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Topological Regularization via Persistence-Sensitive Optimization

Arnur Nigmetov∗ Aditi S. Krishnapriyan∗ Nicole Sanderson Dmitriy Morozov
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Abstract

Optimization, a key tool in machine learning
and statistics, relies on regularization to re-
duce overfitting. Traditional regularization
methods control a norm of the solution to
ensure its smoothness. Recently, topological
methods have emerged as a way to provide a
more precise and expressive control over the
solution, relying on persistent homology to
quantify and reduce its roughness. All such
existing techniques back-propagate gradients
through the persistence diagram, which is
a summary of the topological features of a
function. Their downside is that they pro-
vide information only at the critical points
of the function. We propose a method that
instead builds on persistence-sensitive simpli-
fication and translates the required changes to
the persistence diagram into changes on large
subsets of the domain, including both critical
and regular points. This approach enables a
faster and more precise topological regulariza-
tion, the benefits of which we illustrate with
experimental evidence.

1 Introduction

Regularization is key to many practical optimization
techniques. It allows the user to add a prior about the
expected solution — e.g., that it needs to be smooth
or sparse — and optimize it together with the main ob-
jective function. Classical regularization techniques [1],
such as `1- and `2-norm regularization, have been stud-
ied in statistics and signal processing since at least the
1970s. These techniques are especially important in
machine learning, where problems are often ill-posed
and regularization helps prevent overfitting. Accord-
ingly, various regularization techniques are not only
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used in machine learning research [2, 3], but are also
incorporated into the standard optimization software
and routinely used in applications.

Recently, several authors have begun to explore the
use of topological methods to regularize the objective
function. All of them use persistent homology to mea-
sure either the shape of the data set or the topological
complexity of the learned function. For instance, Chen
et al. [4] use persistence to describe the complexity of
the decision boundary in a classifier and add terms
to the loss to keep this boundary topologically simple.
Brüel-Gabrielsson et al. [5] use persistence as a descrip-
tor of the topology of the data and introduce a family
of losses to control the shape of the data once it passes
through a neural network.

All the methods that incorporate persistence into the
loss function [4, 5, 6] rely on the same observation.
Persistent homology describes data via a diagram, a
collection of points {bi, di} in the plane, that encodes
the topological features of the data: components of the
decision boundary, “wrinkles” in the learned function,
cycles in the point set once it passes through the neural
network. Each point represents the birth bi and death
di of a topological feature. Each coordinate depends
on the value of the function on a set of points. In
the simplest case, (bi, di) = (f(x), f(y)) for some x, y
in the input, where f is the learned function. In the
more sophisticated cases, each point in the persistence
diagram is generated by a handful of input points
(e.g., four [5]). Accordingly, if a loss L prescribes
moving a point in the persistence diagram via a gradient
(∂L/∂bi, ∂L/∂di), one can back-propagate it to update
the model parameters.

Although persistent homology describes a family of
topological features of different dimensions (connected
components, loops, voids), most practical examples
have focused on 0-dimensional features (connected com-
ponents generated by the extrema of the input func-
tion). In this case, a natural loss is one that penalizes
and tries to remove low-persistence features, which are
interpreted as noise: e.g., L(f) =

∑
(di−bi)≤ε(di − bi)

2.

Persistence-sensitive simplification [7, 8, 9] offers a di-
rect solution to this problem. It prescribes how to
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modify a given input function f to find a function g
that is ε-close to f , but without the noisy features.
Given such a g, which by construction minimizes the
diagram loss L above, one can use ‖f−g‖2 as a term in
the loss. In the context of learning, this approach offers
a major advantage: instead of supplying gradients only
on the critical points of f , we also get gradients on the
regular points of f whose values must be changed to
topologically simplify the function; see Figure 1.

Our contributions are:

• a method to control the topological complexity of
a function, represented by a neural network, by
incorporating persistence-sensitive simplification
into the training;

• comparison of the training results after back-
propagating gradients through the diagram vs.
using persistence-sensitive optimization;

• experiments with data that illustrate the utility of
controlling the topology of the learned function.

