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Abstract

Theta burst stimulation (TBS) is thought to affect reward processing mechanisms, which

may increase and decrease reward sensitivity. To test the ability of TBS to modulate

response to strong primary rewards, participants hypersensitive to primary rewards were

recruited. Twenty men and women with at least two opposite-sex, sexual partners in the last

year received two forms of TBS. Stimulations were randomized to avoid order effects and

separated by 2 hours to reduce carryover. The two TBS forms have been demonstrated to

inhibit (continuous) or excite (intermittent) the left dorsolateral prefrontal cortex using differ-

ent pulse patterns, which links to brain areas associated with reward conditioning. After

each TBS, participants completed tasks assessing their reward responsiveness to monetary

and sexual rewards. Electroencephalography (EEG) was recorded. They also reported their

number of orgasms in the weekend following stimulation. This signal was malleable by TBS,

where excitatory TBS resulted in lower EEG alpha relative to inhibitory TBS to primary

rewards. EEG responses to sexual rewards in the lab (following both forms of TBS) pre-

dicted the number of orgasms experienced over the forthcoming weekend. TBS may be

useful in modifying hypersensitivity or hyposensitivity to primary rewards that predict sexual

behaviors. Since TBS altered the anticipation of a sexual reward, TBS may offer a novel

treatment for sexual desire problems.

Introduction

Reward processing abnormalities, particularly abnormally high reward sensitivity, appears key

to many psychopathologies from addictions to mood disorders [1]. Individual differences in

sensitivity to novelty and rewards are associated with impulsivity [2] and general risk behav-

iors [3]. In turn, these are linked to specific risk behaviors. Sexual risks are particularly impor-

tant due to their potentially major negative consequences including disease, pregnancy, and

social consequences. Impulsive responding has been associated with risky sexual behaviors

including unprotected sex [4], sex with strangers and inconsistent condom use [5] and more

partners [6]. One goal of the present study was to use neural responses to sexual cues to predict

future potentially risky sexual behaviors.

The primary goal was to examine the extent to which these neural responses could be

directly modulated. Transcranial magnetic stimulation (TMS) has specifically been used to
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address problems of low reward responsiveness, especially anhedonia in depression [7]. TMS

also is used to decrease cravings for tobacco [8], cocaine [9], alcohol [10], and food [11], sug-

gesting TMS may normalize reward sensitivity. TMS is thought to depolarize neurons under

the coil by magnetic pulses. Some TMS methods can disrupt functions in distal networks by

affecting connectivity, which is consistent with inducing plasticity [12]. TMS to L-DLPFC

increased dopamine in hippocampus [13], nucleus accumbens [14], putamen [15] and stria-

tum [16]. Dopamine appears to have several roles in learning [17] and anticipating rewards

[18]. Roles include predicting the likelihood of reward, and generating emotional responses

prior to a potentially rewarding stimulus [19]. Prefrontal dopamine further appears important

for executive processes of control [20]. Thus, TMS could affect any of these processes. Relat-

edly, TMS also speeds the learning of associations between behaviors and rewards [21]. The

present study used a form of TMS, theta burst stimulation (TBS) in those engaging in risky

sexual behaviors. If the reward prediction of sex can be downregulated, decreased anticipation

might improve sexual decision making. This change also may have implications for sexual

compulsivity.

TBS has demonstrated an effect of reducing impulsive decisions [22] likely through plastic-

ity [23] induced in a distributed cortical network [24]. The pattern of TBS delivered has been

demonstrated to increase or decrease activity in motor areas [25]. Intermittent TBS (iTBS; 2

trains of TBS repeated every 10 s to 600 pulses), increased cortical activity. Conversely, contin-

uous TBS (cTBS; 40 s uninterrupted to 600 pulses), decreased cortical excitability [26]. These

effects appear to last for about 60 minutes after stimulation [27, 28]. Excitability of motor and

DLPFC cortices are positively related [29] and DLFPC activity also is inhibited by cTBS [30].

cTBS might alter sexual responsiveness by enhancing sexual conditioning. cTBS to

L-DLPFC spreads activation widely in the resting brain, including through fronto-parietal,

and especially cingulo-opercular, networks [31]. L-DLPFC specifically has been functionally

linked with the dorsal anterior cingulate cortex [32], the activity of which appears important in

upregulating response to sexual cues [33]. This major functional network [34] is thought to

maintain attentional set in learning [35, 36]. It also decreased dopamine release, such as in the

ipsilateral caudate-anterior putamen and contralateral caudate nucleus [37]. cTBS also

increased approach/reward learning [38]. iTBS, on the other hand, could increase the person’s

ability to regulate emotions, including sexual emotions. Thus, both cTBS and iTBS have the

potential to alter sexual responsiveness via different mechanisms. Since alpha suppression

indicates greater engagement, the stimulation method that results in greater alpha suppression

during reward (anticipation and receipt) is interpreted as greater sexual responsiveness.

