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Mass spectrometry (MS)-based bottom-up proteomics and quantitative proteomic 

labeling strategies have led to unprecedented insights into systems biology and provided 

invaluable resources as a multifaceted analytical tool. We have utilized such techniques to 

analyze small GTPases of the Ras superfamily, which represent a class of crucial signaling 

molecules in cells, and the aberrant regulation of their expressions is implicated with 

various types of human diseases. In this dissertation, I report the development and 

applications of novel targeted quantitative proteomic methods for high-throughput and 

reproducible profiling of small GTPases in cultured human cells and patient-derived brain 

tissues that carry disease-related changes. 

In Chapter 2, I describe the development of a novel scheduled multiple-reaction 

monitoring (MRM)-based targeted quantitative proteomic method, in conjunction with 

stable isotope labeling by amino acids in cell culture (SILAC) for the quantification of 

more than 90 small GTPases in the paired primary/metastatic melanoma cell lines. The 

data reveal previously unrecognized roles of RAB38 in promoting melanoma metastasis in 

vitro. 

In Chapter 3, the established scheduled MRM-based method was further applied to 

assess the differential expression of small GTPases in wild-type MCF-7 and the paired 

tamoxifen-resistant breast cancer cells. The method facilitated robust quantification of 96 

small GTPases, among which down-regulation of RAB31 was analyzed further and 

demonstrated to play a role in the development of acquired tamoxifen resistance. 

In Chapter 4, we extended the use of the scheduled MRM method to comprehensively 

investigate the differential expression of small GTPases in paired primary/metastatic 



 xi 

colorectal cancer cell (CRC) lines SW480 and SW620. With this approach, 83 small 

GTPases were robustly quantified, leading to the identification of SAR1B as a potential 

suppressor for CRC metastasis. We also showed that diminished SAR1B expression could 

stimulate epithelial–mesenchymal transition (EMT), thereby promoting motility and in 

vitro metastasis of SW480 cells. 

In Chapter 5, I describe the development of a novel targeted quantitative proteomic 

assay based on MRM and the use of crude synthetic stable isotope-labeled (SIL) peptides 

as internal standards (IS) and surrogate standards (SS). By using this approach, we 

quantified ~80 small GTPases from lysates of frontal cortex from post-mortem 

Alzheimer’s disease (AD) patient brain tissue samples. The method displayed excellent 

throughput, sensitivity and reproducibility. Furthermore, we observed that the protein 

expression levels of Rab3A/C, Rab4A/B and Rab27B proteins, which are involved with 

synaptic and secretory vesicles, increased with degree of disease severity. The MRM 

quantification results were further verified by Western blotting. 
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Chapter 1 Introduction 

1.1 General Overview 

The past two decades have witnessed increasingly widespread applications of mass 

spectrometry (MS)-based proteomics in systems biology by facilitating accurate, high-

throughput and specific interrogation of either, the entire or a subset, of the proteome from 

biological samples.1, 2 This boom in MS-based proteomics is largely due to the 

development of liquid chromatography-tandem mass spectrometry (LC-MS/MS), which is 

the method of choice for large-scale identification and quantification of proteins. Among 

the various proteomic techniques, bottom-up or shotgun proteomics is the most commonly 

used, where large proteins are proteolytically digested into mixture of peptides for 

downstream LC-MS/MS analysis.3 In this chapter, common ion detection methods 

including shotgun proteomics (also known as discovery proteomics) using data-dependent 

acquisition (DDA), data-independent acquisition (DIA) and targeted proteomics using 

multiple-reaction monitoring (MRM; also referred to as selected reaction monitoring, 

SRM) as well as parallel-reaction monitoring (PRM) will be discussed. 

I will move on to review common labeling strategies in quantitative proteomics, with 

specific emphasis on the following: label-free quantification (LFQ), chemical labeling 

approaches such as isotope-coded affinity tag (ICAT), isobaric tag for relative and absolute 

quantitation (iTRAQ), tandem mass tags (TMT); metabolic labeling approach such as 

stable isotope labeling by amino acids in cell culture (SILAC); and lastly, absolute 

quantification of proteins (AQUA) using stable isotope-labeled (SIL) internal standards. 
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Next, I will elaborate on the classification, biological functions and public health 

relevance of GTP-binding proteins and small GTPases. At last I will detail the major focus 

of this dissertation, i.e. the development and applications of novel targeted quantitative 

proteomic methods in studying small GTPases of the Ras superfamily in cultured human 

cancer cells and patient-derived tissues, together with investigation of the roles of small 

GTPases in several human diseases including melanoma, breast cancer, colorectal cancer, 

and Alzheimer’s disease by using cell lines or tissue samples as study models. 

1.2 Detection Strategies in Bottom-up Proteomics 

1.2.1 Data-dependent Acquisition (DDA) 

A traditional MS-based bottom-up proteomic method is often performed in a “shotgun” 

format, where LC-MS/MS is operated in the DDA mode and the N most abundant 

precursor ions of peptides (N = 5–20) are selected from full or MS1 scans for the 

subsequent tandem mass spectrometry (MS/MS) analysis (Figure 1.1).4 The depth of 

proteome coverage in DDA analysis is largely dependent on sample complexity resulting 

from the background proteome, and the highest coverage is achieved from the least 

complex sample. Consequently, protein or peptide fractionation techniques prior to peptide 

separation on reverse-phase (RP) columns and downstream MS analysis are essential to 

obtaining a high-degree of protein coverage. 

Among the many prefractionation schemes such as strong cation exchange (SCX) or 

two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-SDS-

PAGE), multi-dimensional protein identification technology (MudPIT) is advantageous 

over gel-based methods with respects to the ease of sample handling, sensitivity and 
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dynamic range.5-7 The concept of MudPIT was built upon the earlier work reported by Link 

et al.,6, 8 where complex peptide mixtures were loaded onto a biphasic SCX-RP 

microcapillary column and separated in a multidimensional manner. In this vein, MudPIT 

allows for an automated and high-throughput online two-dimensional separation pipeline 

that ultimately leads to large-scale global proteomic studies with simplified sample 

handling.6 As a predominant shotgun proteomic approach, MudPIT has achieved 

remarkable progress in resolving complex biological samples to facilitate protein 

identification and quantification. While achieving great proteome coverage, shotgun 

proteomics cannot guarantee that every precursor will be fragmented in each run and 

therefore, the peptides identified by shotgun proteomic analysis only display 35–60% 

overlap between technical replicates.9 

1.2.2 Data-independent Acquisition (DIA) 

One of the biggest challenges in discovery or shotgun proteomics is the unbiased 

identification and precise quantification of protein abundances in highly complex samples, 

which can consist of thousands of proteins. To address the growing needs for delivering 

accurate, complete and reproducible large-scale proteomic datasets, an emerging strategy 

termed sequential window acquisition of all theoretical mass spectra (SWATH-MS) on 

TripleTOF platforms was proposed by Gillet et al. in 2012, and this technology is capable 

of providing deep proteome coverage with quantitative consistency and accuracy.10, 11 

SWATH-MS is a specific variant of DIA methods, from which DIA generally refers to MS 

acquisition methods that continuously acquire MS/MS spectra of all ions in the target m/z 

range in an unbiased fashion (Figure 1.1). In 2015, a similar DIA method implemented on 
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Orbitrap platforms was termed hyper reaction monitoring (HRM).12 In DIA mode, all 

peptide precursors of the entire mass range are sequentially isolated in broader m/z 

windows and fragmented together in a systematic and unbiased fashion.10 One advantage 

provided by such a data collection scheme is a comprehensive and reliable digital 

fingerprint or data archive of the peptide mixture. However, the tremendously complex 

fragment ion spectra derived from multiple precursor ions render the data analysis 

extremely complicated and challenging. To enable unbiased peptide identification and 

SWATH-MS data interpretation, a commonly used strategy is data interrogation after 

construction of assay libraries.13 For example, the SWATH-MS raw data can be re-

interrogated over and over using updated peptide spectral libraries. Recent improvements 

in software tools enable the identification of 10,000 human protein groups from a single 

DIA run.14 Compared to conventional DDA workflows, this is an improvement of more 

than 30% without compromising quantification accuracy. 

1.2.3 Multiple-Reaction Monitoring (MRM) 

In recent years, targeted proteomics techniques have emerged as a powerful toolset in 

systems biology to comprehensively study a predefined set of proteins involved in distinct 

signaling pathways or gene families. Unlike shotgun proteomic methods, the targeted 

proteomics approach aims to deliver highly reproducible and sensitive measurement of 

target peptides and thus requires information about the analytes a priori. The most widely 

used targeted technique is MRM, also referred to as selected-reaction monitoring (SRM) 

performed on a triple quadrupole (QqQ) mass spectrometer. As depicted in Figure 1.1, 

when LC-MS/MS is performed in the MRM mode, the instrument is programmed to 
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monitor a pre-selected series of transitions (precursor/product ion pairs).15 MRM-based 

protein quantification is superior in that it provides unparalleled ability to characterize and 

quantify a set of proteins reproducibly, completely, and with high sensitivity. Therefore, 

MRM contributes to the routine quantitative pipeline for sensitive, reproducible and high-

throughput large-scale biomarker discovery, measurement and validation.16 Although 

MRM is capable of eliminating interference signals from background and highly abundant 

contaminating species, one major drawback lies in the low-resolution nature of the Q1 and 

Q3 mass filters in a QqQ instrument for precursor ion and fragment ion selections, 

respectively; this results in concomitant elution of interfering ions which cannot be 

circumvented, especially for complicated biological samples.17 

With automated or dynamic adjustment of the scheduled retention time (RT) windows, 

the analytical robustness of MRM can be dramatically enhanced to facilitate large-scale 

study.18 Previously prediction of retention times largely relied on intrinsic properties of 

peptides such as hydrophobicity, which can be calculated from peptide sequences, 

representative of the sequence-specific retention calculator (SSRCalc) algorithms.19 In 

2012, normalized retention time (iRT), which is an empirically determined RT scale for 

peptides, was introduced by Escher et al.20 They showed that using empirical data (iRT) 

instead of a calculated parameter (SSRCalc) provided significantly more reliable results 

for target peptide RT prediction.20 The RT scheduling in MRM based on iRT is 

schematically illustrated in Figure 1.2. 
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1.2.4 Parallel Reaction Monitoring (PRM) 

PRM is a recently developed paradigm for targeted quantitative proteomics typically 

performed on high-resolution hybrid quadrupole-Orbitrap (Q-OT) or time-of-flight (TOF) 

instruments.21, 22 As illustrated in Figure 1.1, a peptide precursor is first isolated by the 

quadrupole mass filter and then fragmented in the higher-energy collisional dissociation 

(HCD) cell, and the resulting fragment ions are then analyzed in a high-resolution mass 

analyzer that permits parallel detection of all target product ions (typically 10–20 ppm).21 

These parallel monitoring features contrast with MRM, allowing all detectable product ions 

scanned by the Orbitrap mass analyzer in the PRM mode to be used for accurate peptide 

quantification.21 As a result, there is no need for a priori selection or optimization of target 

peptide transitions. Furthermore, PRM offers higher specificity or selectivity than MRM 

on QqQ instruments due to the reduced presence of interfering ions, which are readily 

discriminated by the high-resolution MS/MS acquisition. In addition to higher specificity, 

sensitivity is also increased by the trapping capabilities of the C-trap; this is advantageous 

for detecting low-abundance species in the complex background through the use of longer 

fill times in the process of fragmentation/accumulation of fragments to increase the signal-

to-noise ratio.23 Several studies showed that PRM and MRM display comparable linearity, 

dynamic range, precision, and repeatability for protein quantification.24-26 Some papers 

reported that PRM exhibited a wider dynamic range than MRM in the presence of complex 

background matrix owing to higher selectivity.21 

Despite the immense benefit obtained from high-resolution mass analyzers, PRM 

analysis performed in an unscheduled mode is only confined to a limited set of analytes 
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(typically 50 peptides per analysis) when performing measurements in the upper range of 

acquisition parameter settings (i.e. a maximum fill time exceeding 100 ms at a resolving 

power of at least 35,000).23 To overcome such shortcoming, Gallien et al. proposed internal 

standard triggered (IS)-PRM for low-scale PRM experiments.23, 27 Collectively, PRM 

represents a promising new addition to the quantitative proteomics toolbox and an 

attractive alternative to MRM. 

1.3 Labeling Strategies in Quantitative Proteomics 

1.3.1 Label-free Quantification 

Modern proteomics has necessitated accurate, reproducible and rapid quantification of 

peptides/proteins with elevated sampling throughput and reduced labor. Therefore, label-

free quantification (LFQ) emerged as a frequently adopted strategy that offers reasonable 

sensitivity, high dynamic range and obviates the needs of chemical or metabolic labeling.28 

There are three major LFQ strategies: spectral counting, where relative quantification is 

achieved based on the number of identified MS/MS spectra for each protein;29 DIA 

approaches, which utilize product ion intensity;30, 31 and MS1 peak intensity, utilizing 

chromatographic peak area extracted from the selected peptide precursor.32 In the past 

decade, LFQ has received broad implementations in a myriad of shotgun or targeted 

proteomic studies. However, the main disadvantages include reliance on technical 

reproducibility, since LFQ is more prone to batch-to-batch variation due to differences in 

sample preparation and instrumentation (Figure 1.3).33 Moreover, LFQ requires more 

intense computational processing to normalize such differences. Therefore, tremendous 

efforts have been made in the field to improve the algorithms of LFQ.34, 35 
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1.3.2 Chemical Labeling 

Covalently attaching a small functional group will chemically label peptides, which 

retain similar chemical and physical properties yet distinguishable m/z values, compared 

to their natural counterparts; because comparison to the labeled standard could increase 

precision and accuracy, diverse labeling strategies were incorporated into MS-based 

proteomic workflows. Among them, isotope-coded affinity tag (ICAT) was developed in 

1999 by Gygi et al. as the first chemical tagging strategy in quantitative proteomics.8 

Typically, the ICAT reagent consists of three elements: an affinity tag (biotin), a light or 

heavy isotope-labeled (diethylene glycol) linker containing either hydrogens or deuterons, 

and a thiol reactive moiety which will specifically derivatize cysteine residues. By targeting 

different amino acid residues for active-site labeling, ICAT represents a flexible labeling 

strategy for proteome-wide quantification, in conjunction with subsequent affinity-based 

enrichment (Figure 1.3). Other similar chemical modification-based approaches were later 

developed such as stable-isotope dimethyl labeling, which utilizes formaldehyde to 

globally label the N-terminus and the side chain ε-amino group of lysine residues through 

reductive amination.36 

In addition to ICAT-based quantitation, isobaric mass tagging is another popular 

implementation of chemical derivatization in quantitative proteomics. In 2004, the isobaric 

tag for relative and absolute quantitation (iTRAQ) strategy was developed by Applied 

Biosystems (Ross et al.), in a 4-plex fashion.37 The design of the reagent consists of a 

reporter group (N-methylpiperazine), a mass balance group (carbonyl) and an amine-

reactive moiety (NHS ester). The amine-reactive NHS ester tag can covalently modify the 
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N-terminus and the side chain of lysine residue (Figure 1.4). After loss of the balance group 

during CID fragmentation of the isobaric peptide precursors, the resulting cluster of 

reporter ions (ranging from m/z 114.1 to 117.1 for 4-plex) can be used for relative protein 

quantification (Figure 1.4). One major advantage for iTRAQ lies in the simultaneous 

detection of isobaric peptides with identical molecular mass and chromatographic elution 

behavior during separation, which may reduce background interference. In 2012, Pottiez 

et al. 38 developed an 8-plex version of the iTRAQ reagents (Figure 1.4). Despite structural 

difference between the two iTRAQ tagging strategies, the 8-plex iTRAQ provides more 

consistent ratios without compromising protein identification. 

Earlier in 2003, Thermo Fisher Scientific also released a product similar to iTRAQ, 

tandem mass tags (TMT) 6-plex isobaric mass tagging kit, which can provide simultaneous 

quantification of up to 6 different samples.39 The structures of TMT reagents are composed 

of a mass reporter group (1,5-dimethylpiperidine), a mass balance group and an amine-

reactive group (NHS-ester) (Figure 1.5). In 2012, McAlister et al. expanded the 

multiplexing capacity of the TMT reagents to at least 10-plex.40 Recently, the TMT11-

131C reagent was developed to further expand the multiplexity to 11-plex.41 

In addition to the commercialized iTRAQ (SCIEX) and TMT (Thermo Scientific) 

reagents, individual research groups have made great efforts to design new isobaric tags 

for chemical labeling of peptides. In 2015, Li et al. developed a novel 12-plex DiLeu 

isobaric tags for quantitative proteomic analysis.42 In 2018, Virreira Winter et al. 

synthesized and utilized a new version of amine-derivatizing and sulfoxide-containing 
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isobaric labeling reagents, termed easily abstractable sulfoxide-based isobaric-tag (EASI-

tag), for highly accurate and multiplexed quantitative proteomics analysis.43 

Although the iTRAQ- or TMT-based approaches allow for highly multiplexed and 

precise quantitative analyses of proteins, quantification of complex proteomic samples 

could be biased due to the “ratio compression” issue originated from co-fragmentation of 

peptides.44 This is usually linked with reporter ion pattern distortion caused by inevitable 

co-isolated precursor interference during the MS/MS (MS2)-based quantitation.44 To 

circumvent this issue, the SPS-MS3 technique, namely isolation waveforms with multiple 

frequency notches (i.e., synchronous precursor selection, SPS) coupled to MS/MS/MS, can 

effectively enhance quantitative accuracy and sensitivity.45, 46 That said, MS2-based TMT 

outperforms MS3-based TMT since its higher precision and larger identification numbers 

allow detection of a greater number of significantly altered proteins.47 Lastly, the 

introduction of heavy labels at a late stage of sample preparation is more susceptible to 

experimental errors, compared to metabolic labeling (Figure 1.3).48 

1.3.3 Metabolic Labeling 

In vivo metabolic labeling approaches include stable isotope labeling by amino acids 

in cell culture (SILAC),49 stable isotope labeling in mammals (SILAM),50 and neutron-

encoded (NeuCode) SILAC or SILAM.51 Classical SILAC was first introduced by Ong et 

al. in 2002, which enables comparative analysis of the global proteome from two cell 

populations fully labeled with “light” or “heavy” isotope-labeled amino acids, 

respectively.49 The typical choice of labeled amino acids is lysine and arginine, which cam 

combine with trypsin digestion to ensure labeling of every peptide except for the C-
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terminal peptide of the protein.52 After equi-mass mixing of the “light” and “heavy” cell 

lysates followed by tryptic digestion, the resulting peptide mixtures are purified or 

fractionated prior to LC-MS/MS analysis, and each isotope-labeled peptide usually appears 

as a “doublet” in the mass spectra with easily distinguishable m/z shifts. By comparing the 

differential signal intensities of the paired isotope-derived peptide peaks, the differences in 

protein abundance between sample groups can be directly calculated.49 Naturally, the 

multi-Da spacing of isotopes in SILAC confines the quantitative capacity to triplex, or 

triple-SILAC, namely SILAC with three isotope labeling states can also be employed.53 

Lately, multiple SILAC-derived technical modifications have been developed to 

enlarge its practicability in the field of quantitative proteomics. The use of SILAC as an 

internal or “spike-in” standard was proposed by Geiger et al., wherein SILAC is only used 

to produce heavy labeled reference proteomes and is not incorporated in the early steps of 

biological experiments.54 Another similar strategy named “super-SILAC” has been 

expanded to five SILAC-labeling cell lines which serve as the internal standards for tissue 

proteome quantification.55 In another variation of the classical SILAC methodology, the 

pulse-chase or pulsed SILAC (pSILAC) technique, after the pulse labeling with heavy 

amino acids in cells, all newly synthesized proteins will incorporate heavy isotopes; this 

has been successfully applied to study global cellular proteostasis by assessing protein 

degradation, synthesis/translation and turnover.56, 57 With this strategy, the transient 

changes in protein abundance reflective of either protein degradation or synthesis can be 

investigated by MS analysis. To enhance the multiplexing capabilities of metabolic 

labeling, NeuCode SILAC was described in 2013 as a novel strategy to improve duplex or 
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triplex SILAC method by reducing the mass window between isotopologs.51 NeuCode 

produces precursor partners spaced by as little as 6 mDa and as much as ∼40 mDa apart; 

this enables amino acid counting and peptide quantification without the need to increase 

MS1 spectral complexity. 

The analytical advantages of SILAC lie in its greater ease of implementation, 

quantitative accuracy, and reproducibility compared with chemical labeling or LFQ 

approaches. These advantages arise because SILAC allows earlier introduction of labeling 

during sample processing and thereby greatly reduces variation and errors (Figure 1.3).49, 

52 That said, traditional SILAC is only applicable to cultured cells or mouse models, 

whereas clinical samples such as tissue samples and biological fluids are not amenable to 

metabolic labeling. Furthermore, to achieve similar breadth of quantitative multiplexity 

enabled by chemical labeling and/or LFQ, traditional duplex-SILAC scheme requires not 

only time-consuming and labor-intensive metabolic labeling steps but also vastly tedious 

efforts in sample preparation. 

1.3.4 Absolute QUAntitation (AQUA) Using Isotope-labeled Internal Standards 

Increased sample multiplexing capacity enabled by chemical labeling strategies has 

broadened opportunities for conducting large-scale global proteomic studies. These 

techniques, nonetheless, only provide relative quantification for peptides of interest. In 

contrast, absolute quantitation (AQUA) is performed by spiking complex samples with 

stable isotope-labeled (SIL) synthetic peptides that act as internal standards for a specific 

subset of peptides (Figure 1.3). These peptides are synthesized with incorporated stable 

isotopes and serve as ideal internal standards by mimicking native peptides formed by 
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proteolysis (e.g. trypsin digestion). Hence, they are designed to be structurally identical to 

tryptic peptides generated by sample preparation and can therefore ensure co-elution in LC 

with target peptide and simultaneous MS analysis. 

Once the assay is optimized for a predetermined set of peptides, AQUA used in 

conjunction with MRM offers the highest level of reproducibility and sensitivity in targeted 

profiling from multiple samples. This approach has been reported to detect proteins with 

concentrations less than 50 copies per cell in unfractionated lysates, demonstrating that this 

quantitative approach largely unaffected by sample complexity. As a gold standard in 

delivering precise and reliable absolute quantity of target proteins and post-translational 

modifications (PTMs), AQUA has received wide applications in a plethora of clinical 

studies, such as quantifying disease biomarkers in patient-derived samples from plasma or 

serum by coupling the use of MRM with stable isotope dilution.58-61 Although using SIL 

peptides for absolute quantification is very precise, availability and costs for such reference 

peptides limit their applications in assays with a great number of proteins. 

1.4 GTP-binding Proteins and Small GTPases 

1.4.1 Overview 

In cells, guanosine mono-, di-, and triphosphate (GMP, GDP, GTP) constitute 

fundamental building blocks and messengers for a broad spectrum of cellular processes. 

Guanine nucleotide binding proteins, or GTP-binding proteins, include septins (SEPT 

family), tubulins (TUBB family), eukaryotic translation initiation/elongation factors 

(eIF/eEF family), heterotrimeric G protein alpha subunit (Gα), and so on. By shuffling 

between the active GTP-bound form and the inactive GDP-bound form these proteins act 
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as molecular switches, as such they play essential roles in various cellular processes and 

orchestrate a diversity of signaling networks. For large guanosine triphosphatases 

(GTPases), the hydrolysis of GTP fuels organelle re-organization, while for small 

GTPases, the GTP hydrolysis induces protein conformational changes and subsequently 

the interaction with downstream effectors to transmit extracellular signals. Guanine 

nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) are two 

distinct classes of molecular chaperones that mediate the activity of small GTPases (Figure 

1.6).62 In general, GEFs turn on signaling by catalyzing the exchange from GTPase-bound 

GDP to GTP, whereas GAPs terminate signaling by facilitating GTP hydrolysis.62, 63 For 

certain small GTPases that carry C-terminal farnesyl or geranylgeranyl modifications, 

GDP/GTP switch involves cytosol/membrane alternation and hence is modulated by 

guanine dissociation inhibitors (GDIs).63 

1.4.2 Small GTPases 

As the largest gene family of monomeric GTP-binding proteins, the Ras superfamily 

of small GTPases is comprised of over 150 human members (Figure 1.7), with highly 

evolutionarily conserved orthologs in Drosophila, C. elegans, S. cerevisiae, S. pombe, and 

plants.64-66 Based on structural similarities, they can be further classified into five families, 

Ras, Rho, Rab, Ran, and Arf, as well as the “orphan” or atypical GTPases RhoBTB1/2/2. 

The Ras family of GTPases responds to extracellular stimuli to regulate cellular gene 

transcription, proliferation and survival; while the Rho family of GTPases couples the same 

stimuli to mediate gene expression and cytoskeletal organization.67-69 The Rho family of 

GTPases are also known for their role in regulating cell shape and plasticity of cell 
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migration.70 The Rab and the Arf families of GTPases control receptor internalization, 

intracellular vesicular trafficking and actin remodeling.71, 72 The Ran protein, the single 

member of the Ran subfamily, is the most abundant small GTPase in cells and is 

responsible for microtubule stability and nucleocytoplasmic transport.73 

Growing lines of evidence suggest that small GTPases and their regulators (i.e. GAPs 

and GEFs) may be potential therapeutic targets for drug discovery in treating a wide variety 

of diseases, including cancer.74 Aberrant regulation of small GTPase expression has been 

reported in various types of cancer including hepatocellular carcinoma (RAB1B,  RAB4B,  

RAB10,  RAB22A, and RAB24), non-small lung carcinoma (RAB14, RHOA, RAC1, and 

CDC42), pancreatic carcinoma (RAB20, RAC1) colorectal cancer (RAB22A, RAC1B) 

and prostate cancer (RAB3B).75, 76 Given the important functions of these proteins in signal 

transduction and trafficking, a better mechanistic understanding of their roles in disease 

development and progression may provide new insights into strategies for therapeutic 

intervention. 

1.4.3 Heterotrimeric G Proteins 

Heterotrimeric G proteins consist of two functional units, an α subunit (Gα) and a 

tightly associated βγ complex (Gβγ), which play pivotal roles in signal transduction 

involved with G-protein-coupled receptor (GPCR) activation. The Gα subunit harbors the 

guanine nucleotide-binding site and is associated with the βγ complex in its GDP-bound 

inactive state. Agonist-receptor binding triggers GDP/GTP exchange, a conformational 

change of Gα, subunit dissociation from the βγ complex, and ultimately downstream 

signaling cascades.77 It has been estimated that ∼700 approved drugs target GPCRs, 
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suggesting that approximately 35% of approved drugs target GPCRs.78 GPCRs and GPCR-

related proteins, i.e. those proteins upstream or downstream in the GPCR-related pathways, 

represent ∼17% of all protein targets for approved drugs, with GPCRs themselves 

accounting for ∼12%. As such, GPCRs constitute the largest family of proteins targeted 

by approved drugs.78 

1.4.4 Proteomic Profiling of GTP-binding Proteins 

1.4.4.1 Acyl-phosphate GTP Affinity Probes 

Several structurally distinct chemical probes have been developed for targeting GTP-

binding proteins. One example is the commercialized lysine-reactive desthiobiotin-GTP 

probes that contains an acyl phosphate anhydride (ActivX Biosciences)79; these probes 

target the conserved lysine residue in the GTP-binding GXXXXGK motif (P-loop)80 and 

have been employed by several studies examining the GTPase proteome. Patricelli et al.81 

and Qiu et al.82 reported a lysine-reactive nucleotide acyl phosphate probe for the 

proteome-wide profiling of nucleotide-binding proteins, including kinases and GTPases. 

By exploiting a similar strategy, Xiao et al. identified 66 GTP-binding proteins in HL-60 

cell lysates83, and later a similar approach utilizing 6-thioguanosine triphosphate (SGTP) 

acyl-phosphate probe combined with SILAC was devised for proteome-wide 

quantification of SGTP-binding proteins in Jurkat-T cell lysates84, in which 91 GTP-

binding proteins were quantified. Hunter et al. used the desthiobiotin-GTP probe for 

characterizing an active site inhibitor of oncogenic KRAS-G12C in MIA PaCa cell 

lysates85, which led to the detection of over 100 GTP-binding proteins. Recently, Cai et. al 

further extended this approach by combining the use of isotope-coded desthiobiotin-GTP 
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acyl-phosphate probes with MRM and quantified 91 GTP-binding proteins in 

SW480/SW620 cell lysates.86 However, these chemical proteomic probes which 

incorporate adenine/guanine cofactor-based chemical scaffolds may suffer from off-target 

engagement of adenosine-binding proteins due to their widespread reactivity.87 

1.4.4.2 Photoreactive GTP Affinity Probes 

Another type of GTP affinity probe relies on the photoactive covalent modifications 

that occur at the GTP-binding sites. Kaneda et al.88 first synthesized a GTP probe that 

allows simple and efficient photoaffinity-based proteomic profiling of GTP-binding 

proteins. Another example is the GTP-BP-yne probe reported by Cisar et al.,89 which 

facilitated active-site labeling of more than 30 annotated GTP-binding proteins 

subsequently identified by MudPIT.  

