
UC Irvine
ICS Technical Reports

Title
System level architecture exploration using the SpecC methodology

Permalink
https://escholarship.org/uc/item/0b98k3zv

Authors
Cai, Lukai
Olivarez, Mike
Gajski, Daniel D.

Publication Date
2000-09-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0b98k3zv
https://escholarship.org
http://www.cdlib.org/

Technical Report ICS-00-36
Sept 07, 2000

Lukai Cai
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA
lcai@ics.uci.edu

Mike Olivarez
Architecture and System Platforms, Motorola

M.Olivarez@Motorola.com

Dr. Daniel D. Gajski
Department of Information and Computer Science

University_of California, Irvine, CA 92697-3425, USA
gajski@ics.uci.edu

Technical Report ICS-00-36
Sept 07, 2000

Lukai Cai
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA
lcai@ics.uci.edu

Mike Olivarez
Architecture and System Platforms, Motorola

M.Olivarez@Motorola.com

Dr. Daniel D. Gajski
Department of Information and Computer Science

University of California, Irvine, CA 92697-3425, USA
gajski@ics.uci.edu

Contents

Abstract. .. 1
1. Introduction .. 1
2. Spece .. 1

2.1 Spece methodology .. 1
2.2 Spece language .. 2

3. JPEG encoder ... 2
4. System level architecture exploration ... 2
5. JPEG example ... 3

5 .1 System level execution time concept and simulation environment .. 3
5 .2 Component separation exploration ... 4

5.2.1 Pure SW architecture model .. 4
5 .2.2 Component separation exploration process ... 5
5.2.3 SW _HW _sequential model. ... 5

5.3 Parallel execution exploration .. 6
5.3.l Parallel execution exploration process ... 6
5. 3 .2 SW _HW _parallel_model ... 6

5 .4 Architecture pipeline exploration ... 6
5.4.1 Architecture pipeline exploration process .. 7
5 .4.2 SW _2HW _parallel model .. 7

5 .5 Shared global memory exploration ... 7
5.5.1 Shared global memory exploration process ... 8
5.5.2 SW _2HW _mem model .. 8

5.6 Other HW· solutions .. 8
5.7 Result .. 8
5.8 Other operations of system level architecture exploration .. 10

6. Conclusions .. 10
References .. 10
Appendix .. 12

A. Simulation Environment ... 12
A.I th.sc .. 12
A.2 time_counter.sc .. 12

B. Pure SW model ... 12
B.l jpeg.sc .. 12

C. SW _HW sequential model. ... 13
C. l jpeg.sc .. 13
C.2 SW.SC ... 13
C.3 hw.sc .. 14

D. SW _HW _parallel model ... 15
D.l jpeg.sc .. 15
D.2 SW.SC ... 15
D.3 hw.sc .. 17

E. SW _2HW _parallel model ... 17
E.1 jpeg.sc .. 17
E.2 SW.SC ... 18
E.3 hw.sc ... 20

F. SW _2HW _mem model. .. 20
F.l jpeg.sc ... 20
F.2 SW.SC ... 21
F.3 hw.sc ... 23
F.4 memory.sc .. 24

List of Figures

1 Block diagram of the JPEG encoder .. 2
2 System level architecture exploration operation types .. 3
3 System level architecture exploration design flow of JPEG encoder .. 3
4 Simulation environment of the JPEG encoder design ... 4
5 Pure SW architecture model for JEPG encoder ... 5
6 SW _HW _sequential architecture model for JPEG encoder .. 5
7 SW _HW _parallel architecture model for JPEG encoder ... 7
8 SW _2HW _parallel architecture model for JPEG encoder ... 8
9 SW _2HW _mem architecture model for JPEG encoder ... 9
10 Execution time of JPEG Encoder for different hardware solutions and target architectures 10

Lukai Cai, University of California, Irvine - lcai@ics.uci.edu
Mike Olivarez, Architecture, and System Platforms, Motorola - M.Olivarez@Motorola.com

Dr. Dan Gajski, University of California Irvine - gajski@ics.uci.edu

To implement chip design on a satisfactory target
architecture, more architecture exploration should be done
at higher levels of abstraction, in the earliest design stages.
Using the Spece language, an executable system level
specification language, architecture exploration can be
processed easily and smoothly. A Spece methodology of
system level architecture exploration is introduced within
this paper to illustrate this process. The design of a JPEG
encoder is used as an example to illustrate the system level
architecture exploration methodology.

1

According to Moore's Law, the number of transistors on
a chip will keep growing exponentially, pushing technology
towards the System-On-Chip (SOC) era. To decrease the
gap between designing chips of growing complexity and
increased time-to-market pressures, it is commonly agreed
that the design process should shift to higher levels
abstraction and the reuse of pre-designed, complex system
components known as intellectual property (IP) is
necessary.

In the SoC design process, the work of mapping the
functionality into a target architecture, called architecture
exploration, is one of the main problems facing the SoC
designers. In the traditional design methodology,
architecture exploration is not very complex because it only
maps the functional specification into the fixed target
architecture chosen. However, with the increase in
complexity of the algorithms used in the design and the
availability of different target architectures and their
components, architecture exploration is more important.
Thus, more target architectures should be explored to find
the best solution. In the RTL level models which reflect the
target architectures, contains timing and/or pin information,
performing architectural exploration is too cumbersome to
satisfy the time to market requirement. Therefore, a system
level architecture model is required by the industry to
implement fast architecture exploration.

1

Using the Spece language, a system specification
language developed at UC Irvine, one can implement
architecture exploration easily and efficiently[!]. Using the
Spece language and methodology, mapping functionality
into different target architectures in the system level is
straight forward. Furthermore, the final result of an
implementation on a target architecture model at the system
level, can be smoothly and consistently changed to an RTL
level model by using the rest of the Spece methodology.

In this paper, the system level architecture exploration
methodology is introduced as part of the Spece
methodology. Unlike the existing Spece methodology,
which mainly focuses on refining specification level into
architecture level[!], system level architecture exploration
focuses on changing the implementation from one target
architecture . to another target architecture, at the
architecture level of abstraction. This methodology allows
the designers to compare implementations on different
target architectures and to improve the current
implementation by changing some part of target
architecture. In this paper. a JPEG encoder example is used
to illustrate this process~

The sections of this paper are organized as described
here. Section 2 summarizes the Spece language as well as
the existing Spece methodology which is described in [l].
In section 3, a description of the JPEG encoder algorithm,
which is used for our tests, is given. Section 4 introduces the
system level architecture exploration methodology. In
section 5, a JPEG encoder model which has been
architecturally explored, is iterated through typical changes
as the change guidelines are introduced which make up the
system level architecture exploration process. Finally, in
section 6, conclusions and future work are described.

Spece methodology
The Spece methodology is a design methodology to

implement design from pure specification into full
implementation[l]. It defines four levels of modeling, from

the most abstract level to the most detailed level. The first
level specification model represents pure specification. The
second model, which is the architecture model, represents
the implementation on target architectures with the
abstraction of computation and communication
specifications. The communication model, which is third in
the hierarchy, represents the implementation on target
architectures with the abstraction of computation but
detailed communication model. The fourth or
implementation model is the synthesizable RTL model.

Besides the four specification models, the Spece
methodology also defines the method of transitioning
between these models. Architecture exploration refines the
specification model to architecture model. Communication
synthesis is the refinement from the architecture model to
the communication model. Finally, the refining work from
communication model to implementation model is achieved
via hardware synthesis tools and software compilation.

This paper is focus on the architecture model. The
flexibility of Spece architecture model makes the system
level architecture exploration easy to implement.

2.2 Spece language
The Spece methodology is supported by abstracting at

the system-level using a specification language called
SpecC[l,2]. Within the first three stages of the Spece

1 methodology, the current state of the design is represented
by a model described in the Spece language. In the
homogeneous approach, transformations are made on the
Spece description in contrast to a heterogeneous approach,
where each step also transforms the design representation at
different stages of the process.

Spece is a super-set which extends ANSI-C to allow
easy reuse of the existing algorithmic and behavioral C
descriptions that are common in today's industrial practice.
SpecC contains all the features required to support system
level design, including structural and behavioral hierarchy,
concurrency, communication with explicit separation from
computation, synchronization, exception handling, timing,
and explicit state transitions.

JPEG is an image compression standard. It is designed
for compressing either full-color or gray-scale images of
natural scenes[3]. Figure 1 shows the block diagram of the
DCT based encode for a gray scale image. It consists of four
blocks: the image fragmentation block, the DCT block, the
quantization block and the entropy coding block.

