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Intrinsic Brain Activity of Cognitively Normal Older
Persons Resembles More That of Patients

Both with and at Risk for Alzheimer’s Disease
Than That of Healthy Younger Persons

Lorenzo Pasquini,1,2 Annika Tonch,3,4 Claudia Plant,3,4 Andrew Zherdin,1

Marion Ortner,5 Alexander Kurz,5 Hans Förstl,5 Claus Zimmer,1 Timo Grimmer,5

Afra Wohlschäger,1 Valentin Riedl,1,2,6 and Christian Sorg1,2,5

Abstract

In Alzheimer’s disease (AD), recent findings suggest that amyloid-b (Ab)-pathology might start 20–30 years be-
fore first cognitive symptoms arise. To account for age as most relevant risk factor for sporadic AD, it has been
hypothesized that lifespan intrinsic (i.e., ongoing) activity of hetero-modal brain areas with highest levels of
functional connectivity triggers Ab-pathology. This model induces the simple question whether in older persons
without any cognitive symptoms intrinsic activity of hetero-modal areas is more similar to that of symptomatic
patients with AD or to that of younger healthy persons. We hypothesize that due to advanced age and therefore
potential impact of pre-clinical AD, intrinsic activity of older persons resembles more that of patients than that of
younger controls. We tested this hypothesis in younger (ca. 25 years) and older healthy persons (ca. 70 years) and
patients with mild cognitive impairment and AD-dementia (ca. 70 years) by the use of resting-state functional
magnetic resonance imaging, distinct measures of intrinsic brain activity, and different hierarchical clustering
approaches. Independently of applied methods and involved areas, healthy older persons’ intrinsic brain activity
was consistently more alike that of patients than that of younger controls. Our result provides evidence for larger
similarity in intrinsic brain activity between healthy older persons and patients with or at-risk for AD than be-
tween older and younger ones, suggesting a significant proportion of pre-clinical AD cases in the group of cog-
nitively normal older people. The observed link of aging and AD with intrinsic brain activity supports the view
that lifespan intrinsic activity may contribute critically to the pathogenesis of AD.

Key words: aging; Alzheimer’s disease; functional connectivity; hierarchical clustering; intrinsic brain activity;
mild cognitive impairment; resting-state functional MRI

Introduction

Alzheimer’s disease (AD) is both the by far most fre-
quent neurodegenerative disease and the by far most fre-

quent cause of age-related dementia (Blennow et al., 2006). At
age of 60, about 1–2% of people suffer from AD-dementia;
this proportion doubles all 5 years with almost half of 90-
year-old persons being affected by AD-dementia (Hebert

et al., 2003). Beside several risk factors ranging from genetic
factors to cerebrovascular events to lifestyle, age is the clearly
most important risk factor for sporadic AD (Herrup, 2010).
The amyloid hypothesis of AD states that amyloid-b (Ab)-
pathology is the critical initiating event in AD, starting
with aberrant clearance of Ab-peptides followed by consecu-
tive peptide aggregation, including plaques, pathology spread,
and disruption of neural activity and connectivity (Selkoe,
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2002). Recent findings suggest that Ab-pathology might start
about 30 years before first symptoms arise (Bateman et al.,
2012; Jack et al., 2013), and Ab has been linked with in-
creased levels of brain activity and specific metabolic path-
ways (i.e., aerobic glycolysis) particularly in hetero-modal
brain areas with high functional connectivity (FC) (Buckner
et al., 2005, 2008, 2009; Dickerson and Sperling, 2009;
Drzezga et al., 2011; Jagust, 2012; Sorg et al., 2007, 2009;
Sperling et al., 2009; Vlassenko et al., 2010). Linking aging,
sporadic AD, Ab-pathology, and increased neuronal activity,
a recent hypothesis suggested that lifespan intrinsic (i.e., ongo-
ing) brain activity particularly in hetero-modal areas of high
levels of FC may trigger regional Ab-pathology and therefore
the rise of AD (Buckner et al., 2009; Jagust and Mormino,
2011). Given that AD may have a 20–30-year-long pre-
clinical period, this model suggests that due to advanced age
and therefore potential impact of pre-clinical AD, intrinsic ac-
tivity of older persons resembles more that of patients than
that of younger controls. While most studies have investigated
the impact of either aging or disease on brain’s activity (Goh,
2011; Grady, 2008; Grady et al., 2003; Park et al., 2012), few
studies have compared brain activity across healthy young,
healthy elderly, and patients with AD (Buckner et al., 2000;
Hafkemeijer et al., 2012; Sun et al., 2012). In particular
with respect to intrinsic brain activity, a systematic approach
focusing on the degree of similarity or dissimilarity across
groups instead of simple group differences is—to the best of
our knowledge—missing.

The current study addresses this question by combining
resting-state functional magnetic resonance imaging (rs-
fMRI) with hierarchical clustering in groups of younger
healthy persons at age of about 25 (young healthy controls
[YHCs]), older healthy persons without any cognitive impair-
ment at age of about 70 (older healthy controls [OHCs]), and
patients with mild cognitive impairment (MCI; high-risk
state for AD) and AD-dementia of equal age. Hierarchical
clustering allows for estimating similarity or dissimilarity
of given measures across groups. Rs-fMRI allows for esti-
mating blood-oxygenation-level-dependent (BOLD) fluctua-
tions, which are used as surrogate for intrinsic brain activity.
Spatial patterns of synchronized BOLD fluctuations charac-
terize intrinsic networks with some of them (such as the
default mode network [DMN] or fronto-parietal attention net-
works [AN]) covering hetero-modal areas of increased FC
(Buckner et al., 2009). These networks and regions that are
affected by very early AD constitute the main focus of the
current study. To identify such intrinsic networks, we used
independent component analysis (ICA) of rs-fMRI data.
ICA decomposes imaging data into independent components
of spatial z-maps (reflecting networks’ BOLD FC pattern)
and corresponding time courses (reflecting networks’ activity
across time). Two different measures of intrinsic brain activ-
ity were derived from these components (Fig. 1A). First, in-
trinsic networks’ time courses were used as surrogate for
intrinsic network activity (iNA). Second, to identify regions
of highest FC, we took peaks of networks’ spatial z-maps
and used averaged BOLD fluctuations of spherical regions-
of-interest (ROI) around these peaks as surrogates for intrin-
sic brain activity (iRA). Both iNA and iRA, respectively,
were put into hierarchical clustering procedures to estimate
similarity of intrinsic brain activity across groups. To control
for the choice of networks and regions, respectively, we used

