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MODELS OF DATA

JAN DE LEEUW

A. We point out that models based on probability theory, and

the statistical techniques derived from them, have limited applicability,

at least in exploratory multivariate situations. Prior knowledge, if avail-

able, must be incorporated into the analysis to yield greater stability. If

prior knowledge is not available, however, it must not be invented. This

applies to both the structural and the replication framework aspects of a

model. The methods of gauging and stability analysis are introduced as

alternatives. They use the notion of a technique as the pivot of data anal-

ysis, not that of a model. Homogeneity analysis is used as an example.

This paper was originally presented at the symposium Foundations of Sta-

tistics, organized by SMS/VVS, Utrecht, October 25, 1983. It was pub-

lished previously in Kwantitatieve Methoden, 5, 1984, 17–30.

1. A C SM

Multivariate statistical analysis is usually based on the following model. A

sequence xi of independent, identically distributed, discrete random vec-

tors is studied. The xi assume values x j with probabilities π j, where j =

1, · · · ,m. The vector π, containing the π j, lies in S m−1, the unit simplex of

Rm. In fact in most cases there is prior knowledge of the form π ∈ Ω, with

Ω a known subset of S m−1.
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2 JAN DE LEEUW

Classical multivariate analysis is based on the multinormal distribution,

which entails that it assumes the the xi are continuous random vectors.

Observed random variables will however necessarily be discrete (due to

rounding), and continuous models will always be approximations to dis-

crete models. Thus we effectively assume without any loss of generality

that the xi are discrete [De Leeuw, 1983]. In multinormal analysis the xi

are discretizations of multinormal variables. In multinomial analysis (often

log-linear analysis) the set Ω is often defined in terms of (conditional) inde-

pendence and (order of) interaction. Both the assumptions of independence

and of identical distributions are serious restrictions of generality, but they

are used because they define the simplest case. Also observe that Ω serves

as prior knowledge. Thus out prior knowledge is in the form of set mem-

bership and not in the form of a prior distribution on S m−1.

2. U S A

The techniques of classical multinormal analysis and of log-linear analysis

are all based on the theory of best asymptotically normal estimation. This is

a very restricted, but at the same time very convenient form of general (lo-

cal asymptotically minimax) large sample theory. We give a brief outline.

More information can be found in the recent paper by De Leeuw [1983].

We estimate the vector π by using estimates of the form πn = Φ(p
n
). Here

p
n

is the observed m-vector of proportions in the first n trials, the discrete

version of the empirical distribution function. The function Φ maps S m−1

into Ω, is assumed to be differentiable, and is assumed to satisfy Fisher-

consistency. In this context Fisher-consistency is Φ(p) = p for all p ∈ Ω.

This implies that πn converges in probability to π. Differentiability implies

that πn is asymptotically normal. Fisher-consistency also implies a lower
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bound on the dispersion matrix of the asymptotic distribution. If this bound

is attained, the estimate is called best asymptotically normal. Best asymp-

totically normal estimates can be computed by minimizing statistics such

as n(p
n
− π)′P−1

n (p
n
− π) over π ∈ Ω. Here Pn is any consistent estimate

of Π, which is the diagonal matrix with the elements of π on the diagonal.

If we use Pn = Π and minimize n(p
n
− π)′Π−1(p

n
− π) over π then we use

minimum chi-squared estimation. If Pn has the observed frequencies on the

diagonal, then we use modified minimum chi-squared estimation. Many

variations are possible. But in all cases the minimum value of the statis-

tic is asymptotically chi-squared. This is central chi-squared if the model

is true, it is non-central chi-squared under local (contiguous) alternatives.

All the results given above depend on the assumption that Ω is a smooth

differentiable manifold, but generalizations are possible if Ω has “corners”.

In fact most of the statistical techniques used in multivariate analysis are

based on a very specific form of best asymptotically normal theory: max-

imum likelihood estimation and likelihood ratio testing. In many cases,

however, more convenient alternatives are available with the same (first or-

der) asymptotic properties.

3. C M  D

The data in multivariate analysis, i.e. the recorded observations, are n vec-

tors z1, · · · , zn . Each one of the zi is equal to one of the x j, which are vectors

in, say, Rt . Thus we can form the vector p, with p j giving the proportion of

zi equal to x j. Of course p ∈ S m−1.

The model in section 1 is supposed to model these data. But how precisely?