In the image fragmentation block, the image is divided
into non-overlapping blocks, each of which contains an 8*8
matrix of pixels. Each block is then transformed into the

2

frequency domain in the DCT block. The DCT output
coefficients are then quantized in the quantization block
before it is entropy-coded in the entropy coding block. The
entropy coding block consists of two stages. The first stage
is either a predictive encoder for the DC coefficients or a
run-length encoder for the AC coefficients. The second
stage is a Huffman encoder.

Figure 1 - Block diagram of the JPEG encoder

Architecture exploration as mentioned in 2.2, is a method
to refine the specification model into the architecture model.
However, in the design process, different implementation
models based on different target architectures are always
compared, therefore, unbiased metrics are needed to be
obtained. Furthermore, the most common way to improve
the current design is to modify the current target
architecture to achieve better performance. This need to
explore between architecture models can be done using the
methodology, which we call system level architecture
exploration, introduced in this paper. The system level
architecture exploration methodology includes four types of
basic operations shown in Figure 2.

The first block includes three types of system level
architecture exploration sub-operations: function moving
exploration, component separation exploration, and
component merging exploration. Function moving
exploration moves one function block from one component
into another component within the target architecture.
component separation exploration moves one function
block from one component into a new component in the
target architecture. Component merging exploration merges
two components in the target architecture into one
component. In section 5.2, the guideline of component
separation is given.

The second block includes two types of system level
architecture exploration sub-operations: parallel execution
and sequential execution exploration. Parallel execution
exploration schedules two components, which
communicate with each other, to make them execute in
parallel. Sequential execution exploration schedules two
components which communicate with each other to make
them execute sequentially. In section 5.3, the guideline of
parallel execution exploration is introduced.

The third block includes architecture pipeline
exploration and component sharing exploration.
Architecture pipeline exploration doubles some component
as well as the function executed on the component in the
target architecture, to make them run in parallel, thus,
improving the performance. The component sharing
exploration is reverse of architecture pipeline exploration.
In section 5 .4, the guideline of architecture pipeline
exploration is introduced.

The fourth block includes two types of system level
architecture exploration sub-operations: shared global
memory exploration and message passing exploration.
Shared global memory exploration changes the
communication from a message passing method into a
shared global memory method. Message passing
exploration is the reverse process of shared global memory
exploration. In 5.5, the guideline of shared global memory
exploration is introduced.

Sequential execution

Parallel execution

3

Architecture pipeline
Shared component

4

Shared global memory

Message passing

Figure 2 - system level architecture exploration operation
types

Based on the Spece language, the system level
architecture exploration is implemented manually, but
without difficulty. Furthermore, the guidelines of system
level architecture exploration operations used in the JPEG
encoder example and suggestion of automatic tools are
given. Finally, system level architecture exploration can be
merged into the Spece methodology, which smoothly leads
to the final stage of the design process, implementation.

In this section, a design of JPEG encoder is described to
illustrate the methodology of system level architecture
exploration. As shown in Figure 3, four main types of
system level architecture exploration: components
separation, parallel execution, architecture pipeline, and
shared global memory exploration are utilized for the JPEG
encoder. The guidelines of these explorations are described
in the following sections. The resultant architecture models

3

of these explorations, as well as the execution times of these
models, illustrates this methodology.

Figure 3 - system level architecture exploration design flow
of JPEG encoder

System level execution time concept and
simulation environment.

In system level design, leaf function nodes of the system
level specification, such as the DeT block in JPEG encoder,
are treated as the smallest unit. system level architecture
exploration maps the different leaf nodes into different
architecture components, and schedules leaf nodes either
inside or among architecture components to get good
performance. Therefore, the estimation time used in system
level design should also be in a very abstract level, using the
estimation time of leaf nodes as the smallest time unit. The
total execution time of the design should be the dynamic
sum of the estimation time of leaf nodes, without going into
any more granularity of timing. This is the idea of system

Handledata DCT (DCT_S) Quantization Huffman (HF)
(HD) (QZ)

142us 745us 93us 162us

Table Estimated execution time for leaf nodes on SW for each 8*8 pixel block

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7

650us 600us 500us 400us 300us 200us lOOus

Timing constraint for DCT on 7HW solutions for each 8*8 pixel block

level execution time. The system level execution time is
defined as the execution time which is calculated based on
each leaf function node's execution time in the system level.
It is a crude method, but very useful in the early stages of
designing.

The execution time of each leaf node can be achieved by
profiling tools of chosen processors, such as Motorola
68000 or estimation tools of ASIC's. After using profiling
tools and estimation tools, the estimation time should be
written back to Spece model using the waitfor keyword.
This step will take the un-timed system level specification
into a new concept, crude timed system level specification.
After rewriting, the executable specification can be executed
to achieve the total estimation time of the design.

In the JPEG encoder example, only a DSP56600
processor with maximum clock frequency of 60MHz
(which is called SW in this paper) and an ASIC to be
designed (which is called HW in this paper) are chosen as
architecture components, from the view of easy
implementation. The estimation times of JPEG's four leaf
nodes on SW, is given in table 1[4].

Since the DCT block causes most of the execution time,
it is a good candidate to be run in HW. In some case, the
ASIC (HW) is already designed and can be reused, but if
not, it's execution time can be estimated. In either case, at
this early stage of the design, estimation of HW execution
time is unknown. In this section, the first case is tested using
650us as HW's DCT execution time for 8*8 pixel block
from section 5.2 to 5.5. In section 5.6, for the second case,
seven HW solutions, which have different time constraints
for the DCT block, are tested to derive the trade-off between
the HW performance and target architecture models. The
time constraints for these HW solutions are shown in
Table2. Estimates for communication, are also needed.
Communication overhead between SW and HW is assumed
as one pixel per SW cycle. For a 8*8 pixel block, the
overhead is 1 us.

4

In this paper, a bitmap (bmp) file which includes 180 8*8
pixel blocks, is used as input of the testbench, and the
expected timing constraint is assumed to be 90ms. To count
the overall JPEG encoder execution time, a time simulator,
which is also written in the Spece language, is added to the
simulation environment. The time simulator runs parallel
with the specification of the JPEG encoder to tabulate the
total execution time, as shown in Figure 4.

Component separation exploration

Time
JPEG

Simulator

Figure 4 - Simulation environment of the JPEG encoder
design

Pure SW architecture model

Assume in the beginning, the four basic blocks run in SW
sequentially as shown in Figure 5. Compared with the
specification model in [5], the architecture model uses a
behavior named SW (behavior is the keyword in Spece to
represent architecture component or functional process) to
encapsulate four leaf nodes to represent target architecture
component inside the top level behavior, JPEG Encoder
behavior. The four leaf nodes encapsulated within the SW
behavior are HandleData block (which implements image
fragmentation), DCT block, Quantization block and
HuffmanEncode block (which implements entropy coding).
There are also four variables in SW behavior: eobmp is the

integer which can indicates the end of the input file, hdata,
ddata and qdata are immediate variables between blocks. It
should be noted that the model only shows the encoder's
core part, which does not involve execution related to input
and output files. A reference of this part of JPEG design can
be found in [5].

The execution time of the JPEG encoder in pure SW
model can be estimated as follows:

For each 8*8 byte block,
T(block)=T(HD)+T(DCT_S)+T(QT)+T(EC)=162+745+93+162=11

42(us).

For the testbench which includes 180 blocks,
T(total)=Nwn(block)*T(block)=180*1142/1000=205.56(ms)

Using the simulation environment in figure 4, the time
simulator shows the same execution timing result. To note
among the results is the DCT block, which costs 134ms.
This should be reduced to satisfy the timing constraint in the
next step.

eobmp!=l

Figure 5 - Pure SW architecture model for JPEG encoder

5.2.2 Component separation exploration pro
cess

To reduce the DCT's execution time, a target
architecture, which consists of HW and SW, is explored.
The DCT is separated from other parts of code and executed
in HW while the remaining part is executed in SW. The final
target architecture is called SW _HW _sequ model, as shown
in Figure 6. This modifying process is accomplished by
component separation, which is defined as the movement of
a function block from one component to a new component.
Modifying the previously defined JPEG encoder from pure
SW model to SW _HW _sequ model follows these
guidelines of component separation:

5

1. Creation of the new component within the top level
behavior. -- Create a behavior which represents the
necessary new component(s), and make it/them run with the
existing component(s). In our JPEG encoder example, the
HW behavior is created and run in parallel with the SW
behavior, within the JPEG Encoder behavior.