We note that topological methods have found a much
broader use in machine learning than regularization.
An important line of work involves developing tech-
niques to incorporate topological features detected
in data into machine learning algorithms [10, 11, 12].
Although there is some overlap in methods between
the two research directions (notably propagating loss
through the persistence diagram), our work is focused
on regularization.

2 Background

We recall the relevant background in topological data
analysis [13], focusing specifically on 0-dimensional per-
sistent homology, which we introduce using an auxiliary
computational construction, merge trees.

Merge trees. Let f : X → R be a function on a topo-
logical space X. A merge tree tracks evolution of con-
nected components in the sub-level sets f−1(−∞, a] of
the function, as we vary the threshold a. Formally, we
identify two points x, y of X, if f(x) = f(y) = a and x
and y belong to the same connected component of the
sub-level set f−1(−∞, a]. The quotient of X by this
equivalence relation is called a merge tree of f .

Throughout the paper we use graphs to approximate
continuous spaces, so we briefly dissect the above def-
inition for functions on graphs. Let f : G → R be
a function on a graph G = (V,E), defined on the
vertices and linearly interpolated on the edges. For
simplicity, we assume that all the values of f on the
vertices are distinct and index the vertices V = {vi} so
that f(vi) < f(vi+1). The merge tree of f is a graph
T = (V,ET ) such that an edge (vi, vj) for i < j is

present in T if and only if vi and vj belong to the same
connected component C of f−1(−∞, f(vj)] and there
does not exist k such that i < k < j and vk ∈ C. A
merge tree T is not necessarily a tree — it is a forest,
with a tree for every connected component of G — but
the distinction is minor for this paper.

T is naturally decomposed into branches ; see Figure 1.
A branch B ⊆ V tracks a component of the sub-level
set of f that first appears at a local minimum vb ∈ B.
This component disappears by merging into another
branch B′ that appeared at a lower local minimum v′b.
B merges into B′ at a saddle vd ∈ B′. We say that
B is born at f(vb) and it dies at f(vd). The branch
of the tree, born at the global minimum, that never
merges into a deeper branch dies at ∞, by definition.
The persistence pers(B) of a branch B is defined as
the absolute value of the difference between its death
and birth values.

Persistence. A 0-dimensional persistence diagram,
denoted Dgm(f), is another summary of the connectiv-
ity of the sub-level sets of f . It is a multiset of points in
the (extended) plane: a branch B, born at f(vb) that
dies at f(vd) is summarized by the point (f(vb), f(vd)).
Points closer to the diagonal represent shorter branches
and we interpret them as noise.

Although we have defined everything in terms of
the sub-level sets, the definition for super-level sets,
f−1[a,∞) is symmetric, with maxima replacing the
minima. We use both constructions throughout the
paper.

If graphG has n vertices andm edges, then a merge tree
on G can be computed in O(n log n+mα(m)), where
α is the inverse Ackermann function. It follows that a
0-dimensional persistence diagram can be computed in
the same time.

To visualize the topological changes in the model dur-
ing optimization, we stack persistence diagrams next
to each other. The resulting vineyard of a family of
functions fi is a multiset of points (i, |dij − bij |), where

{(bij , dij)} is the persistence diagram of fi. In other
words, over each i (for example, a training epoch) we
plot all persistences of the corresponding diagram.

Simplification. An important property of persistence
is stability: a small perturbation of function f causes a
small perturbation of the persistence diagram Dgm(f).
The formal statement is the celebrated Stability Theo-
rem:

dB(Dgm(f),Dgm(g)) ≤ ‖f − g‖∞,
where f and g are two real-valued functions on the
same domain and dB denotes the bottleneck distance.
This theorem is one of the justifications for treating
points close to the diagonal as topological noise.
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(a) (b) (c) (d)

Figure 1: (a) Function on a graph, with gradients on critical points prescribed by the diagram loss. (b) Persistence
diagram of this function. Points closer to the diagonal correspond to smaller fluctuations in the function, and we
interpret them as topological noise. ε indicates the level of desired simplification that generates the gradients in (a)
and (d). (c) Merge tree of the function, with branches highlighted in different color. The branches translate into
the points in the persistence diagram of the matching color. (d) Gradients prescribed by the persistence-sensitive
optimization (PSO loss). The gradients are present both on critical and regular points.