1.4.4.3 Gel Electrophoresis (Ge) Coupled to LC-MRM (GeLC-MRM) 

In addition to small-molecule probes, other profiling techniques take advantage of the 

GTPase-binding domain of individual downstream effectors and their distinct molecular 

weights (15–37 kDa) to enrich specific active small GTPases. Zhang et al.90 first combined 

such pull-down strategies with gel electrophoresis (Ge) coupled to LC-MRM (GeLC-

MRM) for the development of quantitative multiplexed small GTPase activity assay, and 

they were able to detect 12 active isoforms of small GTPases simultaneously. Halvey et 

al.91 also demonstrated that GeLC-MRM is a robust and sensitive approach to quantify 

KRAS mutant variants in complex biological samples.  
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1.5 Scope of the Dissertation 

Compared to conventional discovery-based proteomic approaches, i.e. shotgun 

proteomics, targeted proteomic techniques show clear advantages in achieving better 

reproducibility, higher sensitivity and superior quantitative accuracy. In this dissertation, 

we reported the development and application of novel targeted quantitative proteomic 

methods for high-throughput and reproducible profiling of small GTPases in cultured cells 

and patient-derived brain tissues that carry disease-related changes. We believe this is an 

important area of study because small GTPases of the Ras superfamily represent a class of 

crucial signaling molecules in cells, and the aberrant regulation of their expressions is 

implicated with various types of human diseases. 

In Chapter two, we describe the development of a novel targeted quantitative proteomic 

method that involves metabolic labeling by SILAC, total protein quantitation, prior 

enrichment of small GTPases by sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) in the low molecular weight (15–37 kDa) protein fraction 

and the subsequent scheduled LC-MS/MS analysis in the multiple-reaction monitoring 

(MRM) mode. Owing to the largely reduced complexity of the proteome analyzed, this 

method allows reliable high-throughput quantification of small GTPases of the Ras 

superfamily with relatively low protein inputs (5–100 μg) and without the need for 

chemoaffinity or immunoaffinity enrichment. Taking advantage of both the effective 

enrichment of small GTPases by gel-based fractionation and the analytical robustness of 

the scheduled MRM analysis, over 90 small GTPases were robustly quantified in two 

scheduled LC-MRM runs. We also demonstrated that this MRM-based assay displayed 
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much better sensitivity, reproducibility and accuracy than the discovery-based shotgun 

proteomic method. We applied this method to probing the differential protein abundance 

of small GTPases in three pairs of primary/metastatic human melanoma cell lines: WM-

115/WM-266-4, IGR39/IGR37 and WM793/1205Lu. Bioinformatic analyses of The 

Cancer Genome Atlas (TCGA) data and other publicly available data as well as cell-based 

assays revealed previously unrecognized roles of RAB38 in promoting melanoma 

metastasis. Diminished promoter methylation and the subsequent augmented binding of 

transcription factor MITF contributed to elevated expression of the RAB38 gene in 

metastatic versus primary melanoma cells. Moreover, RAB38 promoted invasion of 

cultured melanoma cells by modulating the expression and activities of matrix 

metalloproteinases-2 and -9. Together, these data establish a novel targeted proteomic 

method for interrogating the small GTPase proteome in human cells and identify epigenetic 

reactivation of RAB38 as a contributing factor to metastatic transformation in melanoma. 

In Chapter three, we applied the established quantitative proteomic method in probing 

the differential expression of small GTPases associated with acquired tamoxifen resistance 

in the estrogen-receptor (ER)-positive MCF-7 breast cancer cells. Briefly, we employed 

the established quantitative proteomic method to assess the differential expression of small 

GTPases in wild-type MCF-7 and the paired tamoxifen-resistant breast cancer cells. The 

method displayed superior sensitivity and reproducibility over the shotgun-proteomic 

approach, and it facilitated the quantification of 96 small GTPases. Among them, 13 and 

10 proteins were significantly down- and up-regulated (with >1.5-fold change) in the 

tamoxifen-resistant line relative to the parental line, respectively. Notably, we observed a 
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significant down-regulation of RAB31 in tamoxifen-resistant cells, which, in combination 

with bioinformatic analysis and downstream validation experiments, supported a role for 

RAB31 in tamoxifen resistance in ER-positive breast-cancer cells. Together, our results 

demonstrate that the targeted proteomic method constituted a powerful approach for 

revealing the role of small GTPases in therapeutic resistance. 

In Chapter four, we sought to conduct a systematic study of the implications of small 

GTPases in the metastatic transformation of colorectal cancer (CRC). By utilizing the 

established MRM method, we investigated comprehensively the relative expression of the 

small GTPase proteome in a pair of matched primary/metastatic CRC cell lines 

(SW480/SW620). Among the 83 quantified small GTPases, 25 exhibited at least a 1.5-fold 

difference in protein expression in metastatic SW620 relative to primary SW480 cells. 

Bioinformatic analyses revealed that diminished SAR1B mRNA expression is significantly 

associated with higher CRC stages and unfavorable patient prognosis, which supports a 

potential role of SAR1B in suppressing CRC metastasis. In addition, diminished SAR1B 

expression could stimulate epithelial–mesenchymal transition (EMT), thereby promoting 

motility and in vitro metastasis of SW480 cells. In summary, we profiled systematically, 

by employing an MRM-based targeted proteomic method, the differentially expressed 

small GTPases in a matched pair of primary/metastatic CRC cell lines. Our results revealed 

the potential roles for SAR1B in suppressing CRC metastasis and in the prognosis of CRC 

patients. 

In Chapter five, we present the development of a novel targeted quantitative proteomic 

assay aimed at switching from metabolic labeling to the use of stable isotope-labeled (SIL) 
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peptides. We applied this MRM method, which was built upon in-house shotgun 

proteomics data and online MRM assay design tool, for simultaneous assessment of the 

relative expression of small GTPases from Alzheimer’s disease (AD) patient derived brain 

tissues. The scheduled GeLC-MRM analyses provided robust quantification of more than 

80 small GTPases in tissue samples by using a 90-min LC-MRM run, with excellent 

throughput and reproducibility. Interestingly, levels of RAB27B, RAB3A and RAB3D 

proteins, which were previously shown to be involved with synaptic and secretory vesicles, 

were found to increase in brain tissue samples with higher degree of disease severity. This 

facile and accurate assay provides invaluable knowledge to probe the potential roles for 

small GTPases in the development and progression of AD. 
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Figure 1.1 Representative scanning modes used in MS-based bottom-up proteomics. 

Shown is a schematic diagram representing common ion detection methods in MS. 
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Figure 1.2 A schematic workflow that outlines the empirical determination of iRT 

scale, conversion of RTs for targeted peptides into iRTs, and RT scheduling for 

MRM. 

To simplify, RT1 and RT2 represent 2 of the 10 reference peptides (iRT-peptides) used for 

iRT transformation based upon linear regression. The retention time of the target peptide 

(RTx) is can be empirically transformed into iRT (iRTx) using the established linear 

regression of the iRT-peptides. iRTx values can then be transferred to a different 

chromatographic setup by using an RT calibration of the iRT-peptides. 
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Figure 1.3 Comparison of commonly used labeling strategies in quantitative 

proteomics. 

The blue and orange asterisk indicates the introduction of light and heavy stable isotope 

labeling, respectively.
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Figure 1.4 Design and concept of iTRAQ. 

(A) The backbone structure and the detailed description of the 4-plex iTRAQ reagents. (B) 

The backbone structure and the detailed description of the 8-plex iTRAQ reagents. The 

dashed line indicates the fragmentation site of CID. 
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Figure 1.5 Design and concept of TMT. 

(A) The backbone structure of TMT reagent. (B) The detailed molecular structures of the 

11-plex version of the TMT reagent, where asterisk denotes the position of isotopic labelled 
13C or 14N, the zig-zag line indicates the fragmentation site of ETD, and the dashed line 

indicates the fragmentation site of HCD. 



27 

 

 

 

 
 

Figure 1.6 Regulation of small GTPases by GEFs, GAPs, and GDIs. 

A diagram depicting the regulation of the GDP/GTP switch of small GTPases modulated 

by GEFs, GAPs, and GDIs (adopted from Ref63). 
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Figure 1.7 Phylogenetic relationships and gene structure of the Homo Sapiens 

small GTPase genes. 

The unrooted tree was generated using the MEGA v7.0 software with the full-length amino 

acid sequences of the Homo Sapiens small GTPase proteins using a Neighbor-Joining (NJ) 

method, including 1,000 boot-strap replications. All the protein sequences were aligned 

using ClustalW. The phylogenetic tree was visualized using the FigTree v1.4.4 software. 

The five sub-families of small GTPase genes are highlighted with different colored tree 

branches. 
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Chapter 2 A Targeted Quantitative Proteomic Approach Assesses the 

Reprogramming of Small GTPases during Melanoma Metastasis 

2.1 Introduction 

Small GTPases of the Ras superfamily are highly conserved in eukaryotes, including 

more than 100 members that could be divided into six subfamilies, i.e. Ras, Rho, Rab, 

Sar1/Arf, Ran and others.1 They can exist in the GTP-bound active state or GDP-bound 

inactive state, which are modulated by guanine nucleotide exchange factors (GEFs), 

GTPase-activating proteins (GAPs) and guanine nucleotide dissociation inhibitors 

(GDIs).2 Small GTPases serve as master regulators of cellular trafficking and are involved 

in numerous cell signaling cascades.1, 3 In addition, emerging evidence has linked aberrant 

expression of small GTPases with cancer progression, including RHOC and RAB27A in 

melanoma.4-5 

Despite the importance of small GTPases in cell signaling and human diseases, very 

few studies have been conducted to assess quantitatively the small GTPases at the 

proteome-wide scale. In recent years, multiple-reaction monitoring (MRM)-based targeted 

proteomic method has emerged as a powerful approach for analyzing proteins and peptides 

of interest with high specificity and sensitivity.6-7 We reason that a targeted proteomic 

method for the measurement of small GTPases may enable mechanistic studies of small 

GTPase signaling and facilitate the discovery of novel roles of small GTPases in the 

etiology of human diseases. 



37 

 

In the present study, we developed a facile and effective MRM-based method for high-

throughput profiling of small GTPases in cultured human cells and we also applied the 

method for assessing the roles of small GTPases in melanoma metastasis. We chose to 

examine the roles of small GTPases in melanoma metastasis because melanoma is one of 

the most aggressive and treatment-resistant types of human cancers. In this vein, an 

estimated 91,270 new cases of melanoma and 9320 deaths are expected in the United States 

in 2018,8 and the high mortality rate of melanoma is attributed to its high probability to 

metastasize.9 

2.2 Materials and Methods 

2.1.1 Cell Culture 

HCT-116 human colorectal cancer cells, HEK293T human embryonic kidney cells, 

HL-60 human promyelocytic leukemia cells, Jurkat-T human T lymphocytic leukemia 

cells, MCF-7 human breast cancer cells, WM-115 and WM-266-4 human melanoma cells 

were purchased from American Type Culture Collection (ATCC; Manassas, VA). 

GM00637 human skin fibroblasts were kindly provided by Prof. Gerd P. Pfeifer (the City 

of Hope). IGR39 and IGR37 human melanoma cells were generous gifts from Prof. Peter 

H. Duesberg (University of California, Berkeley). WM793 and 1205Lu human melanoma 

cells were purchased from Wistar Institute. HCT-116, HEK293T, GM00637, MCF-7, 

WM-115 and WM-266-4 cells were cultured in Dulbecco's Modified Eagle Medium 

(DMEM; Invitrogen-Gibco, Carlsbad, CA). HL-60, Jurkat-T, IGR39, IGR37, WM793 and 

1205Lu cells were cultured in RPMI 1640 Medium (Invitrogen-Gibco). All culture media 

were supplemented with 10% fetal bovine serum (FBS; Invitrogen-Gibco) and 
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penicillin/streptomycin (100 IU/mL). Cells were maintained at 37°C in a humidified 

atmosphere containing 5% CO2, and the culture medium was changed in every 2 to 3 days 

as necessary. 

The initial passage numbers for melanoma cells used were: WM-115 (p9), WM-266-4 

(p6), IGR39 (p4), IGR37 (p7), WM793 (p16), and 1205Lu (p70). All the relevant 

experiments were conducted within 20 passages from revival of the initial frozen seeds. 

LookOut Mycoplasma PCR Detection Kit (MP0035, Sigma-Aldrich, MO) for detection of 

19 mycoplasma species was used following the manufacturer’s instructions. PCRs were 

performed using HotStart Taq Polymerase. Results were visualized on a 1.2% agarose gel, 

where mycoplasma-positive samples would show a band at 261 bp, and internal control 

DNA showed a band at 500 bp. WM-115, WM-266-4, IGR39, IGR37, WM793, and 

1205Lu melanoma cell lines were tested by this method to be free of mycoplasma on May 

9, 2018. In addition, these six melanoma cell lines were authenticated by ATCC on May 

24, 2018 using Short Tandem Repeat (STR) analysis as described in 2012 in ANSI 

Standard (ASN-0002) Authentication of Human Cell Lines. 

For SILAC experiments, [13C6,
15N2]-L-lysine and [13C6]-L-arginine (Cambridge 

Isotopes Inc., MA), or the corresponding unlabeled lysine and arginine, were added to 

SILAC DMEM media depleted of L-lysine and L-arginine (Thermo Scientific Pierce, MA) 

until their final concentrations reached 0.398 and 0.798 mM, respectively, to yield the 

“heavy” and “light” media. The SILAC RPMI-1640 media were prepared in a similar 

fashion except that the final concentrations of the added lysine and arginine were 0.274 

mM and 1.15 mM, respectively. The SILAC media were again supplemented with 10% 
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dialyzed FBS (Corning, NY). WM-115 and WM-266-4 cells were cultured in the heavy-

DMEM medium, and IGR39, IGR37, WM793 and 1205Lu cells were cultured in the 

heavy-RPMI medium for at least six cell doublings to ensure complete heavy-isotope 

incorporation. 

2.1.2 Gene Ontology (GO) Analysis and Data Source for Bioinformatic Analyses 

Gene Ontology analyses were conducted using the web-based Database for Annotation, 

Visualization and Integrated Discovery (DAVID, version 6.7; https://david.ncifcrf.gov/).10 

Patient RNAseq data were obtained from The Cancer Genome Atlas (TCGA) via 

cBioPortal 11. We used data from 458 melanoma patients in the TCGA-SKCM project for 

bioinformatic analyses. The Cancer Cell Line Encyclopedia (CCLE) 

(http://www.broadinstitute.org/ccle/home) were employed for the comprehensive 

evaluation of mRNA expression for candidate genes among more than 1,000 cell lines 

representing 37 cancer types 12. Multi-tumor RAB38 mRNA expression box plot and scatter 

plot for melanoma cell lines were retrieved from the CCLE database using cBioPortal. 

Publicly available transcriptomic profiles with accession numbers GSE7553, GSE7929, 

GSE8401, GSE22153, GSE44662, GSE46522 and GSE70621 were downloaded from the 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) 

database and analyzed using R (version 3.4.3). 

2.1.3 Sample Preparation and LC-MS/MS for Shotgun Proteomic Analysis 

For acquiring shotgun proteomic data to establish an MRM library for small GTPases, 

the individually collected cell pellets from 9 human cell lines were lysed, and the resulting 

cell lysates were collected by centrifugation and separated by electrophoresis using a 16% 

https://david.ncifcrf.gov/
http://www.broadinstitute.org/ccle/home


40 

 

SDS-PAGE gel. The gel bands in the molecular weight range of 15−37 kDa were cut into 

7 pieces, reduced with dithiothreitol, alkylated with iodoacetamide, and in-gel digested 

with trypsin at an enzyme/protein ratio of 1:100. 

In shotgun proteomic experiments, peptide samples were subjected to LC-MS/MS 

analysis on either an LTQ Orbitrap Velos mass spectrometer or a Q Exactive Plus mass 

spectrometer that was equipped with a nanoelectrospray ionization source and coupled to 

an EASY-nLC II (Thermo, San Jose, CA), as described previously.63 A homemade 

trapping column (150 μm × 50 mm), packed with ReproSil-Pur C18-AQ resin (5 μm in 

particle size and 120 Å in pore size, Dr. Maisch GmbH HPLC), and an analytical column 

(75 μm × 120 mm), packed with ReproSil-Pur 120 C18-AQ resin (3 μm in particle size and 

120 Å in pore size, Dr. Maisch GmbH HPLC), were used for peptide separation. Peptide 

samples were initially loaded onto the trapping column with 0.1% formic acid in water at 

a flow rate of 3.0 μL/min. The peptides were then separated using a 157-min linear gradient 

of 2−35% acetonitrile in 0.1% formic acid at a flow rate of 230 nL/min. The mass 

spectrometer was operated in data-dependent acquisition (DDA) mode, where one full MS 

scan (resolution = 60,000) at an automatic gain control (AGC) target of 106 was followed 

with up to 20 MS/MS scans for the most abundant ions observed in MS. The selected ions 

were excluded from further analysis for 90 s. Ions with singly or unassigned charge states 

were not fragmented. The maximum ion accumulation time was 1000 ms for each full MS 

scan, and 50 ms for each MS/MS scan. The raw data were searched against the IPI human 

database (version 3.68, 87,061 entries). For database search, up to one trypsin missed 
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cleavage per peptide was allowed, and MS/MS spectral assignment was performed with 

less than 1% false discovery rate (FDR). 

2.1.4 Retention Time (RT) Prediction for Small GTPase Peptides 

To facilitate automated and multiplexed MRM analyses, we generated an interactive 

MRM spectral library file containing the tandem mass spectra of peptides derived from 

small GTPases, which were acquired from the above-described shotgun proteomic 

experiments, using Skyline (version 3.5). Precursor and fragment ions for targeted GTPase 

peptides were selected and further refined to avoid spectral interference. If applicable, three 

unique peptides were selected for subsequent targeted analysis in the MRM mode.13 In 

addition, we employed the aforementioned iRT algorithm to develop the scheduled MRM 

method.14 To calculate the iRT score for each targeted peptide from small GTPases in the 

MRM spectral library, we selected 10 peptides from the tryptic digestion mixture of bovine 

serum albumin (BSA) as reference peptides to set up an iRT scale. By manually setting the 

iRT values of the BSA peptides AEFVEVTK and DAFLGSFLYEYSR as 0 and 100, 

respectively, a linear regression equation was obtained by plotting the iRT scores against 

their empirically measured retention times (RTs) derived from the LC-MS/MS analyses. 

Subsequently, the iRT values for the other eight standard BSA peptides were determined 

using the above-mentioned linear equation along with their empirically measured RTs in 

the shotgun proteomic experiments. 

The BSA peptide mixture was then spiked into the small GTPase peptide mixtures for 

the LC-MS/MS analyses on an LTQ Orbitrap Velos mass spectrometer equipped with an 

Easy-nLC II system with a 150-min linear gradient of 2–35% buffer B (0.1% formic acid 
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in acetonitrile) in buffer A (0.1% formic acid), or a Q Exactive Plus mass spectrometer 

equipped with an Easy-nLC 1000 system with a 172-min linear gradient of 8–35% buffer 

B (80% acetonitrile in water with 0.1 % formic acid) in buffer A (0.1% formic acid). RTs 

were extracted for all BSA standard peptides as well as targeted peptides using the Skyline 

MS1 filtering workflow. The iRT values for all small GTPase peptides were calculated 

based on linear regression of iRT and experimentally measured RT of peptides with 

previously determined iRT scores. 

2.1.5 Sample Preparation and Scheduled LC-MRM Analysis 

To rigorously examine the differential expression of small GTPases in paired 

primary/metastatic melanoma cells, we conducted forward- and reverse-SILAC 

experiments, where the light and heavy lysates of paired primary melanoma cells (WM-

115, IGR39 or WM793) were mixed with the heavy and light lysates from metastatic 

melanoma cells (WM-266-4, IGR37 or 1205Lu), respectively, at a 1:1 ratio (by mass). The 

mixed cell lysates were then loaded onto a 10% SDS-PAGE gel and separated by 

electrophoresis. The gel bands corresponding to the molecular weight range of 15–37 kDa 

were cut, reduced with 20 mM dithiothreitol, alkylated with 55 mM iodoacetamide, and 

in-gel digested with trypsin at an enzyme/protein ratio of 1:100. 

All LC-MRM analyses were performed on a TSQ Vantage triple-quadrupole mass 

spectrometer equipped with an Easy-nLC II system. The peptide mixtures were separated 

with a 157-min linear gradient of 2–35% acetonitrile in buffer B (0.1% formic acid in 

acetonitrile) in buffer A (0.1% formic acid) and at a flow rate of 230 nL/min. The spray 

voltage was 1.8 kV, Q1 and Q3 resolutions were 0.7 Da, and the cycle time was 5 s. The 
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optimal collisional energy (CE) set for each targeted peptide was calculated using a linear 

equation specific to the TSQ Vantage instrument and the precursor mass-to-charge ratio 

(m/z) according to the default setting in Skyline. 

The tryptic peptide mixture of BSA was subjected to unscheduled LC-MRM analyses 

prior to the analyses of targeted peptides of small GTPases in order to calibrate for possible 

retention time shifts due to changes in chromatographic conditions. The prediction of 

empirical RT based on the individual iRT scores of the targeted small GTPase peptides 

was then determined by the linear regression of RTs of BSA standard peptides obtained 

under the same chromatography conditions. This iRT-based predictor was examined 

between every six MRM runs by injecting another BSA reference peptide mixture to ensure 

precise RT prediction. 

A total of 432 peptides representing 113 non-redundant or 131 isoform-specific small 

GTPases were monitored in each scheduled LC-MRM run. For SILAC labeling 

experiments, the LC-MRM method was further expanded into two runs for monitoring the 

precursor and fragment ions of peptides harboring the light and heavy forms of lysine 

and/or arginine. In this regard, three transitions were monitored for each light-/heavy-

isotope-coded peptide for LC-MRM quantification. All the targeted transitions can be 

monitored in two LC runs by using the scheduled MRM mode with a 6-min retention time 

duration. 

All raw files were processed using Skyline (version 3.5) for the generation of extracted-

ion chromatograms and peak integration. The targeted peptides were first manually 

checked to ensure the overlaid chromatographic profiles of multiple fragment ions derived 



44 

 

from the light and heavy forms of the same peptide. The data were then processed to ensure 

that the distribution of the relative intensities of multiple transitions associated with the 

same precursor ion correlates with the theoretical distribution derived from the library 

tandem mass spectra acquired in shotgun proteomic experiments. To ensure reliable peak 

assignment, dot plot or dot product (dotp) values were calculated by comparison of 

transition ion intensities based on a linear regression model. In this regard, the dotp value 

has to exceed 0.80.15 In addition, the iRT values act an intrinsic property (i.e., 

hydrophobicity) of a peptide; hence, a substantial deviation of measured RT from that 

projected from the linear plot of RT over iRT signals a false-positive detection.14 The sum 

of peak area from all transitions of light- or heavy-labeled peptides was used for the 

quantification. 

2.1.6 Construction and Transfection of FLAG-tagged Fusion Protein Expression Plasmid 

To generate expression plasmid for 3×FLAG-tagged RAB38, the full-length coding 

sequence of human RAB38 gene was amplified by PCR using Phusion High-Fidelity DNA 

Polymerase (NEB). The PCR product was digested with HindIII and EcoRI, and the 

resulting DNA fragment was inserted into p3×FLAG-CMV-10 (Sigma) to construct the 

plasmid. The sequence of the constructed plasmid was validated by Sanger sequencing. 

For plasmid transfection, WM-115 cells were cultured in six-well plates and transfected 

at 70% confluency with either the p3×FLAG-CMV-10 empty vector or the FLAG-RAB38 

plasmid using TransIT-2020 transfection reagent (Mirus Bio LLC) following the 

manufacturer’s recommended protocol. Transfected cells were incubated for an additional 
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24 h and analyzed for gene expression of the relative targeted protein using immunoblotting 

with specific antibodies. 

2.1.7 siRNA Transfection 

siGENOME non-targeting (NT) siRNA control (D-001210-02-05) and RAB38 

SMARTpool (L-010059-00-0005) siRNA were purchased from Dharmacon (Lafayette, 

CO). The non-targeting siRNA control was designed not to target any known genes in 

human, mouse or rat, as described by the manufacturer. Briefly, WM-266-4, IGR37 and 

M14 melanoma cells were cultured in six-well plates and transfected at 50% confluency 

with 100 nM non-targeting siRNA or RAB38-targeting siRNA using TransIT-X2 

transfection reagent (Mirus Bio LLC) following the manufacturer’s protocol. Transfected 

cells were incubated for an additional 48–72 h and analyzed for the expression level of the 

RAB38 protein using immunoblotting with specific antibodies. 

2.1.8 Real-time Quantitative PCR (RT-qPCR) 

At 24–72 h following transfection, total RNA was extracted from the cells using the 

Total RNA Kit I (Omega Bio-Tech), and 1 μg of total RNA was reverse-transcribed to 

generate cDNA by using M-MLV reverse transcriptase (Promega) and an oligo(dT)16 

primer. Gene expression levels were evaluated by RT-qPCR using iQ SYBR Green 

Supermix kit (Bio-Rad) with 100 ng cDNA input in a 20-μL total reaction volume. 

Expression level of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene was 

used as an internal control for normalization. All primers were used at a final concentration 

of 500 nM. The relative gene expression was analyzed by the comparative cycle threshold 

(2−ΔΔCt) method. 
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2.1.9 Immunoblotting 

Total protein was extracted from cell pellet using ice-cold CelLytic M cell lysis reagent 

(Sigma-Aldrich, MO) containing 1% (v/v) protease inhibitor cocktail (Sigma-Aldrich, 

MO). After cell lysis, the protein concentration was determined by the Quick Start™ 

Bradford Protein Assay (Bio-Rad, CA). Approximately 10–50 µg whole cell lysates, mixed 

with 4×Laemmli SDS loading buffer, were electrophoresed in 10% SDS-PAGE gels and 

transferred to nitrocellulose membranes. The membranes were incubated with primary 

antibodies against human RAB12 (Thermo Fisher; rabbit polyclonal, 1:2,000), RAB27A 

(Abcam; rabbit polyclonal, 1:5,000), RAB31 (4D12, Santa Cruz; rabbit polyclonal, 

1:2,000), RAB32 (Thermo Fisher; rabbit polyclonal, 1:2,000), RAB38 (A-8, Santa Cruz; 

mouse polyclonal, 1:2,000), MITF (D-9, Santa Cruz; mouse polyclonal, 1:5,000), or β-

actin (Thermo Fisher; rabbit polyclonal, 1:10,000), followed by incubation with 

peroxidase-labeled donkey anti-rabbit secondary antibody (Thermo Fisher; 1:10,000) or 

mouse m-IgGκ BP-HRP (Santa Cruz; 1:10,000). Amersham ECL Prime Western Blot 

Detecting Reagent (GE Healthcare, CA) was used to visualize the protein bands. 

2.1.10 Migration and Invasion Assays 

For transwell migration assay, cells (0.5−1×105) were placed in the upper chamber of 

transwell inserts (Corning, NY) with serum-free DMEM medium. DMEM medium 

containing 10% FBS was added to the lower chamber as chemoattractants and the cells 

were incubated at 37°C for 24 h. After removal of unmigrated cells, the cells attached to 

the reverse side of the membrane were stained with 0.5% crystal violet, and 5 randomly 

selected fields were counted under an inverted microscope in each experiment. The 
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invasion assay was conducted under the same conditions except that the transwell 

membranes were pre-coated with Matrigel (Corning, NY). 