2. Move the function block. -- Move the function block
which is being separated from the existing component(s) to
new component(s). The variables used for this function are
added in new component(s). In the JPEG encoder, move the
DCT block from SW behavior to HW behavior. Variables
eobmp, hdata, and ddata are added in HW behavior.

3. Add channels -- Add channels between the previously
existing component(s) and newly created component(s).
The communication functions which implements channels
are added in each side of channels. In our JPEG encoder,
channels ceobmp, chdata, cddata are added in the JPEG
Encoder behavior to transfers eobmp, hdata and ddata
variables. Furthermore, functions OEOBmp, OHData,
IDData are added in SW behavior and IEOBmp, IHData,
ODData are added in HW behavior.

4. Add necessary exit condition(s) for the created
component. -- Add an outer loop in the created component
to encapsulate moved function and communication
functions and set an exit condition for it. In the JPEG
encoder, add a loop and set eobmp!=l as the while's loop
condition.

Figure 6 - SW _HW _sequential architecture model for
JPEG encoder

5.2.3 SW _HW _sequential model

The resulting architecture model is called
SW _HW _sequential model which is shown in Figure 6. The
communications between the blocks are implemented using

the channels' synchronization functions. Since the SW and
HW parts can not run until the other part finishes its
execution, SW and HW are run sequentially, although, they
are parallel in the architecture view.

From this model, the execution time of the JPEG encoder
also can be estimated as follows:

For each 8*8 pixel block,

T(block)=T(HD)+T(DCT_H)+T(QT)+T(EC)+2*T(comm)=142+650
+93+162+2*1=1049(us).

For the testbench which includes 180 blocks,

T(total)=Num(block)*T(block)=180*1049/1000=188.82(ms)

Using the simulation environment as shown in Figure 4,
the time simulator reinforces the calculated execution time.
Compared with 205.56ms in the pure SW model, the
execution time decreases to 188.82ms, giving a 8.1 %
throughput increase.

...... ,.. ,. . ..,,. execution exploration

As mentioned in 5.2.3, in SW _HW _sequential model,
SW and HW are run sequentially in the functional view. To
reduce the execution time to satisfy the 90ms's timing
constraint, the SW should be rescheduled to make SW and
HW run in parallel. It is possible because they can execute
the different 8*8 pixel blocks in the same time. This process
is implemented by "parallel execution" exploration.

5.3.1 Parallel execution exploration process

The parallel execution exploration process is defined as
the scheduling of two or more components in the system
which communicate each other to make them execute in
parallel. To modify the JPEG encoder, parallel execution
exploration guidelines are created. These guidelines can
solve the easy case of parallel execution exploration. In this
case, one component (called child component) is the sub
/unction of another component (called parent component).
In the JPEG encoder example, since the HW component is
called by the SW component, HW is the "child component"
while SW is the "parent component". The resulting
architecture model, called SW _HW _parallel model, is
shown in Figure 7.

The parallel execution exploration guidelines that have
been created are as follows:

1. Group blocks into four visual blocks in the parent
component. -- Group the function and communication
blocks in the parent component into four visual blocks,
named S_l, S_2, S_3 and S_ 4. S_l includes all the blocks
above the input communication blocks for the child
component HW; S_2 includes input communication blocks
for the child component; S_3 includes output
communication blocks for the child component; and finally,

6

S_ 4 includes all the blocks after S_3. In the JPEG encoder,
the visual blocks are shown in Figure 7.

2. Add the control variable for each visual block. --Add
control variables (control_sl to control_s4) for each visual
block to indicate if visual blocks can be executed in current
time. The control variables are valid only when the output
of previous visual blocks are available (For the first visual
block, control variable is valid only when its output buffer is
empty).

3. Add the exit condition for each visual block-- For S_l,
the exit condition is the end of the input file. For other visual
blocks, the exit conditions are the number of their execution
times are the same as S_l.

4. Link four visual blocks. -- Use if/else statements to
link visual blocks.

5. Change the while loop condition of the parent
component's outer loop. -- The while loop condition is true
only when S_ 4 is not exit.

6. Add an idle visual block in the parent component. -
An idle visual block, which is just to add time counter, is
added at the end of the parent component's loop body. If in
one loop execution, no other visual block is executed, the
idle visual block is executed.

After exploration, the structure of the code of the parent
component is as follows:

while (not exit S_4){

};

if(control_sl==l and not exit S_l){S_l}
else if(control_s2==1 and not exit S_2){S_2}
else if(control_s3==1 and not exit S_3){S_3}
else if(control_s4==1 and not exit S_4){S_4}
else{idle block};

5.3.2 SW _HW _parallel model.

After the parallel execution exploration, a
SW _HW _parallel model is developed. Since the execution
time of this model is difficult to estimate, the result of the
time simulator is used. The time simulator shows the
execution time is 117.94ms. Compared with 188.82ms in
SW _HW _sequential model, it gives 37.5% throughput
increase.

For each 8*8 pixel block,
T(block)=T(total)/Num(block)=117.94*1000/180=655us

It should be noted that during the exploration process
some computations are added. But the system level leaf
node's execution time, should be big enough, that the added
execution time can be ignored.

Architecture pipeline exploration
Because SW _HW _parallel model can not satisfy the

timing constraint, more system level architecture

exploration should be tried. For each 8*8 pixel block, the
execution time of function blocks in SW without waiting is:

T(SW)=T(HD)+T(QT)+T(HE)+2*T(comm)=399us<<T(block)=
655us

The execution time of function block in HW without
waiting is:

T(HW)=T(DCT_H)+2*T(comm)=652-T(block)=655(ATU)

As the data shows, the HW component is the bottleneck.
To reduce the execution time, two HW components should
be run, processing different input data, concurrently.
Therefore, the target architecture which consists of two
HWs and one SW running in parallel, called the
SW _2HW _parallel model is explored. The process to
change from SW _HW _parallel model to SW _2HW _parallel
models is accomplished by the architecture pipeline
exploration.

Figure 7 - SW _HW _parallel architecture model for JPEG
encoder

Architecture pipeline exploration process
Architecture pipeline exploration is defined as the

changes in the targd architecture model by doubling some
component(s) to make them run in parallel on different
blocks of data, thus, improving the performance of the
system. The exploration process from SW _HW _parallel
model to SW _2HW _parallel model follows these
guidelines of architecture pipeline exploration. In this

7

section, the component being doubled is to be called
doubled component. The component communicating with
doubled component is called communicated component.
The architecture pipeline exploration guideline is shown as
follows:

1. Doubling of the component and related channels. -- In
top level behavior (JPEG Encoder behavior in JPEG
Encoder example), double the target component and run
with the communicated component in parallel. Double the
channels between doubled component and communicated
component, half of which are used for communication
between communicated component and one doubled
component. In the JPEG Encoder example, two HWs are
run in parallel with SW. The five channels of JPEG encoder
are doubled as shown in Figure 8.

2. Make changes in the communicated component. -- In
the communicated component, double visual blocks S_2
and S_3. The new visual blocks S_2_1, S_3_1 and S_2_2,
S_3_2 are used to communicate with doubled component_!
and doubled component_2 respectively. The channels used
in each visual block are replaced by new doubled channels
respectively.

5.4.2 SW _2HW _parallel model

After - architecture pipeline exploration, the
SW _2HW _parallel model is developed as shown in Figure
8. Since the execution time is difficult to estimate. The result
of the time simulator is used once again. The time simulator
shows the execution time is 72.33ms. Compared with
117 .94ms in the SW _HW _sequential model, it gives a
38.7% throughout increase.

For each 8*8 byte block,

T(block)=T(total)/Num(block)=72.33*1000/180=402us

This result can satisfy the timing constraint requirement,
but more refinement can still be tried. This may give a
solution which will achieve more desired results later in the
design.

5.5 Shared global memory exploration

In the SW _HW model, the data communication between
HW and SW is by message passing method. In some cases,
a shared memory is needed. Therefore, the JPEG encoder
example will be implemented in a shared global memory
communication model. This architecture model is called a
shared memory model, which is implemented by shared
global memory exploration.