In many books and papers it seems that the zi are identified without further

ado with the xi, which makes p identical with p
n

. Thus it is assumed that
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the zi are identically distributed independent random variables. But this is

surely a very strange identification. A random variable is a function on a

probability space, in this case a function taking the values x j. And zi is just

a single vector, certainly not a function. Thus the implied identification of zi

with xi is nonsense. A more careful analysis identifies zi with a realization of

the random variable xi, thus making zi = xi(ξ) for some ξ in the probability

space on which xi is defined. Equivalently the n× t matrix Z is a realization

of the n × t random matrix X, defined on the n-fold product of the basic

probability space.

The question which component of the model corresponds with the data Z

is then answered. But the answer immediately gives rise to a new ques-

tion. What is this probability space on which X is defined? Or, closely

related to this, how can we investigate if our model is a satisfactory rep-

resentation of reality? The only possible answer in many cases seems to

be that the probability space is one of replications under identical condi-

tions of the experiment that produced the result X = Z. To interpret the

model we have to imbed it in a framework of replications. In our case the

framework implies that prob(X = Z) is the multinomial probability with

parameters π, and observed frequencies np j. Again observe that p is not a

random variable, but a realization of p
n
. Statistics makes statements about

the random variables, in our case about the operations performed with these

random variables than are indicated by the theory of best asymptotically

normal estimation. Thus statistics makes statements about the hypothetical

framework of replications, and not about the data themselves.

Now if the replications can actually be carried out, then the framework can

be tested as to its appropriateness. We can study empirically if the repli-

cations give relative frequencies close to the probabilities dictated by the
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multinomial model. But we cannot use the statistical methods that are avail-

able within the framework to investigate this. This would involve model-

ing the replications explicitly as realizations of independent and identically

distributed random variables, which simply amounts to introducing a new

and much wider framework of hypothetical replications. The model for n

throws with a fair coin is prob(X = Z) = 2−n. If we want to verify or

falsify this model by using k replications of the n throws, we cannot do

this by modeling the replications. This simply would give rise to the model

prob(X1 = Z1, · · · , Xn = Zn) = 2−nk, which must be investigated in a similar

way, and so on.

Thus we cannot falsify the model completely by statistical methods, at least

not the basic framework of replication. We can merely find out if this frame-

work is plausible or tenable by ordinary scientific reasoning. If we accept

the model, with its corresponding framework of replication, then we can

assert that 4n(p
n
− 1

2 )2, for example, has a χ2
1-distribution, with p

n
the pro-

portion of heads in n throws. This statistic can be used to test the fairness

of the coin within the model of independent identically distributed repli-

cations. In a similar way the model of independent identically distributed

observations could be tested within, for instance, the more general model of

a first order stationary Markov chain. And so on. But in any case only com-

ponents of the model are testable within the model. The replications can

only be carried out outside the model, they cannot be fitted into the model

because that would lead to an infinite regress.

Thus the usual chi-squared statistics, which we use as tests for components

of the model, make statements about the hypothetical framework of repli-

cations. If we do not use this framework, then they are simply numbers,

which indicate how well the model (without framework) fits the data. They
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measure distance between data and model in a weighted Euclidean met-

ric, with the weights derived from the interpretation in terms of realizations

of independent and identically distributed random variables. From ordi-

nary scientific practice, outside the science of statistics, it is clear that these

distance measures can be very useful indices even without accepting the

framework on which their derivation depends.

4. S R F

If we are sampling with replacement from a finite population with identi-

fiable units, then the replication framework simply consists of all Nn sam-

ples, each having the same probability. Here N is the population-size, and

π j =
N j

N , with N j the number of individuals with value x j. If A is any sub-

set of S m−1, then we can define pn(A) as the proportion of samples which

have their p in A. If B is a neighborhood of the origin, then the law of

large numbers asserts that pn(π + B) → 1 if n → ∞. The central limit

theorem says that pn(π + n−
1
2 B) → NΠ(B), with NΠ the appropriate Gauss-

ian measure. These results make it possible to apply the theory of best

asymptotically normal estimation in this essentially combinatorial context.

Roughly said: we transform p toΦ(p), whereΦ is chosen in such a way that

as many samples as possible have their Φ(p) near π. This purely combina-

torial framework is quite satisfactory. There is nothing hypothetical about

it, we merely count samples. Of course in most survey situations samples

are drawn without replacement, using stratification and clustering. This in-

troduces complications, but none of them seem very essential.