2.1.11 Gelatin Zymography Assay 

At 24 h following plasmid transfection or 72 h following siRNA transfection, the 

culture medium was removed, and the cells were washed twice with, and reconstituted in, 

serum-free DMEM medium. After a 24-h incubation, conditioned medium (CM) was 

collected by centrifugation to remove cell debris. The collected CM was further 

concentrated using Microcon centrifugal filter units with a molecular weight cutoff of 30 

kDa (EMD Millipore, CA) and the Quick Start™ Bradford Protein Assay was used to 

determine the total protein concentration. Subsequently, 5–10 μg total CM proteins were 

separated using 7.5% SDS-PAGE gels containing 0.1% gelatin. After electrophoresis, the 

gels were incubated with zymography washing buffer (2.5% Triton X-100, 50 mM Tris-

HCl, pH 7.5) at room temperature for 1 h to remove excess SDS and renature the matrix 

metalloproteinases (MMPs). The gels were then incubated at 37°C for 24 h in zymography 

developing buffer (1.0% Triton X-100, 50 mM Tris-HCl, pH 7.5) to induce gelatin 

digestion by the renatured enzymes. The gels were subsequently stained with 0.5% 

Coomassie blue G-250 and destained until clear bands were visible against the dark 

background, indicative of proteolytic activities of MMPs. 

2.1.12 Chromatin Immunoprecipitation (ChIP) and RT-qPCR 

For ChIP, approximately 1107 WM-115 and WM-266-4 cells were harvested and 

fixed in PBS with 1% formaldehyde at room temperature for 10 min. After cross-linking, 

the cell pellets were resuspended in 1 mL of lysis buffer (50 mM Tris-HCl, pH 8.0, 150 
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mM NaCl, 5 mM EDTA, 1% Triton X-100, and 0.1% sodium deoxycholate) and sonicated 

to obtain DNA fragments of 300–500 bp in length. Anti-MITF antibody (ab12039, Abcam) 

or normal IgG (2729S, Cell Signaling Technology) was used to precipitate the chromatin. 

The precipitated DNA was purified using the QIAquick PCR purification Kit (Qiagen, 

MD) and used for RT-qPCR analysis. The primers used in RT-qPCR coupled to ChIP were: 

RAB38 forward, GCCACAAACTTGTGAGGTGT; RAB38 reverse, 

CTTCAGACCTGTGGTCAACG; TBC1D16 forward, 

GGCCACATACAAAGGGATCG; TBC1D16 reverse, CTCGCGGAGGCAATCTGA. 

2.1.13 Bisulfite Sequencing 

Approximately 5103 cells collected from six melanoma cell lines: WM-115, WM-

266-4, IGR39, IGR37, WM793 and 1205Lu, respectively, were lysed and treated with 

bisulfite using the EZ DNA Methylation-Direct Kit (Zymo Research, CA). The resulting 

DNA was subsequently amplified using ZymoTaq DNA Polymerase (Zymo Research, 

CA). RAB38 primers were designed using the MethPrimer 2.0 online tool 

(http://www.urogene.org/methprimer2/) to amplify the 179 bp fragment of the promoter 

region of the bisulfite converted-RAB38 gene (Chr11: 87,908,686–87,908,864, UCSC 

Genome Browser Human Feb. 2009 Assembly, GRCh37/hg19). The outer PCR was set up 

using the following primers: RAB38 forward primer, 5-

GGTTAGGGTTATAGGTGAAAATAGT-3, RAB38 reverse primer, 5- 

AACTCCTCCCCTAAAAATTAATCC-3. The reaction mixture was heated to 95°C for 

10 min followed by 40 cycles, denaturing at 95°C for 30 sec, annealing at 55°C for 45 sec 

and elongating at 72°C for 1 min, followed by a final elongation step at 72°C for 7 min. 
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The successful amplification and the right size of the amplicon were validated using 2% 

agarose gel. Amplicons were purified using the E.Z.N.A. Gel Extraction Kit (Omega Bio-

tek, GA). The purified PCR products were cloned into the pGEM®-T vector (Promega 

Corporation, WI) and the ligation products were selected by blue/white colony screening. 

Ten white colonies selected for each cell line were grown in liquid Lysogeny broth (LB) 

media overnight and the plasmids were extracted using GeneJET Plasmid Miniprep kit 

(Thermo Fishier Scientific, MA). The plasmids were then subjected to Sanger sequencing 

and the methylation status of each individual CpG dinucleotides in the amplicon was 

subsequently determined. Sequencing results were analyzed by the BiQ Analyzer software 

(http://biq-analyzer.bioinf.mpi-inf.mpg.de/) to generate the lollipop-representation. 

2.1.14 5-Aza-2-deoxycytidine (5-Aza) Treatment. 

WM-115 and IGR39 cells were seeded at a density of 2×104 cells/mL and treated at 24 

h later with 5 μM 5-Aza (Sigma-Aldrich, MO). Dimethyl sulfoxide (DMSO) was used as 

the vehicle control. The cells were replenished with freshly prepared DMSO/5-Aza in 

complete growth medium in every 24 h for up to 96 h of treatment (four pulses). Total 

RNAs were isolated for cDNA conversion and RT-qPCR analyses. 

2.3 Results 

2.3.1 Development of a High-throughput LC-MRM Assay for Targeted Quantitative 

Profiling of Small GTPases in Cultured Human Cancer Cells 

We set out to develop a high-throughput, multiplexed MRM-based targeted proteomics 

method for interrogating small GTPases in the entire human proteome. In this context, 

Halvey et al. 16 developed an LC-MRM method for quantifying wild-type and mutant K-
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RAS proteins in cultured cancer cells and pancreatic cyst fluids after enrichment of low-

molecular weight (20–25 kDa) proteins using sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE). In addition, Zhang et al. 17 described the use of MRM in 

combination with SDS-PAGE-based enrichment of proteins in the molecular weight range 

of 15–25 kDa to measure simultaneously the activities of 12 small GTPases after affinity 

enrichment using the GTPase-binding domains of four effector proteins. Building upon 

these previous studies, we developed an SDS-PAGE fractionation coupled with LC-MRM 

workflow for targeted quantification of small GTPases at the entire proteome scale. 

A high-throughput LC-MRM workflow for the proteome-wide interrogation of small 

GTPases requires the collection of tandem mass spectra and chromatographic retention 

time of unique (or signature) peptides derived from the targeted small GTPases. Because 

the expression of small GTPases differs among different cell lines, we established an MRM 

spectral library based on the data collected from shotgun proteomic analyses of tryptic 

digestion mixtures of low-molecular weight proteins (15–37 kDa) from the lysates of 9 

human cell lines of different tissue origins. These included GM00637 (skin), HCT-116 

(colon), HEK293T (kidney), HL-60 (peripheral blood), Jurkat T (peripheral blood), K562 

(bone marrow), MCF-7 (breast), WM-115 (skin), and WM-266-4 (skin). To this end, we 

fractionated the whole-cell protein lysate using SDS-PAGE, excised the gel bands in the 

molecular weight region of 15–37 kDa, reduced the cysteine residues in proteins with 

dithiothreitol and alkylated them with iodoacetamide. The proteins were then digested in 

gel with trypsin and the resulting peptide mixtures subjected to LC-MS/MS analysis in the 

DDA mode. The identified proteins (>5000) were then filtered using the DAVID 
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bioinformatic tool with the Gene Ontology (GO) term of “small GTPase”.10 The tandem 

mass spectra of all peptides from small GTPases along with their retention time information 

were subsequently imported into Skyline (version 3.6)18 to establish the MRM spectral 

library. 

To achieve reliable MRM-based quantification, we selected an average of three 

peptides that are unique for each small GTPase, and when necessary, to its specific 

isoform(s). To maximize selectivity and sensitivity for the MRM measurements, we chose 

the transitions corresponding to the formation of the three most abundant y-ions based on 

the MS/MS acquired from shotgun proteomic analyses (Figure 2.1).19 The complete list of 

small GTPases of the Ras superfamily was organized according to the individual 

subfamilies (Ras, Rho, Rab, Sar1/Arf, Ran, and others). The current version of the MRM 

spectral library encompassed 432 distinct peptides representing 113 non-redundant small 

GTPases encoded by unique genes. To our knowledge, this is the first targeted proteomic 

method developed for profiling comprehensively the Ras superfamily of small GTPases. 

To increase the throughput of the assay, we employed scheduled LC-MRM with the 

use of normalized retention time (iRT) 14. The iRT is a dimensionless score for a peptide 

derived from its empirical retention time observed in shotgun proteomic analysis and the 

retention times for a set of standard peptides analyzed under the same LC conditions. In 

scheduled LC-MRM analysis, the mass spectrometer could be scheduled to collect subsets 

of transitions in predefined retention time windows according to the chromatographic 

setup, where the retention times for the targeted peptides were predicted from their iRT 

values in the library and from the actual retention times observed for the standard peptides. 



52 

 

In doing so, we established a robust and high-throughput MRM-based targeted proteomic 

workflow for the Ras superfamily of small GTPases, where the 432 unique peptides from 

small GTPases could be monitored in a single LC-MRM run. 

2.3.2 Scheduled LC-MRM Analysis Revealed Differential Expression of Small GTPases 

in Paired Primary/Metastatic Melanoma Cells 

Paired cell lines derived from the same cancer patients are powerful resources for 

investigating the mechanisms of cancer progression. Here we employed three pairs of 

primary/metastatic melanoma cell lines for the targeted analyses of small GTPases: The 

“WM” pair consists of WM-115 and WM-266-4, which were derived from the primary 

tumor site and the right thigh skin metastatic site of the same melanoma patient, 

respectively;20 the “IGR” pair is comprised of IGR39 and IGR37, which were respectively 

derived from the primary tumor site and the groin metastatic site of another individual;21 

in the “WMLu” pair, WM793 was initiated from a superficial spreading melanoma, and 

1205Lu was derived from a lung metastasis of WM793 cells after subcutaneous injection 

into the tail vein of an immune-deficient mouse.22 

We employed stable isotope-labeling by amino acid in cell culture (SILAC),23 in 

conjunction with the above-described SDS-PAGE fractionation and LC-MRM analysis, 

for assessing the differential expression of small GTPases in the three pairs of matched 

primary/metastatic melanoma cells (Figure 2.1). To this end, we first modified the Skyline 

MRM library by incorporating the corresponding transitions for the “heavy” forms of 

precursor and fragment ions. By using this approach, we were able to quantify 

approximately 100 small GTPases in each of the three paired melanoma cell lines. Among 
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the 101 small GTPases quantified for the WM pair (Figure 2.2), 14 and 10 were 

substantially up- and down-regulated (by at least 1.5-fold), respectively, in the metastatic 

(WM-266-4) relative to the primary (WM-115) melanoma cells (Figure 2.3). In addition, 

among the 93 small GTPases quantified for the IGR pair, 20 and 12 were considerably up- 

and down-regulated, respectively, in the metastatic (IGR37) relative to the primary 

(IGR39) melanoma cells (Figure 2.3). Of the 93 small GTPases quantified for the third 

pair, 9 and 24 were up- and down-regulated by at least 1.5-fold in the metastatic (1205Lu) 

compared to the primary (WM793) melanoma cells, respectively (Figure 2.3). 

We also explored the similarities and differences in the expression profiles of small 

GTPases by hierarchical clustering analysis of the quantitative proteomics data. It turned 

out that the features in differential expression of small GTPases, induced by metastatic 

transformation, were more similar for the WM and IGR pairs than between either of the 

two pairs and the WMLu pair (Figure 2.3). This might be attributed in part to the 

differences in transcriptional and/or epigenetic regulations in the three pairs of melanoma 

cell lines (vide infra) and the fact that the metastatic lines in the first two pairs were derived 

from melanoma patients, whereas that of the last pair was obtained from experimental 

metastasis in mouse, as noted above. 

It is worth noting that, by utilizing the iRT algorithms, we were able to accurately 

predict the actual retention times for the targeted peptides with the use of a 6-min retention 

time window. As depicted in Figure 2.4, the R2 values were 0.992 and 0.996 for LC-MRM 

measurements of peptide samples obtained from the WM-115/WM266-4 and 



54 

 

IGR39/IGR37 paired cell lines, respectively. Moreover, this method also displayed 

excellent reproducibility between different replicates. 

For comparison, we also analyzed the peptide samples from the WM-115/WM-266-4 

cells using shotgun proteomic approach on an LTQ Orbitrap Velos mass spectrometer. The 

results showed that the LC-MRM method outperformed the shotgun proteomic method in 

reproducibility and sensitivity, the latter of which is reflected by the pronouncedly larger 

numbers of small GTPases quantified by the former method (Figure 2.4). The excellent 

reproducibility of the MRM-based quantification is manifested by the observation that 101 

small GTPase proteins could be reproducibly quantified in all three sets of SILAC labeling 

experiments. In contrast, among the 59 small GTPases detected by the shotgun proteomic 

method, 9 and 4 were exclusively detected in the forward- and reverse-SILAC experiments, 

respectively (Figure 2.4). Taken together, the established targeted proteomic workflow 

provided excellent sensitivity and reproducibility, and it allowed for robust and high-

throughput quantifications of small GTPases in melanoma cells. 

2.3.3 Targeted Proteomics Revealed the Up-regulation of RAB27A and RAB38 in WM-

266-4 and IGR37 Metastatic Melanoma Cells 

One goal of the present study was to uncover small GTPases that drive and/or suppress 

melanoma metastasis. Hence, we expected to confirm the differential expression of some 

previously reported drivers and/or suppressors for melanoma metastasis. In this vein, 

RAB27A was shown to promote melanoma metastasis through the regulation of the MET 

network.24 Indeed, our LC-MRM data revealed significant up-regulations of RAB27A in 

the WM-266-4 and IGR37 metastatic melanoma cell lines relative to the corresponding 
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primary melanoma cells, though similar observation was not made for the WMLu pair 

(Figure 2.5). 

Our LC-MRM quantification data showed that 14, 20 and 12 small GTPases were 

differentially expressed by at least two-fold in the metastatic (i.e. WM-266-4, IGR-37, and 

1205Lu) compared to the corresponding paired primary (i.e. WM-115, IGR-39, and 

WM793) melanoma cells. Among other differentially expressed small GTPases, RAB38 

was expressed at much lower levels in two out of the three primary melanoma cell lines 

(WM-115 and IGR39) than the corresponding metastatic lines (WM-266-4 and IGR37), as 

determined from LC-MRM analyses and confirmed by Western blot analyses (Figure 2.6). 

RAB38 was, however, not detectable in the WM793 or 1205Lu cells by LC-MRM or 

Western blot analyses (Figure 2.6). We also validated, by using Western blot analyses, the 

LC-MRM quantification results for several other small GTPases, including RAB12, 

RAB31, and RAB32 (data not shown). The highly consistent results obtained from LC-

MRM and Western blot analyses underscored the robustness of the LC-MRM method in 

assessing quantitatively the differential expression of small GTPase proteins. 

2.3.4 Potential Roles of RAB38 in Melanoma Progression 

We next asked whether RAB38 expression level modulates prognosis in melanoma 

patients. We performed Kaplan-Meier survival analysis in melanoma patient cohort in the 

Cancer Genome Atlas (TCGA) database, and the results showed that poorer patient 

survival was significantly correlated with higher levels of mRNA expression of RAB38 

gene (hazard ratio, HR = 1.323; 95% confidence interval, 95% CI = 1.009−1.736; Logrank 

p = 0.0402) (Figure 2.7). Furthermore, pan-cancer analysis of TCGA data using cBio 



56 

 

Cancer Genomics Portal (cBioPortal: http://www.cbioportal.org/)25 revealed that the 

mRNA expression levels of RAB38 gene were highly up-regulated in two types of 

melanoma (skin cutaneous melanoma, SKCM; uveal melanoma, UVM) compared to other 

types of cancers (Figure 2.7). 

We also queried public databases for the expression levels of RAB38 gene in other 

melanoma cell lines. First, analysis of the NCI-60 Human Tumor Cell Lines Database 

(https://dtp.cancer.gov/discovery_development/nci-60/) revealed the marked up-

regulation of RAB38 gene in various metastatic melanoma cell lines (Figure 2.7). Likewise, 

the mRNA expression levels of RAB38 gene were up-regulated in the majority of 61 

metastatic melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) Database 

(http://www.broadinstitute.org/ccle/home) (Figure 2.7). Moreover, we utilized publicly 

accessible transcriptomic profiles in the Gene Expression Omnibus (GEO) database to 

analyze the mRNA expression of small GTPases in melanoma cells. In particular, we 

assessed previously published data about the differential gene expression between the 

highly metastatic human melanoma cell lines derived from an animal metastasis model and 

the poorly metastatic parental lines (accession number: GSE7929).26 We found that RAB38 

mRNA levels were again significantly up-regulated in the highly metastatic melanoma 

cells relative to the poorly metastatic counterparts (Figure 2.7). Taken together, the above 

results suggested RAB38 as a potential driver for melanoma metastasis. 

http://www.cbioportal.org/
https://dtp.cancer.gov/discovery_development/nci-60/
http://www.broadinstitute.org/ccle/home
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2.3.5 RAB38 Promotes Invasion of Melanoma Cells through Up-regulation of Matrix 

Metalloproteinases (MMPs) 

We next investigated, by employing transwell migration and invasion assay, whether 

the invasive phenotypes of melanoma cells could be modulated by the expression levels of 

RAB38 gene. Our results showed that ectopic overexpression of RAB38 protein in the WM-

115 primary melanoma cells to a similar level as that in the metastatic WM-266-4 cells 

resulted in a significant increase in the number of invaded cells (Figure 2.8). Reciprocal 

experiment with the metastatic WM-266-4 cells showed that the siRNA-mediated 

knockdown of RAB38 led to a significant decline in cell invasion, which is accompanied 

with a slight diminution of cell migration (Figure 2.8). In this vein, the knockdown 

efficiency of RAB38 gene by siRNA was confirmed by both real-time quantitative PCR 

(RT-qPCR) and immunoblot analysis. Collectively, we demonstrated that RAB38 

promotes melanoma invasion in vitro. 

We also examined the roles of matrix metalloproteinases (MMPs) in RAB38-mediated 

alterations in invasiveness of melanoma cells. Degradation of extracellular matrix (ECM) 

proteins by MMPs, a family of zinc- and calcium-dependent proteolytic enzymes, 

constitutes a crucial initiating step in tumor invasion. Among the 23 members of the human 

MMP family, MMP2 (gelatinase A) and MMP9 (gelatinase B) are responsible for 

remodeling the ECM environment and facilitating cancer metastasis.27 Hence, we explored 

how the expression levels of RAB38 alter the mRNA expression and enzymatic activities 

of MMP2 and MMP9. 
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Consistent with the RT-qPCR results showing the diminished mRNA expression of 

MMP2 and MMP9 genes, gelatin zymography assay showed that the RNAi knockdown of 

RAB38 led to markedly diminished activities of both the pro-enzyme and active forms of 

MMP2 and MMP9 in the metastatic WM-266-4 cells (Figure 2.9). This result supports the 

role of RAB38 in modulating the mRNA expression and activities of MMP2 and MMP9, 

thereby altering the invasive potential of melanoma cells. In a reciprocal experiment, 

overexpression of RAB38 induced slight, yet significant increases in the enzymatic 

activities of MMP2 and MMP9 in WM-115 primary melanoma cells, which were in 

accordance with the heightened mRNA expression of these two genes as revealed by RT-

qPCR analysis (Figure 2.9). Together, these results demonstrated that RAB38 regulates the 

expression levels and activities of MMP2 and MMP9 in melanoma cells. 

Having revealed the regulatory roles of RAB38 in the secretion of MMPs in WM-115 

and WM-266-4 melanoma cell lines, we extended our studies to IGR37 and M14 metastatic 

melanoma cells. In this context, M14 cells were also chosen for the study because these 

cells displayed pronounced expression of RAB38 (Figure 2.10). Consistent with our 

hypothesis, RT-qPCR experiments revealed down-regulations of MMP2 and MMP9 after 

RNAi knockdown of RAB38 in M14 cells (Figure 2.10). In addition, in IGR37 cells, we 

only observed diminished mRNA levels of MMP9, but not MMP2, after RNAi knockdown 

of RAB38 (Figure 2.10). Similar as what we observed for WM-266-4 cells, gelatin 

zymography assay results showed that RAB38 knockdown led to significantly decreased 

activities of MMP2 and MMP9 in M14 and IGR37 cells (Figure 2.10), lending further 

evidence to support that RAB38 regulates MMP2 and MMP9 activities in a range of 
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metastatic melanoma cell lines. The observation of a decreased level of secreted MMP2 

protein from IGR37 cells, but not the mRNA expression of the MMP2 gene in these cells, 

upon genetic depletion of RAB38 suggests that RAB38 modulates the level of secreted 

MMP2 through a post-transcriptional mechanism. 

2.3.6 Epigenetic Reactivation of RAB38 in Metastatic Melanoma Cells 

We next examined the mechanisms through which RAB38 gene was overexpressed in 

metastatic over primary melanoma cells. We first asked whether elevated RAB38 

expression is accompanied with previously reported genetic alterations in melanoma, 

including mutations in BRAF, NRAS and TP53 genes. It turned out that, in the TCGA 

SKCM patient cohort, the expression levels of RAB38 gene did not exhibit any significant 

correlations with frequently observed mutations in BRAF, NRAS, or TP53 gene. 

Numerous studies have underscored the significant roles of epigenetic and 

transcriptional regulations of oncogenes during cancer progression;28 hence, we next 

assessed whether these mechanisms contribute to elevated expression of RAB38 gene in 

metastatic melanoma cells. Microphthalmia-associated transcription factor (MITF) is the 

master regulator of melanocyte development, function, and survival through modulating 

many genes involved in differentiation and cell cycle progression.29 In this vein, earlier 

ChIP-Seq experiments conducted in 501Mel human melanoma cells identified MITF loci 

immediately upstream of the promoters of several Rab GTPase genes, including, among 

others, RAB27A and RAB38.30 Therefore, we next asked whether elevated expression of 

RAB38 in the metastatic WM-266-4 and IGR37 cells are due to heightened transcriptional 

regulation mediated by MITF. We indeed observed the up-regulation of MITF at both the 
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mRNA and protein levels in the two metastatic lines of melanoma cells (i.e. WM-266-4 

and IGR37) relative to the corresponding primary melanoma cells (i.e. WM-115 and 

IGR39), though the mRNA expression of MITF was not detectable in 1205Lu cells. 

To explore further the possible functional linkage between RAB38 expression and 

MITF regulation, we analyzed publicly available data for different cell line and patient 

cohorts. In cohort GSE7929, both MITF and RAB38 were highly up-regulated at the mRNA 

levels in the highly metastatic derivatives of A375 human melanoma cells in comparison 

with the poorly metastatic parental lines. In addition, interrogation of the gene expression 

data of 120 melanoma cell lines (120Mel) and the Cancer Cell Line Encyclopedia (CCLE) 

Database (http://www.broadinstitute.org/ccle/home) revealed that the mRNA expression 

levels of RAB38 and MITF were positively correlated. 

We also extended the bioinformatic analyses by examining RAB38/MITF expressions 

in different patient cohorts including the TCGA-SCKM cohort and two other patient 

cohorts (GSE7553 and GSE8401) retrieved from the GEO database. We again observed a 

clear positive correlation between MITF and RAB38 in both primary and metastatic 

melanoma tissues (Figure 2.11). Notably, RAB38 expression was significantly up-regulated 

in the metastatic melanoma tissues relative to primary melanoma tissues from patients 

displaying MITF-high signature, namely for the patient population stratified with higher 

levels of MITF expression (Figure 2.11); however, an opposite trend was observed for 

patients exhibiting MITF-low signature, suggesting that the upregulation of RAB38 in 

metastatic melanoma is likely driven by MITF. Moreover, pathway analysis of the RAB38 

http://www.broadinstitute.org/ccle/home
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gene co-expression signature in the TCGA-SKCM data showed that MITF is highly 

enriched and functionally involved with RAB38 (Figure 2.11). 

We also extended the analyses of the TCGA data to two known driver genes for 

melanoma metastasis, i.e. RAB27A and TBC1D16, both of which are enriched in the RAB38 

gene co-expression signature and regulated by MITF (Figure 2.12). Similar to RAB38, in 

two additional patient cohorts (GSE7553 and GSE8401), we observed significantly higher 

levels of expression of RAB27A and TBC1D16 in the metastatic melanoma tissue samples 

carrying MITF-high signature (i.e. with high levels of MITF expression), but not in those 

with MITF-low signature (Figure 2.12). 

To further substantiate the direct regulation of RAB38 by MITF, we performed 

chromatin immunoprecipitation (ChIP) followed by quantitative PCR (ChIP-qPCR) 

analysis to assess the occupancy of MITF protein in the promoter regions of RAB38 and 

TBC1D16 genes. In this respect, the 47-kDa isoform of TBC1D16 was observed to be 

regulated by MITF through binding to its remote promoter region.31-32 Indeed, our ChIP-

qPCR results revealed higher levels of enrichment of MITF to the promoter elements of 

both RAB38 and TBC1D16 genes in WM-266-4 cells relative to WM-115 cells, suggesting 

that RAB38 is directly regulated by MITF in the metastatic WM-266-4 melanoma cells 

(Figure 2.12). 

Having assessed the MITF-mediated transcriptional regulation of RAB38, we next 

asked whether the expression of RAB38 in these melanoma cells are epigenetically 

modulated. Analyses of the previously published methylation microarray data for 

IGR39/IGR37 (accession number: GSE46522) and WM-115/WM-266-4 (accession 
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number: GSE70621) cells showed diminished levels of cytosine methylation at several 

CpG sites in the promoter region of RAB38 gene in the metastatic over primary melanoma 

cells (Figure 2.13). These results suggest that promoter hypomethylation and the ensuing 

epigenetic reactivation may elicit increased levels of RAB38 expression in the two 

metastatic lines (i.e. IGR37 and WM-266-4). To further substantiate this finding, we 

assessed the methylation status at 10 CpG sites in the promoter region of RAB38 gene in 

the three pairs of primary/metastatic melanoma cell lines by employing bisulfite 

sequencing. Strikingly, our results revealed that these 10 CpG sites were entirely 

unmethylated (0.0% methylation) in WM-266-4 and IGR37 cells, whereas the overall 

methylation levels at these sites were 98.0% and 41.0% in WM-115 and IGR39 cells, 

respectively (Figure 2.13). In contrast, these CpG sites are hypermethylated in both the 

WM793 (99.0%) and its matched metastatic melanoma line (i.e. 1205Lu, 93.0%) (Figure 

2.13). These results support that epigenetic reactivation contributes to elevated expression 

of RAB38 in the metastatic lines of the WM and IGR pairs of melanoma cells, whereas 

epigenetic silencing led to lack of detectable levels of RAB38 protein in the primary or 

metastatic melanoma lines of the WMLu pair. To further validate that RAB38 expression 

is regulated by CpG methylation, we treated WM-115 and IGR39 cells with a DNA 

demethylating reagent, 5-aza-2-deoxycytidine (5-Aza), for 96 h, and assessed the mRNA 

levels of RAB38 by RT-qPCR. Indeed, our results showed that expression level of RAB38 

was significantly increased upon 5-Aza treatment (Figure 2.13). 

We also assessed whether RAB38 hypomethylation occurs in metastatic melanoma 

patients of a previously reported melanoma cohort (accession number: GSE44662). It 
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turned out that the promoter methylation of RAB38 gene was significantly lower in 

metastatic than primary melanoma tissues (Figure 2.14). In addition, analysis of the TCGA-

SKCM cohort revealed that the mRNA expressions of MITF and RAB38 genes were 

inversely correlated with their promoter methylation levels, and promoter hypomethylation 

of the RAB38 gene was correlated with poor patient survival (Figure 2.14). 

Together, our above results furnished evidence to support a model where loss of 

cytosine methylation in the promoter region of RAB38 gene leads to its epigenetic 

reactivation, which involves augmented binding of MITF transcription factor to the 

promoter region. 

2.4 Discussion 

Small GTPases of the Ras superfamily are master regulators of cellular trafficking. 

Here, we developed a novel targeted quantitative proteomic method for human small 

GTPase proteome with an unprecedented level of coverage. Our MRM-based targeted 

proteomic method enabled a powerful and high-throughput discovery of small GTPases 

that become aberrantly expressed during metastatic transformation of melanoma. 