Alpha band activity in EEG was studied due to its associations with rewards and engage-

ment. Alpha represents a relatively low-frequency component of the EEG. Greater power in

this spectrum is commonly thought to reflect cortical idling or, more colloquially, a “relaxed

wakefulness” [39]. For example, alpha is lower when viewing motion in films as compared to

still images [40]. Alpha is thought to emerge from synchronous firing in thalamo-cortical and

cortical systems [41], although large swaths of limbic and other system activity also have been

related to alpha power [42]. Higher alpha was associated with food rewards in animals [43]

and game play (in ventral striatum) in humans [44], and dysynchrony reflected reduced inhi-

bition [45]. Alpha indices vary in both reward hyposensitive [46] and hyper-sensitive (e.g.,

impulsive, [47]) individuals. This includes acute responses to rewards [48], including sexual

rewards [49]. Here, alpha suppression in response to rewards is interpreted as evidence of

increased engagement with the sexual cue.

In sum, the present study examined the ability of TMS to alter these neural responses to sex-

ual rewards. Further, the ability of these neural responses to predict future sexual behaviors

was tested to examine this aspect of their validity.

EEG to Rewards following TBS
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Material and methods

Recruitment

Participation was solicited using a single posting on Craigslist, which has been used to recruit

men engaging in risky sex [50, 51]. The advertisement stated that brain stimulation was being

tested to help individuals gain control of their sexual arousal; it did not describe risk behavior

requirements to prevent falsification. In the thirty minutes that the posting was live, over 200

contacts were made to the laboratory via email or phone.

Participants were required to be age 18 to 55, identify as born male or female, deny major

disease, injury or surgery affecting the genitalia, brain, or spinal cord, deny alcohol or drug

abuse in the last week, not be restricted from sexual exertion due cardiovascular risks as

assessed by a physician, normal or corrected-to-normal vision and hearing, interest in sex with

those of the opposite sex, meet safety requirements for brain stimulation (e.g., no history of sei-

zures, reviewed by [52, 53]). They also must have had at least two different intercourse (vaginal

or anal) partners in the last year consistent with being sexually active. No homosexual men or

women participated. Partner count is commonly used as an index of risk [54], and those with

two or more partners have more sexually transmitted infections [55], elevations in other risky

behaviors [56], and are associated with greater sexual compulsivity [57]. This cutoff also has

been associated with greater sensitivity to sexual rewards [6].

Twenty-six individuals were screened by the order of call received. These included 16 men

and 10 women. Six did not qualify: Five reported too few sexual partners in the last year. One

was over the upper age limit. No one declined to participate on hearing the protocol described,

which included a description of the genital vibrator used in the study (see below).

Questionnaires

Participants completed a series of questionnaires. Initial questions included basic demographic

information, such as age, education, and relationship status. These characterized their sexual feel-

ings and behaviors [58], the valence of external rewards and punishments by the Sensitivity to

Punishment and Sensitivity to Reward Questionnaire [2], Behavioral Inhibition and Activation

[59], and Sensation Seeking [60]. To help characterize interest in potential development of TBS

as an intervention for sexual responsiveness, participants also were asked to rate to what extent

(1) they personally would want to receive more brain stimulation and (2) whether someone they

knew would benefit from a brain stimulation approach to reducing sexual responsiveness.

One questionnaire was developed to assess sexual behaviors that occurred over the weekend

following the TBS session. Participants indicated for each of Friday, Saturday, and Sunday,

how many people they had intercourse with, how many of these individuals were new sexual

partners, whether any sexual partner was non-consensual, whether alcohol or other recrea-

tional substance preceded sex, and how many orgasms they had each day. This is consistent

with a method of “Total sexual outlet” [61] used to include both solitary and partnered sexual

behaviors. Consistent with a previous attempt to predict future sexual behaviors [62], these

participants did not report enough new partners to allow robust prediction. Thus, the total

orgasm count (partnered or non-partnered) reported over the weekend was used for predic-

tion, the occurrence of which may vary with risk level [63]. Participants were not aware of the

content of this questionnaire until they accessed the questionnaire after the weekend being

assessed had passed.

Participants also completed questionnaires assessing their depression, anxiety, sexual func-

tioning, sexual desire, sexual compulsivity, vibrator use, personality, and mood. Data pre-

sented here are limited to the specific hypotheses tested.

EEG to Rewards following TBS
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Monetary/Vibratory Incentive Delay (MID/VID)

Two tasks were used to assess shifts in responsiveness to rewards between iTBS and cTBS.

These included secondary (monetary) and primary (sexual) rewards. Sexual reward was used

as it is specific to the risk-domain under study. Sexual reward is also a primary reward domain

that engages brain function similarly to other rewards [64]. More than sports, money, affilia-

tion, and humor, sexual stimuli modulate startle [65, 66], BOLD [67, 68], event-related brain

potentials [69, 70], respiration [71], and dopaminergic PET [72]. Reward structures are clearly

implicated in sexual anticipation through receipt [73]. Dopamine agonists increase sex behav-

iors [74] and enhance sexual response [75].

A modified monetary incentive delay [MID, 76] task was used to test responsivity to these

secondary rewards. Participants view a shape cue that indicates the magnitude of reward possi-

ble (see Fig 1). A solid square appears briefly. If they are able to press a button while the square

remains on the screen, they win that trial. The game titrates to achieve a particular win propor-

tion (about 66%), although this is not disclosed to the participant. Initial target duration was

set at 300 ms. This task also permits separation of reward anticipation and receipt, since the

reward is separated by a time delay from the response [77].

