increases beyond kA will eventually be met by the

backward moving shock generated by the growth past kg. The shocks

would coalesce into a (forward or backward) moving shock that would

separate upstream traffic states with density in the interval

[O,kA] from downstream traffic states with density in [kg,kj]. The

speed of the coalesced shock would be governed by Eq.(4).

The numerical model replicates the behavior of the coalesced

shock with a 1 or 2 cell interface that moves at the correct speed.

That the interface must move at the speed given by Eq.(4) should be

obvious since Eq.(4) is a direct result of vehicle conservation,

and the numerical model conserves vehicles.1 This fact is

illustrated by the example in Sec. 5.

1 To see that the interface only spans 1 or 2 cells, start with an
initial set of occupancies such as ( . . . . n', n', n0, n", n", . ..)
where n' would correspond to a density below kA, nPr to a density
above kg, and n0 would be in the interval [n',n"]. Then, it
suffices to check that at the next iteration there would be at most
one cell with an occupancy different from n' and nrl, and that that
cell could only be the cell previously containing no, or one of its
neighbors. Care must be exercised in checking this property,
because the flows between cells depend on the magnitude of n0
relative to n', Q, N-Q, nfr and N.
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4.2 Decreasing densitv

With the flexibility to choose the units of measurement for

counts, time and distance as described in Sec. 4.1, the diagram of

Fig. 1 with qmax = 50, kA = 50, kg = 100, and kj = 150 still

suffices to describe exhaustively the evolution of any density

profile decreasing smoothly past either kA or kg. The origin of

spatial coordinates is chosen so that k(O,O) = 50 if the initial

density profile decreases past kA, and k(O,O) = 100 if it decreases

past kg.

With these conventions, the maps of characteristics for both

cases are as depicted in Fig. 3a. Because the characteristics

diverge no shocks are formed; instead, constant-density, wedge-

shaped regions appear in the time-space continuum. As shown in the

figure, for a density decreasing past kA the densities predicted by

the hydrodynamic theory are:

kkt) = k(x,O) , ifx< 0

= kA , ifO<x<t

= k(x-t,O) , if x > t.

For a density decreasing past kg, the densities are:

k(x,t) = k(x+t,O) , if x<-t.

= kg , if -t I x 5 0

= k(x,O) , if x>o.
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The figure also displays the density profile predicted by the

hydrodynamic theory at t = 0 and 1 for both cases. In the first

case densities below kA are propagated forward at speed 1, and

higher densities remain stationary; an expanding road section with

density kA separates the high and low densities. In the second

case the low density section remains stationary and the high

density section is propagated backward at speed -1.

Figure 3 also displays the results of the cell-transmission

model, using as before a one time unit clock tick. The results

closely replicate the hydrodynamic predictions. Note in particular

the wedge-shaped regions of constant count and the direction of the

characteristics.

We have thus established that if the density changes gradually

over space, the cell transmission model is equivalent to the

continuous hydrodynamic model. Discontinuities in this density

(shocks) are also captured adequately by the cell-transmission

model; they are represented by transition sections comparable with

the lattice width and spanning 1 or 2 cells.

The next section presents an example involving the build-up

and dissipation of a queue. Besides illustrating the phenomena

discussed in Sec. 4, the example is also used as a venue to

demonstrate the ease with which the numerical predictions can be

automated.
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5. IMPLEMENTATION AND EXAMPLE

As an illustration, we consider here a 1.25 mile homogeneous

road with v = 50 MPH, kj = 180 VPM and qmax = 3000 VPH. Initially

traffic is flowing undisturbed at 80% of capacity: q = 2400 VPH.

Then, a partial lane blockage lasting 2 min occurs l/3 of the

distance from the end of the road. The blockage effectively

restricts flow to 20% of the maximum. Clearly, a queue is going to

build and dissipate behind the restriction. We wish to predict the

evolution of the traffic density on the road before, during and

after the incident: both upstream and downstream of it.

If we choose a 6 second clock tick (1/600th of an hour), then

the length of a cell must be l/12 mile and there will be 15 cells.