Figure 8- SW _2HW _parallel architecture model for JPEG encoder

5.5.1 Shared global memory exploration pro
cess

Shared global memory exploration is defined as the
changes needed for data communication message passing to
a shared global memory. In our JPEG encoder example, the
data communicated between HW and SW, which includes
8*8 pixel block inputs and 8*8 pixel block outputs of the
DCT, will be written/read through a global memory. The
guideline of shared global memory exploration is as
follows:

I .Create MEM component. -- Create a component which
is called MEM behavior to run parallel with other
components. In the JPEG encoder, MEM will be run in
parallel with one SW and two HW components.

2.Create Channels for MEM. -- Use four channels to
replace one previous channel between communicated
components, called A and B. These four channels are 1)
channel for memory enable variable from Component A to
Memory, 2) channel for transferred data from component A
to memory, 3) channel for memory enable variable form
component B to memory, and 4) channel for transferred data
from component B to memory. For our JPEG example,
components SW and HW have been updated as such.

3.Implement MEM component. -- In the memory
component, a flag is assigned for each memory storage
variable. Use this flag to indicate if the data in memory is
valid to read or valid to write. When the flag is 1, the data
can be read, but can not be written. If flag is 0, the data can
be written, but can not be read.

8

SW _2HW _mem model
After the shared global memory exploration, the

SW _2HW _mem model is developed as shown in figure 9.
When running the testbench, two HW components execute
the different 8*8 pixel input block alternatively. Since the
execution time is difficult to estimate. The result of the time
simulator is needed once again. The time simulator shows
the execution time is 72.69ms, compared with 72.33ms in
SW _2HW _parallel model. The difference between two
model's execution time is very little, but comes from the
memory channels.

For each 8*8 pixel block,
T(block)=T(total)/Num(block)=72.69*1000/180=404us

This result will also satisfy the timing constraint, and
shows how various configurations can be achieved using
this methodology.

5.6 Other solutions
system level architecture exploration from 5.2 to 5.5 is

implemented based on HW solution 1 which has 650us as
the time constraint of DCT block when running 8*8 pixel
block. Using other HW solutions with SW as the target
architecture components, the execution times are as shown
in Table 3. The data with underline symbol represents the
solution which can satisfy the timing constraint.

5.7 Result
From Figure 10, which is derived on Table3, the

solutions of the two cases mentioned in 5 .1 can be achieved.

_ c~bmp_l -- --- -· .
If(data_request_l)
&&(data_available_l)) {

Deal datal

}
else if(...){

/
/ceobmp_2

Figure 9- SW _2HW _mem architecture model for JPEG encoder

Pure_SW SW_HW_sequ SW _HW _paral SW_2HW_par SW_2HW_me
model ential lei all el mory

HW1-650us 205.56ms 188.82ms 117.94ms 72.33ms 72.69ms

HW2-600us 205.56ms 179.82ms 108.94ms 72.23ms 72.59ms

HW3-500us 205.56ms 161.82ms 90.94ms 72.04ms 72.40ms

HW4-400us 205.56ms 143.82ms 72.94ms 71.94ms 72.30ms

HW5-300us 205.56ms 125.82ms 72.03ms 71.84ms 72.20ms

HW6-200us 205.56ms 107.82ms 71.88ms 71.82ms 72.18ms

HW7-100us 205.56ms 89.82ms 71.82ms 71.82ms 72.18ms

Table 3- Execution time of JPEG Encoder for different Hardware solutions

In case 1, which the execution time of HW can be
estimated as 650us for executing the DCT block before the
architecture exploration. The system level architecture
exploration is processed and the performance of JPEG is
improved. Two target architecture models,
SW _2HW _parallel and SW _2HW _memory can be chosen
as the final result, as shown in the oval in Figure 10.

In case 2, where the execution time of HW is unknown,
several HWs which have different time constraint are tested.
In this case, system level architecture exploration can be
used to make trade-offs between the target architectures and
the different HW solutions. As shown in Figure 10,
Pure_SW target architecture can not satisfy the time

9

constraint. SW _HW _sequential model can be chosen only
if HW has a 1 OOus time constraint on the DCT block, such
as HW solution 7, and can be implemented (as shown in
cycle 1). If SW _HW _parallel model is chosen, the timing
constraint for DCT on HW has to less than 500us, such as
HW solution 4 (as shown in cycle 2). If SW _2HW _parallel
model or SW _2HW _memory model is chosen, the time
constraint of HW can be very low, therefore the time
constraint of HW at 650us is enough, such as HW solution
1 (as shown in cycle 3).

Using the Spece language and the system level
architecture exploration guideline, the manually explored
JPEG example mentioned in this paper can be implemented

-·•·- Pure_SW
··-1111·· SW_HW_sequtial

+--+----11---------...:.:;,..-...-~----------__j --.tr- SW_HW_parallel

-----·---
--++-- SW_2HW _parallel

O SW _2HW _memory

~11--~11=~~~=111=~~~~~~~=111o~~~=1&~~~=11111
T me constraint

HW1-

650us
HW2-

600us
HW3-

500us
HW4-

400us
HW5-

300us

HW6-

200us

HW7-

100us

HW solutions

Figure 10- Execution time of JPEG Encoder for different hardware solutions and target architectures

in few hours. Although the resulting architecture models are
not as complete as the ones tested within the methodology
mentioned in [1], this paper shows techniques which can
refine the existing Spece methodology. Channel
partitioning which should be implemented to optimize the
channels in the top level have been left out, but would be the
next step in the Spece Methodology.

5.8. operations of system level architec-
ture exploration

In section 5, the guidelines of four types of exploration
are described. For the exploration operation types that were
not detailed, implementation can be accomplished in one of
two ways. This is true because most are reverse operations
of the four exploration operations described in section 5
(function moving exploration is quite similar to component
separation exploration). The first method is to design the
guideline for each operation independently. The second
method is to use the existing four operations of exploration
described in section 5.2 to 5.5. The second method can be
accomplished since the four methods implemented in
section 5.2 to 5.5 are to change from a simple situation to a
complex situation. While the reverse operations are to
change from the complex situation to simple situation, the
changes from the simple to the complex solutions are more
difficult to implement. Furthermore, since the initial
specification is sequentially executed in one component and
uses a message passing communication method, the path of
system level architecture exploration operations can be
traced. It is easy to go back to the immediate previous step,
which contains the needed simple situation. In the second
method, system level architecture exploration is then
restarted using the four operations mentioned in section 5 .2
to 5 .5 to continue its exploration from this immediate step.
Therefore, the second method can be implemented more
easily.

10

6

This paper introduces a new methodology in system level
design, system level architecture exploration. system level
architecture exploration is the methodology of modifying a
design implementation from one target architecture model
to another target architecture model, within the architecture
level of the Spece methodology[!]. Since the architecture
level model of the Spece methodology is in an abstract
level, the process of system level architecture exploration is
fast. Furthermore, a new timing model, "timed system level
specification model" is clearly defined and first used in the
Spece methodology.

This paper uses a JPEG encoder as an example to show
the process of system level architecture exploration and
guidelines for these operations are given. These guidelines
show that system level architecture exploration can be
implemented easily with manual modification. To
implement these modifications more easily, automated tools
can be designed for system level architecture exploration.

system level architecture exploration is one part of the
Spece methodology. It refined the architecture level of the
Spece methodology. Using this methodology within the
Spece design flow, the fast estimation of implementation,
and finding a suitable target architecture earlier in the design
cycle, between can be achieved.

References
[l] [GZDGZ] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,

S. Zhao, SpecC: specification language and methodology,
Kluwer Academic Publishers, March, 2000

[2] [GZDH] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak,
Design of a GSM Vocoder using SpecC methodology,
University of California, Irvine, Technical Report ICS-99-
xx, February 1999.

[3] [DCT] V. Bhaskaran, K. Konstantinides, Image and
Video compression standards, Second Edition, Kluwer
Academic Publisher, 1997

[4] [CPCG] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H.
Li, A. Selka, C. Siska, L. Sun, S. Zhao, D. Gajski, Design of
a JPEG Encoding System, University of California, Irvine,
Technical Report ICS-99-xx, September 1999.