Reward anticipation in the MID is associated with striatal activity [76, 78]. Reward receipt

is associated with increased activity in ventromedial frontal cortex [77, 79]. This responsive-

ness in fMRI studies appears stable over 2.5 years [79]. Also, nucleus accumbens activity dur-

ing reward anticipation is associated with greater positive arousal (e.g., behavioral activation,

extraversion, etc., [79]). The MID task also provokes dopamine activity in posterior caudate

[80] and is sensitive to dopamine manipulations [81]. Performance is affected in populations

Fig 1. Monetary and Vibratory Incentive Delay (MID/VID) task and reward schedule.

doi:10.1371/journal.pone.0165646.g001
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with reward deficits, including schizophrenia [82] and depression [83, 84], and reward hyper-

sensitivity, such as impulsivity problems (e.g., alcoholics as in [85]).

The same task was repeated with genital vibratory reinforcement (VID). Money in the orig-

inal MID increases logarithmically, so vibratory reinforcement also was logarithmic in dura-

tion (see Fig 1). Specifically, the reward magnitude of the genital vibratory stimulation was

varied by offering stimulation from .5 to 5 seconds. The MID and VID tasks each took 11.5

minutes each to complete. Both tasks were presented on a 1280 X 1024 LCD monitor at 90˚

visual angle using Eprime (Psychology Software Tools, Inc., Pittsburgh, PA) with 75 Hz refresh

and 32-bit color depth.

Vibrator parameters

Vibrators offer standardization of stimulation level, evoke stronger sexual response than erotic

films, are effective for men [86] and women [87], reduce variability due to third variables (e.g.,

hand grip strength), and allow inclusion of different sexual orientations (cp., sex films). Genital

vibratory stimulation is commonly used for sexual stimulation in research [86, 88–98]. The

vibrator is placed on areas self-reported to best provoke the sexual response in men (under the

penile glans, [99]) and women (over the clitoral hood [100]). Commercial genital stimulation

devices vary widely in their motor characteristics, and testing pointed to the selection of higher

displacement devices for research purposes [101].

The vibrator used in this study was a “Magic Wand” (Hitachi) commercially-available

vibrator. An external potentiometer permitted participants to select any intensity up to the

maximum output of the device. This was binned into 9 equal setting to allow quantification of

the intensity. At a setting of “1” no vibration was occurring; at a setting of “9” the maximum

setting on the device [101] was used. Maximum stimulation included oscillations at 110 Hz

with 40 μm displacement.

Attachments were included as appropriate to the gender of the participant, identified at

screening. Participants placed the device themselves after instruction from the experimenter

(NP). For females, an oblong extension (the Miracle Massager Accessory; California Exotics)

was attached and placed over the clitoral hood (not inserted into the vagina). This area is

reported by women to be the area that was easiest to stimulate an orgasm [100]. For men, a

sheath that surrounds the penis, the Hummingbird (Love Products) was attached. While men

generally indicate greater orgasm sensitivity at the glans [99], the flaccid penis is generally too

short to distinguish glans and shaft in the placement of a wide device. Thus, men were

instructed only to insert their penis into the attachment.

Given individual differences in genital physiology and stimulation preferences, participants

were asked to set the intensity of the vibrator intensity. They were asked to select an intensity

that would be “the most pleasurable for up to five seconds”, which is the longest stimulation

possible in the VID. Their setting was recorded. No participant reported problems identifying

a setting. Participants were offered the opportunity to change the setting for the second testing.

All declined.

Electroencephalography

An EEG robust to movement was desirable. Thus, EEG data were collected using an Emotiv

Epoc headset with Emotiv’s TestBench software (Emotiv Systems Inc., San Francisco, CA,

USA). This wireless 14-channel headset produces EEG similar to wired headsets [102]. 50kO

impedance estimates are used to indicate sufficient sensor contact (G. Mackellar, personal

communication, July 21, 2014). EEG channels conform to international 10–20 sites AF3, F7,

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 were sampled at 128 Hz. The Emotiv

EEG to Rewards following TBS
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headset has been used to demonstrate localization of linguistic processes [103]. Those with

clear evoked response potentials in wired (Neuroscan) caps also had clear auditory evoked

potentials from Emotiv headsets [104].

EEG Preprocessing

EEG data were preprocessed with a combination of EEGlab [105], Fieldtrip [106], and custom

Matlab (Mathworks 2014) routines. The hardware included a 45 Hz low pass filter. Preprocess-

ing included several steps. The first steps take advantage of the unique features of the Emotiv,

which include a mounted accelerometer.1) Accelerometer data were combined
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

2
þ �

2
p

,

smoothed (1000 point flat kernel), and both raw and smoothed accelerometer data were

regressed out of the raw EEG to remove head movement. Removing gross artifacts in the first

step is similar to procedures to remove eye movement in EEG [107] and head movements in

fMRI [108]. 2) Independent Components Analysis (ICA) using EEGlab’s “runica” function

was conducted and components with very high variance (standard deviation > 75th percentile

+ IQR) or systematically high values (mean < 75th percentile + IQR) were removed as indicat-

ing artifact. 3) Bad channels were defined as high variance (standard deviation >75th percen-

tile + 2IQR) or low variance (standard deviation <25th percentile-2IQR) and interpolated

from the surrounding channels. 4) Periods of signal loss (see Emotiv above) and outliers (iden-

tified as data >100sd from the timeseries mean) were replaced with regression prediction

of the two more adjacent unaffected channels prior to transformations into the frequency

domain (e.g., [109]). Data were substituted from adjacent channels rather than using more

common techniques such as linear interpolation to preserve frequency domain characteristics.