Our quantitative proteomic data, along with the results obtained from cell-based assays 

and from bioinformatic analyses of publicly available data, support the role of RAB38 in 

promoting melanoma metastasis. Thus, RAB38 joins other members of the small GTPase 

family that regulate melanoma metastasis, including RAB27A,5 RND3,33 and ARF6.34 

RAB38 displays a unique tissue-specific expression pattern, with the highest levels 

being observed in the lung and skin.35 Together with RAB27A and RAB32, RAB38 has a 

well-established function in regulating the melanosome biogenesis and maturation.36 It was 
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also found to be important for pigmentation in chocolate mice by regulating the trafficking 

of tyrosinase-related protein 1 (TYRP1).37 Furthermore, previous studies unveiled the role 

of RAB38 in mesenchymal subtypes and malignant progression of glioma, where elevated 

expression of RAB38 confers poor prognosis in glioma patients.38 However, no reports 

have yet elucidated the mechanistic relationship between RAB38 and the invasive 

properties of any type of tumor. Here, we unveiled a previously unrecognized role of 

RAB38 in regulating melanoma metastasis. Furthermore, our results support that RAB38 

promotes melanoma progression by regulating the secretion and activities of MMP2 and 

MMP9, which are essential for metastatic transformation of tumor cells. 

To the best our knowledge, this is the first report to link RAB38 with matrix 

metalloproteinase pathways. Several small GTPases were previously reported to be 

involved in the regulation of the MMP pathways through their roles in trafficking. For 

instance, RAB37 was previously identified as a metastasis suppressor in lung 

adenocarcinoma by influencing the metallopeptidase inhibitor 1 (TIMP1)-MMP9 

pathway.39 In particular, RAB37 was found to suppress metastasis through regulating the 

exocytotic trafficking of TIMP1, thereby inactivating MMP9 signaling and suppressing 

invasion. Moreover, RAB2A and RAB27B were shown to promote breast cancer invasion 

by stimulating endocytic trafficking of membrane type 1 (MT1)-MMP and MMP2, 

respectively.40-41 Thus, we reason that RAB38 may play a novel role in the endocytic or 

exocytotic trafficking of MMP enzymes and/or their regulators, and future studies are 

warranted for illustrating the exact mechanisms through which RAB38 regulates MMPs. 
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We also explored the potential upstream mechanisms of RAB38 regulation. In this 

connection, our results revealed a strong correlation between the mRNA expressions of 

RAB38 and MITF. Furthermore, we observed a complete loss of cytosine methylation, 

which is accompanied with elevated enrichment of MITF transcription factor, in the 

promoter of RAB38 gene in WM-266-4 cells relative to WM-115 cells, supporting that 

epigenetic reactivation contributes to the elevated expression of RAB38 gene in metastatic 

melanoma cells. The complete loss of promoter methylation was also observed for the 

metastatic IGR37 cells, but not for the metastatic 1205Lu cells or the paired WM793 

primary melanoma cells. These findings are consistent with the relative levels of RAB38 

proteins in the three paired melanoma cell lines. In this context, it is worth noting that 

Mueller et al.42 observed, from Western blot analysis, higher levels of RAB38 in 2 human 

melanocyte samples than 3 primary and 3 metastatic melanoma tissues, though these cells 

and tissues were not derived from the same patients. These observations are in line with 

the notion that melanoma is a highly heterogeneous type of cancer.43 Further studies are 

therefore needed to reveal the mechanisms underlying the metastatic transformation for the 

WM793/1205Lu paired cell lines. Nevertheless, the interrogation of TCGA and other 

patient cohort data uncovered a significant correlation between the elevated mRNA 

expression level of RAB38 gene, or its promoter hypomethylation, and poor prognosis in 

melanoma patients. Moreover, a strong correlation between the expression levels of MITF 

and RAB38 genes was observed in a large number of melanoma cell lines and tumor tissues. 

Thus, this epigenetic and transcriptional mechanism might be at play for a substantial 

subset of melanoma patients. 



66 

 

Apart from RAB38, our targeted proteomic approach led to the discovery of other small 

GTPases that may function in melanoma metastasis. For instance, the consistent down-

regulation of RAB12 in the WM-266-4 and 1205Lu metastatic melanoma cells relative to 

their primary melanoma counterparts suggests that this protein may serve as a suppressor 

for melanoma metastasis. RAB12 was found to regulate the constitutive degradation of 

transferrin receptor,44 and elevated levels of transferrin receptors were previously observed 

in melanoma cells metastasized to brain.45 Thus, RAB12 may suppress melanoma 

metastasis through elevated accumulation of transferrin receptors. Furthermore, we found 

that RAB31 was consistently down-regulated in all three metastatic melanoma lines 

relative to the corresponding primary lines. Grismayer et al.46 demonstrated that the 

increased levels of RAB31 led to a switch of invasive to proliferative phenotype in breast 

cancer cells. It will be important to explore, in the future, the role of RAB31 in the 

metastatic transformation of other types of cancer, including melanoma. 

Small GTPases, like other types of GTP-binding proteins, can shuffle between the 

GTP-bound active states and the GDP-bound inactive states, which are regulated by GEFs, 

GAPs and GDIs.2 The conformational alterations of small GTPases between these two 

states can modulate their binding towards different downstream effector proteins.2 In this 

vein, a limitation of our targeted proteomic approach is its inability in profiling the 

activities of small GTPases. This limitation can be overcome by further multiplexing the 

assay with affinity-based techniques. As discussed above, by combining affinity 

enrichment with gel-based fractionation, Zhang et al.17 developed an MRM-based assay to 

profile the activities of 12 small GTPases; however, the throughput of this assay was 
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relatively low. In addition, proteome-wide enrichment of active small GTPases using 

binding domains of their effector proteins is very challenging due to the tremendous 

structural diversity of effectors and the lack of knowledge about the effectors for some 

small GTPases. On the other hand, enrichment of small GTPases and other GTP-binding 

proteins with the use of acyl nucleotide affinity probes,47 together with LC-MRM analysis, 

may constitute an alternative approach for high-throughput profiling of activities of small 

GTPases. Such an approach is currently being explored in our laboratory. 

In conclusion, we developed successfully a novel MRM-based targeted quantitative 

proteomic method for the comprehensive profiling of small GTPases. By using this 

method, we assessed the differential expression of small GTPases in paired 

primary/metastatic melanoma cell lines. The method, when combined with bioinformatic 

analysis of publicly available data and cell-based assays, constitutes an integrated and 

effective approach to discover small GTPase that serve as drivers or suppressors for 

melanoma metastasis. We found that RAB38 promotes melanoma metastasis in vitro 

through the regulation of matrix metalloproteinases, and the increased expression of 

RAB38 in metastatic melanoma cells arises from diminished promoter methylation and 

heightened binding of the MITF transcription factor. It can be envisaged that the targeted 

proteomic method can also be employed for studying small GTPase signaling (e.g. for 

discovering small GTPase substrates for GEFs and GAPs) and for investigating the 

implications of small GTPases in other aspects of cancer biology or cancer therapy (e.g. in 

therapeutic resistance). 
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Our finding that epigenetic reactivation of RAB38 gene stimulates melanoma 

metastasis suggests that the expression level of RAB38, in conjunction with the expression 

level of MITF, may serve as a biomarker for the prognosis of melanoma patients. In 

addition, targeting epigenetic modulation of RAB38 and/or its interactions with other 

proteins may serve as the basis for the therapeutic interventions of metastatic melanoma. 

In the latter respect, small-molecule inhibitors were previously reported for suppressing 

the interactions between small GTPases and their effector or GEF proteins.48-49 

 



69 

 

1. Takai, Y.; Sasaki, T.; Matozaki, T., Small GTP-binding proteins. Physiol Rev 2001, 81, 

153-208. 

2. Bos, J. L.; Rehmann, H.; Wittinghofer, A., GEFs and GAPs: critical elements in the 

control of small G proteins. Cell 2007, 129, 865-77. 

3. Stenmark, H., Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Bio 

2009, 10, 513-525. 

4. Clark, E. A.; Golub, T. R.; Lander, E. S.; Hynes, R. O., Genomic analysis of metastasis 

reveals an essential role for RhoC. Nature 2000, 406, 532-5. 

5. Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, 

G.; Hergueta-Redondo, M.; Williams, C.; Garcia-Santos, G.; Ghajar, C.; Nitadori-Hoshino, 

A.; Hoffman, C.; Badal, K.; Garcia, B. A.; Callahan, M. K.; Yuan, J.; Martins, V. R.; Skog, 

J.; Kaplan, R. N.; Brady, M. S.; Wolchok, J. D.; Chapman, P. B.; Kang, Y.; Bromberg, J.; 

Lyden, D., Melanoma exosomes educate bone marrow progenitor cells toward a pro-

metastatic phenotype through MET. Nat Med 2012, 18, 883-91. 

6. Lange, V.; Picotti, P.; Domon, B.; Aebersold, R., Selected reaction monitoring for 

quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4. 

7. Picotti, P.; Aebersold, R., Selected reaction monitoring-based proteomics: workflows, 

potential, pitfalls and future directions. Nat Methods 2012, 9, 555-66. 

8. Society, A. C. Cancer Facts and Figures-2018; American Cancer Society: Atlanta, GA, 

2018; pp 1-52. 

9. Lo, J. A.; Fisher, D. E., The melanoma revolution: from UV carcinogenesis to a new era 

in therapeutics. Science 2014, 346, 945-9. 

10. Huang, D. W.; Sherman, B. T.; Lempicki, R. A., Systematic and integrative analysis of 

large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4, 44-57. 

11. Cerami, E.; Gao, J. J.; Dogrusoz, U.; Gross, B. E.; Sumer, S. O.; Aksoy, B. A.; 

Jacobsen, A.; Byrne, C. J.; Heuer, M. L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A. 

P.; Sander, C.; Schultz, N., The cBio Cancer Genomics Portal: An Open Platform for 

Exploring Multidimensional Cancer Genomics Data. Cancer Discovery 2012, 2, 401-404. 

12. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A. A.; Kim, S.; 

Wilson, C. J.; Lehar, J.; Kryukov, G. V.; Sonkin, D.; Reddy, A.; Liu, M.; Murray, L.; 

Berger, M. F.; Monahan, J. E.; Morais, P.; Meltzer, J.; Korejwa, A.; Jane-Valbuena, J.; 

Mapa, F. A.; Thibault, J.; Bric-Furlong, E.; Raman, P.; Shipway, A.; Engels, I. H.; Cheng, 

J.; Yu, G. K.; Yu, J.; Aspesi, P., Jr.; de Silva, M.; Jagtap, K.; Jones, M. D.; Wang, L.; 

Hatton, C.; Palescandolo, E.; Gupta, S.; Mahan, S.; Sougnez, C.; Onofrio, R. C.; Liefeld, 

T.; MacConaill, L.; Winckler, W.; Reich, M.; Li, N.; Mesirov, J. P.; Gabriel, S. B.; Getz, 

G.; Ardlie, K.; Chan, V.; Myer, V. E.; Weber, B. L.; Porter, J.; Warmuth, M.; Finan, P.; 

Harris, J. L.; Meyerson, M.; Golub, T. R.; Morrissey, M. P.; Sellers, W. R.; Schlegel, R.; 

Garraway, L. A., The Cancer Cell Line Encyclopedia enables predictive modelling of 

anticancer drug sensitivity. Nature 2012, 483, 603-7. 

13. Yocum, A. K.; Chinnaiyan, A. M., Current affairs in quantitative targeted proteomics: 

multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic 2009, 8, 

145-57. 



70 

 

14. Escher, C.; Reiter, L.; MacLean, B.; Ossola, R.; Herzog, F.; Chilton, J.; MacCoss, M. 

J.; Rinner, O., Using iRT, a normalized retention time for more targeted measurement of 

peptides. Proteomics 2012, 12, 1111-1121. 

15. Kawahara, R.; Bollinger, J. G.; Rivera, C.; Ribeiro, A. C.; Brandao, T. B.; Paes Leme, 

A. F.; MacCoss, M. J., A targeted proteomic strategy for the measurement of oral cancer 

candidate biomarkers in human saliva. Proteomics 2016, 16, 159-73. 

16. Halvey, P. J.; Ferrone, C. R.; Liebler, D. C., GeLC-MRM quantitation of mutant KRAS 

oncoprotein in complex biological samples. J Proteome Res 2012, 11, 3908-13. 

17. Zhang, C. C.; Li, R.; Jiang, H.; Lin, S.; Rogalski, J. C.; Liu, K.; Kast, J., Development 

and application of a quantitative multiplexed small GTPase activity assay using targeted 

proteomics. J Proteome Res 2015, 14, 967-76. 

18. MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, 

B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J., Skyline: an open source 

document editor for creating and analyzing targeted proteomics experiments. 

Bioinformatics 2010, 26, 966-8. 

19. Liebler, D. C.; Zimmerman, L. J., Targeted quantitation of proteins by mass 

spectrometry. Biochemistry 2013, 52, 3797-806. 

20. Balaban, G.; Herlyn, M.; Guerry, D. t.; Bartolo, R.; Koprowski, H.; Clark, W. H.; 

Nowell, P. C., Cytogenetics of human malignant melanoma and premalignant lesions. 

Cancer Genet Cytogenet 1984, 11, 429-39. 

21. Aubert, C.; Rouge, F.; Galindo, J. R., Tumorigenicity of Human-Malignant 

Melanocytes in Nude-Mice in Relation to Their Differentiation Invitro. J Natl Cancer Inst 

1980, 64, 1029-1040. 

22. Herlyn, D.; Iliopoulos, D.; Jensen, P. J.; Parmiter, A.; Baird, J.; Hotta, H.; Adachi, K.; 

Ross, A. H.; Jambrosic, J.; Koprowski, H.; et al., In vitro properties of human melanoma 

cells metastatic in nude mice. Cancer Res 1990, 50, 2296-302. 

23. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; 

Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and 

accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1, 376-86. 

24. Peinado, H.; Aleckovic, M.; Lavotshkin, S.; Matei, I.; Costa-Silva, B.; Moreno-Bueno, 

G.; Hergueta-Redondo, M.; Williams, C.; Garcia-Santos, G.; Ghajar, C. M.; Nitadori-

Hoshino, A.; Hoffman, C.; Badal, K.; Garcia, B. A.; Callahan, M. K.; Yuan, J. D.; Martins, 

V. R.; Skog, J.; Kaplan, R. N.; Brady, M. S.; Wolchok, J. D.; Chapman, P. B.; Kang, Y. 

B.; Bromberg, J.; Lyden, D., Melanoma exosomes educate bone marrow progenitor cells 

toward a pro-metastatic phenotype through MET. Nature Medicine 2012, 18, 883-+. 

25. Cancer Genome Atlas Research, N.; Weinstein, J. N.; Collisson, E. A.; Mills, G. B.; 

Shaw, K. R.; Ozenberger, B. A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J. M., The 

Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013, 45, 1113-20. 

26. Xu, L.; Shen, S. S.; Hoshida, Y.; Subramanian, A.; Ross, K.; Brunet, J. P.; Wagner, S. 

N.; Ramaswamy, S.; Mesirov, J. P.; Hynes, R. O., Gene expression changes in an animal 

melanoma model correlate with aggressiveness of human melanoma metastases. Mol 

Cancer Res 2008, 6, 760-769. 



71 

 

27. Roomi, M. W.; Monterrey, J. C.; Kalinovsky, T.; Rath, M.; Niedzwiecki, A., Patterns 

of MMP-2 and MMP-9 expression in human cancer cell lines. Oncol Rep 2009, 21, 1323-

1333. 

28. Wouters, J.; Vizoso, M.; Martinez-Cardus, A.; Carmona, F. J.; Govaere, O.; Laguna, 

T.; Joseph, J.; Dynoodt, P.; Aura, C.; Foth, M.; Cloots, R.; van den Hurk, K.; Balint, B.; 

Murphy, I. G.; McDermott, E. W.; Sheahan, K.; Jirstrom, K.; Nodin, B.; Mallya-Udupi, 

G.; van den Oord, J. J.; Gallagher, W. M.; Esteller, M., Comprehensive DNA methylation 

study identifies novel progression-related and prognostic markers for cutaneous melanoma. 

BMC Med 2017, 15, 101. 

29. Levy, C.; Khaled, M.; Fisher, D. E., MITF: master regulator of melanocyte 

development and melanoma oncogene. Trends Mol Med 2006, 12, 406-14. 

30. Strub, T.; Giuliano, S.; Ye, T.; Bonet, C.; Keime, C.; Kobi, D.; Le Gras, S.; Cormont, 

M.; Ballotti, R.; Bertolotto, C.; Davidson, I., Essential role of microphthalmia transcription 

factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011, 

30, 2319-32. 

31. Gade, P.; Kalvakolanu, D. V., Chromatin Immunoprecipitation Assay as a Tool for 

Analyzing Transcription Factor Activity. Methods Mol Biol 2012, 809, 85-104. 

32. Vizoso, M.; Ferreira, H. J.; Lopez-Serra, P.; Carmona, F. J.; Martinez-Cardus, A.; 

Girotti, M. R.; Villanueva, A.; Guil, S.; Moutinho, C.; Liz, J.; Portela, A.; Heyn, H.; Moran, 

S.; Vidal, A.; Martinez-Iniesta, M.; Manzano, J. L.; Fernandez-Figueras, M. T.; Elez, E.; 

Munoz-Couselo, E.; Botella-Estrada, R.; Berrocal, A.; Ponten, F.; Oord, J.; Gallagher, W. 

M.; Frederick, D. T.; Flaherty, K. T.; McDermott, U.; Lorigan, P.; Marais, R.; Esteller, M., 

Epigenetic activation of a cryptic TBC1D16 transcript enhances melanoma progression by 

targeting EGFR. Nat Med 2015, 21, 741-50. 

33. Klein, R. M.; Higgins, P. J., A switch in RND3-RHOA signaling is critical for 

melanoma cell invasion following mutant-BRAF inhibition. Mol Cancer 2011, 10. 

34. Grossmann, A. H.; Yoo, J. H.; Clancy, J.; Sorensen, L. K.; Sedgwick, A.; Tong, Z.; 

Ostanin, K.; Rogers, A.; Grossmann, K. F.; Tripp, S. R.; Thomas, K. R.; D'Souza-Schorey, 

C.; Odelberg, S. J.; Li, D. Y., The small GTPase ARF6 stimulates beta-catenin 

transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci 

Signal 2013, 6, ra14. 

35. Osanai, K.; Oikawa, R.; Higuchi, J.; Kobayashi, M.; Tsuchihara, K.; Iguchi, M.; 

Jongsu, H.; Toga, H.; Voelker, D. R., A Mutation in Rab38 Small GTPase Causes 

Abnormal Lung Surfactant Homeostasis and Aberrant Alveolar Structure in Mice. Am J 

Pathol 2008, 173, 1265-1274. 

36. Hume, A. N.; Collinson, L. M.; Rapak, A.; Gomes, A. Q.; Hopkins, C. R.; Seabra, M. 

C., Rab27a regulates the peripheral distribution of melanosomes in melanocytes. J Cell 

Biol 2001, 152, 795-808. 

37. Loftus, S. K.; Larson, D. M.; Baxter, L. L.; Antonellis, A.; Chen, Y.; Wu, X.; Jiang, 

Y.; Bittner, M.; Hammer, J. A., 3rd; Pavan, W. J., Mutation of melanosome protein RAB38 

in chocolate mice. Proc Natl Acad Sci U S A 2002, 99, 4471-6. 

38. Wang, H. J.; Jiang, C. L., RAB38 confers a poor prognosis, associated with malignant 

progression and subtype preference in glioma. Oncol Rep 2013, 30, 2350-2356. 



72 

 

39. Tsai, C. H.; Cheng, H. C.; Wang, Y. S.; Lin, P.; Jen, J.; Kuo, I. Y.; Chang, Y. H.; Liao, 

P. C.; Chen, R. H.; Yuan, W. C.; Hsu, H. S.; Yang, M. H.; Hsu, M. T.; Wu, C. Y.; Wang, 

Y. C., Small GTPase Rab37 targets tissue inhibitor of metalloproteinase 1 for exocytosis 

and thus suppresses tumour metastasis. Nat Commun 2014, 5, 4804. 

40. Kajiho, H.; Kajiho, Y.; Frittoli, E.; Confalonieri, S.; Bertalot, G.; Viale, G.; Di Fiore, 

P. P.; Oldani, A.; Garre, M.; Beznoussenko, G. V.; Palamidessi, A.; Vecchi, M.; Chavrier, 

P.; Perez, F.; Scita, G., RAB2A controls MT1-MMP endocytic and E-cadherin polarized 

Golgi trafficking to promote invasive breast cancer programs. Embo Reports 2016, 17, 

1061-1080. 

41. Hendrix, A.; Maynard, D.; Pauwels, P.; Braems, G.; Denys, H.; Van den Broecke, R.; 

Lambert, J.; Van Belle, S.; Cocquyt, V.; Gespach, C.; Bracke, M.; Seabra, M. C.; Gahl, W. 

A.; De Wever, O.; Westbroek, W., Effect of the secretory small GTPase Rab27B on breast 

cancer growth, invasion, and metastasis. J Natl Cancer Inst 2010, 102, 866-80. 

42. Mueller, D. W.; Rehli, M.; Bosserhoff, A. K., miRNA expression profiling in 

melanocytes and melanoma cell lines reveals miRNAs associated with formation and 

progression of malignant melanoma. J Invest Dermatol 2009, 129, 1740-51. 

43. Merlino, G.; Herlyn, M.; Fisher, D. E.; Bastian, B. C.; Flaherty, K. T.; Davies, M. A.; 

Wargo, J. A.; Curiel-Lewandrowski, C.; Weber, M. J.; Leachman, S. A.; Soengas, M. S.; 

McMahon, M.; Harbour, J. W.; Swetter, S. M.; Aplin, A. E.; Atkins, M. B.; Bosenberg, M. 

W.; Dummer, R.; Gershenwald, J. E.; Halpern, A. C.; Herlyn, D.; Karakousis, G. C.; 

Kirkwood, J. M.; Krauthammer, M.; Lo, R. S.; Long, G. V.; McArthur, G.; Ribas, A.; 

Schuchter, L.; Sosman, J. A.; Smalley, K. S.; Steeg, P.; Thomas, N. E.; Tsao, H.; Tueting, 

T.; Weeraratna, A.; Xu, G.; Lomax, R.; Martin, A.; Silverstein, S.; Turnham, T.; Ronai, Z. 

A., The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res 

2016, 29, 404-16. 

44. Matsui, T.; Itoh, T.; Fukuda, M., Small GTPase Rab12 regulates constitutive 

degradation of transferrin receptor. Traffic 2011, 12, 1432-43. 

45. Nicolson, G. L.; Nakajima, M.; Herrmann, J. L.; Menter, D. G.; Cavanaugh, P. G.; 

Park, J. S.; Marchetti, D., Malignant-Melanoma Metastasis to Brain - Role of Degradative 

Enzymes and Responses to Paracrine Growth-Factors. J Neurooncol 1994, 18, 139-149. 

46. Grismayer, B.; Solch, S.; Seubert, B.; Kirchner, T.; Schafer, S.; Baretton, G.; Schmitt, 

M.; Luther, T.; Kruger, A.; Kotzsch, M.; Magdolen, V., Rab31 expression levels modulate 

tumor-relevant characteristics of breast cancer cells. Mol Cancer 2012, 11. 

47. Xiao, Y.; Ji, D.; Guo, L.; Wang, Y., Comprehensive characterization of (S)GTP-

binding proteins by orthogonal quantitative (S)GTP-affinity profiling and (S)GTP/GTP 

competition assays. Anal Chem 2014, 86, 4550-8. 

48. Gao, Y.; Dickerson, J. B.; Guo, F.; Zheng, J.; Zheng, Y., Rational design and 

characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl. Acad. Sci. 

USA 2004, 101, 7618-23. 

49. Ostrem, J. M.; Peters, U.; Sos, M. L.; Wells, J. A.; Shokat, K. M., K-Ras(G12C) 

inhibitors allosterically control GTP affinity and effector interactions. Nature 2013, 503, 

548-51.



73 

 

Figure 2.1 Schematic diagram showing a targeted proteomic strategy for high-

throughput quantitative profiling of small GTPases in paired primary/metastatic 

melanoma cells. 

(A) A representative MS/MS obtained from data-dependent acquisition supporting the 

reliable identification of the peptide LLALGDSGVGK from RAB27B; (B) LC-MRM 

spectra for the same peptide from targeted analysis with light- and heavy-labeled lysine on 

the C terminus, respectively. The distribution of the peak intensities was consistent with 

the theoretical distribution found in the MS/MS from the MRM spectral library; (C) 

Schematic diagram showing the targeted proteomic workflow, relying on metabolic 

labeling with SILAC, SDS-PAGE fractionation, and LC-MRM analysis, for quantifying 

the differential expressions of small GTPases in WM-115 (primary) and WM-266-4 

(metastatic) melanoma cells. 
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Figure 2.2 Heatmap showing the differential expression of small GTPases in paired 

WM-115 and WM-266-4 melanoma cells. 

Shown are the Log2R(WM-266-4/WM-115) values obtained from scheduled LC-MRM 

analyses of samples from two forward- and one reverse-SILAC labeling experiments. The 

red and blue bars designate those small GTPases that are up-and down-regulated, 

respectively, in the WM-266-4 metastatic melanoma cells as compared with in the WM-

115 primary melanoma cells, as indicated by the scale bar. 
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Figure 2.3 LC-MRM-based targeted quantitative proteomic assay revealed 

differential expression of small GTPases during melanoma metastasis.  

(A−C) Bar graphs showing substantially up-regulated (>1.5-fold) and down-regulated 

(>1.5-fold) small GTPases quantified from LC-MRM experiments for: (A) WM-115/WM-

266-4 paired melanoma cell lines; (B) IGR39/IGR37 paired melanoma cell lines; and (C) 

WM793/1205Lu paired melanoma cell lines; Error bars in (A)–(C) represent means ± 

standard deviation of results from three independent SILAC labeling experiments (two 

forward- and one reverse-SILAC). 

(D) Hierarchical clustering of commonly quantified small GTPases among the WM, IGR 

and WMLu paired melanoma cell lines using the Z-score values for R(metastatic/primary) 

for individual proteins. 
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Figure 2.4 The scheduled LC-MRM platform provides accurate retention time (RT) 

prediction of targeted peptides, high sensitivity and excellent reproducibility. 

(A) The correlation between iRT and measured RT values in LC-MRM experiments on a 

TSQ Vantage triple-quadruple mass spectrometer (157-min linear gradient) with a very 

high correlation coefficient (R2 = 0.992); (G) Venn diagram showing the overlap of 

quantified small GTPases from WM-115 and WM-266-4 SILAC cell lysates obtained from 

LC-MRM analysis and shotgun proteomics experiments; (H) Venn diagram depicting the 

overlap of quantified small GTPases from WM-115 and WM-266-4 SILAC cell lysates the 

forward (F) and reverse (R) labeling experiments obtained from shotgun proteomics 

experiments. 
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Figure 2.5 LC-MRM and Western blots revealed consistently higher levels of 

expression of RAB27A proteins in metastatic melanoma cell lines (WM-266-4 and 

IGR37) than the paired primary melanoma cell lines (WM-115 and ICR39). 

(A) Extracted MRM traces for three transitions (y8, y7, and y6) monitored for a unique 

tryptic peptide from RAB27A, i.e. TSVLYQYTDGK, with light (blue) and heavy (red) 

labels in forward- and reverse-SILAC experiments for both WM-115/WM-266-4 and 

IGR39/IGR37 paired melanoma cells; (B) Western blot analysis confirmed the elevated 

expression of RAB27A in WM-266-4 and IGR37 cells; (C) Quantification results for 

RAB27A from LC-MRM and Western blot analyses. The values represent the mean and 

standard deviation of results obtained from three independent experiments. 
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Figure 2.6 LC-MRM and Western blots revealed consistently higher levels of 

expression of RAB38 proteins in metastatic melanoma cell lines (WM-266-4 and 

IGR37) than the paired primary melanoma cell lines (WM-115 and ICR39). 

(A) Extracted MRM traces for three transitions (y9, y8, and y7) monitored for a unique 

tryptic peptide from RAB38, i.e. LLVIGDLGVGK, with light (blue) and heavy (red) labels 

in forward and reverse SILAC experiments for both WM-115/WM-266-4 and 

IGR39/IGR37 paired melanoma cells; (B) Western blot analysis confirmed the elevated 

expression of RAB38 in WM-266-4 and IGR37 cells; (C) Quantification results for RAB38 

from LC-MRM and Western blot analyses. The values represent the mean and standard 

deviation of results obtained from three independent experiments. 
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Figure 2.7 Bioinformatic analyses revealed RAB38 as a potential driver for melanoma 

progression. 