In case of a finite population the π j are real, they are simply the population

proportions. In principle they can be measured exactly. In case of geomet-

rical probabilities or idealized physical models such as a fair coin, a perfect
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die, an ideal gas, the π j can be calculated exactly from considerations of

symmetry. But what is the probability that a given coin will produce heads

if thrown by a given machine? Does such a probability exist, and in what

sense? We think it exists in the same sense as true length exists. Although it

is clearly an idealization, it can be defined with sufficient precision by em-

pirical measurement procedures. Of course true length does not exist, but

in most circumstances proceeding as if it exists does not entail large errors.

In the case of true length we can design apparatus with sufficient precision,

we can eliminate systematic errors, we can average over independent mea-

surements. In the case of true probability we can continue to throw the coin

until the proportion of heads seems stable to the precision desired. Thus in

these cases we can act as if true probabilities exist, and we can approximate

them as precisely as we wish. This also implies that our stochastic models

car in principle be verified or falsified by empirical operations. The frame-

work of replications is not only there as a model, it can actually be filled

with empirical observations and it can be checked.

5. S S

In de social sciences we often want to proceed in the same way as in the

physical sciences. We have idealized models, such as simple learning theo-

ries, within which idealized probabilities can be computed exactly. We also

have experiments, which can be embedded in a framework of replications

and thus in a probability model. Unfortunately replications are seldom car-

ried out, which means that the framework is hardly ever tested. This has

some obvious reasons. If replications are carried out, they often lead to

very different and unexpected results. If attempts at replication fail, it is

often very easy to find reasons why they fail. Circumstances have changed,
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subjects have aged, money has inflated, morals are different, laboratories

have moved, governments have changed color, and so on. In the social sci-

ences replications in the classical sense of the word can be imagined, but

they are often practically very difficult or impossible to carry out. Briefly

we can say that the replication framework is imaginary in such cases.

What is the probability that human beings prefer beer to wine? Or even:

what is the probability that individual A prefers beer to wine? These prob-

abilities do not seem to exist in any real sense of the word. They are also

imaginary. Perhaps we can merely speak about the probability that indi-

vidual A indicates a preference for beer if asked at time B in country C in

laboratory D, and so on. By making the replication framework more narrow

the probability becomes more real, but the possibility of ever measuring it

by actual replication disappears. This unfortunate tradeoff has prevented

the social sciences from building up a body of empirically verified stable

theoretical knowledge. It also makes the value of probability models very

limited. We can easily build a model, but its basic assumptions cannot be

tested, and its basic quantities are more imaginary than real. Thus a proper

replication framework is missing in most social science situations.

Even if there is an acceptable framework of replications, the choice of the

model is often problematic. In finite population surveys, for example, we

have seen that the framework gives all samples of size n equal probability.

If we sample with replacement, we can use the interpretation in terms of in-

dependent identically distributed random variables. But here the part of the

model that specifies π ∈ Ω is often not very plausible. We can hardly expect

it to be exactly true. In hypothetical populations (fair coins, all possible hu-

man beings) such models can be true exactly, but not in finite populations.
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We expect the four major blood groups to be approximately in the propor-

tions dictated by the genetic model, but we do not expect these proportions

to be exact for the population of the Netherlands at January 1, 1984. Even

rational models, such as the Mendelian model or simple learning theory

models, can only be approximately true for finite populations.

Again the situation is worse in social sciences multivariate analysis. The

path models (partial or conditional independence models) used there are

only superficially rational in the same sense as Mendelian models. It is

true, of course, that path analysis was developed in genetics to simplify the

Mendelian calculations. But in the social sciences path analysis is used

mainly in an exploratory way, for data reduction purposes, or for formaliza-

tion of the investigators favorite prejudices. Nobody in his right mind will

insist, when prompted, that in these situations models of the form π ∈ Ω

are true, or even approximately true. The only thing we can say is that it

would be nice if they were true. Or that in our idealized model of the social

process they are true.

Let us briefly summarize the situation again, as we see it. Most papers

in social science methodology journals that use probability models simply

deal with calculations involving random variables. The same thing is true

for biometric, econometric, and, not surprisingly, statistical journals. As

long as calculations with random variables are carried out we remain en-

tirely within probability theory, i.e. within mathematics. The relevance of

these results for data analysis, i.e. for science, must be demonstrated by

linking the probability theory results to empirical data. The model must be

interpreted, in the same way as differential equations describing motion or

force must be interpreted. Probability models are interpreted by providing a

suitable framework of replications. If such a framework cannot be found, is
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far-fetched, is untestable, then the model is irrelevant. If such a framework

can be found and is testable, but is obviously false, then the model is not

irrelevant, but obviously false.

