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Abstract. In this article, we consider time series OLS and IV regressions and
introduce a new pair of commands, har and hart, which implement a more accu-
rate class of heteroscedasticity and autocorrelation robust (HAR) F and t tests.
These tests represent part of the recent progress on HAR inference. The F and t
tests are based on the convenient F and t approximations and are more accurate
than the conventional chi-squared and normal approximations. The underlying
smoothing parameters are selected to target the type I and type II errors, the two
fundamental objects in every hypothesis testing problem. The estimation com-
mand har and the post-estimation test command hart allow for both kernel HAR
variance estimators and orthonormal series HAR variance estimators. In addition,
we introduce another pair of new commands, gmmhar and gmmhart which imple-
ment the recently developed F and t tests in a two-step GMM framework. For
this command we opt for the orthonormal series HAR variance estimator based
on the Fourier bases, as it allows us to develop convenient F and t approxima-
tions as in the first-step GMM framework. Finally, we present several examples to
demonstrate the use of these commands.

Keywords: st0001, har, gmmhar, fixed-smoothing, kernel function, orthonormal
series, testing-optimal, AMSE, OLS/IV, Two-step GMM, J statistic

1 Introduction

The last two decades have witnessed substantial progress in heteroskedasticity and au-
tocorrelation robust (HAR) inference.

First, the fixed-smoothing asymptotic theory, a new class of asymptotic theory, has
been developed. See, for example, Kiefer and Vogelsang (2005) and Sun (2014a) and the
references therein. It is now well known that fixed-smoothing asymptotic approxima-
tions are more accurate than conventional increasing-smoothing asymptotic approxima-
tions, i.e., the chi-squared and normal approximations. The higher accuracy, which is
supported by ample numerical evidence, has been established rigorously via high order
Edgeworth expansions in Jansson (2004) and Sun et al. (2008). The source of the accu-
racy is that the new asymptotic approximations capture the estimation uncertainty in
the nonparametric HAR variance estimator. Both the effect of the smoothing parameter
and the form of the variance estimator are retained in the fixed-smoothing asymptotic
approximations. In addition, the estimation error in the model parameter estimator is
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also partially reflected in the new asymptotic approximations.

Second, a new rule for selecting the smoothing parameter that is optimal for the
HAR testing has been developed. It has been pointed out that the mean squared
error of the variance estimator is not the most suitable criterion to use in the testing
context. For hypothesis testing, the ultimate goals are the type I error and the type II
error. One should choose the smoothing parameter to minimize a loss function that is
a weighted sum of the type I and type II errors with the weights reflecting the relative
consequences of committing these two types of errors. Alternatively and equivalently,
one should minimize one type of error subject to the control of the other type of error.
See Sun et al. (2008) and Sun (2014a) for the choices of the smoothing parameter that
are oriented toward the testing problem at hand.

Finally, while kernel methods are widely used in practice, there is a renewed inter-
est in using a different nonparametric variance estimator that involves a sequence of
orthonormal basis functions. In a special case, this gives rise to the simple average of
periodograms as an estimator of the spectral density at zero. Such an estimator is a
familiar choice in the literature on spectral density estimation. The advantage of us-
ing the orthonormal series (OS) HAR variance estimator is that the fixed-smoothing
asymptotic distribution is the standard F or t distribution. There is no need to simulate
any critical value. This is in contrast to the case with the usual kernel HAR variance
estimator where nonstandard critical values have to be simulated.

The fixed-smoothing asymptotic approximations have been established in various
settings. For the kernel HAR variance estimators, the smoothing parameter can be
parametrized as the ratio of the truncated lag (for truncated kernels) to the sample size.
This ratio is often denoted by b, and the fixed-smoothing asymptotics are referred to as
the fixed-b asymptotics in the literature. The fixed-b asymptotics have been developed
by Kiefer and Vogelsang (2002a), Kiefer and Vogelsang (2002b), Kiefer and Vogelsang
(2005), Jansson (2004), Sun et al. (2008), and Gonçlaves and Vogelsang (2011) in the
time series setting, Bester et al. (2016) and Sun and Kim (2015) in the spatial setting,
and Gonçlaves (2011), Kim and Sun (2013), and Vogelsang (2012) in the panel data
setting. For the OS HAR variance estimators, the smoothing parameter is the number of
basis functions used. This smoothing parameter is often denoted by K, and the fixed-
smoothing asymptotics are often called the fixed-K asymptotics. For its theoretical
development and related simulation evidence, see, for example, Phillips (2005), Müller
(2007), Sun (2011), and Sun (2013). A recent paper by Lazarus et al. (2016) shows that
tests based on the OS HAR variance estimator have competitive power compared to
tests based on the kernel HAR variance estimator with the optimal kernel.