The cell constants are:

N- 15 and Q = 5.

The incident is modeled by limiting the capacity of the llth cell

to l/5 of the maximum for the first two minutes; i.e.: Qli(t) = 1

for t 5 20. Initially, each cell contains q(O) = WW(q/v) = 4

vehicles. The output cell flow constant is Qdt) = 5, and the

maximum flow into the input "gatett, QO(t) = 4.

With this information, it is a simple matter to iterate

Eqs.(l). The result is displayed on Fig. 4. Although the figure

was developed with a computer spreadsheet, the reader can easily

verify manually that Eqs.(l) are satisfied by checking a
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representative sampling of cells. The spreadsheet prow-=,

documented in the Appendix, can be easily copied by the interested

reader; with minor modifications, it can be applied to other

(single link) problems.

Figure 5 displays the vehicle trajectory-shockwave diagram

that is obtained from the hydrodynamic theory. It has been plotted

using the same scale as in Figure 4, so that direct comparisons can

be made. The thin broken line starting at the origin represents a

vehicle trajectory; the dark lines represent abrupt transitions

between traffic states2. The capital letters identify the traffic

states prevailing in each region of the time-space diagram. Note

the close match of both the shockpaths and the densities in the

different portions of both diagrams. The reader is encouraged to

solve other problems with the spreadsheet provided in the Appendix,

and to perform similar comparisons. As explained earlier, in

examining the results one should expect discrepancies comparable to

the size of a cell between the simulation and the continuous

solution - discrepancies that would be undetectable on a scale

large compared with a tick of the clock.,

B The reader may recall that a graphical procedure involving the
k-q diagram (shown in the corner) can be used to determine the
slopes of the vehicle trajectories and the interfaces between
different traffic states. Vehicle trajectories in a given state
(e.g. "Ett) must be parallel to the line of the k-q diagram
connecting the origin to the appropriate state (e.g. 1' E '1 1.
By virtue of Eq.(4), interfaces between two states must be parallel
to the line in the k-q diagram connecting the two states in
question.
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6. THE CELL-TRANSMISSION MODEL: GENERAL CASE

Although the equation of state in Fig. 1 allows one to choose

three basic engineering parameters (the free flow speed, the

maximum flow and the jam density), the relationship forces the

backward wave speed to match the free flow speed. This is somewhat

unrealistic because in reality waves move several times more slowly

than free flowing traffic, changing the manner in which vehicles

approach the bottleneck and the location of queues. (With slow

waves, queues persist for a longer time behind a temporary

bottleneck and are dissipated further upstream.) On the other

hand, the wave speed discrepancy can be shown not to change the

time when approaching vehicles would pass a bottleneck and, hence,

not to influence the resulting vehicle delay.

Here, thus, we examine an extension of the cell-transmission

model that would approximate the hydrodynamic model for an equation

of state that allows backward waves with speed w I v. Said

equation of state, depicted in Fig. 6, 1,s:

q = mint vk , qmax , w(kj-k) ),

where w < v and qmax 5 kj/[l/v + l/w].

for 0 5 k I kj, (5)

The cell-transmission model intended to represent this

relationship is identical in all respects to the one in Sec. 2,

except-that Eq. (lb) is modified slightly and now is:
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Yi(t) = mid q-l(t) , Qi(t) , (w/v)[Ni(t)-ni(t)]  }. (6)

6.1. Equivalence to the hvdrodvnamic theory

For a homogeneous highway, the differential equation defining

the evolution of the system under the hydrodynamic model, formerly

given by Eq.(3), is now :

8 mint vk(x,t) , qmax , w(kj-k(x,t)) )/8x = -sk(x,t)/st l (7)

In our discrete representation the cell characteristics should

be independent of i and t, so that in Eq.(6), Ni(t) = N and

Q#) = 0. As in Sec. 3 we define the tick of the clock to be

equal to dt and choose the unit of distance such that vdt = 1.