(A) Kaplan-Meier plot of overall patient survival stratified by median RAB38 mRNA 

expression in the TCGA-SKCM cohort. Log-rank test p-value is displayed; (B) Box plot 

showing enriched RAB38 mRNA expressions in the TCGA-SKCM and the TCGA-UVM 

cohorts; (C) Scatter plot showing up-regulated RAB38 mRNA expression in various 

metastatic melanoma cell lines (highlighted as black dots) in the NCI-60 Human Tumor 

Cell Lines Database; (D) Scatter plot showing up-regulated RAB38 mRNA expressions in 

melanoma cell lines in the Cancer Cell Line Encyclopedia (CCLE) Database; (E) Scattered 

plot showing up-regulated RAB38 mRNA expressions in various metastatic melanoma cell 

lines (highlighted as dark grey dots) in the CCLE Database; (F) RAB38 mRNA levels were 

significantly up-regulated in the highly metastatic derivatives of A375 cells cell lines 

compared to the poorly metastatic A375 parental cells (GEO data series: GSE7929). The 

p values were calculated by using an unpaired two-tailed Student’s t test. 
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Figure 2.8 RAB38 enhanced melanoma metastasis in vitro. 

(A) In vitro migration and invasion assays showed similar migration rates but significantly 

increased invasion rates in FLAG-RAB38-expressing WM-115 cells as compared to empty 

vector control. Migration and invasion capabilities were measured by using transwell 

migration and Matrigel-based invasion assays, respectively; (B) Quantification results for 

in vitro migration and invasion assay shown in panel (A). (C) In vitro migration and 

invasion assays showed similar migration rates but significantly decreased invasion rates 

for WM-266-4 cells with siRAB38 knockdown as compared to non-targeting siRNA 

control; (D) Quantification results for in vitro migration and invasion assay shown in panel 

(C). Error bars represent mean ± standard deviation (n = 3). The p values were calculated 

by using an unpaired, two-tailed Student’s t test. 

 

  



84 

 

Figure 2.9 RAB38 regulates melanoma metastasis by mediating the expression levels 

and activities of MMP2 and MMP9. 

(A) RT-qPCR assays showed decreased expression levels of MMP2 and MMP9 in WM-

266-4 cells with siRAB38 knockdown as compared to non-targeting siRNA control. Error 

bars represent mean ± standard error of the mean (SEM) (n = 3); (B) Gelatin zymography 

assays revealed diminished enzymatic activities of MMP2 and MMP9 in WM-266-4 cells 

with siRAB38 knockdown as compared to non-targeting siRNA control; (C) 

Quantification results for gelatin zymography assays shown in (B). Error bars represent 

mean ± standard deviation (n = 3). (D) Real-time quantitative PCR (RT-qPCR) assays 

showed increased expression levels of MMP2 and MMP9 in FLAG-RAB38-expressing 

WM-115 cells as compared to empty vector control. Error bars represent mean ± SEM (n 

= 3); (E) Gelatin zymography assays revealed elevated enzymatic activities of MMP2 and 

MMP9 in FLAG-RAB38-expressing WM-115 cells as compared to empty vector control; 

(F) Quantification results for gelatin zymography assays shown in (E). Error bars represent 

mean ± standard deviation (n = 3). The p values for all figures are as follows: “∗”, 0.01 < 

p < 0.05; “∗∗”, 0.001 < p < 0.01; “∗∗∗”, p < 0.001. The p values were calculated by using 

a paired, two-tailed Student’s t test. 
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Figure 2.10 RAB38 mediates both the expression levels and activities of MMP2 and 

MMP9 in metastatic M14 and IGR37 cells. 

(A) RT-qPCR analysis showed pronouncedly higher expression levels of RAB38 in M14 

cells as compared to WM793 and 1205Lu cells. Error bars represent mean ± SEM (n = 3); 

(B) RT-qPCR analysis showed decreased expression levels of MMP2 and MMP9 in M14 

cells with siRAB38 knockdown as compared to non-targeting siRNA control. Error bars 

represent mean ± SEM (n = 3); (C) RT-qPCR analysis showed decreased expression level 

of MMP9, but not MMP2, in IGR37 cells with siRAB38 knockdown as compared to non-

targeting siRNA control. Error bars represent mean ± SEM (n = 3); The p values in (A) 

and (B) were calculated by using unpaired two-tailed Student’s t test: “∗”, 0.01 < p < 0.05; 

“∗∗”, 0.001 < p < 0.01; “∗∗∗”, p < 0.001; (D) Gelatin zymography assays revealed 

diminished enzymatic activities of MMP2 and MMP9 in M14 cells with siRAB38 

knockdown as compared to non-targeting siRNA control; (E) Gelatin zymography assays 

revealed diminished enzymatic activities of MMP2 and MMP9 in IGR37 cells with 

siRAB38 knockdown as compared to non-targeting siRNA control. 

 

 

 

  



  

 

 

8
6

 

Figure 2.11 RAB38 expressions in large melanoma cell line or patient cohorts were highly correlated with the melanoma 

lineage-specific transcription factor MITF. 

(A−D) Heatmaps showing the correlations between RAB38 and MITF mRNA expressions in the: (A) Primary melanoma tissues 

in the GSE7553 cohort; (B) Metastatic melanoma tissues in the GSE7553 cohort; (C) Primary melanoma tissues in the GSE8401 

cohort; (D) Metastatic melanoma tissues in the GSE8401 cohort; 

(E−H) Box plots showing the RAB38 mRNA expressions in the: (E) Metastatic patient tissues carrying MITF-high signature in 

the GSE7553 cohort; (F) Metastatic patient tissues carrying MITF-low signature in the GSE7553 cohort; (G) Metastatic patient 

tissues carrying MITF-high signature in the GSE8401 cohort; (H) Metastatic patient tissues carrying MITF-high signature in the 

GSE8401 cohort. 
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Figure 2.12 Higher levels of expression of RAB38 in metastatic melanoma compared 

to primary melanoma were observed in melanoma patient with MITF high signature. 

(A) Pathway analysis showed enrichment of MITF, TBC1D16 and RAB27A in the RAB38 

co-expression signature; (B) Box plot showed RAB27A mRNA expressions in the 

metastatic patient tissues carrying MITF-high or MITF-low signature in the GSE7553 

cohort; (C) Box plot showed TBC1D16 mRNA expressions in the metastatic patient tissues 

carrying MITF-high or MITF-low signature in the GSE7553 cohort; (D) Box plot showed 

RAB27A mRNA expressions in the metastatic patient tissues carrying MITF-high or MITF-

low signature in the GSE8401 cohort; (E) Box plot showed TBC1D16 mRNA expressions 

in the metastatic patient tissues carrying MITF-high or MITF-low signature in the 

GSE8401 cohort; (F) ChIP-PCR assays showed enrichment of the association of MITF 

with the promoters of TBC1D16 and RAB38 genes in WM-266-4 cells relative to WM-115 

cells. Data were normalized to control IgG ChIP. Error bars represent means ± standard 

deviations (n = 3). 
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Figure 2.13 Investigation of RAB38 methylation status in melanoma cell lines. 

(A) Bisulfite sequencing demonstrated the methylation status of CpG sites in the promoter 

region of RAB38 gene in the three paired primary/metastatic cell lines, where high levels 

of methylation were observed for the WM-115, IGR39, WM793 and 1205Lu, but not for 

the WM-266-4 and IGR37 melanoma cell lines. CpG sites in the promoter region of RAB38 

gene are indicated by short vertical bars, and exons are designated with black rectangles 

on the top. The arrow indicates the transcription start site (TSS). Each horizontal line 

represents one separate clone that was sequenced, and open and filled circles represent 

unmethylated and methylated CpG sites, respectively; (B) Increased mRNA expression 

levels of MITF, TBC1D16-47kDa and RAB38 after 5-aza-2′-deoxycytidine (5-Aza) 

treatment (96 h) in WM-115 cells; (C) Increased mRNA expression levels of MITF, 

TBC1D16-47kDa and RAB38 after 5-Aza treatment (96 h) in IGR39 cells; (D) Box plots 

representing DNA methylation in 4 primary melanoma and 33 metastatic melanoma 

samples (accession number: GSE44662). Metastatic melanomas contained lower RAB38 

promoter methylation. The error bars in panels (B) and (C) represent mean ± SEM. The p 

values were calculated by using an unpaired two-tailed Student’s t test: “ns”, not 

significant; “∗”, 0.01 < p < 0.05; “∗∗”, 0.001 < p < 0.01; “∗∗∗”, 0.0001 < p < 0.001; “∗∗∗∗”, 

p < 0.0001. 
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Figure 2.14 Occurrence and prognostic values of RAB38 promoter hypomethylation. 

(A) Methylation microarray data showed lower methylation levels at multiple CpG sites 

of the RAB38 promoter region in IGR37 cell line relative to IGR39 cell line in the 

GSE46522 cohort; (B) Methylation microarray data showed lower methylation levels at 

multiple CpG sites of the RAB38 promoter region in WM-266-4 cell line relative to WM-

115 cell line in the GSE70621 cohort; (C) Kaplan-Meier curves showing that the 

presence of RAB38 hypomethylation at multiple CpG sites in melanoma patients (n = 

464) is significantly associated with shorter overall survival in the TCGA-SKCM cohort; 

(D) Scatter plot showing the correlations of RAB38 mRNA expressions with RAB38 

promoter CpG methylation in the TCGA-SKCM cohort; (E) Scatter plot showing the 

correlations of MITF mRNA expressions with MITF promoter CpG methylation in the 

TCGA-SKCM cohort.  
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Chapter 3 Roles of Small GTPases in Acquired Tamoxifen Resistance in 

MCF‑7 Cells Revealed by Targeted, Quantitative Proteomic Analysis 

3.1 Introduction 

Breast cancer is the most prevalent cancer among women worldwide. According to the 

American Cancer Society, 268,000 new breast cancer cases and 41,400 deaths were 

estimated in 2018 in the United States.1 As a highly heterogeneous disease, breast cancer 

can be categorized into three major subtypes: estrogen receptor α-positive (ER-positive), 

human epidermal growth factor receptor 2 (HER2)-amplified (HER2-positive) and triple-

negative breast cancer (TNBC). Among them, the ER-positive subtype remains the most 

prevalent and diverse, accounting for approximately 80% of diagnosed cases of breast 

cancer.2 In this respect, antiestrogen drugs including tamoxifen and fulvestrant are 

frequently used, and tamoxifen remains the standard front-line endocrine therapy 

complementary to surgery. However, approximately half of patients who receive tamoxifen 

as the first-line therapy for recurrent diseases do not respond to the treatment because of 

intrinsic resistance. For those patients who initially respond to the drug, development of 

resistance is a major cause of treatment failure.3 

Small GTPases of the Ras family are crucial regulators of intracellular trafficking and 

can mediate a wide range of biological events.4 Several small GTPases play important roles 

in breast cancer progression, including RAB2A (tumorigenesis),5 RAB27B (migration and 

invasion)6, RAB31 (proliferation and metastasis),7 and RND1 (tumorigenesis and 

invasion).8 Defective endocytic pathways arising from down-regulation of small GTPases 

RAB5, RAC1, and RHOA were found in squamous-cell carcinomas (SCCs) carrying 
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resistance to chemotherapeutic drugs such as cisplatin.9 Cellular pathways that involve 

small GTPase signaling, including the Ras–Raf-1–MAPK pathway, Rac1–PAK1 pathway, 

and Cdc42-mediated redox pathway, have also been shown to mediate responses to 

tamoxifen in breast cancer cells.10-12 Therefore, we reason that a systematic interrogation 

of small GTPases involved in modulating tamoxifen resistance may offer a better 

understanding of the mechanisms of resistance in tamoxifen therapy. 

Mass spectrometry-based proteomic methods have been widely employed for studying 

drug resistance and for discovering novel biomarkers and therapeutic targets in breast 

cancer.13-15 Building upon the previously reported method of gel fractionation followed by 

liquid chromatography–tandem mass spectrometry (LC-MS/MS),16, 17 we recently 

developed a targeted quantitative proteomic approach, relying on stable isotope labeling 

by amino acids in cell culture (SILAC), gel fractionation, and LC-MS/MS in scheduled 

multiple-reaction monitoring (MRM) mode, for high-throughput profiling of small 

GTPases.18 In the present study, we employed this method to comprehensively investigate 

alterations in the expression of small GTPases during the development of tamoxifen 

resistance in a pair of matched wild-type (WT)/tamoxifen-resistant (TamR) breast cancer 

cell lines, i.e. MCF-7/WT and MCF-7/TamR. The quantitative proteomic data and cell-

based assays with the use of two ER-positive cell lines (i.e. MCF-7 and T47D), together 

with bioinformatic analysis of publicly available data, led to the discovery of a novel role 

for RAB31 in modulating acquired tamoxifen resistance. 
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3.2 Experimental Section 

3.2.1 Cell Culture 

MCF-7 cells were purchased from ATCC (#HTB-22). The tamoxifen-resistant variant 

of MCF-7 cells (MCF-7/TamR) was generously provided by Dr. Guandi Wang (Xavier 

University). The T47D cells were kindly provided by Dr. Ameae Walker (University of 

California, Riverside). The cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS; Invitrogen-Gibco) and 

penicillin/streptomycin (100 IU/mL) at 37°C in an atmosphere with 5% CO2. The MCF-

7/TamR cells were continuously cultured in the above-described medium containing 0.10 

M (Z)-4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich) for at least six months to allow 

them to develop resistance to the drug with an IC50 of ~5 M 4-OHT.13 

For other experiments, 4-OHT was dissolved in ethanol at a concentration of 10 mM 

and stored at -20°C. For SILAC experiments, [13C6,
15N2]-L-lysine and [13C6]-L-arginine 

(Cambridge Isotopes Inc.), or their unlabeled counterparts, were added to SILAC DMEM 

medium depleted of L-lysine and L-arginine (Thermo Scientific Pierce) until their final 

concentrations reached 0.398 and 0.798 mM, respectively, to yield “heavy” and “light” 

media. Cells were cultured in the “heavy” SILAC DMEM medium for at least 6 cell 

doublings to ensure complete incorporation of heavy isotope-labeled amino acids. 

3.2.2 Sample Preparation and Scheduled LC-MRM Analysis 

To assess the differential expression of small GTPases in wild-type (WT) and 

tamoxifen-resistant (TamR) MCF-7 cells, we conducted SILAC-based quantitative 

proteomic experiments with forward and reverse labeling strategies. Briefly, we combined 
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lysates of light-labeled WT cells and heavy-labeled TamR cells at a 1:1 ratio in the forward 

labeling experiments. The reverse labeling experiment was conducted in the opposite way. 

The mixed cell lysates (100 μg in total) were loaded onto a 10% SDS-PAGE gel and 

separated by electrophoresis. The gel bands corresponding to the molecular weight range 

of 15–37 kDa were cut, reduced with 20 mM dithiothreitol, alkylated with 55 mM 

iodoacetamide, and digested in-gel with trypsin at an enzyme/protein ratio of 1:100. After 

tryptic digestion, the peptide mixtures were desalted and subjected to LC-MRM analyses. 

All LC-MRM experiments were performed on a TSQ vantage triple-quadruple mass 

spectrometer (Thermo Scientific) coupled with an EASY-nLC II system (Thermo 

Scientific). The samples were automatically loaded onto a 4-cm trapping column (150 μm 

i.d.) packed with ReproSil-Pur 120 C18-AQ resin (5 μm in particle size and 120 Å in pore 

size, Dr. Maisch GmbH HPLC) at 3 μL/min. The trapping column was coupled to a 20-cm 

fused silica analytical column (75 μm i.d.) packed with ReproSil-Pur 120 C18-AQ resin (3 

μm in particle size and 120 Å in pore size, Dr. Maisch GmbH HPLC). The peptide mixtures 

were then separated using a 157-min linear gradient of 2−35% acetonitrile in 0.1% formic 

acid at a flow rate of 230 nL/min. The spray voltage was set as 1.8 kV. Ions were isolated 

in both Q1 and Q3 using 0.7 fwhm resolution, for which the cycle time was set as 5 s. The 

optimal collisional energy (CE) for each targeted peptide was calculated using a linear 

equation specific to the TSQ Vantage instrument and the precursor mass-to-charge ratio 

(m/z) according to the default setting in Skyline.19 

To enable high-throughput quantitative analysis, we applied a previously developed 

scheduled LC-MRM method18, in which the mass spectrometer was programmed to 
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acquire the MS/MS of the precursor ions for a limited number of peptides in each 6-min 

retention time (RT) window. The MRM data for all targeted peptides were manually 

inspected to ensure correct peak picking. In this regard, the dot-product (dotp) value has to 

exceed 0.80.20 In addition, the iRT value represents an intrinsic property (i.e., 

hydrophobicity) of a peptide; hence, a substantial deviation of measured RT from that 

projected from the linear plot of RT over iRT signals a false-positive detection. 

3.2.3 Data Sources for Bioinformatic Analyses 

Patient RNAseq data were obtained from The Cancer Genome Atlas (TCGA) via 

cBioPortal (http://www.cbioportal.org/).21 The complete clinical data files were 

downloaded from the National Center for Biotechnology Information (NCBI) Gene 

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). The Cancer 

Cell Line Encyclopedia (CCLE) (http://www.broadinstitute.org/ccle/home) were 

interrogated for the comprehensive evaluation of mRNA expression for candidate genes 

among more than 100 breast cancer cell lines.22 Publicly available transcriptomic profiles 

with accession numbers GSE3494, GSE4922, GSE6434, GSE24460, GSE26495 and 

GSE42568 were downloaded from the GEO database and analyzed using R (version 3.4.3). 

3.2.4 Patient Survival Analysis 

Kaplan–Meier survival curves were generated using an online database Kaplan-Meier 

plotter (kmplotter.com) for breast cancer.23 Data were analyzed using the JetSet best probe 

set to analyze gene expression and relapse-free survival (RFS). Briefly, gene names were 

entered into the database to obtain Kaplan–Meier survival plot where the hazard ratio (HR), 

95% confidence intervals (95% CI) and logrank p values were calculated and displayed. 

http://www.cbioportal.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.broadinstitute.org/ccle/home
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3.2.5 Plasmid Construction 

pLKO.1-shRAB31 and pLKO.1-scramble plasmids were constructed by inserting a 

short hairpin double-stranded oligonucleotide targeting RAB31 or a scrambled sequence 

into the pLKO.1 lentiviral vector. Human RAB31 cDNA was amplified from an in-house 

cDNA library and subcloned into the p3×Flag-CMV10 vector. 

3.2.6 Generation of Stable Knockdown Cell Lines 

The lentiviral vectors pLKO.1-shRAB31 and pLKO.1-scramble were generated as 

described above. Recombinant lentiviruses were produced by co-transfection of HEK293T 

cells with the pLKO.1-scramble or pLKO.1-shRAB31 shRNA plasmids, envelope plasmid 

pLTR-G (Addgene #17532) and packaging plasmid pCMV-dR8.2 dvpr (Addgene #8455). 

Lentivirus-containing supernatant was harvested and filtered through 0.45-μm pore size 

filters at 48 h post-transfection. Infection of MCF-7 or T47D cells with recombinant 

lentivirus was conducted in the presence of 5 µg/ml polybrene. After removal of virus, the 

cells were selected in 1 µg/mL puromycin-containing medium for 3 days to eliminate 

uninfected cells. After selection, the cells were maintained in medium containing 1 µg/mL 

puromycin and used for subsequent experiments.  

3.2.7 Cell Proliferation Assay 

The proliferation of cells under 4-OHT treatment was evaluated using a cell counting 

kit-8 (CCK-8; Dojindo Laboratories). Briefly, MCF-7/WT, T47D and MCF-7/TamR cells 

were seeded in a 96-well flat-bottomed microplate (3000 cells/well) in complete growth 

medium (100 μL/well) for 24 h. The cells were then incubated with or without various 

concentrations of 4-OHT for 5 days in the dose-dependent experiments, or with 1 μM 4-
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OHT in the time-dependent experiments, and ethanol was used as the vehicle control. At 

the end of treatments, 10 µL of the CCK-8 dye was added to each well and the cells were 

incubated at 37℃ for 4 h prior to using the Synergy™ H1 Hybrid Multi-Mode Microplate 

Reader (BioTek Instruments) for measuring the absorbance at 450 nm. 

3.2.8 Colony Formation Assay 

MCF-7/WT or MCF-7/TamR cells were cultured in complete growth media. The cells 

were seeded at a density of 2000 cells/well in 2 mL of medium in six-well plates and 

allowed to adhere overnight. The next day, the cells were treated with 1 μM 4-OHT, and 

an equal volume of ethanol was used as a vehicle control. The cells were then allowed to 

grow until colonies reached > 50 cells per colony for the control group (approximately 10 

to 14 days). Colonies were then fixed with glutaraldehyde for 30 min, stained with crystal 

violet (0.1% in 20% methanol) for 30 min, and washed. Colony numbers were determined 

manually. The experiments were conducted in triplicate, and the data represent means ± 

standard errors of the means. 

3.3 Results and Discussion 

3.3.1 Application of a High-throughput LC-MRM Assay for Studying Acquired Tamoxifen 

Resistance 

We set out to explore the alterations of small GTPases during the development of 

tamoxifen resistance in ER-positive breast cancer. To this end, we employed our recently 

developed scheduled MRM-based targeted proteomic method18 to assess, in high-

throughput, the reprogramming of the small GTPase proteome during development of 

tamoxifen resistance.  The method involved metabolic labeling of MCF-7 cells and 
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isogenic cells that are resistant to tamoxifen using SILAC, SDS-PAGE for the enrichment 

of proteins in the molecular weight range of 15-37 kDa (the molecular weights for ~95% 

of small GTPases fall in this range), in-gel tryptic digestion, and LC-MS/MS analysis of 

the resulting tryptic peptides in the scheduled MRM mode (Figure 3.1). 

To obtain reliable quantification results, we conducted SILAC experiments in 

triplicate, with two sets of forward labeling and one set of reverse labeling. The method 

facilitated the quantification of a total of 96 small GTPases, among which 13 and 10 

proteins were significantly down- and up-regulated (with >1.5-fold change), respectively, 

in the drug-resistant MCF-7 cells relative to in the parental line (Figure 3.1). In this vein, 

we chose a cutoff of 1.5-fold change on the basis of the average relative standard deviation 

(RSD = 14%) for all the quantified small GTPases. The method facilitated the coverage of 

approximately 65% of the human small GTPase proteome in two LC-MRM runs.  

We found that several RAB small GTPases were down-regulated (e.g., RAB27B, 

RAB30, RAB31, and RAB32), whereas several others were up-regulated (e.g., RAB7A, 

RAB18, and RAB6B), in tamoxifen-resistant cells (Figure 3.1). The extracted-ion 

chromatograms (XICs) for several differentially expressed small GTPases were displayed 

in Figure 3.2, including ARL3 (ARF subfamily), RHOF (RHO subfamily), RAB30 (RAB 

subfamily), and RRAS2 (RAS subfamily). Notably, we observed a ~2-fold up-regulation 

of RRAS2 protein in the tamoxifen-resistant MCF-7 cells. In this vein, RRAS2 is known 

to promote primary tumorigenesis and late steps of metastasis in breast cancer cells, and it 

can also contribute to increased resistance to tamoxifen.24-26 Hence, our method validated 
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the differential expression of a small GTPase that was previously shown to be involved 

with tamoxifen resistance. 

There have been no literature precedents about the functions of ARL3, RHOF, and 

RRAS in drug resistance in breast cancer. Nevertheless, ARL3 was suggested to be 

transcriptionally regulated by ER-related mechanisms.27 In addition, RRAS inhibits the 

proliferation, migration and cell cycle progression of cultured breast cancer cells.28 RHOF 

plays an important role in controlling the formation of filopodia, which may contribute to 

proliferation, invasion and formation of micrometastases of cancer cells. RHOF, however, 

enhances the resistance of pancreatic cancer to gemcitabine through regulation of the 

epithelial-to-mesenchymal transition.29  The potential roles of ARL3, RRAS, and RHOF 

in modulating tamoxifen resistance warrant future investigation. 

To assess the performance of our MRM-based method, we also analyzed the same 

samples by employing LC-MS/MS in the data-dependent acquisition (DDA) mode. As 

shown in Figure 3.3, DDA analyses only led to the identification of 51 and 45 small 

GTPases in the two forward-SILAC samples (F1 and F2, respectively), and 44 small 

GTPases in the reverse-SILAC sample (R). In stark contrast, the LC-MRM approach led 

to substantially higher coverage of the small GTPase proteome (Figure 3.3). As noted, the 

quantification was based on three independent LC-MRM experiments, which included two 

forward- and one reverse-SILAC labeling experiments, and the small GTPases reported 

were reproducibly quantified in all three replicates, with the mean RSD being 14%. 

Therefore, these results demonstrated that the scheduled LC-MRM method outperformed 

the shotgun proteomic approach in terms of reproducibility and sensitivity. Additionally, 
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we observed an excellent linear fit (R2 = 0.9238) for the log2-transformed SILAC ratios of 

all the quantified small GTPases obtained from one forward- and one reverse-SILAC 

labeling experiment (Figure 3.3), which again underscored the excellent reproducibility of 

the method. With respect to retention time (RT) scheduling, all of the 10 standard peptides 

derived from BSA exhibited an excellent linear fit (R2 = 0.9996) between the observed RTs 

and the iRT values in the library (Figure 3.3). Highly reliable and reproducible RT 

prediction was also reflected by the superb linearity for the RTs observed for the small 

GTPase peptides in different replicates (Figure 3.3). 

To achieve confident identification of targeted peptides, we manually processed the 

LC-MRM data to ensure the coelution of the MRM transitions with the dot-product (dotp) 

value being >0.8, as calculated by Skyline.20 The dotp of a peptide was based on the 

correlation for the ratio of the MRM peak intensities observed versus those in the library 

MS/MS acquired from shotgun proteomic experiments. Shown in Figure 3.4 are the 

representative XICs displaying nearly identical retention times for different MRM 

transitions monitored for each of the three distinct peptides of RAB31 with high dotp 

values (>0.95). Relative quantification was achieved by integrating the areas of the peaks 

found in the XICs acquired from the LC-MRM analyses (Figure 3.4 shows the MRM traces 

acquired from the forward- and reverse-SILAC labeling experiments). The down-

regulation of RAB31 protein in the tamoxifen-resistant line was further confirmed by 

Western-blot analysis (Figure 3.4). In addition to RAB31, we also validated the differential 

expression of RAB27A and RAB27B proteins by Western-blot analysis (Figure 3.5), 
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supporting that the LC-MRM method is capable of accurately profiling the differential 

expression of small GTPases. 

3.3.2 Prognostic Values of RAB31 in Breast Cancer Revealed by Bioinformatic Analyses 

As discussed above, our LC-MRM results confirmed a known protein target that 

promotes acquired tamoxifen resistance: RRAS2. We next sought to further examine the 

roles of other differentially expressed small GTPases in breast cancer by performing 

Kaplan–Meier survival analysis for significantly up- and down-regulated proteins shown 

in Figure 3.1. Particularly, for down-regulated proteins, lower mRNA expression levels of 

ARL3, RHOF and RAB30 were significantly associated with poor relapse-free survival 

(RFS) (Figure 3.6). In contrast, higher RRAS2 mRNA levels are significantly correlated 

with poor RFS (Figure 3.6). For patients who received endocrine therapy (tamoxifen only), 

increased RAB31 expression predicted better outcomes, whereas for those without 

endocrine therapy, RAB31 did not serve as an effective indicator for RFS (Figure 3.7). 

Notably, among those genes that exhibited significantly altered protein abundance in 

tamoxifen resistance, only the mRNA expression of RAB31 is significantly correlated with 

tamoxifen efficacy in ER-positive breast cancer patients, but not that of ARL3, RAB30, 

RRAS2 or RHOF (Figures 3.6 and 3.7). We also assessed the prognostic values of RAB31 

stratified by ER status and found only a significant correlation between RAB31 expression 

and survival in ER-positive, but not ER-negative breast cancer patients (Figure 3.7). 