This view suggests getting rid of the topological noise.
Let f : G→ R be a function on a graph G. A function
g : G→ R is called its ε-simplification, if ‖f − g‖∞ ≤ ε
and Dgm(g) = {(b, d) ∈ Dgm(f) | |d−b| > ε}. In other
words, g is ε-close to f but its persistence diagram
has only those points whose persistence exceeds ε. In
the case of 0-dimensional persistence, ε-simplification
always exists and can be computed in the same time
as a merge tree [7, 8, 9].

3 Method

We start with the standard supervised learning problem.
Given training data xi with labels yi, we want to learn
a model fθ, with parameters θ, that approximates
yi given xi. Although this framework applies more
generally, throughout the paper we focus on the case
where fθ is a neural network.

Suppose we are solving a regression problem. In this
case, the input labels are scalars, yi ∈ R, and our
network maps from some (typically) Euclidean space
into reals, fθ : Rd → R. The learning process is usually
a form of gradient descent on the network parameters
with respect to a user-chosen loss, for example, the
mean-squared error (MSE), L(θ) =

∑
(fθ(xi)− yi)2/n.

Ideally, we would like to topologically simplify the
model fθ either on its entire domain, or at least on
the “data manifold,” the subset of the domain that
contains all possible data. Unfortunately, there are no
algorithms to solve this problem — topological methods
require a combinatorial representation of the domain —
so we resort to a standard approximation.

We take the domain of the network fθ to be the k-

nearest neighbors graph on the training set X̂: each
training sample is a vertex, and two vertices are con-
nected if and only if one of them is among the k-nearest
neighbors of the other one. The k-NN graph G approx-
imates the data manifold. We can increase the quality
of this approximation by sampling additional points
in the neighborhood of our input. In the experiments
in Section 6, we draw n additional points from a nor-
mal distribution, centered on each training data point,
x ∈ X̂, which results in a graph with (n + 1) · |X̂|
vertices. (Although we don’t know the true label on
the extra points, we don’t need it for the topological
simplification.) Both because computing a k-NN graph
is expensive for high-dimensional data and because it
helps to control noise, in some experiments we build
the k-NN graph on the lower-dimensional projection
of X̂ using PCA.

We use merge trees to compute an ε-simplification g
of our model fθ. For every vertex v, we find its first
ancestor u that lies on a branch with persistence at
least ε. (If v is already on such a branch, then u = v.)
We set g(v) = fθ(u). The effect of this operation on
the merge tree is that all the branches with persistence
less than ε are removed; see Figure 1.

Applying simplification. Given an ε-simplification
g of fθ, we could add a term λ ·‖fθ−g‖2 to the loss and
use a single optimizer. Instead, we opted for a different
approach by alternating between the standard training
and the topological phases, with a separate optimizer
for each phase. A key advantage of this separation is
that it keeps two histories of the gradients, one for each
phase, so that the topological loss does not influence
the momentum in the standard training.



An important decision is when to switch to the topo-
logical phase. We use a heuristic that depends on
the validation loss. In each epoch, we first iterate
over all batches and perform standard training using
the first optimizer. Then, if the validation loss in-
creases, compared to the previous epoch, by more than
some threshold (a hyperparameter), we compute the ε-
simplification g and take 5 to 10 steps with the second
optimizer to minimize ‖fθ − g‖2. We use the norms
of the gradients of the ordinary training loss and of
the topological loss, to set a learning rate for the latter
that ensures that we update the model parameters θ
by comparable amounts in both phases.