[5] [YDLG] H. Yin, H. Du, T. Lee, D,. Gajski. Design of
a JPEG Encoder using SpecC methodology. University of
California, Irvine, Technical Report ICS-00-xx, July 2000

11

A. Simulation Environment

tb.sc

I***
Project: system level architecture exploration

Stage: Simulation environment
Filename: tb.sc
Last change: 08/17100
Author: Lukai Cai

**I

import "io";
import '~peg";
import "time_counter";

behavior Main

char* ifname;
char* ofname;

II Channels
cSynclnt header;
cSyncByte pixel;
cSyncByte data;
cFlaglnt end_file;

Input input(ifname, header, pixel);
Jpeg jpeg(header, pixel, data, end_file);
Output output(ofname, data);
time_countertc(end_file);

int main (int argc, char** argv)
{
II Command line arguments
if (argc < 2) {

error("Usage: %s infile [outfile]\n", argv[O]);
}
ifname = argv[l];
if (argc >= 3) {

ofname = argv[2];
} else {
ofname = O;

}

II And now run the stuff ...
par {

}

input.main();
jpeg.main();
output.main();
tc.main();

return O;

} ;

A.2 time_counter.sc
I***
Project: system level architecture exploration
Stage: Simulation enviroment
Filename: time_counter.sc
Last change: 08117100
Auther: Lukai Cai

**I

#include "const.sh"

import "chann";
import "global";

behavior time_counter(iBlckFlagRev end_file) {

void main(void){

static int run_time;

run_time=O;
end_file.lnvalid_flag();

while(end_file.Check_flag()==O) {
waitfor(l);
run_time++;

printf("\n Timing simulater report: run_time is %d\n",
run_time-1);

}
} ;

B Pure SW model

B.ljpeg.sc

12

I***
Project: system level architecture exploration

Stage: Pure Software model
Filename: jpeg.sc
Last change: 08/17100
Auther: Lukai Cai

**I

import "handle";
import "dct";
import "quant";
import "huff';

#include "canst.sh"

behavior SW(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch, iBlckFlagSend end_file)
{

int block_no ;
inthdata[64];
intddata[64];
intqdata[64];
inteobmp;

HandleDatahandledata(header_ch, pixel_ch, data_ch,
hdata, eobmp);
DCTdct(hdata, ddata);
Quantizationquantization(ddata, qdata);
HuffmanEncodehuffmanencode(qdata, data_ ch);

void main(void) {

printf("*********************\n");
printf("JPEG Encoder Begin ... \n");
printf("*********************\n");
block_no = 0 ;
eobmp =0;
do

block_no ++ ;
printf("Processing Block %dth ... \n'', block_no);

handledata.main();
dct.main();
quantization.main();
huffmanencode.main();
}while(eobmp!=l);
WriteBits(-1, 0, data_ch);
WriteMarker(M_EOI, data_ch);
end_file. Valid_fiag();

printf("*******************\n");
printf("JPEG Encoder End ... \n");

printf("*******************\n");
}

} ;

behavior Jpeg(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch, iBlckFlagSend end_file){

SW sw_exec(header_ch, pixel_ch, data_ch, end_file);

void main(){
sw _exec.main();
}

} ;

13

c sequential model

C.1 jpeg.sc
/***
Project: system level architecture exploration

Stage: SW _HW _sequential model
Filename: jpeg.sc
Last change: 08117/00
Auther: Lukai Cai

**/

import "sw";
import "hw";
import "time_counter";

#include "canst.sh"

behavior Jpeg(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch, iBlckFlagSend end_file_tc)
{

cSyncBlockchdata, cddata;
cSynclntceobmp;

SW sw(header_ch, pixel_ ch, data_ ch,
chdata, ceobmp, cddata);
HWhw(chdata, ceobmp, cddata);

void main(void) {
printf("*********************\n");
printf("JPEG Encoder Begin ... \n");
printf("*********************\n");
par
{

sw.main();
hw.main();

end_file_tc. Valid_fiag();
printf("*******************\n");
printf("JPEG Encoder End ... \n");
printf("*******************\n");

}
} ;

C.2 SW.SC

!***
Project: system level architecture exploration

Stage: SW _HW _sequential model
Filename: sw.sc
Last change: 08/17/00
Auther: Lukai Cai

**/

import "handle";
import "quant";
import "huff';

#include "const.sh"

behavior BOHData(in int hdata[64], iBlckSendBlock CHData)
{
void main (void)
{
II send item hdata over channel
CHData.send (hdata);
waitfor(l);
}
};

behavior BOEOBmp(in int eobmp, iBlckSendlnt CEOBmp)
{
void main (void)
{
II send item eobmp over channel
CEOBmp.send (eobmp) ;
}
} ;

behavior BIDData(out int ddata[64], iBlckRecvBlock CDData)
{
void main (void)
{
11 receive item ddata over channel
CDData.receive (ddata);
waitfor(l);
}
};

behavior SW(iBlckRecvint header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch,
iBlckSendBlock CHData,
iBlckSendint CEOBmp,
iBlckRecvBlock CDData)
{
inthdata[64];
intddata[64];
intqdata[64];
inteobmp;
intblock_no ; //for display
inti ;

HandleDatahandledata(header_ch, pixel_ch, data_ch,
hdata, eobmp);
Quantizationquantization(ddata, qdata);
HuffmanEncodehuffmanencode(qdata, data_ ch);

BOEOBmpOEOBmp(eobmp, CEOBmp);

14

BOHDataOHData(hdata, CHData);
BIDDatalDDat~(ddata, CDData);

void main(void) {

eobmp=O;
block_no = 0 ;

do
{
block_no ++ ;
printf("Processing Block %dth ... \n'', block_no);

handledata.main();// original behavior

//send data from ColdFire to DCT
OEOBmp.main() ;// send eobmp ouput
OHData.main() ;// send hdata ouput

//Receive data from DCT
ID Data.main();// receive ddata ouput

quantization.main();// original behavior
huffmanencode.main();// original behavior

}while(eobmp!=l); //end of while

WriteBits(-1, 0, data_ch);
WriteMarker(M_EOI, data_ch);

}//end of main
} ; 11 end of behavior

C.3 hw.sc
/***
Project: system level architecture exploration
Stage: SW _HW _sequential model
Filename: hw.sc
Last change: 08/17/00
Auther: Lukai Cai

**/

import "dct";

#include "const.sh"

behavior BIHData(out int hdata[64], iBlckRecvBlock CHData)
{
void main (void)
{
CHData.receive (hdata) ;
waitfor(l);
}
} ;

behavior BIEOBmp(out int eobmp, iBlckRecvlnt CEOBmp)

void main (void)
{
eobmp = CEOBmp.receive() ;
}
} ;

behavior BOD Data(in int ddata[64], iBlckSendBlock CD Data)
{
void main (void)
{
CDData.send (ddata);
waitfor(1);
}
} ;

behavior HW(iBlckRecvBlock CHData,
iBlckRecvlnt CEOBmp,

iBlckSendBlock CDData)
{
inthdata[64];
intddata[64];
inteobmp;

DCTdct(hdata, ddata);
BIHData IHData(hdata, CHData);
BIEOBmp IEOBmp(eobmp, CEOBmp);
BODData ODData(ddata, CDData);

void main(void) {
do
{
//Receive data from ColdFire
IEOBmp.main();// receive eobmp output
IHData.main();// receive hdata output

<let.main();// original behavior

//send data from DCT to ColdFire
ODData.main();// send ddata output
}while(eobmp!=l) ; II end of while

} //end of main
} ; II end of behavior

SW _HS_parallel model

jpeg.sc
/***
Project: system level architecture exploration

Stage: SW _HW _parallel model
Filename: jpeg.sc
Last change: 08/17/00
Auther: Lukai Cai

**/

import "sw";
import "hw";

15

import "time_counter";

#include "const.sh"

behavior Jpeg(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch,iBlckFlagSend end_file_tc)
{

cSyncBlockchdata, cddata;
cSynclntceobmp;
cFlaglnt valid_hw;
cFlaglnt valid_result;

SWsw(header_ch, pixel_ch, data_ch,
chdata, ceobmp, cddata, valid_hw, valid_result);
HWhw(chdata, ceobmp, cddata, valid_hw, valid_result);

void main(void) {
printf("*********************\n");
printf("JPEG Encoder Begin ... \n");
printf("*********************\n");
par
{
sw.main();
hw.main();
}
end_file_tc.Valid_flag();
printf("*******************\n");
printf("JPEG Encoder End ... \n");
printf("*******************\n");

}
};

SW.SC

/***
Project: system level architecture exploration

Stage: SW _HW _parallel model
Filename: hw.sc
Last change: 08/17/00
Auther: Lukai Cai