Most research on fixed-smoothing asymptotics has been devoted to first-step GMM
estimation and inference. More recently, fixed-smoothing asymptotics have been estab-
lished in a general two-step GMM framework. See Sun and Kim (2012), Sun (2013), Sun
(2014b), and Hwang and Sun (2017). The key difference between first-step GMM and
two-step GMM is that in the latter case the HAR variance estimator not only appears
in the covariance estimator but also plays the role of the optimal weighting matrix in
the second-step GMM criterion function.
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While the fixed-smoothing approximations are more accurate than the conventional
increasing-smoothing approximations, they have not been widely adopted in empirical
applications. There are two possible reasons. First, the fixed-smoothing asymptotic
distributions based on popular kernel variance estimators are nonstandard, and therefore
critical values have to be simulated. Second, there is no Stata command that implements
the new and more accurate approximations.

In this article, we describe the new estimation command har and the post-estimation
test command hart, which implement the fixed-smoothing Wald and t tests of Sun
(2013) and Sun (2014a) for linear regression models with possibly endogenous covariates.
These two commands automatically select the testing-optimal smoothing parameter. In
addition, we provide another pair of commands gmmhar and gmmhart that implement
the fixed-smoothing Wald and t tests in a two-step efficient GMM setting, introduced in
Hwang and Sun (2017). Under the fixed-smoothing asymptotics, Hwang and Sun (2017)
show that the modified Wald statistic is asymptotically F distributed, and the modified
t statistic is asymptotically t distributed. So the new tests are very convenient to use.
In addition, Sun and Kim (2012) show that under the fixed-smoothing asymptotics, the
J statistic for testing over-identification is also asymptotically F distributed.

The remainder of the article is organized as follows: In Sections 2 and 3, we present
the fixed-smoothing inference based on the first-step estimator and the two-step esti-
mator, respectively. In Sections 4 and 5, we describe the syntaxes of har and gmmhar

and illustrate their usage. Section 6 presents some simulation evidence and Section 7
describes the two post-estimation test commands: hart and gmmhart. The last section
concludes and discusses future work.

2 Fixed-smoothing Asymptotics: First-step GMM

2.1 OLS and IV Regressions

Consider the regression model

Yt = Xtθ0 + et, t = 1, ..., T,

where {et} is a zero mean process that may be correlated with the covariate process
{Xt ∈ R1×d}. There are instruments

{
Zt ∈ R1×m

}
such that the moment conditions

EZ ′
t (Yt −Xtθ) = 0

hold if and only if θ = θ0. When Xt is exogenous, we take Zt = Xt, leading to the
moment conditions behind the OLS estimator. Note that the first elements of Xt and Zt

are typically 1. We allow the process {Z ′
tet} to have autocorrelation of unknown forms.

The model may be over-identified with the degree of over-identification q = m− d ≥ 0.

Define

SZX =
1

T

T∑
t=1

Z ′
tXt, SZZ =

1

T

T∑
t=1

Z ′
tZt, SZY =

1

T

T∑
t=1

Z ′
tYt.
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Then the IV estimator of θ0 is given by

θ̂IV =
[
S′
ZXW−1

0T SZX

]−1 [
S′
ZXW−1

0T SZY

]
, (1)

where W0T = SZZ ∈ Rm×m. For the asymptotic results that follow, we can allow W0T

to be a general weighting matrix. It suffices to assume that PlimT→∞W0T = W0 for a
positive definite nonrandom matrix W0. When Zt = Xt, the IV estimator reduces to
the OLS estimator.