different ensembles of networks or regions for clustering
(e.g., only the DMN or the DMN and attention networks).
To control for clustering approaches, we used two different
hierarchical clustering procedures, namely, Average Linkage
Clustering based on Euclidean distance ( Jain and Dubes,
1988), which estimates similarity of intrinsic brain activity
inter-subject-synchronicity (ISS) across groups (van Keste-
ren et al., 2010), and model-based clustering (Plant et al.,
2013), which estimates similarity of intrinsic FC across
groups (Fig. 1B).

Materials and Methods

Subjects and task

Twenty-one YHC (10 women, age 18–30 years), 23 el-
derly healthy controls (15 women, age 60–90 years), 24 pa-
tients diagnosed with MCI (13 women, age 62–79 years), and
22 patients diagnosed with AD-dementia (9 women, age 62–
79 years) participated in this study (Table 1). All subjects
provided informed consent in accordance with the Human
Research Committee guidelines of the Klinikum rechts
der Isar, Technische Universitat München. Patients were
recruited from the Memory Clinic of the Department of Psy-
chiatry, healthy controls by word-of-mouth advertising.
Examination of every subject included medical history, neu-
rological examination, informant interview (only for older
participant; Clinical Dementia Rating [CDR] [Morris et al.,
1988]), neuropsychological assessment (Consortium to
Establish a Registry for Alzheimer’s Disease [CERAD]
[Morris et al., 1989]), and structural MRI. Patients with
MCI (CDR-global = 0.5) met criteria for MCI, including
reported and neuropsychologically assessed cognitive
impairments, largely intact activities of daily living, and
excluded dementia (Gauthier et al., 2006). Patients with
AD-dementia fulfilled criteria for mild dementia (CDR-
global = 1) and the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s
Disease and Related Disorders Association (NINCIDS-
ADRDA) criteria for AD (McKhann et al., 1984). Partici-
pants without cognitive impairment did not complain
memory decline and perform within the range of 1 standard
deviation of age and education norms for each CERAD sub-
test. Exclusion criteria for entry into the study were other
neurological, psychiatric, or systemic diseases (e.g., stroke,
depression, and alcoholism) or clinically remarkable struc-
tural MRI (e.g., stroke lesions) potentially related to cog-
nitive impairment. Ten patients with AD/8 patients with
MCI/6 healthy older controls were treated for hypertension
(Beta-blockers, ACE-inhibitors, and Calcium channel block-
ers), 4/5/3 for hypercholesterolemia (statins), 2/2/0 had dia-
betes mellitus, 6/3/0 received antidepressant medication
(Mirtazapine, Citalopram), and 22/0/0 received cholinester-
ase inhibitors. Younger healthy persons were free of any
medication.

Data acquisition, preprocessing, ICA, and definition
of intrinsic brain activity

All subjects underwent structural MRI and 10 min of rs-
fMRI, respectively. For rs-fMRI, subjects were instructed
to keep their eyes closed and not to fall asleep. We verified
that subjects stayed awake by interrogating via intercom
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immediately after each scan. MRI was performed on a 3-T MRI
scanner using 8-channel phased-array head coil (Achieva, Phi-
lips, Netherlands). For coregistration, T1-weighted anatomical
data were obtained by using a magnetization-prepared rapid
acquisition gradient echo sequence (TE = 4 ms, TR = 9 ms,
TI = 100 ms, flip angle = 5�, FoV = 240 · 240 mm2, matrix =
240 · 240, 170 slices, voxel size = 1 · 1 · 1 mm3). Rs-fMRI
used a gradient echo EPI sequence (TE = 35 ms; TR = 2000 ms;
flip angle = 82�; FoV = 220 · 220 mm2; matrix = 80 · 80; 32 sli-
ces; slice thickness = 4 mm; 0 mm interslice gap).

Standard data preprocessing and analysis steps are de-
scribed in detail in the Supplementary Data (Supplementary
Data are available online at www.liebertpub.com/brain).
Briefly, after discarding first three volumes of fMRI, data
were coregistered, normalized into stereotactic MNI space
(isotropic voxel size 3 · 3 · 3 mm3), and spatially smoothed

(8 · 8 · 8 mm3 Gaussian kernel) by the use of SPM8. To con-
trol for motion-induced artifacts, point-to-point head motion
was estimated for each subject (Power et al., 2012; Van Dijk
et al., 2012). Excessive head motion (cumulative translation
or rotation > 3 mm or 3� and mean point-to-point translation
or rotation > 0.15 mm or 0.1� was applied as an exclusion
criterion). Two-sample t-tests between groups yielded no
significant differences between groups regarding transla-
tional and rotational movements of any direction as well as
signal-to-noise ratio of fMRI data ( p > 0.05).