We also interrogated several Gene Expression Omnibus (GEO) data sets for Kaplan–

Meier survival analysis and differential mRNA expression analysis: GSE3494 (Karolinska 

Institute, n = 236),30 GSE4922 (Genome Institute of Singapore, n = 347),31 GSE6434 
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(Baylor College of Medicine, n = 24),32 GSE42568 (Dublin City University, n = 115),33 

GSE24460 (National Cancer Institute, n = 52),34 and GSE26495 (Emory University).35 The 

GSE6434, GSE26495 and GSE24460 data sets revealed significantly decreased mRNA 

levels of RAB31 in docetaxel-, tamoxifen- and doxorubicin-resistant MCF-7 cell lines, 

respectively (Figure 3.8). In this respect, docetaxel and doxorubicin are other small-

molecule drugs commonly used in chemotherapy against breast cancer. Therefore, these 

results suggest that RAB31 down-regulation could be a common event in drug-resistant 

MCF-7 cells. For survival analysis, lower RAB31 expression was significantly associated 

with poorer RFS and overall survival (OS) in the GSE42568 cohort (Figure 3.8). 

Meanwhile, the same trend holds for the disease-specific survival (DSS) in the GSE3494 

data set (Figure 3.8). Notably, in the GSE4922 cohort, RAB31 is significantly down-

regulated in the most metastatic grade III tumors as compared with in grade I tumors 

(Figure 3.8), supporting a potential role for RAB31 in breast cancer progression.36 Taken 

together, these results suggest that RAB31 may serve as a potential biomarker for 

predicting acquired tamoxifen resistance in breast cancer patients. 

3.3.3 Correlation of RAB31 Expression with ER Status and Breast Cancer Subtypes 

To elucidate the association between RAB31 expression and breast cancer subtypes, we 

next interrogated a large and comprehensive breast cancer patient cohort: The Cancer 

Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA). Our results showed that RAB31 

mRNA expression levels were significantly correlated with the mRNA expression levels 

of the ESR1 gene, which encodes ER, in the TCGA-BRCA cohort (Figure 3.9). In 

addition, the same correlations could be observed for the GSE4922 and GSE23988 data 
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sets (Figure 3.9). Aside from ER status, we extended the expression analysis to elucidate 

the association between RAB31 mRNA levels and different molecular subtypes of breast 

cancer: luminal A, luminal B, HER2-enriched, basal-like, and normal-like.37 As shown in 

Figure 3.9, the mRNA expression levels of RAB31 were significantly lower in the basal 

subtype and the HER2-enriched subtype than in the luminal-A subtype. Clinical data 

demonstrate reduced responses to endocrine therapy in tumors with HER2 amplification. 

Suppressed expression of RAB31 might therefore be correlated with reduced ER 

expression and the HER2-overexpressing resistant phenotypes. 

3.3.4 RAB31 Knockdown Rendering Elevated Tamoxifen Resistance in MCF-7/WT and 

T47D Cells 

The above results showed that diminished RAB31 expression confers poor prognosis 

for ER-positive breast cancer patients, especially for those who received tamoxifen as a 

first-line therapy. Hence, we reason that RAB31 may be associated with tamoxifen efficacy 

and therefore may play a role in tamoxifen resistance. To further examine the role of 

RAB31 in tamoxifen resistance, we used lentiviral transduced shRNA to enable stable 

knockdown of RAB31 gene expression in MCF-7 cells. Western-blot analysis showed that 

two separate shRNA sequences gave rise to 60–70% depletions of RAB31 protein 

compared with that from the control shRNA sequence (shScramble) in MCF-7 cells (Figure 

3.10). We next performed cell proliferation assay to assess the effects of RAB31 

knockdown on tamoxifen response in MCF-7 cells. We found that, upon treatment with 1 

μM (Z)-4-hydroxytamoxifen (4-OHT), an active metabolite of tamoxifen, genetic 

depletion of RAB31 led to significantly higher cell viability at 72 and 96 h, but not at 24 or 



106 

 

48 h (Figure 3.10). Moreover, RAB31 knockdown led to higher resistance to 4-OHT 

treatment in a broad range of doses (Figure 3.10). Collectively, the results support that loss 

of RAB31 could modulate tamoxifen response in MCF-7 cells. 

To further substantiate the above findings, we assessed how shRNA-mediated 

depletion of RAB31 in T47D cells alters the sensitivity of these cells toward tamoxifen. 

Consistent with our hypothesis, diminished expression of RAB31 in both MCF-7 and T47D 

cells led to increased proliferation rates and elevated resistance toward tamoxifen (Figure 

3.11). In addition, RAB31 knockdown gave rise to augmented resistance to tamoxifen in 

T47D cells (Figure 3.11). Taken together, the above results support the role of RAB31 in 

tamoxifen efficacy in two ER-positive breast cancer cell lines, i.e. MCF-7 and T47D. 

3.3.5 Sensitization of MCF-7/TamR Cells to 4-OHT Treatment by RAB31 Overexpression 

We next examined how a gain of function of RAB31 modulates tamoxifen sensitivity 

by ectopically overexpressing the RAB31 gene in tamoxifen-resistant MCF-7/TamR cells. 

The cell proliferation assay results indicated that RAB31-overexpressing MCF-7/TamR 

cells exhibited elevated sensitivity towards 4-OHT treatment as compared to the empty 

vector group in both dose-dependent and time-dependent manner (Figure 3.12). In 

agreement with the cell proliferation assay results, colony formation assays showed that 

ectopic expression of RAB31 conferred significantly increased tamoxifen sensitivity for 

the MCF-7/TamR cells (Figure 3.12). In summary, our results substantiated the role of 

RAB31 in suppressing acquired tamoxifen resistance in MCF-7/TamR cells. 
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3.4 Conclusions 

In the present study, we applied a targeted quantitative proteomic method to assess the 

differential expression of small GTPases in paired wild-type and tamoxifen-resistant MCF-

7 cells. The method provided high-throughput, accurate and reproducible quantifications 

of the relative expression levels of >90 small GTPases in the paired cell lines. Among them, 

10 and 13 small GTPases were up- and down-regulated by at least 1.5-fold in the drug-

resistant cells compared with in the parental MCF-7 cells. In this context, it is worth noting 

that our current targeted proteomic approach relies on SILAC labeling, which is not 

applicable to clinical specimens (e.g. biological fluids and tumor tissue samples) from 

breast cancer patients that manifest de novo or acquired tamoxifen resistance. Nevertheless, 

the targeted proteomic method can be adapted for handling clinical specimens with the use 

of heavy isotope-labeled synthetic peptides, and such an approach is currently being 

explored in our laboratory. 

Combined with bioinformatic analyses, we identified RAB31 as a novel predictive 

marker for acquired tamoxifen resistance. Through the use of two ER-positive cell lines 

(i.e. MCF-7 and T47D), we uncovered, for the first time, a role of RAB31 in modulating 

tamoxifen sensitivity. The functions of RAB31 were also explored in other cancer types.38 

RAB31 can localize to endocytic compartments and functions in the post-Golgi, endocytic 

or exocytic trafficking of the epidermal growth factor receptor (EGFR) in A431 and HeLa 

cells.39 Silencing of RAB31 inhibited the endocytic trafficking of the ligand-bound EGFR 

to late endosomes and its subsequent degradation. It is also worth noting that increased 

levels of receptor tyrosine kinases including EGFR and HER2 can directly alter the cellular 
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response to tamoxifen.40 Therefore, we reason that down-regulation of RAB31 in MCF-

7/TamR cells may perturb EGFR trafficking, thereby influencing drug resistance. 

In addition to receptor tyrosine kinase signaling, ER-associated proteins are essential 

players in tamoxifen resistance. Some suggest elevated ESR1 mRNA levels in tamoxifen-

resistant ER-positive breast cancer cells.25 However, several lines of evidence 

demonstrated suppressed yet functional ER-regulated signaling pathway in MCF-7/TamR 

cells, as reflected by down-regulated ESR1 expression.13, 41-43 Notably, RAB31 is among 

the 11 genes that are robustly overexpressed in ER-positive breast carcinoma samples,44 

which is in line with the observation that the promoter region of the RAB31 gene harbors 

an ER-responsive element.45 On the basis of these findings, we reason that down-regulated 

RAB31 in tamoxifen-resistant MCF-7 cells may arise from ER-modulated molecular 

adaptations. 

Taken together, we showed, for the first time, that targeted quantitative proteomics, in 

combination with bioinformatics, provided novel insights into the roles of small GTPases 

in acquired tamoxifen resistance in breast cancer. It can be envisaged that the method can 

also be employed for understanding the therapeutic resistance of other types of cancer. 
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Figure 3.1 Targeted quantitative analysis of small GTPases in tamoxifen resistance. 

(A) Schematic diagram showing the targeted quantitative proteomic analysis, relying on 

metabolic labeling with SILAC, SDS-PAGE fractionation, and scheduled LC-MRM 

analysis; (B) Heatmap showing the differential expression of small GTPases in MCF-7/WT 

and MCF-7/TamR cells. The log2 ratios of relative levels of proteins in TamR over WT 

cells obtained from two forward and one reverse-SILAC labeling experiments (F1 and F2: 

forward experiments, R1: reverse experiment) are shown. As indicated by the scale bar, 

the red and blue bars designate the small GTPases that are up-and down-regulated, 

respectively, by at least 1.5-fold in the drug-resistant over parental MCF-7 cells; (C) Bar 

chart showing substantially up-regulated (>1.5-fold) and down-regulated (>1.5-fold) small 

GTPases quantified from three LC-MRM experiments. 



114 

 

 

  



115 

 

Figure 3.2 LC-MRM for the quantification of the relative levels of expressions of 

ARL3, RHOF, RAB30, and RRAS2 proteins in the paired MCF-7/WT and MCF-

7/TamR cells. 

(A) Representative extracted-ion chromatograms (XICs) for the quantification of the 

ARL3, RHOF, RAB30, and RRAS2 proteins in one forward- and one reverse-SILAC 

labeling experiments; (B) Quantification results of the LC-MRM analyses (n = 3). The p 

values were calculated by using a paired two-tailed Student’s t test (* p < 0.05, ** p < 0.01, 

*** p < 0.001). Error bars represent standard deviations. 
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Figure 3.3 Performances of the scheduled LC-MRM method for targeted quantitative 

analysis of differential expression of small GTPases in tamoxifen resistance. 

(A) Venn diagrams displaying the overlap between quantified small GTPases in the 

forward- and reverse-SILAC labeling experiments, as obtained from MRM analyses and 

DDA analyses, respectively, and the comparison about the performances of the two 

methods; (B) Correlation between the log2-transformed SILAC ratios (Log2R) obtained 

from one forward- and one reverse-SILAC labeling experiments with a relatively high 

correlation coefficient (R2 = 0.9238); (C) Correlation between BSA standard iRT and 

measured RT values with a very high correlation coefficient (R2 = 0.9996); (D) Measured 

RTs obtained in two forward labeling reactions (F1 vs. F2) with a very high correlation 

coefficient (R2 = 0.9988); (E) Measured RTs obtained in one forward- and one reverse-

SILAC labeling reactions (F1 vs. R) with a very high correlation coefficient (R2 = 0.9987). 
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Figure 3.4 RAB31 is down-regulated in tamoxifen-resistant MCF-7 cells. 

(A) Representative MRM traces for three transitions monitored for each of the three unique 

tryptic peptides derived from RAB31: FHSLAPMYYR (y8, y6, and y5), QDSFYTLK (y6, 

y4, and y3), and GSAAAVIVYDITK (y7, y6, and y5); (B) Extracted-ion chromatograms 

(XICs) for the quantification of the three peptides in panel (A) in one forward- and one 

reverse-SILAC labeling experiments; (C) Validation of the differential expression of 

RAB31 in MCF-7/WT and MCF-7/TamR cells by Western-blot analysis; (D) Comparison 

of quantification results obtained from LC-MRM and Western-blot analyses (n = 3). The 

p values were calculated by using a paired two-tailed Student’s t test (** p < 0.01). Error 

bars represent standard deviations. 
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Figure 3.5 LC-MRM and Western-blot analyses for the quantification of the relative 

levels of expressions of RAB27A and RAB27B proteins in the paired MCF-7/WT and 

MCF-7/TamR cells. 

(A) Representative XICs for the quantification of the tryptic peptide FLALGDSGVGK 

derived from RAB27A in one forward- and one reverse-SILAC labeling experiments; (B) 

Validation of the differential expression of RAB27A in MCF-7/WT and MCF-7/TamR 

cells by Western-blot analysis; (C) Comparison of quantification results obtained from LC-

MRM and Western-blot analyses (n = 3) in panels (A) and (B); (D) Representative XICs 

for the quantification of the tryptic peptide LLALGDSGVGK derived from RAB27B in 

one forward- and one reverse-SILAC labeling experiments; (E) Validation of the 

differential expression of RAB27B in MCF-7/WT and MCF-7/TamR cells by Western-

blot analysis; (F) Comparison of quantification results obtained from LC-MRM and 

Western-blot analyses (n = 3) in panels (D) and (E). The p values were calculated by using 

a paired two-tailed Student’s t test (** p < 0.01). Error bars represent standard deviations. 
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Figure 3.6 Representative Kaplan–Meier survival curves for the implications of 

ARL3, RHOF, RAB30, and RRAS2 mRNA expressions in survival of breast cancer 

patients. 

Kaplan–Meier survival analyses for relapse-free survival (RFS) in all breast cancer patients 

(left panel) and in ER-positive breast cancer patients receiving only treatment with 

tamoxifen but not chemotherapy (right panel). The patient population was stratified by 

median mRNA expression levels of the (A) ARL3, (B) RAB30, (C) RHOF, and (D) RRAS2 

genes, respectively. Analysis was performed using KM-plotter (kmplot.com/analysis). The 

p values were calculated by using a log-rank test. Number of patients, hazard ratios (HR) 

and 95% confidence intervals (95% CI) are indicated. 
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Figure 3.7 RAB31 expression predicts breast cancer patient outcome. 

Kaplan–Meier survival analyses of the implications of mRNA expression of the RAB31 

gene for relapse-free survival (RFS) in breast cancer patients: (A) all breast cancer patients 

(n = 3951); (B) ER-positive breast cancer patients receiving tamoxifen but without 

chemotherapy (n = 809); (C) ER-positive breast cancer patients (n = 2061); (D) ER-

negative breast cancer patients (n = 801). The patient population was stratified by median 

RAB31 mRNA expression levels. The p value was calculated by using a log-rank test. 

Number of patients, hazard ratios (HR) and 95% confidence intervals (95% CI) are 

indicated. 
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Figure 3.8 Bioinformatic analysis revealing RAB31 as a potential predictive marker 

for tamoxifen resistance. 

Differential expression analysis for RAB31 in: (A) docetaxel-, (B) tamoxifen- and (C) 

doxorubicin-resistant MCF-7 cell lines in three cohorts GSE6434, GSE26495 and 

GSE24460, respectively (Dox: docetaxel; Tam: tamoxifen; Adr: Adriamycin or 

doxorubicin). Kaplan–Meier survival analyses for: (D) relapse-free survival (RFS) in the 

GSE42568 data set; (E) overall survival (OS) in the GSE42568 data set; (F) disease-

specific survival (DSS) in the GSE3494 data set; (G) differential RAB31 expression in 

different grades of breast cancer progression in the GSE4922 data set. The patient 

population was stratified by median RAB31 mRNA expression levels. The p values for the 

Kaplan–Meier curves were calculated by using the log-rank test. The p values for the box-

whisker plots were calculated by using an unpaired two-tailed Student’s t test (# p > 0.05, 

* p < 0.05, ** p < 0.01). 
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Figure 3.9 RAB31 expression is correlated with ER status and breast cancer subtypes. 

Box-whisker plot showing correlated expressions of RAB31 and ESR1, the latter of which 

encodes estrogen receptor alpha (ERα), in the: (A) TCGA-BRCA cohort; (B) GSE4922 

data set; (C) GSE23988 data set. Whisker shows 10th and 90th percentile; box boundaries 

show 25th and 75th percentile and the lines represent median values. (D) A scatter plot 

showing RAB31 expression across the five molecular subtypes of breast cancer (n = 831) 

in the TCGA-BRCA cohort, and the lines represent median value. The p values for the 

box-whisker plots were calculated by using an unpaired two-tailed Student’s t test. 
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Figure 3.10 RAB31 knockdown confers increased tamoxifen resistance. 

(A) Validation of stable knockdown of RAB31 in MCF-7 cells by Western-blot analysis; 

(B) Quantification results for Western-blot validation of stable shRAB31 knockdown 

MCF-7 cell lines; (C) Colony formation assay for stable shRAB31/shScramble MCF-7 

cells; (D) Quantification results for colony formation assay; (E) Cell proliferation assay for 

stable shRAB31/shScramble MCF-7 cells upon treatment with different doses of 4-OHT. 

The p values were calculated by using a paired two-tailed Student’s t test (** p < 0.01). 

Error bars represent standard deviations. 

 
 

  



127 

 

Figure 3.11 RAB31 knockdown renders elevated tamoxifen resistance and 

proliferation rates. 

(A) Cell proliferation assay for stable shRAB31-2 and shScramble MCF-7 cells; (B) 

Validation of stable knockdown of RAB31 in T47D cell lines by Western-blot analysis; 

(C) Cell proliferation assay for stable shRAB31-2 and shScramble T47D cells; (D) Cell 

proliferation assay for stable shRAB31-2 and shScramble T47D cells under dose-

dependent 4-OHT treatment; (E) Cell proliferation assay for stable shRAB31-2 and 

shScramble T47D cells under time-dependent 1 μM 4-OHT treatment. The data represent 

the means ± standard deviations of results from three parallel experiments. Some error bars 

appear to be smaller than the symbols. 
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Figure 3.12 Ectopic expression of RAB31 led to elevated tamoxifen sensitivity. 

(A) Cell proliferation assay for MCF-7/TamR cells after treatment with different doses of 

4-OHT; (B) Cell proliferation assay for MCF-7/TamR cells after treatment with 4-OHT 

(1 μM) for different periods of time; (C) Colony formation assay for MCF-7/TamR cells 

expressing empty vector or FLAG-RAB31; (D) Quantification results for colony 

formation assay. The p values were calculated by using a paired two-tailed Student’s t 

test (# p > 0.05, * p < 0.05, ** p < 0.01). Error bars represent standard errors of the 

means. 

 

 

  



130 

 

Chapter 4 Targeted Quantitative Proteomic Approach for Probing Altered 

Protein Expression of Small GTPases Associated with Colorectal Cancer 

4.1 Introduction 

Colorectal cancer (CRC) is a major cause of cancer-associated deaths worldwide, and 

it ranks third in terms of incidence but second in terms of mortality.1-2 According to the 

stage definition by the American Joint Committee on Cancer (AJCC), five-year survival 

rates ranged from 93.2% for stage I to 8.1% for stage IV CRC patients.3 Approximately 

40–50% of all patients with CRC will ultimately develop into metastatic disease either at 

the time of diagnosis or develop distant relapses after therapy, of which the median overall 

survival is less than two years.4 Therefore, a better understanding about the metastatic 

transformation of CRC cells could lead to more precise therapeutic strategies that improve 

patient outcomes. 

The Ras superfamily of small (20–35 kDa) GTPases function as molecular switches 

that play important roles in carcinogenesis and tumor progression by regulating 

intracellular trafficking, cell signaling and malignant secretion.5-6 Among them, KRAS is 

one of the most frequently mutated oncogenes that drives colorectal tumorigenesis, 

accounting for 40% of sporadic CRCs. In addition to mutations, aberrant regulation of 

small GTPase expression has been shown to have a role in CRC progression. For instance, 

overexpression of RAB3C promoted colorectal tumor progression in vitro and vivo.7 

Moreover, miR-27b and miR-204-5p suppressed proliferation and invasion of CRC cells 

by inhibiting RAB3D and RAB22A, respectively8-9, and down-regulation of RAB25 was 
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found to be associated with reduced metastatic potential of CRC cells in vivo.10 Therefore, 

we reason that a systematic investigation about small GTPases associated with metastatic 

transformation of CRC cells may lead to novel molecular targets for the improvement of 

therapeutic efficacy. In this study, we applied a recently established high-throughput, 

targeted proteomic approach to robustly quantify the differential expression of small 

GTPases in the SW480/SW620 matched primary/metastatic cells derived from the same 

patient.11 We also examined, by using bioinformatic analyses, whether the aberrant 

expression of these small GTPases were dysregulated in clinical samples and showed 

prognostic values. Finally, we identified SAR1B as a potential metastasis suppressor and 

a prognostic biomarker that could modulate in vitro migration and invasion of CRC cells 

by regulating epithelial–mesenchymal transition (EMT). 

4.2 Materials and Methods 

4.2.1 Cell Culture 

The CRC cell lines used in this study were SW480 (ATCC# CCL-228) and SW620 

(ATCC# CCL-227), which were established from a primary human colon adenocarcinoma 

and a lymph node metastasis of the same patient, respectively. All cell lines were 

maintained in Dulbecco's Modified Eagle Medium (DMEM; Invitrogen-Gibco) 

supplemented with 10% fetal bovine serum (FBS; Invitrogen-Gibco) and 

penicillin/streptomycin (PS, 100 IU/mL) in a humidified atmosphere with 5% CO2 at 37 

°C, and the culture medium was changed in every 2 to 3 days as necessary. 

For stable isotope labeling by amino acids in cell culture (SILAC) experiments, 

“heavy” and “light” SILAC DMEM media depleted of L-lysine and L-arginine (Thermo 
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Scientific™ Pierce) were freshly prepared by adding 0.146 g/L 13C6 
15N2 L-lysine (Lys-8) 

and 0.84 g/L 13C6 L-arginine (Arg-6) (Cambridge Isotopes Inc.) or the corresponding un-

labeled lysine (Lys-0) and arginine (Arg-0) to DMEM, which as supplemented with 10% 

dialyzed FBS (Corning) and PS (100 IU/mL). SW480 and SW620 cells were cultured in 

the heavy-DMEM medium for at least 10 days or six cell doublings to assure complete 

heavy-isotope incorporation. 

4.2.2 Sample Preparation and LC-MRM Analysis 

To assess the differential expression of small GTPases in SW480 and SW620 cells, we 

conducted SILAC-based quantitative proteomic experiments with forward and reverse 

labeling strategies. Briefly, we combined lysates of light-labeled SW480 cells and heavy-

labeled SW620 cells at a 1:1 ratio in the forward labeling experiments. The reverse labeling 

experiment was conducted in the opposite way. The mixed cell lysates (100 μg in total) 

were loaded onto a 10% SDS-PAGE gel and separated by electrophoresis. The gel bands 

corresponding to the molecular weight range of 15–37 kDa were cut, reduced with 20 mM 

dithiothreitol, alkylated with 55 mM iodoacetamide, and digested in-gel with trypsin at an 

enzyme/protein ratio of 1:100. After tryptic digestion, the peptide mixtures were desalted 

and subjected to LC-MRM analyses on a TSQ Vantage triple-quadruple mass spectrometer, 

which was equipped with a nanoelectrospray ionization source and coupled with an EASY-

nLC II HPLC system (Thermo Fisher Scientific, San Jose, CA). The samples were 

automatically loaded onto a 4-cm trapping column (150 μm i.d.) packed with ReproSil-Pur 

120 C18-AQ resin (5 μm in particle size and 120 Å in pore size, Dr. Maisch GmbH HPLC) 

at 3 μL/min. The trapping column was connected to a 20-cm fused silica analytical column 
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(75 μm i.d.) packed with ReproSil-Pur 120 C18-AQ resin (3 μm in particle size and 120 Å 

in pore size, Dr. Maisch GmbH HPLC). A 157-min linear gradient of 2−35% acetonitrile 

in 0.1% formic acid was employed for peptide separation, and the flow rate was 230 nL/min. 

The spray voltage was set at 1.8 kV. Ions were isolated in both Q1 and Q3 using 0.7 fwhm 

resolution, where the cycle time was set as 5 s. The optimal collisional energy for each 

targeted peptide was calculated using a linear equation specific to the TSQ Vantage 

instrument and the precursor mass-to-charge ratio (m/z), according to the default setting in 

Skyline.12 

To enable high-throughput quantitative analysis, we applied a previously developed 

scheduled LC-MRM method, where the mass spectrometer was programmed to acquire the 

MS/MS of the precursor ions for a limited number of peptides in each 6-min retention time 

(RT) window.11 The MRM data for all targeted peptides were manually inspected to ensure 

correct peak picking. In this regard, the dot-plot or dot-product (dotp) value has to exceed 

0.80.13 In addition, the iRT value represents an intrinsic property (i.e., hydrophobicity) of 

a peptide; hence, a substantial deviation of measured RT from that projected from the linear 

plot of RT over iRT signals a false-positive detection.14 

4.2.3 Immunoblotting 

Total protein lysate was prepared from cell pellet using ice-cold CelLytic M cell lysis 

reagent (Sigma-Aldrich, MO) containing protease inhibitor cocktail (1:100). After cell 

lysis, the protein concentration was determined using Quick Start™ Bradford Protein 

Assay (Bio-Rad). Approximately 10–20 µg whole-cell protein lysates, mixed with 4× 

Laemmli SDS loading buffer, were loaded onto 10% polyacrylamide gels and, after 



134 

 

electrophoresis, the proteins were transferred onto nitrocellulose membranes. After 

blocking with 5% non-fat milk in PBS with 0.1% Tween-20 (PBST) at 25 °C for 1 h, the 

membranes were incubated with primary antibodies against human ARF4 (Proteintech; 

rabbit polyclonal, 1:5,000), RAB6A (38-TB, Santa Cruz; mouse polyclonal, 1:1,000), pan-

RAB6 (3G3, Santa Cruz; mouse polyclonal, 1:1,000), RAB27A (Abcam; rabbit polyclonal, 

1:5,000), RAB31 (4D12, Santa Cruz; rabbit polyclonal, 1:2,000), SAR1A (K-44, Santa 

Cruz; mouse polyclonal, 1:1,000), SAR1B (AT1C7, Santa Cruz; mouse polyclonal, 

1:1,000), Slug (PA5-11922, Thermo Fisher; rabbit polyclonal, 1:1,000), or β-actin (Thermo 

Fisher; rabbit polyclonal, 1:10,000). After overnight incubation with primary antibodies at 

4°C with 5% bovine serum albumin (BSA) in PBST, the membranes were then incubated 

with peroxidase-labeled donkey anti-rabbit secondary antibody (Thermo Fisher; 1:10,000) 

or mouse m-IgGκ BP-HRP (Santa Cruz; 1:10,000) for 1 h at 25 °C. Amersham ECL Prime 

Western Blot Detecting Reagent (GE Healthcare) was used for visualization of protein 

bands. 

4.2.4 Data Sources for Bioinformatic Analyses 

Patient RNA-Seq data were obtained from The Cancer Genome Atlas (TCGA) via 

cBioPortal (http://www.cbioportal.org/). The data of four different human expression 

microarrays with accession numbers of GSE14333, GSE17536, GSE21510, GSE39582, 

and the corresponding clinical information were downloaded from the National Center for 

Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/). The data were analyzed using R/Bioconductor 

(version 3.4.3). 

http://www.cbioportal.org/
http://www.ncbi.nlm.nih.gov/geo/
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4.2.5 Generation of Stable Knockdown Cell Lines and siRNA Transfection 

The lentiviral vectors pLKO.1-shSAR1B and pLKO.1-scramble plasmids were 

constructed by inserting a short hairpin double-stranded oligonucleotide targeting human 

SAR1B or a scrambled sequence into the AgeI/EcoR1 sites of the shRNA vector pLKO.1 

(Addgene #10878; Cambridge, MA). Expression of the shRNA was driven by the human 

U6 promoter. Recombinant lentiviruses were produced by co-transfection of HEK293T 

cells with the shRNA plasmids pLKO.1-shScramble or pLKO.1-shSAR1B, envelope 

plasmid pLTR-G (Addgene #17532) and packaging plasmid pCMV-dR8.2 dvpr (Addgene 

#8455). Lentivirus-containing supernatant was harvested and filtered through 0.45-μm 

pore size filters at 48 h post-transfection. Infection of SW480 cells with recombinant 

lentivirus was conducted in the presence of 5 µg/ml polybrene. After removal of virus, the 

cells were selected in 5 µg/mL puromycin-containing medium for 3 days to eliminate 

uninfected cells. After selection, the cells were maintained in a medium containing 2.5 

µg/mL puromycin and were used for subsequent experiments. For siRNA transfection, 

siGENOME non-targeting (NT) siRNA control (D-001210-02-05) and an siRNA sequence 

(5′-UGAUGUUGUGGUCAAAGUGAU-3′) targeting RAB31 were purchased from 

Dharmacon (Lafayette, CO). siRNAs were transfected into SW480 cells using RNAiMAX 

(Invitrogen) following the manufacturer’s protocol. Cells were either harvested or used for 

subsequent experiments at 72 h after transfection. 