Therefore, the following equivalences hold: x=i, kj ZN,

qmax f Q, w = w/v, and k(x,t) : ni(t). With these conventions, the

variable in braces in Eq.(7) is equivalent to:

mint q(t) , Q , (w/v>[(N-q(t)] ),

which except for the subindex of n in the first term is the

definition of yi(t) according to Eqs.(6). For continuous density

profiles the discrepancy in subscripts is immaterial; hence, the

left hand side of Eq.(7) is equivalent to:

Yi+lW - YiH l
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The right side of Eq.(7), of course, is equivalent to:

-[ni(t+l) - ni(t)]

Clearly then, Eq. (7) and the finite difference recursion (la) must

be equivalent when the density is continuous, since both simply

state the equality of the above two quantities.

As before, the subindices chosen for Eq.(6) ensure that the

recursion behaves properly in the presence of discontinuities. The

following subsection explores this fact in more detail.

6.2 Behavior of difference eouations with finite clock ticks

As happened for the basic cell-transmission model, finite

difference equations (la) and (6) solve the continuous hydrodynamic

model of Fig. 6 when an infinitesimally small clock tick is used.

We now explore the model behavior with finite clock ticks and

discontinuous densities. Sections 4 and 5 demonstrated that for

finite clock ticks the difference between the continuous and

discrete solutions to the basic model is minimal: the largest

discrepancy between the two arises with the representation of

shocks, which take no space in the continuous model but span either

1 or 2 cells in the discrete model. The generalized model,

although equivalent to the continuous model in the limit, is not as

well behaved for finite clock ticks.

To illustrate the issues, the current subsection describes the

evolution of both a shock and an acceleration wave, as predicted by

both the continuous and discrete equations. Then, the following
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sub-section introduces a modification to Eq.(6) that improves the

finite clock tick performance of the model.

In this subsection we will use the diagram of Fig. 6 with

V = 1 and kA = 50 (no loss of generality here), and will also

assume when an illustration is needed that w = 0.25 (a reasonable

Value) and kg i= kA. AS a result, qmax = 50 and kj = 250.

Consider first a density profile, representing traffic running

into the back of a stationary queue at position x = 15; i.e.:

k(x,O) = k , if x < 15

= kj , if x 2 15.

The discontinuity at x = 15 is a shockwave that will propagate

backward. If k is greater than kg (e.g. k = 70), then the shock

will propagate at speed -0.25 (see Fig. 6).

In a plot of cumulative vehicle count (recall that we may be

counting vehicle pairs, dozens, etc) vs. distance, the shock will

appear as a convex break in the slope of the curve. The position

of this break is independent of the count label assigned to the

vehicle at x =I 0, and for this reason we will always assign label 0

to the vehicle immediately upstream of x = 0; then the cumulative

count K(x,t), called from now on the "cumulative profile", is the

integral over x of k(x,t). (Note that this scheme does not

identify individual vehicles). For our example, the initial

cumulative profile is:
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K(x,O) = xk , if x < 15

= 15k + (x-15)kj , if x 2 15.

Because the shock travels at speed 0.25 the break in slope is at

x = 15-0.25t for any t > 0. Hence, for any t < 40, the cumulative

profile predicted by the hydrodynamic theory is:

K(x,t) = xk , if x < 15-0.25t

= (15-wt)k + [x-(15-wt)]kj  , if x 2 15-0.25t.

The cumulative profile can also be evaluated with the cell-

transmission model. If the clock ticks once every time unit and

cells are defined so that cell 1 extends from x = 0 to x = 1, then

the cumulative profile at any (integer valued) x is simply the sum

of the vehicle counts in cells 1 to x-l. For the case with

kJ -250 and k=70, the initial cell contents would then be:

( . . . , 70, 70, 250, ZSO,...). Figure 7 displays the approximation

to K(x,t) at various times; dashed lines show the exact result.

Notice how as time passes the discrete approximation "softens" the

shock, so that it spreads to a growing number of cells.