**/
import "handle";
import "quant";
import "huff';

#include "const.sh"

behavior BOHData(in int hdata[64], iBlckSendBlock CHData)
{
void main (void)
{

II send item hdata over channel
CHData.send (hdata);
waitfor(l);
}
} ;

behavior BOEOBmp(in int eobmp, iBlckSendlnt CEOBmp)
{
void main (void)
{

11 send item eobmp over channel
CEOBmp.send (eobmp) ;
}
} ;

behavior BIDData(out int ddata[64], iBlckRecvBlock CDData)
{
void main (void)
{
II receive item ddata over channel
CDData.receive (ddata);
waitfor(l);
}
};

behavior SW(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch,
iBlckSendBlock CHData,
iBlckSendlnt CEOBmp,
iBlckRecvBlock CDData,
iBlckFlagRev valid_hw,
iBlckFlagRev valid_result)
{
inthdata[64];
intddata[64];
intqdata[64];
inteobmp;
intblock_no ; //for display
inti;

HandleDatahandledata(header_ch, pixel_ch, data_ch,
hdata, eobmp);
Quantizationquantization(ddata, qdata);
HuffmanEncodehuffmanencode(qdata, data_ ch);

BOEOBmpOEOBmp(eobmp, CEOBmp);
BOHDataOHData(hdata, CHData);
BIDDataIDData(ddata, CDData);

void main(void) {

int handle_count, valid_after_hw;
int end_file;
int a, b, c, d;

eobmp= 0;
block_no = 0 ;

16

handle_count=O;
valid_after_hw=O;
end_file=O;
a=O;
b=O;
c=O;
d=O;

do
{

/*prepare for the hardware*/
if((handle_count==O)&& (eobmp!=l)){
handledata.main();// original behavior
handle_count= 1;
a++;
}
else if((valid_hw.Check_fiag()== 1)&&(b<a)) {
valid_hw. Invalid_fiag();
//send data from ColdFire to DCT
OEOBmp.main() ;// send eobmp ouput
OHData.main() ;//send hdata ouput
block_no ++ ;
handle_count--;
b++;
printf("Processing Block %dth ... \n", block_no);
}

else if(valid_after_hw==l){
quantization.main();// original behavior
huffmanencode.main();// original behavior
valid_after_hw=O;
c++;

if(c==a){
end_file= 1;
}

else
if ((valid_result. Check_fiag()== 1)&&(d<a)&&(valid_after_hw==
O)){

//Receive data from DCT
valid_result.Invalid_fiag(); //tell sw can receive data
IDData.main() ;//receive ddata ouput
valid_after_hw=l;
d++;

else {
waitfor(l);

}while(end_file!=l); //end of while

WriteBits(-1, 0, data_ch);
WriteMarker(M_EOI, data_ch);
I* printf("\n a=%d, b=%d, c=%d, d=%d", a, b,c, d);
printf("\n time=%d", run_time); */

}// end of main
}; //end of behavior

hw.sc
!***
Project: system level architecture exploration

Stage: SW _HW _parallel model
Filename: hw.sc
Last change: 08117 /00
Auther: Lukai Cai

**/

import "dct";

#include "canst.sh"

behavior BIHData(out inthdata[64], iBlckRecvBlock CHData)
{
void main (void)
{
CHData.receive (hdata) ;
waitfor(l);

}
} ;

behavior BIEOBmp(out int eobmp, iBlckRecvlnt CEOBmp)
{
void main (void)
{
eobmp = CEOBmp.receive() ;
}
} ;

behavior BODData(in int ddata[64], iBlckSendBlock CDData)
{
void main (void)
{
CDData.send (ddata);
waitfor(l);
}
} ;

behavior HW(iBlckRecvBlock CHData,
iBlckRecvlnt CEOBmp,

iBlckSendBlock CDData,

17

iBlckFlagSend valid_hw,
iBlckFlagSend valid_result)
{
inthdata[64];
intddata[64];
inteobmp;

DCTdct(hdata, ddata);
BIHData IHData(hdata, CHData);
BIEOBmp IEOBmp(eobmp, CEOBmp);
BODData ODData(ddata, CDData);

void main(void) {
valid_hw. Valid_flag();
valid_result.Invalid_flag();

do
{
//Receive data from ColdFire
IEOBmp.main();// receive eobmp output
IHData.main();// receive hdata output

<let.main();// original behavior

valid_result.Valid_flag(); //tell sw can receive data

//send data from DCT to ColdFire
ODData.main();// send ddata output
valid_hw. Valid_flag(); //tell sw can deal other imput

}while(eobmp!=l); II end of while

} //end of main
} ; II end of behavior

E SW _2HW _parallel model

jpeg.sc
!***
Project: system level architecture exploration

Stage: SW _2HW _parallel model
Filename: jpeg.sc
Last change: 08/17 /00
Auther: Lukai Cai

**/
import "sw";
import "hw";

#include "canst.sh"

behavior Jpeg(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch, iBlckFlagSend end_file_tc)
{

cSyncBlockchdata, cddata;

cSynclntceobmp;
cSyncBlockchdata_2, cddata_2;
cSynclntceobmp_2;
cFlaglnt valid_hw_l, valid_hw_2;
cFlaglnt valid_result_l, valid_result_2;
event end_SW;

SW sw(header_ch, pixel_ ch, data_ ch,
chdata, ceobmp, cddata,chdata_2, ceobmp_2, cddata_2,

valid_hw _ l, valid_result_l, valid_hw _2, valid_result_2,
end_SW);

HWhw_l(chdata, ceobmp, cddata, valid_hw_l,
valid_result_ l, end_SW);

HWhw_2(chdata_2, ceobmp_2, cddata_2, valid_hw_2,
valid_result_2, end_SW);

void main(void) {
printf("*********************\n");
printf("JPEG Encoder Begin ... \n");
printf("*********************\n");

par
{

sw.main();
hw_l.main();
hw_2.main();

end_file_tc. Valid_fiag();
printf("*******************\n");
printf("JPEG Encoder End ... \n");
printf("*******************\n");

}
} ;

K2 SW.SC

/***
Project: system level architecture exploration

Stage: SW _2HW _parallel model
Filename: sw.sc
Last change: 08/17/00
Auther: Lukai Cai

**!

import "handle";
import "quant";
import "huff';

#include "const.sh"

18

behavior BOHData(in int hdata[64], iBlckSendBlock CHData)
{
void main (void)
{
II send item hdata over channel
CHData.send (hdata);
waitfor(l);
}
} ;

behavior BOEOBmp(in int eobmp, iBlckSendlnt CEOBmp)
{
void main (void)
{
II send item eobmp over channel
CEOBmp.send (eobmp);
}
} ;

behavior BIDData(out int ddata[64], iBlckRecvBlock CDData)
{
void main (void)
{
II receive item ddata over channel
CDData.receive (ddata);
waitfor(l);
}
};

behavior SW(iBlckRecvlnt header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch,
iBlckSendBlock CHData,
iBlckSendlnt CEOBmp,
iBlckRecvBlock CDData,
iBlckSendBlock CHData_2,
iBlckSendlnt CE0Bmp_2,
iBlckRecvBlock CDData_2,
iBlckFlagRev valid_hw _l,
iBlckFlagRev valid_result_l,
iBlckFlagRev valid_hw _2,
iBlckFlagRev valid_result_2,
eventend_SW)
{
inthdata[64];
intddata[64];
intqdata[64];
inteobmp;
intblock_no ; //for display
inti ;

HandleDatahandledata(header_ch, pixel_ch, data_ch,
hdata, eobmp);
Quantizationquantization(ddata, qdata);
HuffmanEncodehuffmanencode(qdata, data_ ch);

BOEOBmpOEOBmp(eobmp, CEOBmp);
BOHDataOHData(hdata, CHData);

BIDDataIDData(ddata, CDData);

BOEOBmpOEOBmp_2(eobmp, CE0Bmp_2);
BOHDataOHData_2(hdata, CHData_2);
BIDDataIDData_2(ddata, CDData_2);

void main(void) {

int handle_count, valid_after_hw;
int end_file;
int a, b, c, d;

eobmp=O;
block_no = 0 ;
handle_count=O;
valid_after_hw=O;
end_file=O;
a=O;
b=O;
c=O;
d=O;

do
{

/*prepare for the hardware*/
if((handle_count==O)&& (eobmp != 1)){
handledata.main();// original behavior
handle_count= 1;
a++;
}
else if ((valid_hw _ l. Check_flag()== 1)&&(b<a)) {
valid_hw _l .Invalid_flag();
//send data from ColdFire to DCT
OEOBmp.main() ;// send eobmp ouput
OHData.main() ;// send hdata ouput
block_no ++ ;
handle_count--;
b++;
printf("Processing Block %dth in hw_l...\n'', block_no);
}

else if((valid_hw _2. Check_flag()== 1)&&(b<a)) {
valid_hw _2.Invalid_flag();
//send data from ColdFire to DCT
OEOBmp_2.main() ;// send eobmp ouput
OHData_2.main() ;// send hdata ouput
block_no ++ ;
handle_count--;
b++;
printf("Processing Block %dth in hw_2 ... \n", block_no);
}