5) Remaining time-frequency domain outliers (>1.5�IQR from Tukey Hinges, 25th and 75th

percentiles, within frequency bands) were linearly interpolated using the prior and subsequent

frequency band data inside the acceptable range. 6) Data were converted to a time-frequency

representation via a continuous Morlet Wavelet transformation and log-transformed. The

scaling size for this transformation was 3.5, which, given the 128hz sampling rate, yielded 51

bands. Six of these bands in the alpha (8-12hz) range, and these were averaged to yield an esti-

mate of alpha power. 7) Time-frequency domain outliers (>1.5�IQR from the Tukey Hinges,

as above) were then linearly interpolated. Then, time-frequency data were smoothed with a

4-second Gaussian kernel to improve the signal detection at the frequency of the design. 8)

Mean continuous activity in the 8–12 Hz frequency bands were extracted and summed to

yield a time-varying Alpha index and condition-related averages were generated.

Theta burst stimulation

Stimulation was performed using a Magstim SuperRapid biphasic stimulator with a flat figure-

8, remote control coil (14 cm width) with 2 T peak field strength. Stimulation percentages are

expressed as a proportion of this individual unit’s maximum stimulator output (MSO). This

unit can generate the theta-burst stimulation patterns at intensities of 45% MSO or below, well

within range of most participant’s individual motor threshold titration as below.

Stimulation began with a determination of individualized intensity for stimulation. The fig-

ure-8 coil was held mediolaterally with the handle pointing backwards and 45˚ from sagittal

midline as described by Brasil-Neto et al. [110]. This technique induced current perpendicular

to about central sulcus. The right first dorsal interosseus muscle (FDI) was monitored with

surface electromyography (5000 Hz). TMS pulses were delivered over the region of the left

motor cortex in a grid at suprathreshold intensities in order to identify the location which pro-

duced the largest, most consistent motor evoked potential recorded from the FDI. Intensities

at this hotspot were then lowered 1% in each stimulation. The lowest intensity stimulation that

EEG to Rewards following TBS
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produced peak-to-peak MEP amplitudes >200 μV on at least 5 of 10 trials under conditions of

gentle activation of the FDI was defined as the active motor threshold (AMT). TBS intensity

was set as 80% of AMT as per Huang (2005) (cp., [111]).

Theta burst stimulation (TBS) consisted of 3 TMS pulses given at 50 Hz, with this triplet

repeated every 200 ms (5 Hz). iTBS was administered as a 2 s train of TBS repeated every 10 s

for a total of 190 s (600 pulses). cTBS was administered as a 40 s train of uninterrupted TBS

(600 pulses).

Identifying the TBS target site

Both cTBS and iTBS were applied to a skull area over the left dorsolateral prefrontal cortex

(L-DLPFC; Brodmann area 9, approximately F3; Talairach: x = 30, y = 40,z = 26). This area

was targeted based on previous functional activation studies [37]. Placement was guided by

measurements of standard 10–20 system to F3 [112]. To ensure the same site was stimulated

on each participant between their iTBS and cTBS session, the neuronavigation system was

used just for its ability to replicate placement. Participants did not have individual fMRI scans

available to guide stimulation [113]. The TMS coil was held over this location with the handle

pointing backward and about 45 degrees laterally from midline.

Procedure

Volunteers were contacted by phone to complete the screening (see above). They were sched-

uled on a Thursday or Friday to increase the proximity of the testing time to the weekend

when they would be reporting their sexual behaviors. Given that other investigators reported

difficulty documenting sufficient variability in sexual behaviors [62], and knowing sexual

behaviors tend to be a bit higher on the weekends [114], weekend behaviors were targeted to

increase the likelihood of greater variance in sexual behaviors. They were instructed not to

orgasm either by themselves or with a partner in the 24 hours before their session. They also

were instructed to abstain from any alcohol or recreational drug use in the 24 hours before

their session (this is different from the inclusion criteria, which assessed whether they had

heavy use of substances in the week before screening). On arrival to the laboratory, they pro-

vided written Informed Consent. The consent procedure and study protocol were approved by

the Institutional Review Board at the University of California, Los Angeles.

Then, participants received instructions and practice trials for each computer task. These

included the incentive delay tasks and a self-regulation task. The self-regulation task was mod-

eled after a study by Goldin and colleagues [115] and was always presented last in the sequence

of tasks. Those data are to be presented elsewhere, so are not discussed further here. Training

for the incentive delay tasks included instructions and 10 practice trials. The experimenter was

present for the first 3–5 practice trials to provide verbal feedback and instruction. Only mone-

tary incentives were presented at this stage, although the participant was informed that the

vibrator would be applied for the other version of this task. Tasks were completed twice: once

following iTBS and once following cTBS. No sham or baseline conditions were used, because

the primary purpose of this first investigation was to compare TBS types.