Choice of ε. A key decision in implementing our
method is how to choose ε, to decide which points
to keep and which to remove in the persistence dia-
gram. Earlier works [4, 5] prescribe a fixed number of
points to keep in a certain region of the persistence
diagram. For instance, some of the losses in [5] penalize
all but j of the most persistent points. We can optimize
such a loss by setting ε = (pj +pj+1)/2, where pi is the
persistence of each point, sorted in descending order.

Another alternative, used in topological data analysis
to automatically distinguish between persistent and
noisy points, is the largest-gap heuristic. To apply it,
we find index j such that the difference pj − pj+1 is
maximized.

Finally, the heuristic that we found most effective and
use for all experiments in Section 6 is to use validation
loss as our ε. Validation loss tells us how far we are from
a function that gives perfect answers on the validation
set. Using it as ε, we find the topologically simplest
function g that is within the same distance from our
model fθ.

Classification. For regression, the network itself
serves as a real-valued function amenable to topological
analysis. Classification requires a little more work. We
assume that the data has m classes and the network has
m output channels, fθ : Rd → Rm, with the predicted
class chosen as p = arg maxi fθ(x)[i]. We define the
confidence function, φ : Rd → R, to measure how much
higher the value in the predicted channel is compared
to the second highest candidate:

φ(x) = fθ(x)[p]−max
i6=p

fθ(x)[i].

When φ(x) is close to 0, the network is not confident
whether to classify x as the top class p or the second-
best guess. The zero set φ−1(0) is the decision bound-
ary, by definition. Outliers of one class scattered among
the points of another introduce spurious extrema in the
confidence function. By driving optimization towards
the simplified version of φ, we can reduce overfitting.

Because generically φ(x) is never zero on an input point
x ∈ X̂, we need an extra step to capture the topology
of the decision boundary. If two vertices u and v,
connected by an edge in the k-NN graph, are assigned
two different classes by the network, then the decision
boundary passes somewhere between them. In this case,
we remove the edge (u, v) from the graph. This pruning
results in multiple connected components, at least one
per class. We compute the merge tree — forest in
this case — of the confidence function on the pruned
graph, with respect to the super-level sets, i.e., tracking
persistence of the maxima. Because confidence function
is never negative, we restrict the infinite branches in the
merge tree to die at 0. This obviates special treatment
of separate connected components in the graph: if
one of them produces a low-persistence merge tree, we
simplify it by setting the values of all of its vertices to
0.

4 Comparison with Diagram
Simplification

Earlier work on applying topological regularization
to neural networks [4, 5] relied on backpropagation
through persistence diagrams. For piecewise-linear
functions on a graph, each point in the 0-dimensional
persistence diagram corresponds to a pair of vertices,
(bi, di) = (f(x), f(y)). If one adds a regularization term
of the form

∑
(di − bi)2, where the sum is taken over

all points (bi, di) with persistence less than ε, then one
can back-propagate the gradient to the function values
and then to the model parameters, i.e., the weights of
the network. We call this loss the diagram loss, and
the loss proposed in the previous section, the PSO loss.

The first disadvantage of the diagram loss is that only
critical points generate pairs in the persistence diagram.
Accordingly, most input points are not used and re-
ceive no information during the backpropagation. To
illustrate this, we take f : R2 → R to be the sum of 4
Gaussians and evaluate f on the uniform grid over unit
square [0, 1] × [0, 1] with 10, 000 vertices. Figure 2a
illustrates the plot of f . We pick ε so that the two lower
persistence points in the diagram of f (corresponding
to the two Gaussians with lower peaks) are simplified,
and take 50 steps of gradient descent using the PSO
loss and the diagram loss directly on values of f at each
vertex. The simplified functions appear in Figures 2c
and 2e, respectively.