Subsequently, we performed standard group-ICA of fMRI
data (Allen et al., 2011; Calhoun et al., 2009). We decom-
posed preprocessed rs-fMRI data of all subjects into 75 spa-
tial independent components using a group-ICA framework
(Calhoun et al., 2009) implemented in the GIFT-software
(http://icatb.sourceforge.net). Seventy-five components were

FIG. 1. Study design. (A) Preprocessed resting-state functional magnetic resonance imaging (rs-fMRI) data were decomposed
by spatial independent component analysis (ICA) of model order 75. Twenty-two components were identified as intrinsic net-
works by spatial regression with canonical network templates. Measures of intrinsic brain activity were derived from these spa-
tiotemporal components. Network time courses defined intrinsic network activity (iNA). Fifty-five peak voxels were selected
from components’ spatial maps via t-tests across all subjects, and blood-oxygenation-level-dependent (BOLD) time courses of
spherical regions-of-interest (ROIs) centered on these peaks defined intrinsic brain activity (iRA). Hierarchical clustering con-
structs dendrograms reflecting groups’ similarity for iNA and iRA. Six out of 18 possible dendrograms were of particular in-
terest. The 2 dendrograms in blue reflect larger similarity of intrinsic activity between healthy older persons and patients, while
dendrograms in red reflect larger similarity between older and younger persons. The remaining 12 possible dendrograms were
considered as dendrograms that bear no interpretable information. (B) Time courses of iNA and iRA were put into two different
hierarchical clustering procedures. Cluster distance was estimated once by classical Euclidean distance of within-subject con-
catenated time series and once by cluster-specific models of linear combinations of across-subject concatenated time series (for
more details see ‘‘Materials and Methods’’ section). Robustness of clustering procedure was estimated by nonparametric per-
mutation testing. AD, Alzheimer’s disease; FC, functional connectivity; ISS, inter-subject synchronicity; MCI, mild cognitive
impairment; OHCs, older healthy controls; s1, si subjects; S1, Si, time series concatenated within the same subject; t1, ti, time
series of intrinsic brain activity; T1, Ti, time series derived from the same network but concatenated across subjects; YHCs,
young healthy controls. Color images available online at www.liebertpub.com/brain
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chosen, since such high-model-order ICA provides robust
network decomposition (Abou-Elseoud et al., 2010; Starck
et al., 2010). To select networks of interest, we applied
spatial regression analysis of the 75 independent compo-
nents onto network masks (described in Clustering
of Intrinsic Brain Activity from Different Ensembles of
Networks/Regions section below) derived from templates
of Allen et al. (2011). ICs with highest correlation coeffi-
cients were selected.

Finally, to specify types of intrinsic brain activity, network
time courses were used as estimates of iNA. To define iRA,
we performed a seed-based approach. Individual z-maps de-
rived from ICA were analyzed by the use of one-sample t-test
across all participants, threshold at p < 0.05 family wise error
(FWE) cluster level corrected (Fig. 2 and Table 2); peak vox-
els of significant clusters of networks represent areas of high-
est FC, and BOLD time courses of spherical ROIs centered
on such peaks defined iRA for a total of 55 regions (Table
3). More specifically, time courses of voxels within each
ROI were extracted, bandpass-filtered for frequencies rang-
ing from 0.009 to 0.08 Hz, and reduced to an ROI-represen-
tative time course by singular value decomposition. For each
subject, the global gray matter, white matter, and cerebrospi-
nal fluid (CSF) BOLD-signals were extracted by linear re-
gression analysis.

Hierarchical clustering

We used hierarchical clustering (Tan et al., 2008), to in-
vestigate the similarity of intrinsic brain activity among
groups. Clustering procedure clusters data objects according
to the similarity between objects. Hierarchical clustering
constructs a dendrogram that visualizes the hierarchical
structure of the dataset. A dendrogram is a binary tree
where each leaf node represents an object, each inner node
represents a cluster of objects, and the root node represents
the full dataset. At each level of the tree hierarchy, the two
most similar clusters are merged. In the current study, we or-
ganized the subjects’ individual time series of intrinsic brain
activity in four respective groups: YHC, OHC, MCI, and

AD. These four groups form clusters, which are the initial
data for the further clustering procedure. The leaves of the
tree hence do not contain single objects but whole clusters.
These clusters are then merged stepwise according to their
similarities. As a similarity measure between two clusters,
the distance between the clusters is used. The edges between
a cluster and its child clusters inside the dendrogram repre-
sent these distances. The clustering algorithm starts with
the predefined number of clusters, which are the four groups
YHC, OHC, MCI, and AD. In the clustering procedure, the
distances between the current clusters are calculated and
the two clusters with the smallest distance, that is, those
with the highest similarity, are merged. This procedure re-
sults in a dendrogram, which shows the distances of all
groups to each other. After the clustering of the four groups,
it is obvious from the dendrogram which groups are most
similar to each other and which are dissimilar (Fig. 1A, B).
Of 18 possible dendrograms, 6 dendrograms were of partic-
ular interest: 2 reflecting increased similarity of healthy
aging to patients (Fig. 1A, in blue) and 4 reflecting increased
similarity between healthy aging and healthy young (Fig. 1A,
in red). The remaining 12 possible dendrograms were consid-
ered as not interpretable dendrograms (Fig. 1A, in black), as
they bear no interpretable information. To enable a compar-
ison among the four representations, the distances D of each
dendrogram were normalized by the maximum distance Dmax

of the respective dendrogram: Di norm = Di

Dmax
. All resulting

distances have a value between 0 and 1.

Cluster distance based on Euclidean distance. We
assessed cluster distance by two different approaches: cluster
distance based on the Average Linkage method with the
Euclidean distance ( Jain and Dubes, 1988) and a model-
based approach (Plant et al., 2013) (Fig. 1B). Average Link-
age method with the Euclidean distance ( Jain and Dubes,
1988) was used to determine the similarity between two clus-
ters (Fig. 1B, right part). This means that the averaged Eucli-
dean distance is calculated between all pairs of elements in
the two clusters. As a first step, intrinsic brain activity time
series, that is, iRA and iNA, respectively, were separately

Table 1. Mean and SD of Demographic and Cognitive Characteristics of AD, MCI, OHC, and YHC Samples

AD (n = 22) MCI (n = 24) OHC (n = 23) YHC (n = 21)
Characteristic Mean (SD) Mean (SD) Mean (SD) Mean (SD) F Sign.