We have seen, however, that even if the framework of replication is miss-

ing, it is still possible that the statistics computed in the random variable

calculations can be valuable. It is common scientific practice to find out

how false a model is by using either graphical aids or by computing some

measure of fit. The chi-squared statistics of the best asymptotically normal

theory are nice measures of fit. They have interesting properties under suit-

able frameworks of replications, and even if these frameworks do not apply

they may behave in satisfactory ways. It seems to us that analysis of vari-

ance, chi-squared theory, log-linear theory, structural covariance theory as

in LlSREL, do not enjoy their great popularity because they are optimal in

restricted and largely irrelevant frameworks of replications. They are pop-

ular because they lead to nice representations, graphics, decompositions,

arrows diagrams, algorithms, and so on. It is misleading to use irrelevant

optimality criteria as a sales argument, good performance under a relatively

large number of different (mostly non-probabilistic) conditions seems much

more important for the social sciences. But this inevitably means that we

must use more general performance criteria than optimality in the classical

statistical sense.

6. T

The first sections of this paper were mainly negative. We pointed out things

that are misleading and do not make sense. This section is meant to be

constructive. We discuss alternative practices that we prefer. For this we
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need the concept of a technique, which in a sense replaces the earlier pivot-

concept of a model.

In our context a technique Ψ is a mapping of S m−1 into some representation

space. We have seen that the theory of best asymptotically normal estima-

tion makes it possible to define optimal techniques, given the model π ∈ Ω

and given the replication framework. Thus the model dictates the technique,

which is optimal given that the model is true. But models are never true,

certainly not in social science contexts, and optimality is thus not relevant

formulated in this way. We expect the technique to be ’quite good’ if the

model is ’approximately true’, and this is the relevant property.

With a model we can try to associate an optimal technique, but with a given

technique we can also try to associate a model for which the technique

is optimal. In fact this was one of the ways in which Gauss derived the

normal error theory model. This inverse procedure of pairing models and

techniques is also valuable, but it is again limited by its focus on optimality.

In fact optimality itself is too restricted a concept for a proper correspon-

dence between models and techniques. For social science data analysis the

whole idea of pairing models and techniques is too restrictive. We need a

many-to-many correspondence between models and techniques. This has

been pointed out earlier by Tukey [1962], Benzécri [1973a,b], and by Gifi

[1984], whose arguments have had a major influence on our point of view.

It is clear that our aims are related to the ideas behind the development of

robust estimates. People involved in that field also study a many-to-many

correspondence between, for example, univariate parent populations and lo-

cation estimates. In the theory of robust estimation, however, the replication

framework of ordinary statistics is copied. The notion of a model is gen-

eralized to that of a super-model, and the notion of minimum loss to that
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of minimax loss. These generalizations are still very much within classi-

cal statistics, or, as we prefer to say, within probability theory. For more

complicated multivariate situations, in which there may be no replication

framework, and no obvious (super)model we need different tools.

Thus we have the following situation. We start with a technique, in our

case a mapping of S m−1 into Ω, and we want to know how good a tool

this technique is. The question is, of course, vague. But this is a neces-

sary consequence of the vague situation we are in. There is very little prior

knowledge, and the prior knowledge we have is almost completely nega-

tive. There is nothing we can safely assume. Thus there is little room for

rationalism and deduction, and much room for empiricism and induction.

Nevertheless we shall discuss two methods for studying the performance of

our technique, and for contributing to the evaluation of its quality. The first

method is gauging. We apply our technique to data generated by a model.

This can be an algebraic model, a probability model, a geometric model, or

whatever. The idea is that we know all there is to know about this model (or

this gauge) from a priori considerations, and that we want to find out how

our technique represents this information in Rp. If it gives a good represen-

tation of the essential information, then we are satisfied. And we continue to

apply our technique to another gauge. Among the gauges that are tried out

there may be one for which the technique is optimal in a given sense, there

may be another one for which the technique is optimal in another sense.

The second quality-control method is stability analysis. We study how the

representation changes if we change the data, i.e. the vector p, in various

ways. The basic idea is that an unimportant change in the data should cause

only an unimportant change in the representation. This is related to the

ideas behind robustness, but a little reflection shows that much of statistical
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analysis can be interpreted as stability analysis. But stability analysis is

much more general, because there are many kinds of perturbations. We can

leave out an individual, or a variable. We can study the effect of rounding

error, of stochastic perturbations, of sampling, and so on. Thus in the same

way as gauging generalizes the classical one-one pairing of models and

techniques that dominates classical statistics, stability analysis generalizes

the usual computation of (asymptotic) sampling distributions.