Figures 2b and 2d show the vineyards of the two op-
timization processes. In both vineyards, we show the
original persistence values in black, the desired values
in red, and the values at each step of the optimization
in green. With PSO loss, this is an unconstrained
convex problem, so the optimizer quickly eliminates
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Figure 2: Optimization of the values. (a) Original function. (b) Vineyard of simplification with PSO loss. (c)
Function simplified with PSO loss. (d) Vineyard of simplification with diagram loss. (e) Function simplified with
diagram loss.

the two noisy bumps of the function, while preserv-
ing its persistent part. In contrast, each step of the
diagram loss changes values only at critical points, mak-
ing the optimization process much slower — after 50
steps both bumps are still present. It also requires
recomputing persistence diagram after each step. This
not only makes the process slower, but also introduces
additional topological noise, evident in the vineyard.

0 10 20 30 40 50

0

0.5

1

step

(a)

0 10 20 30 40 50

step

(b)

Figure 3: Optimization of the weights. (a) Vineyard of
simplification with PSO loss. (b) Vineyard of simplifi-
cation with diagram loss.

Figure 3 shows the effect of the two losses on a neural
network. We train a fully connected network with
5 layers for 100 epochs and then perform 30 steps
of topological optimization. The key difference from
the previous example is that we do not have direct
control over function values, but only over the weights
of the network. The diagram loss provides information
only for the critical points of the function, and the
optimizer ends up minimizing this loss by pushing the
whole function towards a constant: in the vineyard
on the right-hand side, all points, not just the points
below ε, are moving to 0. Since the PSO loss penalizes
changes to the high-persistence parts of the function,
its optimization does not suffer from the same problem,
as the vineyard on the left-hand side shows.

It is not clear how to fix this overzealousness of the
diagram loss. The main difficulty is that the criti-
cal vertices and their pairing change after each gra-
dient descent step. A naive fix would be to add
a term that pushes high-persistence points to ∞:

−λ
∑

(di−bi)>ε(bi − di)
2. We have tried this approach,

but it did not perform well. Depending on weight λ, ei-
ther the additional term had no influence at all, and the
function was squashed to a constant; or it dominated,
and the function exploded numerically.

A more principled solution would be to compute a
matching between the persistence diagram after each
step of the topological optimization and the target sim-
plified diagram. The matching would translate into
a loss that would simplify the diagram, while trying
to preserve the high-persistence points. However, this
approach has many drawbacks. The computation of
the matching, even using the fast algorithms [14], is
prohibitively expensive and would make this proce-
dure completely impractical. The method itself, by
construction, would only preserve the structure of the
persistence diagram, not its values at individual ver-
tices. Finally, changing the diagram loss function at
each step of the gradient descent may have unexpected
effects on the momentum.

5 Illustrative Example

To illustrate how topological regularization using the
PSO loss can reduce overfitting, we consider a simple
three-class dataset, shown in Figure 4a. It consists
of points sampled from three Gaussians, 1,000 points
from each, that represent three distinct classes. We
randomly shuffle 20% of the labels to introduce class
noise. We train a fully-connected feedforward neural
network with 5 hidden layers of 100 nodes each for 500
epochs.

Figure 4b illustrates the training and validation losses,
and Figure 4c shows the persistence vineyard of the
confidence function for epochs 350 to 500. In the
beginning of this range, the network has already overfit
the labels. The growing validation loss confirms the
overfitting, which is also evident in the vineyard, where
the second and third highest persistence points, which
represent the true classes in the data, are becoming
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Figure 4: (a) Input data: 1,000 points sampled from each of the three Gaussians, representing three distinct
classes, with 20% of the labels randomly shuffled. (b) Training and validation loss during the training of a neural
network, restricted to the later epochs, where the network overfits the data. Simplification is applied after every
epoch, following epoch 450, marked with a dashed line. (c) Vineyard of the confidence function during training;
the start of the simplification is marked with a dashed line. The three persistent points, representing the three
classes in the data, become prominent after the simplification.

indistinguishable from the noisy points.

Starting with epoch 450, we apply ten steps of topolog-
ical simplification after every training epoch. Because
we expect each of the three classes to be a single cluster,
we set ε to keep the three highest points in the persis-
tence diagram. This defines a PSO loss that encourages
removing maxima of the confidence function that do
not correspond to the 3 predominant class clusters.