Age 70.6 (5.0) 69.0 (5.5) 68.9 (7.7) 25.0 (2.8) 340.52 < 0.001
Education 10.1 (3.1) 10.1 (1.8) 10.6 (1.8) 13.0 (0.0) 8.75 < 0.001
% Female 40.9% 54.2% 65.2% 47.6% 0.48 0.486a

CERAD
Verbal fluency 12.6 (6.1) 13.6 (5.1) 15.6 (4.8) 26.66 0.001
Boston Naming Test 12.2 (3.2) 13.7 (1.2) 14.6 (0.6) 6.10 0.001
World list learning 9.8 (4.1) 15.8 (3.3) 23.9 (2.2) 72.13 0.020
Constructional praxis 8.4 (1.9) 9.9 (1.5) 10.4 (1.4) 4.15 0.001
World list delayed recall 1.9 (2.2) 4.3 (2.6) 8.8 (1.3) 41.17 0.001
World list recognition 8.3 (1.3) 7.9 (2.0) 10.0 (0.0) 9.04 0.001
CERAD total score 53.3 (11.5) 66.5 (8.0) 93.6 (6.7) 81.81 0.001
MMSE 23.0 (4.0) 26.9 (1.5) 29.4 (0.8) 26.54 0.001

F values and sign. for ANOVA for all measures except gender.
aKruskal–Wallis test.
AD, Alzheimer’s disease; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; MCI, mild cognitive impairment;

MMSE, Mini-Mental State Examination; OHCs, older healthy controls; SD, standard deviation; sign., significance; YHCs, young healthy
controls.
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concatenated within each subject. This resulted in vectors of
intrinsic brain activities consisting of Tn · Pn dimensions,
where Tn is the number of different intrinsic brain activity
time series and Pn is the number of time points. After that,
the four initial clusters were created. The distance between
two clusters was calculated as the averaged Euclidean distance
between all pairs of within-subject’s concatenated intrinsic
brain activity time series belonging to different groups. The
Euclidean distance measures the level of correlation of with-
in-subject intrinsic brain activity across subjects, hence
reflecting similarity of inter-subject synchronicity of intrinsic
brain activity across groups (van Kesteren et al., 2010). More
formally, the distance between two clusters C1 and C2 is de-
fined as follows:

dist(C1, C2) :=
1

jC1jjC2j
+

x2C1;y2C2

disteuclid(x, y)

where x and y are vector objects reflecting linearized intrinsic
brain activity of subjects belonging to different clusters and
the Euclidean distance disteuclid for x and y is defined by

disteuclid(x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
n

i = 1

(xi� yi)
2

s
:

Cluster distance based on linear models. In our model-
based approach (Plant et al., 2013), a cluster is represented

FIG. 2. Spatial maps of intrinsic networks. Spatial patterns, derived from spatial ICA of rs-fMRI data from patients with
Alzheimer’s disease, mild cognitive impairment, OHC, and younger healthy persons. Twenty-two components were identified as
intrinsic networks by spatial regression with canonical network templates. Identified intrinsic networks include four default mode
networks, four attentional networks, three frontal networks, four visual networks, one auditory network, five somatosensory net-
works, and one basal ganglia network. Color maps illustrate results of one-sample t-test on the individual back-reconstructed subject
component patterns across patients and controls ( p < 0.05, cluster-level family-wise error corrected). Color maps are superimposed
on a single-subject T1 image. Red to yellow scales represent t-values. Color images available online at www.liebertpub.com/brain
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by a set of linear combinations of intrinsic brain activity time
series. The distance between two clusters is defined by the
errors resulting from these linear models. This approach is
based on the assumption that there exist dependencies
among intrinsic brain activity time series. Thus, every uni-
variate time series, t, can be expressed by a linear combina-
tion of several other univariate time series, for example,
t = 0.5t2 + 3t5 + t12 + e. The clustering of the subjects is there-
fore based on these characteristic interaction patterns, which
represent FC among networks or regions. All subjects inside
one cluster share the same interaction pattern among the time
series. Hence, a cluster is defined by a set of mathematical
models, b, describing the cluster-specific interaction pattern
of intrinsic brain activity.

To get such a model, we first defined the four initial clus-
ters. After that, the time series of iNA (or iRA) derived from
the same network (or region) were concatenated across sub-
jects belonging to the same group cluster. We then modeled
linear combinations of across-subjects’ concatenated time
series, reflecting group-specific FC of intrinsic brain activity.
More specifically, let cluster C consists of X1, X2, . . . , Xk

subjects, where Xi 2 Rm · n is a matrix of m · n dimensions
with m as the number of intrinsic brain activity time series
and n as the number of time points. Using linear modeling,
for each cluster we approximated each activity time series
as a linear combination of all time series. We build multivar-
iate time series �X : = [X1; X2; . . . ; Xk] for each cluster with
�X 2 Rm · kn. Note that the time series must not be of equal

length. For reasons of simplicity this case is not integrated
in the formula. We define xi(1 £ i £ m) as a part of X and
�X : = [x1, x2, . . . , xm] with xi 2 R1 · kn. For each xi we find
bi 2 R1 · m� 1, that is,

xi = +
ipjpm;j6¼i

(b j
i xj)þ ei

where b j
i 2 R, ei 2 R1 · kn. ei is an error for each time point.

We assume that not all intrinsic activity time series are
interacting. Instead, we want to find the major interaction pat-
terns. That is why the number of summands (time series) in the
linear combination model is reduced by the use of stepwise se-
lection and the Bayesian Information Criterion (BIC) (Plant
et al., 2013). BIC is a method to select the best model as it
chooses a balance between the goodness of fit according to
the data and the complexity of the model. In our case, BIC
punishes models with too many time series. The stepwise se-
lection starts with an empty set of explanatory time series and
then greedily adds or removes a time series until the best
model according to BIC is found. Using BIC and stepwise se-
lection, a portion of the elements in bi can be set equal to zero.
The model of cluster C is then defined by the final set of
bi(1pipm). This procedure results in an optimal tradeoff be-
tween model size and approximation error (Plant et al., 2013).