Following training, participants were led to a building next door to receive TBS. TBS order

(iTBS, cTBS) was randomized. During TBS, the experimenter was not present to ensure condi-

tion blindness. Following stimulation (< 2 minutes), the participant was walked back to the

private testing room (about 5 minutes). They briefly rated their emotions on a computer (cp.,

[116]). Next, they were seated on a massage table covered in paper and reclined for their com-

fort (see Fig 2). They completed the monetary incentive delay task (6 minutes). Next, the

experimenter provided instructions for the placement of the vibrator, reassured the participant

EEG to Rewards following TBS
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that the experimenter would not enter the room again without their permission, and left the

private room. The participant disrobed from the waist down. The participant verbally indi-

cated when the vibrator was in place. Then, they were instructed to set the vibrator intensity to

a level that they expected would feel “good” at the longest stimulation duration of 5 seconds

(see Fig 1). They controlled when the vibrator came on and turned off by key press. They ver-

bally confirmed that the vibrator was set at the appropriate level for them before testing contin-

ued. All of this was estimated to take no more than 5 minutes even at the first test. Then, they

completed the vibratory incentive delay task (6 minutes). After this task, the experimenter

instructed the participant to remove the vibrator and get dressed. Together, the incentive delay

tasks took about 30 minutes. Participants then completed a questionnaire concerning any pain

that they experienced during or after TBS.

Two hours were required to elapse between the first TBS and the second TBS. During this

period, participants completed the questionnaires on the computer (see above). At the two-

hour time, they repeated TBS (counterbalanced) and MID/VID tasks. None chose to reset the

intensity of the vibrator. Afterwards, participants confidentially rated two questions: “If it was

free, I would be willing to go through a few of these sessions to help manage my sexual urges”

and “If this works, I know someone who I think would benefit from a treatment like this” on a

scale from 1 (Strongly agree) to 7 (Strongly disagree). They were then provided with instruc-

tions for completing the Weekend Activities questionnaire (see above), provided an opportu-

nity to ask questions, received $100 cash, and left. The entire protocol took 4 hours. The

following Monday they received automated reminders to complete their Weekend Activities

Questionnaire. They received $50 for completing the questionnaire. Most (n = 18) elected to

receive payment in cash returning to the laboratory, whereas others (n = 2) provided identify-

ing information to receive payment by mailed check.

Data analyses

Two analyses were planned. First, the effects of TBS type on reward responsiveness were tested.

Specifically, average alpha band activity across electrodes was predicted using a two-factor,

within-participant ANOVA by TBS type (iTBS, cTBS) and reward phase (anticipation,

Fig 2. Experiment setup.

doi:10.1371/journal.pone.0165646.g002
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receipt). This was done separately for reward phase (anticipation, receipt) and reward type

(money, sex).

Second, the ability of EEG responses to sexual rewards in the lab were used to predict real-

world sexual behaviors in the weekend following stimulation. Given that others have found

insufficient variability in the number of partners, which was also true in this study, total

orgasm count was used as a proxy dependent variable. Specifically, alpha activity to the sexual

rewards (identified in the first analysis) at all sites was used to predict orgasm count. A cumu-

lative link model (CLM) was used (R library ordinal; Christensen, 2015), which allows predic-

tion of each level of orgasm response. This approach predicts the probability that a response

(alpha) will fall in a particular category (orgasm count) or below, hence “cumulative”. CLM

offers several advantages for these data. CLM allows non-linear response patterns. CLM relies

on a single weight variable, making it more parsimonious than alternative models. Finally,

CLM accounts for the likelihood that orgasm count is conservatively characterized as ordinal.

The order of the brain stimulation received was included as a predictor to control for the

unlikely possibility that the brain stimulation type received most recently might influence

orgasm count over the coming weekend. TBS type also was initially included as a predictor to

ensure that it was reasonable to collapse across TBS sessions to power the analyses, as no differ-

ence was expected in the predictive utility of alpha for orgasm count. As TBS type did not

interact with alpha to predict orgasm count, data are collapsed across TBS sessions and not dis-

cussed further. EEG site was included as a predictor to ensure specific site outliers were not

driving observed effects.

Time course analysis

Contrasts on alpha EEG at each electrode were examined via statistical tests at each point

along the wavelet-derived reactivity waveforms. To control type 1 error for this large number

of tests, Guthrie and Buchwald’s [117] technique was used. Briefly, this technique involves

using Monte-Carlo simulations to estimate the number of consecutive significant differences

long enough to be judged to not have occurred by chance with p< .05 given the temporal

autocorrelation of the data. Given the sample autocorrelation of 0.997, 129 contiguous sample-

by-sample tests (approximately 1 second), each significant at p<0.1 were considered replica-

tions at p<0.05.

Results

All participants completed all aspects of the protocol. One male participant denied being sleepy

during the tasks following iTBS, but during that period showed EEG largely devoid of eye-

blinks, characterized by slow wave activity, and failed to respond on most reward trials. Con-

servatively, his EEG data were excluded from analyses as he could have been asleep during this

time. Data also were lost from 3 iTBS trials due to experimenter error. One participant

reported tension-type head pain (reaching 6 of 11 pain rating) following cTBS stimulation.