As Figure 4b illustrates, after turning on simplifica-
tion at epoch 450, the validation loss decreases by over
20%. Figure 4c demonstrates the abundance of high
persistence features prior to epoch 450. Most of these
correspond to mountains in the confidence function
around noisy mislabeled points. Turning on simplifica-
tion at epoch 450 reduces the persistence of these peaks
which drives the network to match the class labels of
the dominant class around the outliers.

This toy example demonstrates how PSO simplification
identifies regions of overfitting due to class noise and
reduces the confidence function near these noisy labeled
points, lowering the validation loss and increasing the
accuracy of the model after overfitting has occured.

6 Experiments

We study the performance of persistence-sensitive op-
timization on six regression problems and seven clas-
sification problems from the UCI repository [15]. To
represent a variety of problem settings, the selected
datasets vary in the number of features, sample size,
and number of classes. We standardize the features by
subtracting the mean and dividing by the standard de-

viation. For both regression and classification, we use
a dense neural network with five hidden layers and 100
hidden nodes per layer. We use the Adam optimizer
and a learning rate of 0.001 across all experiments,
including regular training and training with topological
simplification.

We compare performance of the networks trained (1)
without regularization, (2) with `2 regularization, (3)
with topological regularization. For all experiments,
training with and without regularization were run for
the same number of total epochs. For the `2 regulariza-
tion, the square of the weights of the network is added
to the loss, scaled by a factor of λ, which we choose by
sweeping through a logarithmically spaced grid from
[10−5, 101]. We report the best performance across all
λs for each dataset. For each dataset, we run all the
models at least five times with different preset random
seeds and average over all the trials.

As described in Section 3, we set a number of hyperpa-
rameters during the topological simplification:

• topological simplification is applied when valida-
tion loss increases by more than t;

• k determines the number of neighbors in the k-
NN graph used to approximate the domain of the
function;

• n is the number of additional points we sample, for
each input point, before building the k-NN graph;

• the points are drawn from a Gaussian with vari-
ance σ, ranging from 0.001 to 0.2.

Supplementary materials list extra details for the data
sets, including what hyperparameter ranges were swept



Regularization Hyperparameters
Datasets None `2 PSO ∆ k t n σ
Wine 0.78 0.77 0.76 2.6% 15 0.001 6 0.001
Iran housing 0.12 0.11 0.10 16.7% 10 0.01 9 0.001
Boston 0.33 0.32 0.31 6.1% 20 0.001 9 0.001
Concrete 0.31 0.30 0.29 6.4% 15 0.01 3 0.001
CT slices 0.031 0.031 0.029 6.4% 60 0.0001 1 0.001
Protein 0.64 0.63 0.62 3.1% 20 0.001 6 0.001

Table 1: RMSD results on regression datasets comparing no regularization, `2 regularization of the weights, and
topological simplification, averaged over multiple trials. The best model for each dataset is in bold. As topological
simplification always results in performance improvement, the percentage of improvement (decrease in RMSD),
from None to PSO, is also shown (∆). The last four columns show the hyperparameters for the best model.

during the experiments. We always set ε to the valida-
tion loss.

Regression. We evaluate the performance of topolog-
ical regularization on six regression datasets. They
vary in size from hundreds (Iran housing, Boston) to
thousands (Wine, Concrete), to tens of thousands (CT
slices, Protein) data points. For the largest dataset, CT
slices, we project the data onto the first ten principle
components before computing the k-NN graph. We
use a 56%-19%-25% training-validation-test split, i.e.,
first applying a 75%-25% training-test split, and then
further splitting the training set 75%-25% into a valida-
tion set. We evaluate the quality of the prediction using
the root-mean-square-deviation,

√∑
(ŷi − yi)2/n.