To estimate the distance between two clusters, we apply
the cluster models (set of linear combinations) to the single
subject’s activity time series. We calculate the distance

Table 2. Peak Voxels, Coordinates, Anatomical Labeling,

and Cluster Size of the Identified 22 Intrinsic Networks

IC
Peak voxel

x, y, z Anatomy (AAL)
Cluster

size (voxel)
t peak
voxel

p FWE
cluster level

DMN
1 3, �67, 31 Right precuneus 5958 41.70 0.001
2 �3, �52, 22 Left posterior cingulum 2669 55.35 0.001
3 0, 50, 4 Left anterior cingulum 3572 44.69 0.001
4 18, �25, �17 Right parahippocampus 3274 34.54 0.001

Attentional
1 �45, �61, 40 Left angular gyrus 1300 37.03 0.001
2 45, �58, 40 Right angular gyrus 4227 34.23 0.001
3 57, �46, 19 Right superior temporal cortex 6398 33.86 0.001
4 �36, 14, �11 Left insula 980 35.43 0.001
1 �45, 20, �5 Left inferior orbital frontal cortex 7972 39.77 0.001
2 �45, 20, 28 Left inferior orbital fontal gyrus (triangularis) 4493 36.52 0.001
3 �39, 47, 13 Left middle frontal gyrus 12,001 35.38 0.001

Visual
1 0, �79, 4 Left lingual gyrus 2610 29.28 0.001
2 3, �73, 4 Right lingual gyrus 3286 41.96 0.001
3 9, �67, �5 Right lingual gyrus 2798 42.95 0.001
4 �27, �8, 22 Left middle occipital cortex 9354 30.70 0.001

Auditory network �51, �25, 10 Left temporal superior cortex 2363 33.79 0.001

Sensorymotor
1 �51, �10, 31 Left postcentral gyrus 1511 34.09 0.001
2 45, �34, 46 Right parietal inferior cortex 12,525 29.11 0.001
3 �48, �34, 40 Left parietal inferior cortex 4382 30.73 0.001
4 0, 20, 43 Left superior motor area 4248 38.01 0.001
5 6, �22, 55 Right superior motor area 3920 41.86 0.001

Basal ganglia network �24, 2, �8 Left putamen 1982 34.87 0.001

AAL, anatomical automatic labeling; DMN, default mode network; FWE, family-wise error corrected; ROI, regions-of-interest.
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Table 3. Peak Voxels, Coordinates, Anatomical Labeling, and Cluster Size

of the 55 Selected Peak Voxels from the Previously Identified 22 Intrinsic Networks

IC
ROI coordinates
peak voxel x, y, z Anatomy (AAL)

Cluster size
(voxels)

t peak
voxel

p FWE
cluster level

DMN
1 3 �67 31 Right precuneus 5958 41.70 0.001
2 �3 �52 22 Left posterior cingulum 2669 55.35 0.001

48 �61 34 Right angular gyrus 2669 12.28 0.001
�45 �64 34 Left angular gyrus 178 14.71 0.001

3 0 50 4 Left anterior cingulum 3572 44.69 0.001
4 18 �25 �17 Right parahippocampus 3274 34.54 0.001

�24 �16 �14 Left hippocampus 3274 30.97 0.001

Attentional
1 �45 �61 40 Left angular gyrus 1300 37.03 0.001

�21 32 43 Left superior frontal gyrus 2865 28.42 0.001
54 �1 4 Right rolandic operculum 1488 18.67 0.001
51 �64 34 Right angular gyrus 1488 13.10 0.001
�6 �61 37 Left precuneus 828 18.00 0.001
39 �70 �41 Right cerebellum 420 17.49 0.001
21 32 55 Right superior frontal gyrus 239 8.47 0.001

2 45 �58 40 Right angular gyrus 4227 34.23 0.001
�45 �58 40 Left angular gyrus 5854 26.06 0.001

42 20 49 Right middle frontal cortex 5854 23.14 0.001
�42 50 4 Left middle frontal cortex 547 17.71 0.001

0 �52 �35 Vermis 9 (cerebellum) 403 8.18 0.001
3 57 �46 19 Right superior temporal cortex 6398 33.86 0.001

�3 �52 49 Left precuneus 6398 25.89 0.001
�54 �49 13 Left middle temporal 1830 27.03 0.001
�48 �10 31 Left postcentral 500 8.49 0.001

4 �36 14 �11 Left insula 980 35.43 0.001
39 17 �8 Right insula 890 30.93 0.001

3 38 28 Right anterior cingulum 462 10.46 0.001

Frontal
1 �45 20 �5 Left inferior orbital frontal cortex 7972 39.77 0.001

51 23 �5 Right inferior orbital frontal 1248 29.79 0.001
2 �45 20 28 Left inferior orbital fontal gyrus (triangularis) 4493 36.52 0.001

42 11 31 Right frontal inferior operculum 2013 31.53 0.001
�33 �58 46 Left inferior parietal cortex 845 21.83 0.001

36 �61 49 Right superior parietal cortex 325 13.51 0.001
3 �39 47 13 Left middle frontal gyrus 12,001 35.38 0.001

30 56 7 Right superior frontal 12,001 26.19 0.001

Visual
1 0 �79 4 Left lingual gyrus 2610 29.28 0.001

3 �55 40 Right precuneus 854 10.37 0.001
2 3 �73 4 Right lingual gyrus 3286 41.96 0.001
3 9 �67 �5 Right lingual gyrus 2798 42.95 0.001
4 �27 �82 22 Left middle occipital cortex 9354 30.70 0.001