19

else
if ((valid_resulU. Check_flag()== 1)&&(d<a)&&(valid_after_hw
==0)){

valid_result_l .Invalid_flag();

I /Receive data from DCT
IDData.main() ;//receive ddata ouput
valid_after_hw=l;
d++;

else
if ((valid_result_2. Check_flag()== 1)&&(d<a)&&(valid_after_hw
==0)){

valid_result_2.Invalid_flag();
//Receive data from DCT
IDData_2.main() ;//receive ddata ouput
valid_after_hw=l;
d++;

else if(valid_after_hw==l){
quantization.main();// original behavior
huffmanencode.main();// original behavior
valid_after_hw=O;
c++;
if(c==a){
end_file= 1 ;
notify(end_SW);
}

else {

waitfor(l);
}

}while(end_file!=l); II end of while

WriteBits(-1, 0, data_ch);
WriteMarker(M_EOI, data_ch);

}//end of main
} ; II end of behavior

E.3 hw.sc
/***
Project: system level architecture exploration

Stage: SW _2HW _parallel model
Filename: hw.sc
Last change: 08117 /00
Auther: Lukai Cai

**!
import "dct'';

#include "const.sh"

behavior BIHData(out int hdata[64], iBlckRecvBlock CHData)
{
void main (void)
{
CHData.receive (hdata) ;
wai tfor(1);
}
} ;

behavior BIEOBmp(out int eobmp, iBlckRecvlnt CEOBmp)
{
void main (void)
{
eobmp = CEOBmp.receive() ;

}
} ;

behavior BODData(in int ddata[64], iBlckSendBlock CDData)
{
void main (void)
{
CDData.send (ddata);
waitfor(l);
}
} ;

behavior HW _main(iBlckRecv Block CHData,
iBlckRecvlnt CEOBmp,

iBlckSendBlock CDData,
iBlckFlagSend valid_hw,
iBlckFlagSend valid_result)
{
inthdata[64];
intddata[64];
inteobmp;

DCTdct(hdata, ddata);
BIHData IHData(hdata, CHData);
BIEOBmp IEOBmp(eobmp, CEOBmp);
BODData ODData(ddata, CDData);

void main(void) {
valid_hw. Valid_flag();
valid_result. Invalid_flag();

20

do
{
//Receive data from ColdFire
IEOBmp.main();// receive eobmp output
IHData.main();// receive hdata output

dct.main();// original behavior

valid_result.Valid_flag(); //tell sw can receive data

//send data from DCT to ColdFire
ODData.main();// send ddata output
valid_hw.Valid_flag(); //tell sw can deal other imput

}while(eobmp!=l); II end of while

} //end of main
} ; II end of behavior

behavior IDLE(){
void main() { }
} ;

behavior HW(iBlckRecvBlock CHData,
iBlckRecvlnt CEOBmp,

iBlckSendBlock CDData,
iBlckFlagSend valid_hw,
iBlckFlagSend valid_result,
event end_SW) {

HW _main HW _main_exec(CHData, CEOBmp, CDData,
valid_hw, valid_result);

IDLE idle_exec();

void main(){
try{
HW main exec.main();}
trap~nd_SW) { idle_exec.main();}
}
} ;

F Sw _2HW _mem model

F.1 jpeg.sc
/***
Project: system level architecture exploration

Stage: SW _HW _parallel mem model
Filename: jpeg.sc
Last change: 08/ 17100
Auther: Lukai Cai

**/

import "sw";
import "hw";
import "mem";

#include "const.sh"

behavior Jpeg(iBlckRecvint header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch, iBlckFlagSend end_file_tc)
{

cSyncBlockchdata_sw, cddata_sw;
cSyncintceobmp;
cSyncBlockchdata_hw l, cddata_hw 1;
cSyncBlockchdata_hw2, cddata_hw2;
cSyncintceobmp_2;
cFlaglnt valid_hw _1, valid_hw _2;
cFlaglnt valid_result_l, valid_result_2;
cFlagint ch_sw, cd_sw, ch_hwl, cd_hwl, ch_hw2, cd_hw2;
event end_SW;

SW sw(header_ch, pixel_ ch, data_ ch,
chdata_sw, ceobmp, cddata_sw, ceobmp_2, valid_hw_l,

valid_result_l, valid_hw_2, valid_result_2, ch_sw, cd_sw,
end_SW);

HWhw_l(chdata_hwl, ceobmp, cddata_hwl, valid_hw_l,
valid_result_l, ch_hwl, cd_hwl, end_SW);

HWhw _2(chdata_hw2, ceobmp_2, cddata_hw2, valid_hw _2,
valid_result_2, ch_hw2, cd_hw2, end_SW);

memmemory(chdata_sw, cddata_sw, chdata_hw 1,
cddata_hwl,

chdata_hw2, cddata_hw2, ch_sw, cd_sw, ch_hwl, cd_hwl,
ch_hw2, cd_hw2, end_SW);

void main(void) {
printf("*********************\n");
printf("JPEG Encoder Begin ... \n");
printf("*********************\n");

par
{

sw.main();
hw_l.main();
hw_2.main();
memory.main();
}
end_file _tc. Valid_fiag();
printf("*******************\n");
printf("JPEG Encoder End ... \n");
printf("*******************\n");

}
} ;

F.2 SW.SC

!***

21

Project: system level architecture exploration
Stage: SW _HW _parallel mem model
Filename: sw.sc
Last change: 08117100
Auther: Lukai Cai

**I

import "handle";
import "quant";
import "huff';

#include "canst.sh"

behavior BOHData(in int hdata[64], iBlckSendBlock CHData,
iBlckFlagSend ch_sw)

{
void main (void)
{
ch_sw. Valid_tlag();
II send item hdata over channel
CHData.send (hdata);
waitfor(l);
}
} ;

behavior BOEOBmp(in int eobmp, iBlckSendlnt CEOBmp)
{
void main (void)
{
II send item eobmp over channel
CEOBmp.send (eobmp) ;
}
} ;

behavior BIDData(out int ddata[64], iBlckRecvBlock CDData,
iBlckFlagSend cd_sw)

{
void main (void)
{
cd_sw. Valid_flag();
II receive item ddata over channel
CDData.receive (ddata);
waitfor(l);

}
} ;

behavior SW(iBlckRecvint header_ch, iBlckRecvByte
pixel_ ch,

iBlckSendByte data_ch,
iBlckSendBlock CHData,
iBlckSendlnt CEOBmp,
iBlckRecvBlock CDData,
iBlckSendlnt CE0Bmp_2,
iBlckFlagRev valid_hw _1,

iBlckFlagRev valid_result_l,
iBlckFlagRev valid_hw _2,
iBlckFlagRev valid_result_2,
iBlckFlagSend ch_sw,
iBlckFlagSend cd_sw,
event end_SW)
{
inthdata[64];
intddata[64];
intqdata[64];
inteobmp;
intblock_no ; //for display
inti ;

HandleDatahandledata(header_ch, pixel_ch, data_ch,
hdata, eobmp);
Quantizationquantization(ddata, qdata);
HuffmanEncodehuffmanencode(qdata, data_ch);

BOEOBmpOEOBmp(eobmp, CEOBmp);
BOHDataOHData(hdata, CHData,ch_sw);
BIDDataIDData(ddata, CDData, cd_sw);

BOEOBmpOEOBmp_2(eobmp, CEOBmp_2);

void main(void) {

int handle_count, valid_after_hw;
int end_file;
int a, b, c, dl, d2;

eobmp=O;
block_no = 0 ;
handle_count=O;
valid_after_hw=O;
end_file=O;
a=O;
b=O;
c=O;
dl=O;
d2=0;

do
{

/*prepare for the hardware*/
if((handle_count==O)&& (eobmp != 1)) {
handledata.main();// original behavior
handle_count=l;
a++;
}
else if((valid_hw _1.Check_flag()== 1)&&(b<a)) {
valid_hw _1.Invalid_flag();