Table 1 presents the results of our regression exper-
iments. Overall, topological simplification reduces
RMSD across all the datasets by an average of 6.9%.
Sampling each point multiple times with a small
amount of perturbation improves performance. By
applying simplification when validation loss increases
by more than threshold t, we reduce overfitting and the
resulting error. We also see that across the λ hyperpa-
rameter swept for `2 regularization, the performance
is always worse than with topological simplification.
We note that our method is fast enough to be used on
very large datasets (we give two examples with 40,000+
points, but that’s by no means the limit); previous ap-
proaches to topological regularization (using a form of
diagram loss) [4] were limited to much smaller datasets
(hundreds to a thousand points).

Classification. We also evaluate our method on seven
classification datasets. Each one has from two to 26
classes. Similar to the regression datasets, each has hun-
dreds (Wisconsin cancer, Vertebral, SPECT) to thou-
sands (Wine, Semeion, Wireless) to tens of thousands
(Letter recognition) data points. We use the same 56%-
19%-25% training-validation-test split. When topo-
logical simplification is applied, we set ε to the cross-
entropy loss and simplify the confidence function φ,

described in Section 3. We evaluate the quality of our
predictions by computing the cross-entropy (X-E) loss
and accuracy.

Table 2 shows the results of our classification experi-
ments. The X-E loss decreases when we apply topo-
logical regularization except for the Wisconsin cancer
dataset, while accuracy increases for all the datasets,
except the SPECT dataset (the smallest dataset in size).
Overall, X-E loss decreases by an average of 14.8% and
accuracy increases by an average of 2.9% across all
datasets. The table shows the hyperparameters for
the model with the lowest X-E loss. In contrast with
regression, on average, more aggressive perturbation of
the sampled points results in better performance. The
best model performance across all the datasets, except
letter recognition, occurs for validation loss threshold t
equal to 0.0001, indicating that applying simplification
as soon as validation loss increases, i.e., as soon as the
model shows any sign of overfitting, helps regularize
the training. Topological simplification is slightly less
accurate than `2 regularization on the SPECT dataset,
equally accurate on the vertebral dataset, the same in
terms of X-E loss on the wireless dataset, and better
on all other datasets.

Loss and vineyard. To better understand topologi-
cal simplification, we examine the training and valida-
tion loss curves as well as the vineyards for regression
experiments on the Wine dataset. As Figure 5 illus-
trates, the network quickly starts to overfit — without
simplification, within 10–15 epochs — and the vali-
dation loss rises. Applying simplification quickly re-
duces the validation loss, seemingly pushing the system
into another region of the loss landscape. This is fur-
ther seen in the vineyard, where the sharp decrease in
validation loss matches with the simplification of the
persistence diagram.



Crossentropy Accuracy
Hyperparameters

Regularization Regularization
Datasets None `2 PSO ∆ None `2 PSO ∆ k t n σ
Wisconsin cancer 0.13 0.08 0.09 30.8% 0.97 0.98 0.99 2.1% 15 0.0001 3 0.2
Wine 0.97 0.96 0.93 4.1% 0.59 0.60 0.65 10.2% 15 0.0001 0 0.001
Semeion 0.48 0.48 0.38 20.8% 0.87 0.88 0.90 3.4% 20 0.0001 9 0.2
Vertebral 0.39 0.38 0.34 12.8% 0.82 0.84 0.84 2.4% 15 0.0001 9 0.1
Wireless 0.07 0.06 0.06 14.3% 0.97 0.98 0.98 1.1% 25 0.0001 6 0.2
SPECT 0.35 0.34 0.33 5.7% 0.80 0.83 0.80 0% 10 0.0001 15 0.01
Letter recognition 0.27 0.26 0.23 14.8% 0.92 0.92 0.93 1.1% 20 0.01 3 0.2

Table 2: Cross-entropy loss and accuracy results on classification datasets comparing no regularization, `2
regularization of the weights, and topological simplification, averaged over multiple trials. The best model is in
bold. As the improvement from topological simplification is always greater than or equal to training the model
without regularization, the percentage of improvement (decrease in the case of X-E loss and increase in the case
of accuracy), from None to PSO, is also shown (∆). The last four columns show the hyperparameters for the best
model, with the lowest X-E loss.
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Figure 5: (a) Training and validation loss curves for an experiment on the wine regression dataset. Performance
is best at epoch 44, and simplification is applied only once, after epoch 43. (b) Vineyard over all epochs.