30 �76 25 Right middle occipital 9354 29.35 0.001

Auditory �51 �25 10 Left temporal superior cortex 2363 33.79 0.001
63 �25 13 Right temporal superior cortex 1829 32.60 0.001

Sensorymotor
1 �51 �10 31 Left postcentral gyrus 1511 34.09 0.001

54 �7 31 Right postcentral gyrus 1624 33.83 0.001
15 �64 �20 Right cerebellum 495 17.84 0.001
�18 �64 �23 Left cerebellum 495 16.93 0.001

2 45 �34 46 Right parietal inferior cortex 12,525 29.11 0.001
3 �48 �34 40 Left parietal inferior cortex 4382 30.73 0.001

51 �28 43 Right postcentral gyrus 1661 29.26 0.001
54 �58 �5 Right inferior temporal 1142 17.27 0.001
57 11 28 Right frontal inferior operculum 707 9.22 0.001

4 0 20 43 Left superior motor area 4248 38.01 0.001
5 6 �22 55 Right superior motor area 3920 41.86 0.001
Basal ganglia �24 2 8 Left putamen 1982 34.87 0.001

21 8 4 Right putamen 1660 32.62 0.001
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Dc(Y*) from subject Y* to cluster C with model b. More for-
mally, it is as follows:

Dc(Y�) :=
1

m
+

1pjpm

jjejjj

=
1

m
+

1pjpm

jjY (j)
� � +

1pjpm;j6¼i

b i
j Yi
�jj:

The resulting mean square error ej reflects the distance of
subject Y* to cluster C, respectively, to the model of cluster
C. The distance between two clusters C1 and C1 is defined
by the averaged cluster distance of all subjects of both clus-
ters, more specifically by computing the error of all subjects
of cluster C1 with respect to the model of cluster C2 and vice-
verse, summing up the squared errors and averaging:

D(C1, C2) :=
1

2

1

K1

+
X�2C1

DC2
(X�)þ

1

K2

+
X�2C2

DC1
(X�)

 !

with K1 := jC1j and K2 := jC2j.

In the clustering procedure, the models for every cluster
are calculated with the greedy search and BIC at first.
After that the two most similar clusters, according to the
sum of errors between all objects of one cluster to the
other cluster, are merged. The model for the newly generated
cluster is recalculated afterward. These steps are performed
iteratively until all clusters are merged.

Clustering of intrinsic brain activity from different ensem-
bles of networks/regions. There are different suggestions
that favor different networks or regions as being degraded
first by AD. For example, some authors suggest the DMN
to be affected first (Seeley et al., 2009; Sheline and Raichle,
2013), while others favor hetero-modal areas of high FC in-
cluding the DMN (Buckner et al., 2009; Jagust, 2012). Uni-
modal or subcortical networks, such as sensorimotor or basal
ganglia networks, are assumed to be degraded later in the
course of AD (Buckner et al., 2009). To test for suggested
network/regional vulnerability along the course of AD, we
performed clustering for distinct ensembles of networks

FIG. 3. Similarity of ISS for intrinsic regional activity, estimated by Average Linkage clustering. Average Linkage cluster-
ing based on Euclidean distance was used to estimate similarity of ISS for intrinsic regional activity across groups of subjects.
Clustering was applied on different regional ensembles: (A) ensembles that include regions of the DMN, (B) ensembles that
exclude regions of the DMN, and (C) ensembles of primary and subcortical regions. Consistent across ensembles, clustering
grouped OHCs nearer to patients than to younger healthy controls (blue dendrograms). Scale (in arbitrary units) reflects nor-
malized distances among clusters. AN, attention networks; AU, auditory network; BG, basal ganglia networks; DMN, default
mode networks; FN, frontal networks; MCI, mild cognitive impairment; SM, somatomotor networks; VN, visual networks.
Color images available online at www.liebertpub.com/brain
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and regions. Network of interests were networks known to
cover hetero-modal areas of high FC; specifically, we used
multimodal networks, that is, DMN, ANs, and frontal net-
works. To test for specificity of similarity clustering, we in-
vestigated also unimodal and subcortical networks, that is,
sensorimotor, auditory, visual, and basal ganglia networks
(Allen et al., 2011) (Figs. 3–6).

Finally, to control statistically whether output dendro-
grams of clustering were biased by other factors than input,
we used nonparametric control testing by randomly labeling
individual subject’s time series across clusters for 10,000
permutations. As described previously, there are 18 possible
dendrograms. This means that every dendrogram is expected
to have an occurrence probability of 1

18
, which is 5.56%.

Results are valid when the output dendrogram is randomly
selected in about 5.56% of permutations like all other poten-
tial 18 dendrograms.

Results

ICA of rs-fcMRI data across all subjects with model order
75 revealed 22 intrinsic networks of interest by the use of au-

tomated network selection based on previously described
network maps (Allen et al., 2011). Networks include four
DMN, four attentional, three frontal, four visual, one audi-
tory, five sensorimotor, and one basal ganglia subnetworks,
consistent with previous studies (Allen et al., 2011) (Fig. 2
and Table 2; Table 3 for 55 peak voxels of significant clus-
ters; p < 0.05, FWE cluster-level corrected). DMN covered
retrosplenial cortex and medial prefrontal cortices (PFCs);
attention networks covered mainly lateral prefrontal and
temporoparietal cortices, such as dorsolateral PFC and infe-
rior and superior parietal cortices; frontal networks covered
lateral and medial PFCs; visual networks were located in me-
dial and lateral occipital cortices; the sensorimotor networks
were centered around primary somatosensory and motor cor-
tices; and the basal ganglia network covered the striatum and
thalamus.