This participant received an over-the-counter analgesic and reported that the pain had

resolved within 20 minutes. Two participants had motor thresholds in excess of the MagStim

capability. These were lowered by 3% and 10% of the measured threshold. In general, the

AMT mean was 51.4 and standard deviation was 7.7.

Vibrator intensity

Participants chose to set the vibrator intensity from 2 to 9 with M(SD) = 5.2(2.5). Given that

the mid-point of intensity was 5, this is consistent with individuals using the full range of the

available settings for the device. No one chose to leave it in the off (“1”) position.
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Alpha response differed by reward condition and task

VID rewards suppressed alpha more than MID rewards for both anticipation and receipt

phases (see Fig 3). Alpha EEG differed (see Table 1 and Fig 4 for which electrodes this was sig-

nificant or merely consistent) across the scalp in response to wins and misses for sexual

rewards throughout the time-course of the anticipatory (post-response, pre-vibratory stimu-

lus) interval as well as the receipt interval (during vibratory stimulus). Along with previous

publications showing the utility of alpha EEG for sexual rewards [49], this supports the chosen

EEG metric of alpha suppression as one index of reward responsivity in VID. Since alpha did

not reliably differentiate receipt for wins and misses in the MID version, EEG alpha to rewards

in the VID task were used for remaining comparisons.

EEG predicted sexual behaviors

Participants varied considerably in the number of orgasms that they experienced over the

weekend (see Table 2), making this variable suitable for analysis. The CLM model generally fit

the data (log likelihood = 823, AIC = 1662) after seven fit iterations. There was a main effect of

Alpha (z = 5.8, CI = 3.2 to 25.8, p = .02; see Fig 5), but no main effect of stimulation order (z =

.4, p = .06) or electrode (z = -0.14, p = .89) nor any interaction (order by electrode, order by

alpha, electrode by alpha, or order by electrode by alpha). Alpha level coefficients showed that

those who had stronger alpha suppression anticipating sexual reinforcement also reported

fewer orgasms (z-coefficients 0|1 = -1.3, 1|2 = .3, 2|3 = 1.2, 3|4 = 2.1, 4|6 = 2.6).

Alpha response to rewards differed by TBS type

First averaging alpha across electrodes, a main effect of TBS type predicted alpha power in the

vibratory incentive delay task, F(1,64) = 6.1, p = .02. Specifically, alpha power was lower follow-

ing iTBS (M(SD) = -.05(.08)) as compared to cTBS (M(SD) = -.03(.09)) for both the anticipa-

tion and receipt of vibrator rewards. There was no effect of TBS type on monetary rewards

(anticipation or receipt). The time series of the TBS effect across each electrode supports this

averaged result (see Fig 6). That is, most electrodes show a suppression of alpha specific to

iTBS anticipating the sex reward and, to a lesser extent, receiving the sex reward. Effect sizes at

electrodes showing significant differences varied from d = .78 to d = 1.16 in temporal windows

of significant differences (see Table 3). See S1 Fig for alpha response by each predictor level.

Postexperimental questionnaire

Response options ranged from 1 (“Agree strongly”) to 7 (“Disagree strongly”). Ten partici-

pants (50%) reported that they were open to receiving more TBS sessions to assist them man-

aging their sexual urges (rated 4 or below). Fourteen participants (70%) felt they knew

someone whom they thought would benefit from TBS to dampen sexual responsiveness if it

proves effective (rated 4 or below).

Discussion

In a sample of 20 higher-sexual risk men and women, EEG was recorded while they completed

reward tasks. They received theta burst brain stimulation designed to increase or decrease

activity in the L-DLPFC. After the session, they reported their sexual behaviors over the next

weekend. Alpha was reliably lower in response to anticipation and receipt of sexual rewards,

compared to non-reward and compared to monetary reward. Decreased alpha to the anticipa-

tion of sexual rewards predicted orgasm count in the coming weekend. Furthermore, iTBS

was associated with lower alpha to sexual rewards (anticipation and receipt) as compared to

EEG to Rewards following TBS
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Fig 3. Alpha in response to reward for MID and VID during (A) Anticipation and (B) Receipt (both TBS

conditions included).

doi:10.1371/journal.pone.0165646.g003
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cTBS. These data suggest that brain stimulation can be used to modulate responsiveness to

reward features that are associated with health-risk behaviors. Further, these results alpha EEG

change to sexual rewards as an experimental therapeutics target. Specifically, alpha appears

appropriate for target identification (lower with sexual reward), to target as a risk biomarker

(predicts sexual behavior), and a malleable mechanism for problems of reward (altered by

TBS).