A similar spreading phenomenon occurs with acceleration waves

(i.e. concave bends in the cumulative profiles). Figure 8 depicts

the results when the initial density profile is:

k(x,O) = kj t if x < 10

-50 , if x 2 10,
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as if a blockage at x = 10, causing a stationary queue, had been

removed at t = 0.

We claim that the prediction errors caused by numerical

spreading are minor because as seen in Figs. 7 and 8: (0 the

maximum error in the count increases at a decreasing rate with the

passage of time, (ii) the disturbances still travel at the

appropriate speed, (iii) the vehicle counts and densities on either

side of the shock (or wave) are not corrupted, and (iv) the

accuracy of the count near a shock (or wave) can be controlled by

modifying the clock tick - as per dimensional arguments already

seen.

6.3. A modification that eliminates soreadina for certain shocks

We had seen at the end of Sec. 3 that Eq.(lb) was not the only

mechanism for defining an inter-cell flow that was consistent with

Eq.(3) of the hydrodynamic theory, and that other formulations

might not behave properly in the face of discontinuities.

Here we suggest a simple modification to Eq.(6) that behaves

properly in the face of discontinuities and yet eliminates

spreading of shocks separating a downstream density greater than kA

from an upstream density lower than kA. The modified expression

is:

yi(t> = mint q-l(t) , Qi(t) , aCNi(t)-q(t)1 L
where

a=1 , if q--l(t) 2 Qi(t)
= w/v , if q-l(t) > Qi(t).

@a)

(8b)

(84
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It is not difficult to see following the logic of Sec. 6.1 that the

expression is still consistent with the hydrodynamic theory when

the ni vary slowly.

We claim that with this correction any errors in the

cumulative count near a shock (wave) should disappear once upstream

light traffic (v = 1, k < kA) catches up with the spreading

shock (wave), and that as a result any numerical errors should be

short lived. We base this observation on the fact that the shock

preceeding  the light traffic is of the non-spreading type, and that

it eventually must separate accurate upstream and downstream

counts.

Perhaps, the above argument can be best understood if it is

illustrated with an example. Consider the following initial

density profile:

k(x,O) = kj , if 8 5 x I 11

=25 , otherwise.

A diagram of k(x,t) for this problem, also displaying the

acceleration waves and shocks predicted by the hydrodynamic theory,

is provided in Fig. 9b. It can be seen from it that all the

changes in density for this problem are discontinuous, and that as

a result the cumulative profile K(x,t) at any t should be a

piecewise linear function, as shown in Fig. 9c. The solid lines

in Fig. 10 are graphs of the cumulative profile for t = 0, 8, 16,

24 and- 32 as predicted with Eqs.(la) and (8); the dashed lines in

the figure are the (piecewise linear) exact results. Although the
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acceleration waves spread (as shown by the concave bends of the

curves), the (convex) shocks remain sharp. The figure clearly

illustrates how the spreading wave is gradually "eaten up" by the

advancing shock, until at time 24 and thereafter the exact and

approximate results essentially coincide.

7. INSTABILITY

So far we have argued that the cell-transmission model in one

of its forms can easily produce results consistent with the

hydrodynamic theory of traffic flow. This section takes an extra

step; it shows that the cell-transmission model has the potential

for capturing real-life instability phenomena, not included in the

hydrodynamic theory.

Research on the stop-and-go phenomenon of congested freeway

traffic dates back at least to Edie and Foote's (1961) and Edie's

(1963) observations at the Lincoln and Holland Tunnels, and the

George Washington Bridge in New York. Despite substantial efforts

on the subject since then (witness for example the extensive car-

following literature of the 1960's) a model of traffic instability

that would account for the long periods of oscillation

(approximately 1 minute long) observed in practice seems to have

eluded researchers.