Suppose we are interested in testing the null H0 : Rθ0 = r against the alternative
H1 : Rθ0 6= r, where r ∈ Rp×1 and R ∈ Rp×d is a matrix of full row rank. Nonlinear
restrictions can be converted into linear ones via the delta method. Under some standard
high-level conditions, we have

√
TR(θ̂IV − θ0) =

√
T (Rθ̂IV − r) =

1√
T

T∑
t=1

ut + op (1) ,

where, for G0 = ESZX ∈ Rm×d, ut = R
(
G′

0W
−1
0 G0

)−1
G′

0W
−1
0 Z ′

tet is the transformed
moment process. It then follows that

√
TR(θ̂IV − θ0)

d→ N (0,Ω) ,

where Ω =
∑j=+∞

j=−∞ Eutu
′
t−j is the long run variance (LRV) of {ut}.

The Wald statistic for testing H0 against H1 is:

FIV =
[√

T (Rθ̂IV − r)
]′
Ω̂−1

[√
T (Rθ̂IV − r)

]
/p, (2)

where Ω̂ is an estimator of Ω. When p = 1, we can construct the t statistic

tIV =

√
T (Rθ̂IV − r)√

Ω̂
.

Let GT = SZX ,

ût = R(G′
TW

−1
0T GT )

−1G′
TW

−1
0T Z ′

t(Yt −Xtθ̂IV ), and ûave = T−1
T∑

s=1

ûs. (3)

We consider the estimator Ω̂ of the form

Ω̂ =
1

T

T∑
s=1

T∑
t=1

Qh(
s

T
,
t

T
) (ût − ûave) (ûs − ûave)

′
, (4)

where Qh (r, s) is a weighting function, and h is the smoothing parameter.

The above estimator includes the kernel HAR variance estimators and the OS HAR
variance estimators as special cases. For the kernel LRV estimator, we let Qh (r, s) =
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k ((r − s) /b) and h = 1/b for a kernel function k (·) . In this case, the estimator Ω̂ can
be written in a more familiar form that involves a weighted sum of autocovariances:

Ω̂ =

T−1∑
j=−(T−1)

k

(
j

MT

)
Γ̂j , (5)

where

Γ̂j =

{
T−1

∑T
t=j+1[ût − ûave][ût−j − ûave]′ for j ≥ 0,

T−1
∑T

t=j+1[ût+j − ûave][ût − ûave]′ for j < 0,

and MT = bT is the so-called truncation lag. This is a misnomer, as the kernel function
may not have bounded support. Nevertheless, we follow the literature and refer to MT

as the truncation lag.

For the OS HAR variance estimator, we let

Qh (r, s) = K−1
K∑
j=1

φj (r)φj (s)

and h = K, where {φj (·)}Kj=1 are orthonormal basis functions on L2[0, 1] satisfying∫ 1

0
φj (r) dr = 0 for j = 1, ...,K. Here we assume that K is even and focus only on the

Fourier basis functions:

φ2j−1(x) =
√
2 cos(2jπx) and φ2j(x) =

√
2 sin(2jπx) for j = 1, ...,K/2.

In this case, Ω̂ is equal to the average of the first K/2 periodograms multiplied by 2π.
Other basis functions can be used, but the form of the basis functions does not seem to
make a difference.

For both the kernel and OS HAR variance estimators, we parametrize h in such a
way so that h indicates the amount of smoothing. We consider the fixed-smoothing
asymptotics under which T → ∞ for a fixed h. Let

Q∗
h(r, s) = Qh(r, s)−

∫ 1

0

Qh(τ, s)dτ −
∫ 1

0

Qh(r, τ)dτ +

∫ 1

0

∫ 1

0

Qh(τ1, τ2)dτ1dτ2.

It follows from Kiefer and Vogelsang (2005) and Sun (2014a,b) that when h is fixed,

FIV →d F∞(p, h) and tIV →d t∞(p, h),

where

F∞(p, h) = W ′
p (1)C

−1
pp Wp (1) /p, (6)

t∞(p, h) = Wp (1) /
√

Cpp, (7)

Cpp =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dWp(r)dW

′
p(s),

and Wp(r) is the standard p-dimensional Brownian motion process.
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2.2 The kernel case

For the kernel case, the limiting distributions F∞(p, h) and t∞(p, h) are nonstandard.
The critical values, i.e., the quantiles of F∞(p, h) and t∞(p, h), have to be simulated.
This hinders the use of the new approximation in practice. Sun (2014a) establishes
a standard F approximation to the nonstandard distribution F∞(p, h). In particular,
Sun (2014a) shows that the 100(1 − α)% quantile of the distribution F∞(p, h) can be
approximated well by