4.2.6 Cell Proliferation Assay 

The cell proliferation was evaluated using a cell counting kit-8 (CCK-8; Dojindo 

Laboratories). Briefly, SW480 cells were seeded in a 96-well flat-bottomed microplate 
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(3000 cells/well) in complete growth medium (100 μL/well) for 24 h. At the desired time 

points, 10 µL of the CCK-8 dye was added to each well and, after incubation at 37℃ for 4 

h, the absorbance at 450 nm for the cells was recorded using the Synergy™ H1 Hybrid 

Multi-Mode Microplate Reader (BioTek Instruments). 

4.2.7 Migration and Invasion Assays 

Transwell chambers (Corning) were rehydrated at 37 °C and 1×105 cells were then 

added to the top chamber in serum-free medium and the bottom chamber was filled with 

medium containing 10% fetal bovine serum. The invasion assay was conducted under the 

same conditions except that the transwell membranes were pre-coated with Matrigel 

(Corning). The cells were cultured for 48 h at 37 °C in a 5% CO2 humidified incubator. To 

quantify migrated or invaded cells, the cells from the top-side of the membrane were gently 

removed using a cotton-tipped swab and invading cells attached to bottom of the membrane 

were fixed with 70% ethanol and stained with 0.5% crystal violet. Cell numbers from 5 

representative fields were counted for each insert. 

4.2.8 Quantitative Reverse Transcription PCR (RT-qPCR) 

Total RNA was extracted from cells using The E.Z.N.A.® Total RNA Kit I (Omega Bio-

Tech), and cDNA was synthesized via oligo(dT)18 primed reverse transcription by 

employing M-MLV reverse transcriptase (Promega). After a 60-min reaction at 42°C, the 

reverse transcriptase was deactivated by heating at 75°C for 5 min. RT-qPCR experiments 

was performed using iQ SYBR Green Supermix kit (Bio-Rad) on a Bio-Rad iCycler system 

(Bio-Rad), and the PCR conditions were as follows: 95°C for 3 min; 45 cycles at 95°C for 

15 s, 55°C for 30 s, and 72°C for 45 s. The comparative cycle threshold (Ct) method (ΔΔCt) 
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was used for the relative quantification of gene expression.15 Relative gene expression was 

normalized to that of the internal control (GAPDH). 

4.3 Results 

4.3.1 Targeted Quantitative Profiling of Differential Expression of Small GTPases during 

Metastatic Transformation of CRC Cells 

The SW480/SW620 pair of isogenic, primary/metastatic CRC cell lines constitute a 

valuable in vitro cellular model for studying CRC metastasis. The SW620 cell line was 

isolated from the lymph node metastatic site of the same patient as its non-metastatic 

counterpart (i.e. SW480).16 This pair of cell lines have been widely explored with various 

comparative shotgun and targeted proteomics approaches at the whole proteome and 

secretome levels to discover potential biomarkers and therapeutic targets for CRC.17-22 

To systematically investigate the differential protein expression of small GTPases in 

the paired SW480/SW620 cells, we employed a previously established targeted proteomic 

workflow, which involves SILAC, SDS-PAGE fractionation, and scheduled multiple-

reaction monitoring (MRM) analysis.11 To obtain reliable quantification results, we carried 

out SILAC experiments in triplicate, with two sets of forward labeling (Figure 4.1) and one 

set of reverse labeling. In this vein, the throughput for the method is high, where the entire 

library of small GTPase tryptic peptides could be monitored in two LC-MRM runs with 

retention time scheduling by using the iRT algorithm.14 We also examined the run-to-run 

reproducibility of the MRM-based quantification. As illustrated in Figure 4.1, the log2-

transformed SILAC ratios for all the quantified small GTPases obtained from forward and 

reverse SILAC labeling experiments exhibited an excellent linear fit (R2 = 0.928). MRM 
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analyses facilitated reproducible quantification of 83 small GTPases in each of the three 

SILAC labeling experiments (Figure 4.2). By contrast, analysis of the same samples by 

LC-MS/MS in the data-dependent acquisition (DDA) mode only led to the identification 

of 37 and 35 small GTPases in the two forward SILAC samples (F1 and F2, respectively), 

and 31 small GTPases in the reverse SILAC sample (R) (Figure 4.1). Moreover, MRM 

exhibited better sensitivity than the shotgun proteomic approach, as reflected by the 

substantially increased coverage of the small GTPase proteome in two LC-MRM runs 

without further sample pre-fractionation (Figure 4.1). 

We also analyzed the previously published shotgun or targeted proteomic data acquired 

from the SW480/SW620 paired cell lines. Figure 4.3 showed the Venn diagrams 

representing small GTPases quantified in this study as compared to those reported by three 

independent proteomic studies.18, 20-21 The results clearly revealed that SDS-PAGE 

fractionation followed by scheduled MRM analysis allowed for a more in-depth coverage 

of the small GTPase proteome. It is of note that the method reported by Cai et al.21 , which 

utilizes the acyl-phosphate GTP affinity probe, enabled proteome-wide enrichment of 

GTP-binding proteins, not solely restricted to small GTPases. 

The above results demonstrated that the scheduled LC-MRM approach facilitates 

highly sensitive and reproducible quantitative profiling of small GTPases in CRC cell lines 

with an elevated throughput and depth of coverage. 

4.3.2 Validation of Differential Protein Expression by Western-blot Analyses 

Among all the quantified small GTPases, 18 and 7 proteins were significantly down- 

and up-regulated (with >1.5-fold change), respectively, in the metastatic SW620 cells 
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relative to primary SW480 cells (Figure 4.1). In this vein, we employed 1.5-fold change as 

a cutoff based on the mean relative standard deviation (RSD = 6.7%) for all the quantified 

small GTPases.  Notably, several Rho small GTPases exhibited significantly altered 

expression, including RHOB, RHOF, and RHOG. Figure 4.4 displayed the selected-ion 

chromatograms (SICs) for these small GTPases. Down-regulation of RHOB and up-

regulation of RHOG in SW620 relative to SW480 cells were previously reported in two 

independent studies.21, 23 Importantly, RHOB is a well-recognized tumor suppressor for 

CRC and clear-cell renal cell carcinoma (ccRCC).23-25 Since the protein abundance of 

RHOB was down-regulated by ~2-fold in SW620 over SW480 cells, our results validated 

a known suppressor for CRC metastasis. 

Among the small GTPases with altered protein expression, RAB6B displayed a 

pronouncedly decreased expression (by ~10-fold) in SW620 relative to SW480 cells 

(Figure 4.1). Owing to the high degree of sequence homology among the three RAB6 

isoforms (RAB6A/B/C), common antibody-based approach including Western blot may 

be susceptible to cross-reactivity and hence could be challenging in distinguishing different 

isoforms. By selecting proteotypic peptides which have distinct sequences for different 

protein isoforms, our MRM-based approach successfully revealed the substantial down-

regulation of RAB6B, but not RAB6A/C, in SW620 relative to SW480 cells (Figure 4.4). 

Meanwhile, Western-blot analyses validated the MRM data for RAB6A and pan-RAB6 

proteins (RAB6A/B/C) but failed to distinguish RAB6A/C from RAB6B (Figure 4.4). In 

addition, we verified the robustness and accuracy of the MRM-based quantitation for other 

GTPases. As shown in Figure 4.5 and Figure 4.6, we confirmed the up-regulation of 
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SAR1A and RAB27A, and down-regulation of SAR1B, RAB31 and ARF4 in the 

metastatic SW620 cells relative to the primary SW480 cells. Taken together, the MRM 

method constitutes a highly accurate quantitative tool with excellent throughput and 

specificity. 

4.3.3 Potential Roles of SAR1A and SAR1B in CRC Progression 

We sought to examine, among the differentially expressed small GTPase proteins, 

which can potentially promote or suppress CRC progression. Therefore, we assessed the 

gene expression data from patients in The Cancer Genome Atlas Colon Adenocarcinoma 

(TCGA-COAD) data set, and we found that there were significantly lower mRNA 

expressions of ARF4, RAB6B, RHOF, and SAR1B genes in CRC tissues than in normal 

tissues (n = 50; p < 0.05, paired Student’s t-test) (Figure 4.7). 

We also interrogated other public CRC data sets accessible from the National Center 

for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database, 

including GSE14333 (n = 290, Ludwig Institute for Cancer Research), GSE17538 (n = 

232, Vanderbilt University), GSE21510 (n = 274, Juntendo University), and GSE39582 (n 

= 585, Ligue Nationale contre le Cancer).26-29 We again observed significantly lower 

mRNA expressions of ARF4, RAB6B, RHOF, and SAR1B in CRC tissues than in normal 

tissues (Figure 4.8). However, higher mRNA expression of ARF4, RAB6B and RHOF was 

significantly associated with poorer CRC patient survival, which is contradictory to their 

plausible roles in suppressing metastasis (Figure 4.8). The discrepancy between the 

proteomic data and the bioinformatic data may arise from high degree of patient-to-patient 

variability. Meanwhile, SAR1A expression is consistently up-regulated in human CRC 
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tissues compared to the adjacent normal tissues in both TCGA-COAD and GSE21510 

cohorts (Figure 4.9). Kaplan–Meier survival analyses showed that CRC patients with 

higher SAR1A expression presented a higher risk of death [hazard ratio (HR) = 2.353, 95% 

confidence interval (CI) = 1.349 to 4.106, p = 0.0026], and those with higher SAR1B 

expression displayed a more favorable outcome (HR = 0.5915, 95% CI = 0.3723 to 0.9398, 

p = 0.0262) (Figures 4.7 and 4.8). These observations are in keeping with the quantitative 

proteomic data showing the down-regulated SAR1A and up-regulated SAR1B in SW620 

over SW480 cells. Furthermore, lower SAR1B expression is significantly correlated with 

more advanced pathological stages of CRC (Figure 4.8). Collectively, these findings 

substantiated SAR1B as a potential suppressor and a prognostic biomarker for CRC 

progression, and SAR1A and SAR1B may assume distinct roles in disease development. 

4.3.4 SAR1B Knockdown Led to Elevated in vitro Migration and Invasion of SW480 Cells 

by Modulating Epithelial–Mesenchymal Transition (EMT) 

To explore the potential roles of SAR1B in CRC metastasis, we next sought to examine 

how the migratory and invasive abilities of CRC cells are modulated by genetic depletion 

of SAR1B. We found that shRNA-mediated knockdown of SAR1B in SW480 cells elicited 

marked elevations in both the migratory and invasive abilities, as manifested by results 

from both transwell migration/invasion assay and wound-healing assay (Figure 4.10). 

These observations were in accordance with the acquisition of a mesenchymal phenotype.  

We next performed real-time quantitative PCR (RT-qPCR) experiments to assess the 

expression of EMT markers in SW480 cells upon shRNA-mediated stable knockdown of 

SAR1B. The results indeed demonstrated that knockdown of SAR1B led to a significant 
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reduction in the levels of epithelial marker E-cadherin (CDH1) and increased mRNA 

expression of the mesenchymal marker Vimentin (VIM), indicating a shift to a more 

mesenchymal phenotype (Figure 4.10). We, however, did not observe any significant 

changes in mRNA expression for other mesenchymal markers including SNAI1/2 and 

ZEB1/2. In addition, the mRNA level of CDH2 gene was not detectable in SW480 or 

SW620 cells. Likewise, loss of SAR1B did not alter the proliferation rate of SW480 cells 

(Figure 4.10). Together, SAR1B may contribute to suppression of CRC motility and 

metastasis partly through modulating EMT, but not by regulating proliferation. 

4.3.5 RAB31 Promotes Proliferation, Migration and Invasion of SW480 Cells in vitro 

RAB31 was previously shown to play a role in breast cancer proliferation and acquired 

tamoxifen resistance.30-31 Our targeted proteomic data revealed a more than 4-fold down-

regulation of RAB31 in the metastatic SW620 cells, which is in keeping with the 

quantitation results from Western-blot analysis (Figure 4.11). However, there were no 

significant differences observed for the RAB31 expression between CRC and normal 

tissues in the TCGA-COAD data set (Figure 4.11). Moreover, Kaplan–Meier survival 

analyses revealed that higher RAB31 mRNA levels are correlated with worse disease-free 

survival (DFS), which argues against the hypothesis that RAB31 may serve as a suppressor 

for CRC metastasis (Figure 4.11). 

We further investigated whether knock-down of RAB31 affects the behavior of SW480 

cells by assessing cell proliferation and transwell migration/invasion. The siRNA-mediated 

knockdown of RAB31 in SW480 cells was confirmed by Western-blot analysis (Figure 

4.12). We observed significantly diminished cell proliferation, in vitro migration and 
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invasion of SW480 cells after genetic depletion of RAB31 expression, which is 

accompanied by diminished level of mesenchymal marker Slug (Figure 4.12). Although 

RAB31 is substantially down-regulated in SW620 cells, it appeared to be a metastasis 

driver instead of a suppressor based on the cellular experiments. Therefore, these results 

underscored that some of the dysregulated small GTPases may be simply accompanied 

with CRC metastasis and they may not modulate metastatic transformation of CRC. This 

observation emphasizes the importance of validating the findings made from proteomic 

experiments with bioinformatic analysis and cell-based assay. 

4.4 Conclusions 

In this study, we employed our recently developed MRM-based targeted proteomic 

method for high-throughput, reproducible and in-depth quantification of small GTPases in 

the matched primary/metastatic SW480/SW620 CRC cells. Among the 83 quantified small 

GTPases, we found that SAR1A and SAR1B proteins were significantly elevated and 

reduced, respectively, in SW620 over SW480 cells. Furthermore, low level of SAR1B 

expression was significantly associated with poor survival in CRC patients and with 

elevated disease stages, suggesting its potential role in suppressing CRC progression. Our 

results also indicated that loss of SAR1B conferred elevated in vitro migratory and invasive 

abilities of SW480 cells, accompanied by reduced E-cadherin and elevated Vimentin 

expression. Metastasis consists of multiple steps of cellular transformation, during which 

the acquisition of enhanced cell motility, migratory capability and invasiveness is essential 

to the early stage of metastatic dissemination.32 Hence, we reason that diminished SAR1B 
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promotes motility and in vitro metastasis of SW480 cells partly through modulating EMT 

maker gene expression. 

The two SAR1 proteins, SAR1A and SAR1B, are ubiquitously expressed in many types 

of cancer. Aberrant expression or mutations in the SAR1A and SAR1B genes were shown 

to play an important role in regulating cholesterol biosynthesis.33-34 SAR1B promotes 

secretion of both apoB48- and apoB100-lipoproteins, whereas overexpression of SAR1A 

displays the opposite effect, preferentially blocking the secretion of the lipid-laden 

particles.34 Furthermore, reduction in total serum cholesterol could be a signal of occult 

CRC.35 We therefore speculate that the crucial role of SAR1B in lipid biosynthesis and 

secretion may contribute to CRC progression. Interestingly, a previous study showed that 

the expressions of SAR1B and SAR1A were significantly decreased and increased, 

respectively, in the intestinal biopsies of patients with Anderson's disease as compared to 

healthy individuals.36 Hence, they may display functionally redundant, yet distinct roles in 

regulating vesicular trafficking and cargo transport. Although we demonstrated that 

SAR1A is up-regulated in the metastatic SW620 cells and displayed prognostic values in 

large patient cohorts, the detailed molecular mechanisms underlying the role of SAR1A in 

CRC progression warrant further investigation. 

In addition to SAR1 proteins, ARF4 was found to be down-regulated in the metastatic 

SW620 cells relative to the primary SW480 cells, as shown by both MRM and Western-

blot analyses. In a large-scale secretome study reported by Barderas et al.37 using paired 

CRC cell lines KM12C/KM12SM, ARF4 was found to be down-regulated in the secretome 

of the highly metastatic KM12SM cells relative to that of the primary KM12C cells. ARF4 
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induces breast cancer cell migration and functions as an anti-apoptotic protein in human 

glioblastoma cells.38-39 Therefore, ARF4 may participate in the secretory pathways to 

suppress the malignant transformation of CRC cells. 

In conclusion, we applied an MRM-based targeted proteomic method for high-

throughput quantitative measurement of small GTPases associated with CRC metastasis 

by employing paired SW480/SW620 cell lines. Among the 25 small GTPases that 

exhibited differential expression with at least a 1.5-fold change in metastatic SW620 

relative to primary SW480 cells, we found that SAR1B was significantly down-regulated 

during metastatic transformation and the SAR1B mRNA expression was significantly 

correlated with disease stages and prognosis in CRC patient cohorts. We also reported that 

SAR1B depletion in SW480 cells promoted cell motility and transwell invasion, partly 

through modulation of EMT. Collectively, these results suggested that SAR1B may serve 

as a prognostic biomarker and a potential suppressor for CRC metastasis. 
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Figure 4.1 MRM-based targeted quantitative profiling of small GTPases associated 

with CRC metastasis. 

(A) Schematic diagram depicting the targeted quantitative proteomic workflow, relying on 

forward SILAC labeling, in-gel fractionation, and scheduled LC-MRM analysis; (B) 

Correlation between the log2-transformed SILAC ratios (log2R) obtained from one 

forward- and one reverse-SILAC labeling experiments with a relatively high correlation 

coefficient (R2 = 0.9280); (C) Venn diagrams displaying the overlap between quantified 

small GTPases in the triplicate SILAC experiments obtained from MRM and DDA 

analyses, respectively, and the comparison between the performances of the two methods; 

(D) Bar charts showing significantly up- and down-regulated (>1.5-fold) small GTPases 

quantified from three LC-MRM experiments. 
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Figure 4.2 Scheduled MRM analysis of differential expression of small GTPases in 

paired SW480/SW620 cells. 

Heatmap showing the differential expression of small GTPases in paired SW480/SW620 

cells. Shown are the Log2R(SW620/SW480) values obtained from two forward and one 

reverse SILAC labeling experiments (F1 and F2: forward experiments, R1: reverse 

experiment). As indicated by the scale bar, the red and blue bars designate those small 

GTPases that are up-and down-regulated, respectively, by at least 1.5-fold in the SW620 

over SW480 cells. 
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Figure 4.3 In-depth coverage of the small GTPase proteome facilitated by the Ge-LC-

MRM-based quantification. 

Venn diagrams showing the overlapped small GTPases quantified in this study and three 

independent proteomic studies. 
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Figure 4.4 LC-MRM quantification of RHOB, RHOF, RHOG, and RAB6 in paired 

SW480/SW620 cells. 

(A) Selected-ion chromatograms (SICs) for the quantification of tryptic peptides 

IQAYDYLECSAK (RHOB), AALYLECSAK (RHOF) and YLECSALQQDGVK 

(RHOG) in one forward and one reverse SILAC labeling experiments; (B) Western-blot 

validation of the protein abundance of pan-RAB6 (RABA/B/C) and RAB6A, and the SICs 

for the quantification of tryptic peptides ELNVMFIETSAK (RAB6A), QITIEEGEQR 

(RAB6B) and TDLADKR (RABA/C). 
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Figure 4.5 Validation of differential expression of SAR1A and SAR1B in 

SW480/SW620 cells. 

Selected-ion chromatograms (SICs) for the quantification of tryptic peptides: (A) 

TDAISEEK from SAR1A and (B) EMFGLYGQTTGK from SAR1B, in one forward- and 

one reverse-SILAC labeling experiments; Western-blot validation of the differentially 

expressed SAR1A (A) and SAR1B (B) proteins in SW480/SW620 cells, and quantitative 

comparison of protein ratios obtained from LC-MRM and Western-blot analyses (n = 3). 

The p values were calculated by using a paired two-tailed Student’s t test (*p < 0.05, **p 

< 0.01). The data represent the mean and standard deviation of results obtained from three 

parallel experiments. 
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Figure 4.6 Validation of differential expression of RAB27A and ARF4 in 

SW480/SW620 cells. 

SICs for the quantification of tryptic peptides (A) SWIPEGVVR from RAB27A and (B) 

LGLQSLR from ARF4, in one forward- and one reverse-SILAC labeling experiments; 

Western-blot validation of the differentially expressed (A) RAB27A and (B) ARF4 in 

SW480/SW620 cells, and quantitative comparison of protein ratios obtained from LC-

MRM and Western-blot analyses (n = 3). The p values were calculated by using a paired 

two-tailed Student’s t test (*0.01 ≤ p < 0.05, **0.001 ≤ p < 0.01, ***p < 0.001). The data 

represent the mean and standard deviation of results obtained from three parallel 

experiments. 
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Figure 4.7 Down-regulated SAR1B in CRC confers better patient prognosis and 

associates with lower disease stages. 

Comparison of SAR1B expression levels in paired CRC tissues (CRC) with adjacent non-

tumor tissues (normal) in (A) TCGA-COAD (n = 50) and (B) GSE21510 (n = 44) cohorts; 

The p values were calculated by using a paired two-tailed Student’s t test (****, p < 

0.0001). Kaplan–Meier survival analysis of CRC patients stratified by the median SAR1B 

mRNA expression in (C) GSE17538 (n = 232) and (D) GSE39582 (n = 585) cohorts; The 

log-rank (Mantel–Cox) test was used to calculate the p values. (E) Correlation of SAR1B 

mRNA expression with different CRC stages in the GSE39582 (n = 585) cohort. The p 

values were calculated by using an unpaired two-tailed Student’s t test (*p < 0.05). 
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Figure 4.8 Prognostic values of ARF4, RHOF and RAB6B in CRC patient cohorts.  

Differential mRNA expression of ARF4, RHOF and RAB6B in the (A, D, G) GSE21510 

(n = 44) (B, E, H) TCGA-COAD (n = 50) cohorts. The p values were calculated by using 

an unpaired two-tailed Student’s t test (ns, p > 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 

0.01; ****, p < 0.0001). Kaplan–Meier survival analysis of CRC patients stratified by the 

median mRNA expression levels of (C) ARF4 and (F) RHOF in the GSE14333 cohort (n 

= 290) and (I) RAB6B in the GSE17536 cohort (n = 232). The log-rank (Mantel–Cox) test 

was performed to calculate the p values. 
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Figure 4.9 Higher expression of SAR1A in CRC confers unfavorable patient 

prognosis. 

Comparison of SAR1A expression levels in paired CRC tissues (CRC) with adjacent non-

tumor tissues (Normal Tissue) in the (A) TCGA-COAD (n = 50) and (B) GSE21510 (n = 

44) cohorts; The p values were calculated by using a paired two-tailed Student’s t test (ns, 

p > 0.05, ** 0.001 ≤ p < 0.01). Kaplan–Meier survival analysis of CRC patients stratified 

by the median SAR1A mRNA expression in (C) GSE14333 (n = 290) and (D) GSE17538 

(n = 232) cohorts. The log-rank (Mantel–Cox) test was performed to calculate the p values. 
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Figure 4.10 Depletion of SAR1B modulates the migratory and invasive capacities of 

SW480 cells. 

(A) Representative images and (B) quantification results for migration/invasion assay 

showing the effects of stable SAR1B knockdown (shSAR1B) on the in vitro migratory and 

invasive abilities of SW480 cells compared to the control (shScramble). (C) Representative 

images and (D) quantification results for wound healing assay showing the effects of stable 

SAR1B knockdown (shSAR1B) on the wound healing abilities of SW480 cells compared 

to the control (shScramble). (E) RT-qPCR expression analyses of EMT marker genes in 

SW480 cells with stable shScramble or shSAR1B knockdown. Gene expression was 

normalized to the relative expression of GAPDH. “n.d.”, not detectable.  (F) Cell 

proliferation of shScramble/shSAR1B SW480 cells. The p values were calculated by using 

a paired two-tailed Student’s t test (*, 0.01  p < 0.05, **, 0.001  p < 0.01). The data 

represent the means and standard deviations of results obtained from three parallel 

experiments. 
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Figure 4.11 Higher expression of RAB31 is associated with worse CRC patient 

outcome and higher disease stages. 

(A) SICs for the quantification of a tryptic peptide GSAAAVIVYDITK from RAB31; (B) 

Western blot validation of the differentially expressed RAB31 in SW480/SW620 cells, and 

quantitative comparison of protein ratios obtained from LC-MRM and Western blot 

analyses (n = 3). The p values were calculated by using a paired two-tailed Student’s t test 

(*, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01). The data represent the mean and standard 

deviation of results obtained from three parallel experiments. (C) Comparison of RAB31 

expression levels in paired CRC tissues (CRC) with adjacent non-tumor tissues (Normal 

Tissue) in the TCGA-COAD cohort (n = 50); (D) Correlation of RAB31 mRNA expression 

with different CRC stages in the GSE39582 cohort (n = 585). The p values were calculated 

by using an unpaired two-tailed Student’s t test (ns, p > 0.05; *, 0.01 ≤ p < 0.05). Kaplan–

Meier survival analysis of CRC patients stratified by the median RAB31 mRNA expression 

in (E) GSE14333 (n = 290) and (F) GSE17536 (n = 232) cohorts. The log-rank (Mantel–

Cox) test was performed to calculate the p values. 
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Figure 4.12 RAB31 knockdown modulates the migratory and invasive capacities and 

cell proliferation of SW480 cells. 

(A) Western blot results showing the siRNA-mediated knock-down of RAB31 in SW480 

cells and the resulting altered level of Slug protein; (B) Representative images depicting 

the migratory and invasive abilities of SW480 cells upon siRNA-mediated depletion of 

RAB31; (C) Cell proliferation of SW480 cells upon siRNA-mediated knockdown of 

RAB31. 
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Chapter 5 A Targeted Quantitative Proteomic Approach for High-

throughput Quantitative Profiling of Small GTPases in Brain Tissues of 

Alzheimer’s Disease Patients 

5.1 Introduction 

Alzheimer’s disease (AD) is among the most common neurodegenerative diseases 

worldwide and is a leading cause for dementia in the elderly.1 In the United States, AD 

affects approximately 10% people with ages over 65 and remains the 5th leading cause of 

death in this population.2 The hallmarks of AD pathology in the brains include synapse 

loss, the accumulation of extracellular beta-amyloid (Aβ) plaques and twisted strands of 

the hyper-phosphorylated tau protein (neurofibrillary tangles) inside neurons, which 

promote neuronal death and ultimately dementia.3 As region-specific neurodegenerative 

disorders, AD can lead to neuronal loss that is predominantly found in the cerebral cortex 

and hippocampus, where the cerebral cortex can be further divided into different lobes, the 

frontal, parietal, temporal, and occipital.4 

The advent of quantitative proteomics in recent years has allowed for high-throughput 

interrogation of proteomic alterations accompanied by the early development and 

progression of AD in various sample types or post-mortem brain regions including 

temporal neocortex,5 cerebral cortex,6 cerebrospinal fluids,7-8 hippocampus,9-10 frontal 

cortex11-13 and anterior cingulate gyrus.14 Very recently, McKetney et al.15 reported a 

proteomic resource comprising nine anatomically distinct sections from post-mortem AD 

patient brain tissues. Among the various proteomic techniques, targeted proteomics was 

widely applied in clinics for validation of disease biomarker for AD.8, 16 
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Small GTPases of the Ras superfamily are essential regulators of intracellular 

trafficking and signal transduction, and therefore, they represent a potential therapeutic 

strategy in disease treatment.17 A growing body of literature has emphasized the 

importance of Rab small GTPases as crucial signaling modules in the brain.18-20 Rab7A 

and Rab35 regulate secretion and endolysosomal degradation of the tau protein, 

respectively.21-22 Moreover, Rab6A is among the 16 hub genes associated with metastable 

AD subproteome,23 and Rab6 showed elevated expression levels in the temporal cortex, 

but not hippocampus of AD brains compared to non-demented controls.24 In addition, the 

mRNA expressions of Rab4, Rab5 and Rab7 were up-regulated in the hippocampus from 

individuals with AD.25 Augmented mRNA expressions of Rab4, Rab5, Rab7, and Rab27 

were also observed in the basal forebrain of AD patients.26 In addition to Rab GTPases, 

Arf and Rho GTPases also play important roles in regulation of membrane dynamics and 

trafficking in neuronal cells.27 Given the importance of synaptic trafficking in 

neurodegenerative diseases, we reason that a comprehensive investigation of the 

association of small GTPases with AD could further our understanding of disease etiology 

and explore their potential as possible molecular targets for therapeutic intervention. Here 

we utilized a novel multiplexed and high-throughput targeted quantitative proteomic 

approach that involves multiple-reaction monitoring (MRM) and the use of stable isotope-

labeled standard (SIS) peptides. We further applied this method to assess the altered 

expression of small GTPases in the frontal cortex region of post-mortem patient brain 

tissues with various AD stages. 
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5.2 Materials and Methods 

5.2.1 MRM Library Construction 

We recently established a Skyline library incorporating more than 130 proteins from 

the small GTPase of Ras superfamily based on in-house shotgun proteomic data.28 Built 

upon the old library and an online targeted proteomic experiment design tool Picky 

(https://picky.mdc-berlin.de),29 the current MRM library incorporates 148 proteins that 

represent 138 unique gene IDs along with a total of 1670 MRM transitions. Cysteine 

carbamidomethylation (C +57.0215 Da) was set as a fixed modification, and heavy lysine 

(K +8.0 Da) and heavy arginine (R +10.0 Da) modifications were incorporated as heavy-

isotope labels. 