Similarity of ISS estimated by Average Linkage clustering

To estimate similarity of ISS (van Kesteren et al., 2010)
across groups, we applied Average Linkage clustering based
on Euclidean distance on different ensembles of iRA (Fig. 3

FIG. 4. Similarity of ISS for iNA, estimated by Average Linkage clustering. Average Linkage clustering based on Eucli-
dean distance was used to estimate similarity of ISS for iNA across groups of subjects. Clustering was applied on different
network ensembles: (A) ensembles that include the DMN, (B) ensembles that exclude the DMN, and (C) ensembles of pri-
mary and subcortical networks. Consistent across ensembles, clustering grouped OHCs nearer to patients than to younger
healthy controls (blue dendrograms). Scale (in arbitrary units) reflects normalized distances among clusters. Color images
available online at www.liebertpub.com/brain

INTRINSIC ACTIVITY IN OLDER PERSONS 331



and Supplementary Table S1) and iNA (Fig. 4 and Supplemen-
tary Table S2), respectively. For iNA, OHCs were consistently
more similar to patients than to young healthy participants, in-
dicating increased similarity of ISS between patients and older
persons. Clustering output was independent from chosen net-
work ensembles (Fig. 4A–C). Average Linkage clustering of
iRA revealed a similar pattern; that is, OHCs were more sim-
ilar to patients than to young healthy persons (Fig. 3A–C). For
primary networks’ iRA, OHCs were clustered nearer to youn-
ger healthy controls than to patients (Fig. 4C).

Similarity of FC estimated by model-based clustering

To estimate similarity of intrinsic FC via linear combi-
nations of activity time courses, we applied model-based
clustering of iRA and iNA, respectively. For iNA, OHCs
were more similar to patients than to young healthy
persons, suggesting increased similarity of FC between
patients and elderly persons. Clustering output was inde-
pendent from chosen network ensembles (Fig. 6A–C and
Supplementary Table S3). Model-based clustering of

iRA revealed a similar pattern, with OHCs being more
similar to patients than to young healthy participants
(Fig. 5A–C and Supplementary Table S4; only one excep-
tion for the DMN, see Fig. 5A).

Discussion

To investigate the similarity of intrinsic brain activity
along aging and AD, we applied rs-fMRI and hierarchical
clustering in healthy younger and older persons and patients
with MCI and AD-dementia. Independently of measures or
regional sources of intrinsic activity, intrinsic activity of
older persons resembled more that of patients than that of
younger persons. Our results provide evidence for the larger
similarity of intrinsic brain activity of healthy 70-year per-
sons with that of patients with or at risk for AD than with
that of younger persons, potentially due to a significant pro-
portion of pre-clinical AD cases in the group of healthy older
persons. Further, data link aging and AD with intrinsic brain
activity, supporting the view that lifespan intrinsic activity
may contribute to the pathogenesis of AD.

FIG. 5. Similarity of FC among intrinsic regional activity, estimated by model-based clustering. Model-based clustering
based on linear combinations of time courses was used to estimate similarity of FC among intrinsic regional activity across
groups of subjects. Clustering was applied on different regional ensembles: (A) ensembles that include regions of the DMN,
(B) ensembles that exclude regions of the DMN, and (C) ensembles of primary and subcortical regions. Consistent across
ensembles, clustering grouped OHCs nearer to patients than to younger healthy controls (blue dendrograms). Scale (in arbi-
trary units) reflects normalized distances among clusters. Color images available online at www.liebertpub.com/brain
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Intrinsic activity of 70-year-old healthy persons resembles
more that of patients with or at risk for AD of equal age
than that of younger persons at age of 25 years

Hierarchical clustering revealed that intrinsic brain activ-
ity of healthy older persons of about 70 years is consistently
more alike that of patients with MCI or AD-dementia of
equal age than that of healthy younger persons of about
25 years (Figs. 3–6). This result is independent from both
the investigated type of intrinsic activity and its specific re-
gional sources. (i) Type of intrinsic brain activity. We in-
vestigated four different aspects of intrinsic activity.
Basically, we distinguished between regional and intrinsic
network-related activities. iNA was defined by intrinsic net-
work time courses that were derived from spatiotemporal
components of an ICA of fMRI data, while iRA was defined
directly by BOLD-signals from selected ROI. Further, both
iRA and iNA were analyzed in two different forms. First,
ISS (van Kesteren et al., 2010) of time courses directly
reflecting region’s (or network’s) intrinsic activity (Figs.
3 and 4); ISS was analyzed for similarity across subjects

by the use of Euclidean distance clustering ( Jain and
Dubes, 1988). Second, linear combinations of time courses
reflecting several regions’ (or networks’) inter-regional (or
inter-network) intrinsic FC (Figs. 5 and 6); such linear com-
binations were analyzed for similarity across subjects by
the use of model-based clustering (Plant et al., 2013). One
should note that beyond pair-wise FC of two networks (or
regions), linear combinations of several networks’ (or re-
gions’) time courses enable us to represent graphs of net-
works (or regions) of larger length than two; this means
that our clustering approach based on such linear combina-
tions is sensitive for group dissimilarities in graphs of larger
length. (ii) Regional or network-related ensembles. Pre-
vious studies in pre-clinical AD indicate that both the
DMN and hetero-modal areas of high FC are affected by
Ab-pathology in first (pre-clinical) stages of AD (Buckner
et al., 2009; Drzezga et al., 2011; Jack et al., 2013; Jagust
and Mormino, 2011; Sheline et al., 2010; Sperling et al.,
2009). Indeed, for most (except of one see Fig. 5) regional
or network-related ensembles overlapping with the DMN or
hetero-modal areas of high FC, we found that older persons’

FIG. 6. Similarity of FC among iNA, estimated by model-based clustering. Model-based clustering based on linear com-
binations of time courses was used to estimate similarity of FC among iNA across groups of subjects. Clustering was applied
on different network ensembles: (A) ensembles that include the DMN, (B) ensembles that exclude the DMN, and (C) ensem-
bles of primary and subcortical networks. Consistent across ensembles, clustering grouped OHCs nearer to patients than to
younger healthy controls (blue dendrograms). Scale (in arbitrary units) reflects normalized distances among clusters. Color
images available online at www.liebertpub.com/brain
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intrinsic activity was more alike that of patients than that of
younger controls (Figs. 3–6). Beside one contradictory ex-
ception, we found a similar result also for ensembles cover-
ing only primary and subcortical areas, suggesting that
intrinsic activity of elderly is in general more similar to pa-
tients than that to younger persons. An explanation for sim-
ilarity of primary and subcortical networks might be that
these networks are not strongly affected by early AD, there-
fore being similar in its intrinsic activity to that of cogni-
tively normal persons of the same age. Taken together,
our data provide consistent evidence for larger similarity
of intrinsic brain activity of healthy 70-year persons with
that of patients with AD of the same age than with that of
younger persons at age of about 25 years.