Prospective data supported the external validity of EEG alpha suppression to primary

rewards in the laboratory. Brain responses have been linked to the number of past sexual part-

ners [6] and future sexual desire levels [62]. These data provide additional validity supporting

the use of neural responses to sex rewards as a potential biomarker for real-world sexual behav-

iors. The direction of the effect suggests that those who were more sexually responsive (greater

alpha suppression anticipating sexual rewards) in the laboratory experienced fewer sexual

rewards (orgasms) in the following weekend. This seems counterintuitive, because greater sex-

ual motivation in the laboratory should lead to more sexually motivated behaviors. Interpreting

alpha as a general measure of activation, impulsivity literature may aid understanding of this

Table 1. Significant difference by trial type (win/miss) at each electrode for sexual rewards (anticipa-

tion/receipt)

Sensor t D(s) d

Anticipation

AF3 -3.1 -0.06 -0.52

F7

F3 -2.36 -0.06 -0.39

FC5

T7 -1.94 -0.06 -0.32

P7 -1.98 -0.05 -0.33

O1 -3.07 -0.06 -0.51

O2 -4.4 -0.08 -0.73

P8 -3.52 -0.06 -0.59

T8 -3.55 -0.05 -0.59

FC6 -4.03 -0.06 -0.67

F4 -3.84 -0.08 -0.64

F8 -3.48 -0.06 -0.58

AF4 -3.45 -0.06 -0.58

Receipt

AF3 -2.27 0.03 -0.38

F7 -2.71 0.01 -0.45

F3 -3.81 -0.06 -0.64

FC5 -2.07 0.05 -0.34

T7 -2.64 0.01 -0.44

P7 -3.17 -0.04 -0.53

O1 -3.4 -0.05 -0.57

O2 -2.3 0.03 -0.38

P8 -2.42 0.02 -0.4

T8 -3.28 -0.03 -0.55

FC6 -2.74 0.01 -0.46

F4 -3.08 -0.05 -0.51

F8 -2.87 0.01 -0.48

AF4 -2.32 0.03 -0.39

doi:10.1371/journal.pone.0165646.t001

EEG to Rewards following TBS

PLOS ONE | DOI:10.1371/journal.pone.0165646 November 30, 2016 12 / 25



Fig 4. Alpha in response to sexual reward (win) versus non-reward (miss) (A) Anticipation and (B) Receipt

(both TBS conditions included).

doi:10.1371/journal.pone.0165646.g004
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effect. For example, those with higher P300 to visual oddballs in a laboratory task reported less

impulsivity (Russo, Pascalis, Varriale & Barratt, 2008). This may reflect that the lesser activity in

ventral prefrontal cortex associated with impulsivity that EEG may be more sensitive to than

deeper structures (Brown, Manuck, Flory, & Hariri, 2006). Components of evoked response

potentials have proven more specifically sensitive to rewards (e.g., Martin & Potts, 2004), where

alpha activity is probably better understood as an index of idling or arousal. To more strongly

interpret this effect, it will be helpful to include physiological indices more specific to reward or

bring participants back for reassessment to characterize shifts in responsiveness.

These data suggest that sexual stimulation offers a unique target above and beyond second-

ary reward stimuli. The MID version of the task did not reliably differentiate wins from misses

in alpha EEG and generally was less effective at suppressing alpha compared to the VID.

Table 2. Sample characteristics.

Variable Mean Standard deviation

Age 34.6 10.9

Lifetime intercourse partners 22.5a 38.5

Behavioral Inhibitionb 17.0 3.0

Behavioral Activationc 19.6 8.9

Sensation seeking

Thrill And Adventure Seeking 6.3 2.8

Disinhibition 5.6 2.4

Boredom Susceptibility 2.5 1.7

Experience Seeking 5.0 2.3

Sensitivity to

Rewards 33.8 4.3

Punishments 41.1 4.3

Weekend activities

Sexual partners 0.8 1.1

Orgasms 2.4 2.5

Usual riskd 3.5 1.1

N %

Women 5 25

Relationship

Monogamous 5 25

Non-monogamous 6 30

Not in relationship 9 45

Ethnicity

Asian 1 5

African-American 7 35

Hispanic 6 30

White 4 20

Other 2 10

aFive people reported > 100 partners, so median is reported for this variable to decrease the influence of

skew
bRange 7 to 32
cRange 13 to 52
dParticipants were asked whether their sexual activities over the weekend reflected their usual sexual

activities with Range 1 - “Much more risky sexually than usual” to 5 - “Much less risky sexually than usual”

doi:10.1371/journal.pone.0165646.t002

EEG to Rewards following TBS

PLOS ONE | DOI:10.1371/journal.pone.0165646 November 30, 2016 14 / 25



Others have documented EEG modulation in theta and beta ranges [118]. Alpha may not best

capture MID modulations. This could reflect a difference in primary and secondary reinforce-

ment types, but that was not explicitly tested. A second possibility is that the MID and VID

were always conducted in the same order. This allowed participants to only have their genitalia

exposed to the vibrator for the minimum amount of time necessary. One argument against

this order problem is that the TBS effects should have faded less for the earlier (MID) task.

However, it also is possible that reward states were somehow additive such that having just

completed the MID influenced responses to the VID. A third possibility is that this sample was

especially sensitive to sexual rewards. Since individual differences in reward responsiveness

predict reward learning in the MID [119], it seems reasonable that this sample simply might

be less responsive to secondary money rewards. Relatedly, TBS differences might be limited to

individuals with reward hypersensitivity. The applicability to sexual reward hyposensitivity is

suggested, but not directly supported. Another possibility is that this could reflect differences

in general arousal, differences which may just happen to be greater in sexual stimuli (see

Supplement).