Newell (1963) had stated that an instability would arise if

drivers catching up with denser/slower traffic ahead were to delay

braking, perhaps in the hope that traffic would clear up before

they had to slow down. This behavior would result in average
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spacings shorter than usual when traffic was decelerating (as

observed by Edie) and would cause an instability. Of course, a

microscopic car-following model to mimic this behavior would be

extremely difficult to build (and validate) because in making their

decisions drivers consider the recent evolution of the traffic

stream immediately ahead, and not just the current status of one

vehicle. A macroscopic model, consistent with Edie's observation

that spacings are shorter when platoons are compressing, may be a

more sensible goal to pursue.

Perhaps because of these difficulties, current efforts (see

for example Ferrari, 1991) typically avoid seeking a behavioral

explanation for instability and tend to focus instead on its

control, using on-line macroscopic traffic measurements. This

section also examines instability at the macroscopic level. It

shows that the cell-transmission model, with a very simple

modification that makes it consistent with Edie's observations, can

duplicate real-life instability features.

Here we postulate that drivers operate in one of two modes

depicted by the two q-k diagrams of Fig.lla, depending on the

traffic conditions prevailing in a "look-ahead" road section

extending a fixed distance ahead of their current location. If

the traffic density in this "look-ahead1 section is greater than

the traffic density in the vehicles' immediate neighborhood

(assumed to be smaller than the "look-ahead" section), then we will

assume that the vehicles would advance position as if they were

regulated by the top curve of the figure. Otherwise they will
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advance according to the lower curve3.

The cell-transmission model can capture such conditions quite

naturally. Without loss of generality we define the cell length to

be the distance of "the immediate neighborhood", and examine a

special case where the ttlook-aheadV'  distance is two cells. Then,

only the occupancies of two neighboring cells need to be compared

to determine any inter-cell flow. For the purposes of illustration

the q-k curves are assumed to be of the special form depicted in

Fig.llb, as then no additional parameters need to be introduced.

For this special case, the cell-transmission model will capture the

desired behavior if the variable a of Eq. (8a) is redefined as:

a 1Z , if w-l(t) I q(t) or Qi(t) (94
-w/v , otherwise. (9b)

Although much experimental evidence would be needed to make a

strong claim for realism, the results described below at least

seem to be qualitatively consistent with real-life behavior.

7.1 Results

Here we describe the numerical results of a number of

3 Other conditions for the on-off switching mechanism could have
been postulated. For example we could have stipulated that drivers
will advance more aggressively (according to the upper curve) if
the traffic density in their neighborhood has been increasing &J
time. Alternatively, aggressive behavior could be stipulated when
both conditions are met (or else either one of them). Fortunately
the specific trigger is not important because, with backward moving
waves (relative to a vehicle) as result from our model, if one of
the conditions is met so are the others; all the models should be
similar.
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simulations that were done with the cell-transmission model, using

Eqs. (8a) and (9). The tests involve a homogeneous finite section

of highway with a large input flow and a restricted steady output.

Because the output is constant, the (stable) hydrodynamic steady

state solution is a spatially uniform density. (The value of said

density is given by the point on the congested part of the q-k

curve that has q equal to the output flow.) If the system is

assumed to be in steady state at time t = 0, Eqs. (9) don't

generate any instability; they produce the same result as Eqs.(6)

and Eqs.(8), of course matching the hydrodynamic prediction.

We explore here the evolution of the system as predicted by

Eqs. (9) when a single random disturbance to the exit flow is

introduced at time t = 0 (i.e a slightly larger or smaller output

flow for the first clock tick only). Experiments have been

conducted for a number of examples, and these will be discussed

here qualitatively. Numerical results will be given for one of the

examples (for illustration only) corresponding to the following

parameters of Fig.llb : qmax (Qi) = 50, kj (Ni) = 150, W/V = 0.5;

and the following initial conditions : Qoutput = 25 and ni = 100.

In all the cases tested, and independently of the magnitude of

the initial impulse, a flow disturbance was generated that grew in

duration and magnitude as it traveled backward. The disturbance is

first noticed by a temporary increase in flow, which is then

followed by a shorter but sharp reduction, finally terminating with

a gradual return to normalcy. The disturbance does not generate

any lasting effects; after its passage, vehicles are observed to

go by any location at the time they would have passed without the
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