22

//send data from ColdFire to DCT
OEOBmp.main() ;// send eobmp ouput
OHData.main() ;//send hdata ouput
block_no ++ ;
handle_count--;
b++;
printf("Processing Block %dth in hw_l...\n", block_no);
}

else if((valid_hw _2.Check_flag()== 1)&&(b<a)) {
valid_hw _2.Invalid_flag();
//send data from ColdFire to DCT
OEOBmp_2.main() ;// send eobmp ouput
OHData.main() ;// send hdata ouput
block_no ++ ;
handle_count--;
b++;
printf("Processing Block %dth in hw_2 ... \n", block_no);
}

else
if((valid_result_l .Check_flag()== 1)&&(dl +d2<a)&&(valid_afte
r_hw==O)){

valid_result_ l .Invalid_flag();

//Receive data from DCT
IDData.main() ;//receive ddata ouput

valid_after_hw= 1;
dl++;

else
if((valid_result_2. Check_flag()== 1)&&(d1 +d2<a)&&(valid_afte
r_hw==O)){

//Receive data from DCT
valid_result_2.Invalid_flag();
ID Data.main();// receive ddata ouput
valid_after_hw=l;
d2++;

else if(valid_after_hw==l){
quantization.main();// original behavior
huffmanencode.main();// original behavior
valid_after_hw=O;
c++;

if(c==a){
end_file= 1 ;
notify(end_SW);
}

else {

wai tfor(1);
}

}while(end_file!=l); //end of while

WriteBits(-1, 0, data_ch);
WriteMarker(M_EOI, data_ch);
I* printf("\n a=%d, b=%d, c=%d, dl=%d, d2=%d", a, b,c, dl,

d2);
printf("\n run_time=%d, wait_time=%d", run_time,

wait_time); */

}//end of main
} ; 11 end of behavior

F.3 hw.sc
!***
Project: system level architecture exploration
Stage: SW _HW _parallel mem model
Filename: hw.sc
Last change: 08/17/00
Auther: Lukai Cai

**/

import "dct";

#include "const.sh"

behavior BIHData(out int hdata[64], iBlckRecvBlock CHData,
iBlckFlagSend ch_hw)

{
void main (void)
{
ch_hw. Valid_flag();
CHData.receive (hdata);
waitfor(l);

}
};

behavior BIEOBmp(out int eobmp, iBlckRecvlnt CEOBmp)
{
void main (void)
{
eobmp = CEOBmp.receive() ;
}
} ;

23

behavior BODData(in int ddata[64], iBlckSendBlock CDData,
iBlckFlagSend cd_hw)

{
void main (void)
{
cd_hw. Valid_fiag();
CDData.send (ddata);
waitfor(l);
}
} ;

behavior HW _main(iBlckRecv Block CHData,
iBlckRecvint CEOBmp,

iBlckSendBlock CDData,
iBlckFlagSend valid_hw,
iBlckFlagSend valid_result,
iBlckFlagSend ch_hw,
iBlckFlagSend cd_hw)
{
inthdata[64];
intddata[64];
inteobmp;

DCTdct(hdata, ddata);
BIHData IHData(hdata, CHData,ch_hw);
BIEOBmp IEOBmp(eobmp, CEOBmp);
BODData ODData(ddata, CDData, cd_hw);

void main(void) {
valid_hw. Valid_fiag();
valid_result.Invalid_fiag();

do
{
//Receive data from ColdFire
IEOBmp.main();// receive eobmp output
IHData.main();// receive hdata output

<let.main();// original behavior

//send data from DCT to ColdFire
ODData.main();// send ddata output
valid_result. Valid_flag(); //tell sw can receive data
valid_hw.Valid_flag(); //tell sw can deal other imput

}while(eobmp!=l) ; II end of while

} //end of main
} ; 11 end of behavior

behavior IDLE(){
void main() { }
} ;

behavior HW(iBlckRecvBlock CHData,

iBlckRecvlnt CEOBmp,
iBlckSendBlock CDData,

iBlckFlagSend valid_hw,
iBlckFlagSend valid_result,
iBlckFlagSend ch_hw,
iBlckFlagSend cd_hw,
event end_SW) {

HW _main HW _main_exec(CHData, CEOBmp, CDData,
valid_hw, valid_result, ch_hw, cd_hw);

IDLE idle_exec();

void main(){
try{
HW _main_exec.main();}
trap(end_SW) { idle_exec.main();}
}
} ;

memory.sc
/***
Project: system level architecture exploration

Stage: SW _HW _parallel mem model
Filename: mem.sc
Last change: 08117 /00
Auther: Lukai Cai

**/

#include "const.sh"

import "global";
import "chann";

behavior MEM_main(iBlckRecv Block chdata_sw,
iBlckSendBlock cddata_sw,
iBlckSendBlock chdata_hw 1,
iBlckRecv Block cddata_hw 1,
iBlckSendBlock chdata_hw2,
iBlckRecv Block cddata_hw2,
iBlckFlagRev ch_sw,
iBlckFlagRev cd_sw,
iBlckFlagRev ch_hw 1,
iBlckFlagRev cd_hwl,
iBlckFlagRev ch_hw2,
iBlckFlagRev cd_hw2){

void main(void){

in th data[64];
intddata[64];
int hd_ valid;
int dd_ valid;
static int run_time;
static int a, b, c, <l;

run_time=O;
a=O;

24

b=O;
c=O;
d=O;

ch_sw.Invalid_flag();
cd_sw.Invalid_flag();
ch_hw I. Invalid_flag();
cd_hwl.Invalid_ftag();
ch_h w2.Invalid_ftag();
cd_hw2.Invalid_ftag();
hd_ valid=O;
dd_ valid=O;

while(l){

I* send first, then receive*/
if ((ch_sw. Check_flag()== I)&&(hd_ valid==O)) {
ch_sw.Invalid_flag();
chdata_sw.receive (hdata) ;
hd_ valid= I;
I* a++;
printf("sw-->mem(%d)'', a);*/
}
else if((cd_hwl.Check_flag()==l)&&(dd_valid==O)){
cd_hw I. Invalid_flag();
cddata_hw I.receive (ddata) ;
dd_ valid= I;
I* b++;
printf("hwl-->mem(%d)", b); */
}
else if ((cd_h w2. Check_flag()== 1)&&(dd_ valid==O)) {
cd_hw2.Invalid_flag();
cddata_hw2.receive (ddata) ;
dd_ valid= 1 ;
I* b++;
printf("hw2-->mem(%d)", b); */
}
else if((cd_sw. Check_flag()== I)&&(dd_ valid== I)) {
cd_sw.lnvalid_flag();
cddata_sw.send (ddata) ;
dd_ valid=O;

I* c++;
printf("mem-->sw(%d)", c); */

}
else if((ch_h w I. Check_flag()== I)&&(hd_ valid== I)) {
ch_hw 1.lnvalid_flag();
chdata_hwl.send (hdata);
hd_ valid=O;
I* d++;
printf("mem-->hw1(%d)", d); */
}
else if((ch_hw2.Check_flag()== I)&&(hd_ valid== I)) {
ch_hw2.Invalid_flag();
chdata_hw2.send (hdata);

hd_ valid=O;

I* d++;

printf("mem-->hw2(%d)'', d); */

waitfor(l);

run_time=run_time+ 1;

printf("\n real run time is %d", run_time-1);

} ;

behavior IDLE2() {

void main(){}

} ;

behavior mem(iBlckRecvBlock chdata_sw,

iBlckSendBlock cddata_sw,

iBlckSendBlock chdata_hw 1,

iBlckRecv Block cddata_hw l,

iBlckSendBlock chdata_hw2,

iBlckRecvBlock cddata_hw2,

iBlckFlagRev ch_sw,

iBlckFlagRev cd_sw,

iBlckFlagRev ch_hwl,

iBlckFlagRev cd_hw 1,

iBlckFlagRev ch_hw2,

iBlckFlagRev cd_hw2,

event end_SW) {

MEM_main mem_main_exec(chdata_sw,
chdata_hwl, cddata_hwl, chdata_hw2,
ch_sw,cd_sw, ch_hwl, cd_hwl, ch_hw2, cd_hw2);

IDLE2 idle_exec();

void main(){

try{

mem_main_exec.main();}

trap(end_SW){ idle_exec.main();}

} ;

cddata_sw,
cddata_hw2,

25