Implications for pre-clinical AD
and lifespan intrinsic activity

AD is essentially related with Ab-pathology (Selkoe,
2002), which seems to start about 20–30 years before first
symptoms arise (Bateman et al., 2012; Jack et al., 2013).
For example, Bateman et al. (2012) estimated—based on
CSF Ab-peptide levels for familial AD cases over two gen-
erations—the onset of Ab-pathology for a period of about 25
years before first symptoms arise. Since during older age the
prevalence of AD-dementia doubles all 5 years with almost
half of 90-year-old persons suffering from AD-dementia,
our sample of 70-year-old cognitively normal persons may
include a significant proportion of pre-clinical AD cases.
There is convincing evidence for substantial interaction be-
tween Ab-pathology and intrinsic activity and connectivity
both at micro- and large-scale level (Buckner et al., 2005;
Busche et al., 2008; Drzezga et al., 2011; Jagust and Mor-
mino, 2011; Palop and Mucke, 2010; Sheline et al., 2010;
Sperling et al., 2009). Therefore, our finding of stronger sim-
ilarity for intrinsic activity between elderly and patients in-
stead of between elderly and younger participants suggests
a relevant portion of pre-clinical AD cases with significant
Ab-pathology in our sample of healthy older participants.

For the groups of older participants with and without cog-
nitive impairments, mean age was comparable, suggesting
that groups differed specifically for the presence of symp-
tomatic AD. When considering observed larger similarity
between older persons, MCI patients, and AD patients com-
pared with younger persons, our data suggest that the transi-
tion from healthy aging to AD-dementia has a smaller effect
on intrinsic brain activity than lifespan aging. This finding
links aging and AD with intrinsic brain activity and is consis-
tent with the view that lifespan intrinsic activity may contrib-
ute to the pathogenesis of AD. When additionally accounting
for previous findings about mechanistic links between intrin-
sic activity and Ab-pathology (Buckner et al., 2009; Busche
et al., 2012; Dickerson and Sperling, 2009; Drzezga et al.,
2011; Jagust and Mormino, 2011; Palop and Mucke, 2010),
our data suggest that lifespan intrinsic activity may be rele-
vant for Ab-pathogenesis. To test this idea, further studies
that investigate explicitly Ab-pathology and intrinsic activity
across aging are necessary.

Study limitations

Our study has several limitations. First, since there were
no data available about Ab-status of participants particularly

of asymptomatic older persons, we are not able to estimate
the amount of pre-clinical AD cases based on Ab-peptide
CSF levels or PiB-PET status. Future studies that include
molecular imaging via PET or CSF-biomarkers are neces-
sary for more precise analysis. Second, our analysis of sim-
ilarity along age and AD for intrinsic activity focused on
younger persons at age of 25 years; that is, we compared
the effects of aging for the period of 25–70 years with the ef-
fect of symptomatic AD at 70 years on intrinsic activity.
However, to compare effects of aging and AD in more
fine-tuned way, it would be important to test whether the
same pattern of results holds also for younger healthy people
at age of 40 or 50 years. Further studies including persons of
wider age range are necessary to test the hypothesis of life-
span intrinsic activity effects on AD pathogenesis in a
more detailed way. Third, patients with AD-dementia were
medicated by cholinesterase inhibitors representing potential
confounding effects on group comparisons (Pa et al., 2013).
However, we found similar results for untreated MCI pa-
tients, suggesting the reliability of our findings for patients
with AD-dementia. Fourth, increasing atrophy along age
and progressive AD may confound group comparisons for in-
trinsic activity. Simple adding of brain volumes as covariate-
of-no-interest (as in classical statistics, e.g., two-sample t-
tests) is not possible for clustering procedures. Therefore
we dispensed with explicit atrophy correction. Alternatively,
we included a larger amount of regions/networks in analyses,
which are known to be affected differentially by atrophy
along aging and AD [e.g., primary sensorimotor areas versus
the DMN (Braak and Braak, 1991; Buckner et al., 2005)],
and asked for consistent findings across these differentially
affected areas/networks. Since our findings were consistent
across different areas/networks and of comparable strength,
we suggest that atrophy effects on intrinsic activity may
not be the critical driving factor of dissimilarity across
groups. Notwithstanding, our results have to be carefully
interpreted with respect to potential influences of brain struc-
ture changes. Finally, our measures of intrinsic activity are
essentially relying on the BOLD signal. Caution is advised
when comparing BOLD-signals across different groups, as
observed differences might arise from altered neurovascular
coupling and not from different neuronal activity across
groups (D’Esposito et al., 2003). So far, we cannot exclude
that AD and aging-related effects on neurovascular coupling
instead of effects on neuronal activity account for the ob-
served dissimilarity in intrinsic brain activity between el-
derly and AD.

Conclusion

Intrinsic brain activity of healthy elder persons resembles
more that of patients with AD than that of healthy younger
persons. This finding suggests a significant proportion of
pre-clinical AD cases in the group of cognitively normal
older people. The link of aging and AD with intrinsic brain
activity supports the view that lifespan intrinsic activity
may contribute critically to the pathogenesis of AD.
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