7. E

To show that a program based on gauging and stability analysis can be car-

ried out, we use a technique called homogeneity analysis or multiple cor-

respondence analysis as an example. There are n objects, measured on T

variables. Variable t has kt possible values. Thus the observed multivariable

has k1 × · · · × kT = m possible values, which are often called profiles or

cells. The technique maps each of the n objects into Rq, Euclidean q-space.

The representation is thus an n × q matrix H. For every possible H we can

compute, for each variable t, the familiar partition S t = Wt+Bt, which splits

up the total dispersion of H into within-category and between-category dis-

persion. The q × q matrix S t, the total dispersion, is, by construction, the

same for all t. Homogeneity analysis maximizes the sum of the Bt, under

the restriction that S t = I. This means that objects with similar profiles

tend to be close in the representation, profiles with high frequency tend to

be near the centroid, unique profiles tend to be far from the centroid.

Our starting point is that homogeneity analysis is a technique which gives

interesting representations of data from many different sources and types.

For the details of the technique, and for many examples, we refer to the

books by Gifi [1984], Greenacre [1984], Benzécri [1973b], Nishisato [1980].
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We now proceed to answer the question: how good is homogeneity analy-

sis?

Homogeneity analysis has been applied to many different gauges. We do not

present a full list, but we mention the Guttman-scale, Thurstonean models,

Coombsian models, Rasch models, Spearman models. In all these cases

homogeneity analysis appears to represent the essential information in the

model in a recognizable way, although in some cases care must be exer-

cised in coding the variables. Properties of homogeneity analysis in models

with total positivity, and in models in which all bivariate regressions can be

linearized have been studied as well. The gauging results are again quite

satisfactory. The multinormal distribution (for which we need an hypotheti-

cally infinite number of objects, of course) has been studied in considerable

detail. The same thing is true for stationary processes, and Markov chains

in particular. Homogeneity analysis can give good estimates of correlation

matrices, even if we first discreticize and transform random variables. Most

of these results can be found in Gifi [1984], Benzécri [1973a,b, 1980a,b,c],

Heiser [1981], Schriever [1983]. There are interesting statistical models

in which homogeneity analysis gives consistent estimates of the parame-

ters [De Leeuw, 1983].

Stability analysis for homogeneity analysis has also progressed consider-

ably. Sampling stability has been studied using the classical delta method.

This gives the usual confidence region information. The effects of deleting

individuals and/or variables has been studied using both classical perturba-

tion theory and algebraic perturbation theory. These results are in Gifi, but

also in many publications of the French school. Resampling methods such

as the Bootstrap and Jackknife have also been used in connection with ho-

mogeneity analysis. The effect of the discretization of continuous variables
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has been studied in some detail. Influence of missing information has been

studied [Meulman, 1982]. Numerically stable implementations have been

developed.

8. C

Conventional probability models cannot be applied in exploratory, multi-

variate, survey, social science investigations. This is not because there is

something wrong with the models, but because there is something wrong

with the reasoning linking models to data. There is no proper replication

framework. The probabilities are imaginary. It seems to us that this prob-

lem also occurs in other contexts, but it is especially serious here. A second

problem, which is perhaps more typical for social science investigations,

is that there is no firmly established theoretical knowledge on which real-

istic restrictive models can be based. Thus model testing, which may be

appropriate in other contexts, is out of place here.

An inevitable consequence is that much of data analysis is not probabilistic.

There are many forms of stability, and replication stability is only one of

these. There are many ways to indicate the size of a derivative, and the one

chosen by the delta method is only one possibility .

For the ’foundations of statistical inference’ debate, the main outcome of

our analysis is that, at least in most practical situations we are aware of, the

replication framework required by classical statistics is simply not avail-

able. Although we do not understand much of the ’foundations’-literature,

it seems to us that most schools are firmly committed to probability mod-

els. The real differences seem to be confined to small-sample situations,

in which the properties of the models become all-important. We think that

statistical small sample theory is of very limited relevance for data analysis.
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We think that Bayesian statistics not only idealizes reality beyond recog-

nition, but it also tyrannizes the data analyst by comparing him with the

immaculate perfection of the Coherent Person. It is bad enough to replace

reality by models which are obviously false, one should not magnify the er-

ror by also replacing the scientific process by a model of it which is equally

false.
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