5.2.2 Brain Tissue Homogenization and Protein Extraction 

Snap-frozen human brain tissues from medial frontal cortex were obtained from 15 

individuals, and the AD cases were neuropathologically diagnosed as Braak stages 3−6. 

Among them, 5 individuals with high AD pathology (Braak stages 5−6, “high AD” group), 

5 individuals with medium AD pathology (Braak stages 3−4, “intermediate AD”), and 5 

age-matched individuals with no or low AD pathology (Braak stage 1 or none, “no AD”). 

Each tissue piece (approximately 100 mg in wet weight) was homogenized in a 300 μL of 

RIPA lysis buffer (20 mM Tris-HCl, 150 mM NaCl, 1 mM Na2EDTA, 1% NP-40, pH 7.5), 

supplemented with protease inhibitor cocktail (1:100, v/v) using a Bullet Blender (Next 

Advance) and 100 mg of 0.5 mm zirconium oxide beads (Next Advance). After 

centrifugation at 15,000 RPM for 30 min at 4 °C, the supernatant was transferred to another 

https://picky.mdc-berlin.de/
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vial. Total protein concentration was determined using the Quick Start Bradford Protein 

Assay (Bio-Rad). 

5.2.3 MS Sample Preparation 

Approximately 10 μg of tissue lysate was separated on a 10% SDS-PAGE gel, followed 

by excision of gel bands in the molecular weight range of 15−37 kDa. The excised gel 

bands were cut into pieces (1-mm3 volume), reduced with dithiothreitol, alkylated with 

iodoacetamide, and digested in-gel with trypsin (enzyme/substrate 1:50) at 37 °C 

overnight. 

The peptide samples were desalted, reconstituted in 40 μL of buffer A (0.08% formic 

acid) and 36 μL of sample was spiked with 4 μL of crude SIL peptide stock solution (20 

fmol/μL)  prior to scheduled LC-MRM analysis, to yiled a final spike-in concentration of 

2 fmol/μL. Approximately 4 μL (20 ng equivalent) of sample was loaded onto a 4-cm long 

in-house prepared trapping column packed with 5 μm Reprosil-Pur C18-AQ resin (Dr 

Maisch) and separated on a 25-cm long 75 μm ID fused silica columns packed in-house 

with 3 μm Reprosil-Pur C18-AQ resin (Dr Maisch). The LC-MS platforms consisted of a 

Dionex UltiMate 3000 RSLCnano UPLC system coupled to a TSQ Altis triple-stage 

quadrupole mass spectrometer with a Flex nano-electrospray ion source (Thermo Fisher). 

Sample elution was performed over a gradient of 12−33% Buffer B (0.08% formic acid in 

80% acetonitrile) over 70 min, and from 33−100% B over 5 min at a flow rate of 300 

nL/min. The column was reconditioned with 100% B for 3 min and equilibrated with 1% 

B for 10 min at a flow rate of 300 nL/min. The mass spectrometer was operated with an 

ion spray voltage of 2200 V, a capillary offset voltage of 35 V, a skimmer offset voltage 
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of -5 V, and a capillary inlet temperature of 325 °C. Both Q1 and Q3 were set at a resolution 

of 0.7 fwhm, and Q2 gas pressure used for peptide fragmentation was set at 1.5 mTorr. 

Collision energies specific to peptide precursors were calculated in Skyline software 

(version 4.2.0). A modified iRT calculator was employed for retention time prediction and 

generation of the MRM method in Skyline, as described recently.28 

5.2.4 Data Analysis 

The raw data were directly imported into Skyline for visualization of chromatograms 

of target peptides to manually determine the detectability of target peptides. For each 

peptide, the transitions without matrix interference were used for precise quantification. 

Three criteria were used to determine the peak detection and integration: (1) scheduled 

retention time, (2) relative distribution of each transition (dotp value), and (3) co-elution 

of endogenous (light) peptides and heavy IS peptides. All the data were manually inspected 

to ensure that the intensity distribution of selected transitions match with theoretical 

distributions in the spectral library, with dotp being greater than 0.8.30 MRM peak area 

normalization was applied with the use of crude SIL peptides as IS or SS. 

5.2.5 Heavy Isotope-labeled Synthetic Peptides 

Crude synthetic peptides labeled with 13C/15N on C-terminal lysine and arginine (>70% 

in peptide purity and >99% in isotopic purity) were synthesized and purified by New 

England Peptides (Cambridge, MA). The lyophilized form of peptides was reconstituted 

with 15% acetonitrile in 0.1% formic acid, aliquoted and stored at -80 °C until use to avoid 

freeze/thaw cycles. The crude heavy peptide standards of small GTPases were added to 

each sample at a final concentration of 0.5, 2, and 5 fmol/μL. 
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5.2.6 Immunoblotting 

After tissue homogenization, the protein concentration in the total brain tissue lysates 

was determined using Quick Start Bradford Protein Assay (Bio-Rad). Approximately 10 

µg of lysates were mixed with 4× Laemmli SDS loading buffer, boiled at 95 °C for 5 min, 

and loaded onto 10% polyacrylamide gels. After electrophoresis, the proteins were 

transferred onto nitrocellulose membranes. After blocking with 5% non-fat milk in PBS 

with 0.1% Tween-20 (PBST) at 25 °C for 1 h, the membranes were incubated with primary 

antibodies against human Rab27B (Proteintech; rabbit polyclonal, 1:2,000), RAB31 

(4D12, Santa Cruz; rabbit polyclonal, 1:2,000), or β-actin (Thermo Fisher; rabbit 

polyclonal, 1:10,000). After overnight incubation with primary antibodies at 4°C with 5% 

bovine serum albumin (BSA) in PBST, the membranes were then incubated with 

peroxidase-labeled donkey anti-rabbit secondary antibody (Thermo Fisher; 1:10,000) or 

mouse m-IgGκ BP-HRP (Santa Cruz; 1:10,000) for 1 h at 25 °C. Amersham ECL Prime 

Western Blot Detecting Reagent (GE Healthcare) was used for visualization of protein 

bands. 

5.3 Results 

5.3.1 Targeted Assay Development 

In the past decade, LC-MS/MS in the multiple-reaction monitoring (MRM) mode has 

allowed for sensitive, reproducible and reliable protein quantitation in different biological 

matrices through multiplexed and targeted quantification of peptides.31 In MRM-based 

quantification, specific transitions of precursor ions selected in Q1 to fragment ions 

selected in Q3 are monitored using a triple-quadrupole instrument, generating signals for 
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quantification. Therefore, analytical robustness of the method is highly dependent upon the 

selection of optimal proteotypic peptides and transitions that represent the proteins of 

interest.32 Recently, we established a Skyline MRM spectral library in combination with 

the metabolic labeling by stable isotope labeling of amino acids in cell culture (SILAC) for 

high-throughput quantitative profiling of small GTPases in human cancer cell lines.28 This 

library was constructed primarily using shotgun proteomic data generated in-house, 

covering 134 proteins representing 113 unique gene IDs. With retention time scheduling, 

all targeted transitions for small GTPases can be monitored in two LC-MRM runs with the 

use of a 6-min retention time window. 

To further expand the MRM library, we referred to an online targeted proteomic 

experiment design tool Picky (https://picky.mdc-berlin.de) to map comprehensively the 

candidate peptides for small GTPases of human or mouse origins.29 The peptides were 

chosen based on their intensities as well as sequence uniqueness. With the use of this tool, 

we were able to expand the library to 148 proteins representing 138 unique gene IDs, 

covering 90% of the human small GTPase proteome. To the best of our knowledge, this is 

the most comprehensive MRM library for small GTPases thus far. Because a relatively 

large number of transitions (~1680) were monitored in a single LC run, we employed 

retention time scheduling using iRT.33 All targeted transitions for small GTPases can be 

monitored in a single LC-MRM run in scheduled MRM analysis, with a retention time 

window of 4 min to yield the maximum concurrent transitions of ~50 (Figure 5.1). 

https://picky.mdc-berlin.de/
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5.3.2 Analytical Performance of Crude SIL Peptides 

The absolute quantification (AQUA), which involves the spiking of samples with high-

purity (>98%) stable isotope-labeled peptides as internal standards (SIS), enables highly 

reliable and specific targeted quantification of protein or post-translational modifications.34 

Peptides labelled with a stable isotope (13C and 15N) are chemically identical to their native 

counterparts and thus have identical chromatographic behavior. The AQUA method 

usually requires the generation of calibration curves by stable isotope dilution using high-

purity SIS peptides and is therefore more expensive and labor-intensive. 

Other studies used MRM signals for a single or selected group of peptides derived from 

housekeeping proteins (e.g. GAPDH or actin) to normalize MRM signals from the targeted 

peptides.35-36 Additionally, the labeled reference peptide (LRP) approach emerged as a 

cost-effective normalization strategy for a larger number of target proteins, in which a 

single isotope-labeled peptide standard is used as the reference for all target peptides in an 

analysis.35 Compared to label-free quantification, the LRP method can compensate for 

technical variations during sample analysis and thus yield more reliable normalization.37 

Crude synthetic peptides, on the other hand, display quite limited uses in targeted 

quantitation due to their large variation in purities. Owing to simplified purification, a 

larger set of candidate peptides can be incorporated into MRM assays. Despite preliminary 

purification, lower-purity crude peptides may still contain a wide range of impurities such 

as residual salts, deblocking and scavenger reagents, and truncated and partially deblocked 

peptides.38 To this end, we synthesized 131 peptides carrying a uniformly [13C,15N]-labeled 

arginine or lysine at the C termini. In order to eliminate possible quantification bias 
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introduced by the impurities present in the crude standards, we first evaluated, by 

employing MRM analysis, the analytical performance of the small GTPase crude peptides 

synthesized by NEP in a 96-well plate format. We confirmed the absence of isotope 

interference for all peptides (Figure 5.2). In addition, we detected 114 out of 131 crude SIL 

peptides in a single LC-MRM run (Figure 5.3), which exhibited a broad dynamic range 

spanning 3 orders of magnitude (Figure 5.3). Failure in detection of the other peptides may 

be attributed to ion suppression resulting from matrix effects or low abundance of the 

peptides in the crude peptide pool. 

5.3.3 Evaluation of Relative Quantitation by Crude SIL Peptides 

Next, we sought to investigate the use of crude peptides in performing relative 

quantitation. Despite their lower purities, crude SIL peptides can be added at an equivalent 

concentration to all samples thus can be used for correction of sample losses during transfer 

and normalization across runs due to LC injection variations. Figure 5.1 displays the linear 

correlations obtained by the spike-in concentration and the peak area ratios (light/heavy), 

where most peptides exhibit high linear regression coefficients (R2 > 0.995). The results 

again supported the feasibility of spiking crude SIL peptides in samples for relative 

quantitation. We further optimized the concentration of crude peptides spiked in the 

samples as internal standards (IS). Among the three spike-in concentrations (0.5, 2, 5 

fmol/μL), we found that using 2 fmol/μL could result in more properly distributed 

light/heavy ratios and dynamic range (Figures 5.1−5.3). Collectively, we determined 2 

fmol/μL as the spike-in concentration used for the subsequent experiments. 
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For other library peptides without their heavy counterparts as IS, we adapted slightly 

from the LRP method and adopted the concept of RT-defined surrogate standards (SS). 

Unlike IS peptides, which share high chemical and chromatographic similarities with target 

peptides, heavy SS peptides were chosen based upon their high intensity, lower variability 

and similar chromatographic behaviors. Therefore, we selected twelve SS peptides that 

elute at varied retention time windows across the entire gradient (Figure 5.4). As depicted 

in Figure 5.5, we found that the SS peptides eluting at similar retention times exhibited 

more similar distribution of MRM signal intensity or peak area, compared to those eluting 

at different retention times. Relative to existing normalization methods used in MRM-

based quantitation, such as label-free and LRP method using a single peptide derived from 

house-keeping proteins, we reasoned that the use of crude SIL peptides offers a cost-

effective and reliable alternative in MRM-based quantification. 

5.3.4 Targeted Proteomic Analysis of Small GTPases in AD Brain Tissue Samples 

To explore the potential roles of small GTPases in AD progression, we applied the 

established MRM assay to assess the differential expressions of small GTPases in the 

frontal cortex region of post-mortem patient brain tissues with differed disease stages 

(Figure 5.6). In total, we were able to quantify reproducibly more than 80 small GTPases 

among the 15 brain tissue samples (Figure 5.7). As the availability of such clinical material 

for analysis is often limited, we also demonstrated that a relatively small amount of protein 

input (∼10 μg/sample) is sufficient to achieve a good coverage of target proteins by the 

established LC-MRM method. Figure 5.7 shows a heatmap for a more detailed comparison 

of the mean quantification results obtained from each small GTPase among the two disease 
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groups (intermediate AD, and high AD) normalized to the mean values of the normal group 

(no AD). 

5.3.5 Altered Expression of Small GTPases Involved with Synaptic Functions 

Synaptic vesical trafficking that involves continuous cycles of exocytosis and 

endocytosis is required for the maintenance of proper synaptic functions.39-40 By 

performing network analysis, Kokotos et al.41 revealed that Rab small GTPases constitute 

a key functional hub within the activity-dependent bulk endocytosis (ADBE) proteome in 

cerebellar granule neurons. Table S2 shows the network analysis of the synaptic Rab small 

GTPases reported in literature. 

A loss of synaptic contacts in both the neocortex and hippocampus represents one of 

the major neuropathological hallmarks associated with AD.42 A couple of Rab GTPases 

were previously determined by Pavlos et al.43 as the exocytotic (Rab3A, Rab3B, Rab3C, 

and Rab27B) and endocytic (Rab4B, Rab5A/B, Rab10, Rab11B, and Rab14) Rab 

machinery of synaptic vesicles (SVs). Interestingly, the LC-MRM data revealed aberrant 

expressions of several synaptic small GTPases, such as Rab3A/C, Rab4A/B and Rab27B 

in disease progression of AD. Among the several highly homologous Rab3 isoforms 

(Rab3A, Rab3B, Rab3C and Rab3D), Rab3A is the most abundant in the brain, where it is 

localized on SVs and participates in Ca2+-triggered neurotransmitter release.44 In general, 

these Rab3 isoforms usually play largely overlapping yet redundant secretory functions in 

neurons and are crucial to synaptic integrity.45 Rab3B was not quantified by the LC-MRM 

method, which is presumably due to its low protein abundance. Based on the LC-MRM 

results, we observed increased protein expression of Rab3A, Rab3C and Rab3D in later 
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stages of AD (Figure 5.7), which indicate important, yet previously unrecognized functions 

of small GTPase-regulated synaptic trafficking and signaling in promoting AD pathology. 

Furthermore, two synaptic small GTPases, Rab4A and Rab4B, were significantly up-

regulated in the “high AD” group of patients compared to the “intermediate AD” group 

(Figure 5.8). However, there were no significant changes when the comparison was 

imposed on “no AD” group and “high AD” group. It is also noteworthy that Rab4 was 

found to be up-regulated at mRNA levels in the basal forebrain and the hippocampus 

regions of AD brains in two independent studies.25-26 In contrast to the microarray-based 

studies, our MRM-based approach indicated that both isoforms of Rab4 (Rab4A and 

Rab4B) may be involved with synaptic functions that could potentially implicate with AD 

progression. For other synaptic GTPases such Rab10, there were no obvious alteration in 

expression among the three patient groups (Figure 5.8). Collectively, we showed that the 

MRM quantitation results obtained by two normalization methods (IS-based and SS-based) 

were highly similar, and that dysregulated synaptic trafficking could play potential roles in 

disease progression of AD. 

5.3.6 Validation of Proteomic Data by Western Blot Analysis 

In addition to Rab3, Rab27B also play a distinct yet overlapping role in SV trafficking 

and involves with Ca2+-dependent exocytosis.43 Quite interestingly, we also observed 

substantial, yet statistically insignificant, increases of Rab27B in higher stages of AD 

(Figure 5.9). The endogenous/heavy peptide LLALGDSGVGK showed a dotp value 

between 0.93 and 0.97, and the endogenous peptide FITTVGIDFR displayed a dotp value 

between 0.89 and 0.93 (Figure 5.10). Furthermore, the quantification results among the 15 
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brain samples normalized by both IS and SS peptides showed a reasonably high linear 

regression (R2 = 0.961) (Figure 5.10). Again, we demonstrated that the quantitation 

performances between these two normalization methods are adequately reliable. 

To validate the proteomic results, we also performed western blot analysis and found 

that there was a moderate correlation between the MRM-based and the immunoblot-based 

analyses, which displayed a modest linear regression coefficient of R2 = 0.5889 (Figure 

5.9). These results indicate the differences in dynamic range of the quantification results 

obtained from the two methods, which led to a higher degree of variation with increased 

protein abundance. 

5.4 Discussion 

Previous systems biology analyses and proteomic studies revealed substantial 

reprogramming of a plethora of cellular processes involved with AD pathology and disease 

progression, such as energy metabolism, glycolysis, oxidative stress, apoptosis, signal 

transduction, and synaptic functioning.5 Potential roles of small GTPases participating in 

synaptic trafficking and modulation of neurodegeneration have been increasingly 

discussed recently.20 In this study, we found a substantial up-regulation of Rab27B protein 

level in higher disease stage of AD, which is in accordance with the dysregulated Rab27B 

in AD reported in previous proteomic and transcriptomic studies. Furthermore, several 

other synaptic GTPases, such as Rab3A/C and Rab4A/B, were found to be up-regulated in 

brain tissues with higher AD levels. It is also expected that the proteomic profiles within 

different brain regions are likely to change qualitatively and/or quantitatively during aging 

and/or in different disease states. Thus, identification of proteins unique to each brain 
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region, those associated with neurodegenerative mechanisms could yield opportunities to 

overcome major obstacles in the development of new protective and restorative therapies 

for prominent neurodegenerative diseases. 

5.5 Conclusions 

In this study, we developed a targeted quantitative MRM-based proteomic assay for 

quantification with >1,600 transitions representing 550 peptide precursors in a 45-min LC 

gradient. With the use of crude SIL peptides, we further applied the established MRM assay 

to assess quantitatively the differential expression of small GTPases in the frontal cortex 

regions of post-mortem brain tissue samples acquired from patients with different AD 

stages. Furthermore, we describe the proof-of-principle for targeted measurement of small 

GTPases in human brain tissues by performing relative quantitation employing crude SIL 

peptides as both internal standards (IS) and surrogate standards (SS). Our results led to the 

discovery of the altered expressions of several synaptic GTPase proteins, including 

Rab3A/C, Rab4A/B and Rab27B in higher AD stages, suggesting a potential role of 

synaptic trafficking in AD progression. 
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Figure 5.1 Sensitivity, multiplexing capability, reproducibility, and accuracy of the 

MRM-based quantification at the peptide level. 

(A) Number of concurrent transitions scheduled in each cycle with a 2-min, 5-min and 10-

min retention time window, respectively; (B) Linear regression of the peak area ratios 

(heavy/light) for 6 representative peptides obtained from three LC-MRM experiments with 

different spike-in concentrations. Crude SIL standards were spiked at 0.5, 2 and 5 fmol/μL, 

respectively. (C) Scatter plots depicting distribution of the peak area ratios (heavy/light) 

for all quantified peptides obtained from three LC-MRM experiments with different spike-

in concentrations. 
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Figure 5.2 Confirmation of the qualities of the crude stable isotope-labeled (SIL) 

peptides by MRM analyses. 
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Figure 5.3 Coverage, dynamic range and spike-in concentration optimization for the 

crude SIL peptides in the MRM analyses. 

(A) A Venn diagram showing the coverage of the SIL peptides detected in a single LC-

MRM run; (B) A scatter plot depicting the dynamic range of the peak areas resulting from 

LC-MRM analysis of 2 fmol of crude SIL peptides; (C) A table describing the peak area 

ratios (light/heavy) obtained from three LC-MRM experiments. 
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Figure 5.4 Selection for the twelve surrogate standard (SS) peptides across the 

designated retention time windows. 
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Figure 5.5 Comparison of the peak areas extracted for the selected SS peptides in the 

MRM analyses across similar or different retention time windows. 

(A) A connected scatter plot illustrating the peak area variations across three SS peptides 

(#1, #2, #3) eluted at similar retention time windows; (B) A connected scatter plot 

illustrating the peak area variations across three SS peptides (#1, #7, #12) eluted at different 

retention time windows. 
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Figure 5.6 A schematic workflow illustrating sample preparation for LC-MRM 

analysis. 
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Figure 5.7 A heatmap showing the relative quantification of small GTPases in brain 

tissues obtained from Alzheimer’s disease (AD) patients. 

(A) A Venn diagram showing the overlap between quantified small GTPase, quantified 

SIL standards and total targeted small GTPases in the library; (B) A heatmap showing the 

relative quantification (in log2 scale) of small GTPases in brain tissues obtained from 

Alzheimer’s disease (AD) patients. 
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Figure 5.8 Representative MRM quantification results for three synaptic GTPases, 

Rab4A, Rab4B, and Rab10. 

(A) A bar graph illustrating the MRM-based quantification results obtained from three 

peptides derived from Rab4A; (B) A box plot summarizing the quantification results in 

panel (A); (C) A bar graph illustrating the MRM-based quantification results obtained from 

two peptides derived from Rab4B; (D) A box plot summarizing the quantification results 

in panel (C). (E) A bar graph illustrating the MRM-based quantification results obtained 

from three peptides derived from Rab10; (F) A box plot summarizing the quantification 

results in panel (E). Tukey's multiple comparison test was performed to calculate the p 

values (#, p > 0.05; *, 0.01 ≤ p < 0.05). 
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Figure 5.9 Rab27B is up-regulated in higher stages of AD. 

(A) A box plot summarizing the quantification of Rab27B levels among the three patient 

groups; (B) Western blot analysis of Rab27B in the 15 brain tissue samples; (C) A bar 

graph showing the quantification results obtained by western blot analysis and MRM 

analysis; (D) Linear regression between the quantification results obtained by western blot 

analysis and MRM analysis. 
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Figure 5.10 Quantification details for Rab27B by two normalization methods. 

(A) The relative contribution of each transition to targeted MRM analysis of the 

endogenous LLALGDSGVGK peptide derived from Rab27B; (B) The relative 

contribution of each transition to targeted MRM analysis of the isotope-labeled 

LLALGDSGVGK peptide;  (C) The relative contribution of each transition to targeted 

MRM analysis of the endogenous FITTVGIDFR peptide; (D) Bar charts of the 

quantification results normalized from IS peptide (LLALGDSGVGK) and SS peptide 

(FITTVGIDFR); (E) Linear regression of the quantification results shown in panel (D). 
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Chapter 6 Concluding Remarks 

In this dissertation, we developed and utilized mass spectrometry-based approaches for 

targeted quantitative proteomic analysis of small GTPases of the Ras superfamily in cancer 

cells and tissue samples. By employing multiple-reaction monitoring (MRM) and two 

different labeling strategies, i.e. stable isotope labeling by amino acids in cell culture 

(SILAC) and crude synthetic stable isotope-labeled (SIL) peptides, we have successfully 

achieved high-throughput targeted quantitative profiling of small GTPases by assessing the 

altered protein expressions of these proteins related to cancer metastasis and drug 

resistance in cultured cancer cells and development of neurodegenerative diseases in 

patient-derived tissue samples. 

Specifically, the work detailed in Chapter 2 describes the development of a novel 

targeted proteomic assay for profiling small GTPases in cultured human cells, which 

involved metabolic labeling by SILAC, fractionation by SDS-PAGE and scheduled MRM 

analysis. By using this scheduled Ge-LC-MRM method, we assessed the differential 

expression of small GTPases in paired primary/metastatic melanoma cell lines, which lead 

to reproducible quantitation of more than 90 small GTPases in two 157-min LC runs. 

Moreover, we validated quantification results by proteomic analysis by performing 

Western-blot analysis. Combined with bioinformatic analyses of publicly available patient 

data and cell-based assays, we uncovered a previously unrecognized role of small GTPase 

RAB38 in promoting melanoma metastasis in vitro and predicting poor melanoma patient 

prognosis. We further demonstrated that RAB38 promotes melanoma metastasis in vitro 

through the regulation of matrix metalloproteinases, and the increased expression of 
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RAB38 in metastatic melanoma cells arises from diminished promoter methylation and 

heightened binding of the MITF transcription factor. 

In Chapters 3 and 4, we discuss the application of the MRM-based targeted proteomic 

approach established in Chapter 2 as a tool to probe the altered expression of small 

GTPases associated with acquired tamoxifen resistance in breast cancer and colorectal 

cancer metastasis. In Chapter 3, in total 96 small GTPases were robustly quantified in wild-

type MCF-7 and the paired tamoxifen-resistant breast cancer cells, among which down-

regulation of RAB31 was analyzed further. By conducting bioinformatic analyses and cell-

based assays, we provided evidence that decreased expression of RAB31 predicted poor 

breast cancer patient survival and modulated development of acquired tamoxifen resistance 

in vitro. In Chapter 4, differential expression of small GTPases in paired primary/metastatic 

colorectal cancer cell (CRC) lines SW480 and SW620 was assessed, leading to robust 

quantitation of 83 small GTPases. Among them, we identified SAR1B as a potential 

suppressor and prognostic marker for CRC metastasis by combining the proteomic data 

with bioinformatic analyses of publicly available patient data. We also showed that 

diminished SAR1B expression could stimulate epithelial–mesenchymal transition (EMT), 

thereby promoting motility and in vitro metastasis of SW480 cells. 

Although SILAC-based quantitation provides high accuracy and precision, many 

biological materials such as body fluids and tissue samples are not readily amenable to 

metabolic labeling. Therefore, in Chapter 5, we explored the analytical performance of 

scheduled Ge-LC-MRM analysis in conjunction with a different labeling strategy, which 

relies on the use of crude synthetic stable isotope-labeled (SIL) peptides. Furthermore, we 
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benchmarked the quantitative performance of crude SIL peptides as both internal standards 

and surrogate standards, allowing quantification of more peptides by the MRM assay. To 

investigate the link between small GTPases and progression of Alzheimer’s disease (AD), 

we analyzed, by Ge-LC-MRM analysis, the total lysates of frontal cortex from post-

mortem patient AD brain tissues Alzheimer’s disease (AD) with varied AD pathology: “no 

AD” (n = 5), “intermediate AD” (n = 5), and “high AD” (n = 5). To this end, we quantified 

~80 small GTPases from the 15 samples with high sensitivity and reproducibility in one 

45-min LC run. Among the differentially expressed small GTPases, we observed 

substantial up-regulation of several synaptic GTPases in tissues with higher levels of AD, 

including Rab3A/C, Rab4A/B and Rab27B. Future experiments are warranted to provide 

mechanistic evidence of altered synaptic trafficking contributed by dysregulated small 

GTPases. 

Together, by taking advantage of the above-mentioned methods, high-throughput and 

targeted quantitative profiling of small GTPases in cultured cancer cells and tissue samples 

is enabled. The work in this dissertation presented a novel and systematic targeted 

proteomic approach to investigate the previously unrecognized roles of dysregulated small 

GTPase expressions in a wide array of biological events relevant to public health, such as 

cancer progression, AD pathology and cellular response upon exposure to environmental 

toxicants. 

MRM has been the standard for targeted proteomics during the past two decades with 

superior sensitivity, reproducibility and specificity; however, as with any other proteomic 

technique, it is highly dependent on sample preparation and instrument optimization and 
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more susceptible to background interference resulting from sample matrix. Future 

directions for targeted assay development by using parallel-reaction monitoring (PRM) are 

therefore highly encouraged. Extending the methods described in this dissertation to other 

members of GTP-binding proteins such as heterotrimeric G proteins is currently being 

explored. 

 