Fig 5. Prediction of orgasm count over the coming Friday, Saturday, and Sunday by EEG alpha in

anticipation of sex reward (both brain stimulation conditions included). The plot reflects the ordinal

assumptions of conditional logit models (CLM). CLM do not require interval spacing, only that each “level of orgasm”

be ordered For example, no value of 5 exists because no one reported 5 orgasms, and each logit is calculated only

relative to the next value in the ordered list of orgasm counts.

doi:10.1371/journal.pone.0165646.g005
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Fig 6. Alpha during vibratory incentive delay to (A) anticipation and (B) receipt.

doi:10.1371/journal.pone.0165646.g006
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cTBS appeared to decrease responsiveness to the anticipation of primary rewards relative to

iTBS. Since cTBS both decreases the activity of DLPFC and decreases the activity of dopamine

in deeper brain structures important to reward (reviewed above), its mechanism remains

unclear. In support of the role of targeting the DLPFC, decreased activity in this structure

appears to aid in the maintenance of a flaccid state of the penis [120]. Furthermore, iTBS of

L-DLPFC has antidepressant effects [121], which appears consistent with iTBS enhancing the

effects of sexual reward anticipation. TMS effects have been described as either directly affect-

ing task-relevant cortical areas or inhibiting task irrelevant networks as new response patterns

are learned [122].

A primary limitation of this study is the lack of a TBS sham. Since this was the first time

TMS/TBS has been used to modulate sexual feelings or behaviors, we felt it was important to

contrast excitatory and inhibitory stimulation types before a next stage of study than a sham or

baseline control. These data provide some confidence that (1) TBS modifies responsiveness to

primary rewards and (2) the type of TBS to pursue depending on the goals of enhancing or

reducing responsiveness. Specifically, studies aimed at increasing the anticipation of sexual

rewards should choose iTBS, whereas studies aimed at decreasing the anticipation of primary

rewards should choose cTBS.

Other study limitations exist. L-DLPFC was targeted without the benefit of stereotaxic MRI

guidance. Individuals vary in the location of brain areas with respect to external scalp land-

marks [123]. This method of site identification has been critiqued [124]. Inter-expert variation

is a main source of variability in this method [125], which was eliminated here by the use of a

single expert technician (C.B.). Others are continuing to develop methods to increase the reli-

ability of F3 identification using landmark approaches [126]. Nevertheless, it will be desirable

to verify this pattern of results with anatomically-targeted stimulation in the future. Third, the

investigation was limited to alpha band activity. One other study of smoking urges examined

delta patterns based on existing smoking literature [127]. The current study specifically exam-

ined reward responsiveness. Since alpha activity has been extensively tied to depression and

Table 3. Difference by stimulation type (cTBS/iTBS) at each electrode for anticipation of sex reward.

Sensor t D(s) d1

AF3 -1.8 -0.06(0.09) -.6

F7 -1.34 -0.04(0.08) -.45

F3 -2.35* 0.05(0.07) -.79

FC5 -2.32* -0.06(0.08) -.78

T7 -2.52* -0.07(0.08) -0.85

P7 -2.64* -0.06(0.07) -0.88

O1 0.02 0.00(0.07) .01

O2 -0.74 -0.02(0.08) -.25

P8 -1.6 -0.05(0.08) -0.54

T8 -1.25 -0.03(0.07) -0.42

FC6 -1.34 -0.03(0.08) -0.45

F4 -3.44** -0.09(0.08) -1.16

F8 -1.88 -0.05(0.09) -0.63

AF4 -1.33 -0.04(0.09) -0.45

* p < .05

** p < .01
1Effect size for dependent test, Averaged across electrode sites Z2

p = .01.

doi:10.1371/journal.pone.0165646.t003
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anhedonia and sexual stimulation (see above), alpha was a reasonable target. However, it is

possible that this focus may have overlooked other important changes in band activity. While

the protocol maximized the time between stimulation types informed by studies about the

length of stimulation effects, it is possible carryover caused some interference. Counterbalanc-

ing (cTBS and iTBS) ensured that this was not systematic, but merely having had some stimu-

lation could cause some interaction with our tests. Finally, actual money was not handed to

the participant following the money rewards, which may have created an additional difference

between the money and sex rewards. Studies of real-money versus fake money reinforcers sug-

gest little difference in results between the two approaches [128], but providing real money

would have increased the similarity with the sexual reward.

This study provides initial support for a mechanistic intervention to alter a neural index

related to real-world sexual behaviors. More broadly, these data support that TBS is useful to

change responsiveness to rewards. Studies including secondary and primary reinforcements

remain rare (e.g., [129]). When investigated, deficits responding to primary sexual rewards

better characterize reward differences in problem gamblers [130], and responsiveness to sexual

rewards is specifically recovered in successful depression treatment [131]. Strong primary

rewards, such as sexual rewards, may test the ability of the reward system to respond in

completely different ways from traditional secondary rewards. This study specifically altered

processing of primary rewards, which may offer new therapeutic targets in TBS interventions.

Supporting Information

S1 Fig. Alpha in response to reward for MID and VID during (A,C) Anticipation and (B,D)

Receipt. Fig 2. Alpha in response to reward for MID and VID during (A,C) Anticipation and

(B,D) Receipt.
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