7 Conclusion

We presented a topological regularization method that
uses persistent homology, merge trees, and persistence-
sensitive simplification to minimize the number of noisy
extrema in a machine learning model. Unlike previ-
ous such methods, our approach is faster — requiring
to compute the topological descriptor only once per
simplification phase — as well as more robust and pre-
dictable in its effects on the model. The key distinction
of the method is its ability to prescribe gradients on the
entire domain, approximated as a k-NN graph, rather
than only on the critical points. We illustrated the
benefits of its use in experiments with a number of
well-known data sets.

Our work has a larger implication for the use of topolog-
ical methods in machine learning. The realization that
one can back-propagate gradients through a persistence

diagram has generated considerable interest in the com-
munity, with a number of recent works [4, 5, 6, 10, 11]
exploring this idea. Our results suggest that it may be
better to not treat persistence as a black box. Rather,
it is a rich language that allows one to precisely express
topological constraints and priors to add to a problem.
The actual enforcement of these constraints can be
accomplished via different methods, back-propagation
through the persistence diagram being but one of them.

Building on prior work in computational topology,
we describe only how to simplify extrema, i.e., 0-
dimensional persistence diagrams. A key research direc-
tion is how to adapt these ideas to higher dimensional
persistent homology. It is undoubtedly useful to incor-
porate higher-dimensional topological constraints, such
as loops or voids in the data, into optimization. Doing
so efficiently may require imposing constraints not only
on the points in the persistence diagrams, but on the



entire representative cycles implied by those points.
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1 Hyperparameter ranges for experiments

The computation relies on the following hyperparameters:

• topological simplification is applied when validation loss increases by more than t;
• k determines the number of neighbors in the k-NN graph used to approximate the domain of the function;
• n is the number of additional points we sample, for each input point, before building the k-NN graph;
• the points are drawn from a Gaussian with variance σ.

The tables list the values of the hyperparameters we tried for each dataset. In the main text, we report the model
that has the best performance, highlighted in bold here.

1.1 Regression

Datasets k t n σ
Wine 10, 15, 20 0.001, 0.01, 0.05, 0.1, 0.5 0, 3, 6, 9,12 0.001, 0.01, 0.1. 0.2

Iran housing 10, 15, 20 0.001, 0.01, 0.05, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Boston 10, 15, 20 0.001, 0.01, 0.05, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2

Concrete 10, 15, 20 0.001, 0.01, 0.05, 0.1, 0.5 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
CT slices 20, 40, 60, 80 0.0001, 0.001 0, 1 0.001, 0.01, 0.1, 0.2
Protein 20, 40, 60, 80 0.001, 0.01, 0.1 0, 3, 6 0.001, 0.01, 0.1, 0.2

Table 1: Hyperparameter ranges for regression datasets.

1.2 Classification

Datasets k t n σ
Wisconsin cancer 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9,12 0.001, 0.01, 0.1. 0.2

Wine 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Semeion 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Vertebral 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
Wireless 10, 15, 20, 25 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12 0.001, 0.01, 0.1, 0.2
SPECT 10, 15, 20 0.0001, 0.001, 0.01, 0.1 0, 3, 6, 9, 12, 15 0.001, 0.01, 0.1, 0.2

Letter recognition 10, 20, 30, 40, 50 0.0001, 0.001, 0.01 0, 3, 6, 9, 12, 15 0.001, 0.01, 0.1, 0.2

Table 2: Hyperparameter ranges for classification datasets.


	1 Introduction
	2 Background
	3 Method

	4 Comparison with Diagram Simplification
	5 Illustrative Example
	6 Experiments
	7 Conclusion
	8 Acknowledgements
	1 Hyperparameter ranges for experiments
	1.1 Regression
	1.2 Classification