F1−α
IV := κF1−α

p,K

where F1−α
p,K is the 100 (1− α)% quantile of the standard Fp,K distribution,

K = max

(⌈
1

bc2

⌉
, p

)
− p+ 1 (8)

is the equivalent degrees of freedom (d.e is the ceiling function), and

κ =
exp (b [c1 + (p− 1) c2]) + (1 + b [c1 + (p− 1) c2])

2
(9)

is a correction factor. In the above, c1 =
∫∞
−∞ k(x)dx, c2 =

∫∞
−∞ k2(x)dx. For the

Bartlett kernel, c1 = 1, c2 = 2/3; For the Parzen kernel, c1 = 3/4, c2 = 0.539285; For
the quadratic spectral (QS) kernel, c1 = 1.25, c2 = 1.

For the fixed-smoothing test based on the t statistic, we can use the approximate
critical value

t1−α
IV =


√

κF1−2α
1,K , α < 0.5,

−
√
κF2α−1

1,K , α ≥ 0.5.
(10)

To see this, consider the case α < 0.5. Since t∞(p, h) is symmetric, its 1 − α quantile
t1−α
∞ is positive. By definition,

1− α = P
(
t∞(p, h) < t1−α

∞
)

= 1− P
(
t∞(p, h) ≥ t1−α

∞
)
= 1− 1

2
P
(
|t∞(p, h)|2 ≥

∣∣t1−α
∞

∣∣2)
= 1− 1

2
P
(
F∞(1, h) ≥

∣∣t1−α
∞

∣∣2) =
1

2
+

1

2
P
(
F∞(1, h) <

∣∣t1−α
∞

∣∣2) .

So P (F∞(1, h) <
∣∣t1−α
∞

∣∣2) = 1−2α, which implies that
∣∣t1−α
∞

∣∣2 is the (1− 2α) quantile of

the distribution F∞(1, h). Therefore, we can take t1−α
IV =

√
κF1−2α

1,K as the approximate

critical value. The result for α ≥ 0.5 can be similarly proved. For a two-sided t test, we
use the (1 − α/2) quantile of t∞(p, h) as the critical value for a test with nominal size

α. This quantile can be approximated by
√

κF1−α
1,K .

The test based on the scaled F critical value κFα
p,K is an approximate fixed-smoothing

test. Sun (2014a) establishes asymptotic approximations to the type I and type II errors
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of this test. Given the approximate type I and type II errors eI (b) and eII (b) , we can
select the bandwidth parameter b to solve the constrained minimization problem:

bopt = argmin eII(b), s.t. eI(b) ≤ τα,

for some tolerance parameter τ > 1. For our new commands, we take τ = 1.15.

Consider the local alternative H1 (δ) : Rθ0 = r + Ω1/2c̃/
√
T for c̃ uniformly dis-

tributed on Sp

(
δ2
)
= {c̃ ∈ Rp : ‖c̃‖2 = δ2}. Let G′

p,δ2 (·) be the pdf of the noncentral

χ2
p

(
δ2
)
distribution with degrees of freedom p and noncentrality parameter δ2. It is

shown that the test-optimal smoothing parameter b for testing H0 against the alterna-
tive H1 (δ) at the significance level α is given by

bopt =



[
2qG′

p,δ2

(
X 1−α

p

)∣∣B̄∣∣
δ2G′

(p+2),δ2

(
X 1−α

p

)
c2

] 1
q+1

T− q
q+1 , B̄ > 0,[

G′
p

(
X 1−α

p

)
X 1−α

p

∣∣B̄∣∣
(τ−1)α

]1/q
1
T , B̄ ≤ 0,

(11)

where X 1−α
p is the (1− α) quantile of the chi-squared distribution χ2

p with p degrees of

freedom, δ2 is chosen according to Pr
(
χp

(
δ2
)
> X 1−α

p

)
= 75%,

B̄ = tr
{
BΩ−1

}
/p, B = −ρq

∞∑
h=−∞

|h|q Eutu
′
t−h,

q is the order of the kernel used, and ρq is the Parzen characteristic exponent of the
kernel. For the Bartlett kernel q = 1, ρq = 1; For the Parzen kernel q = 2, ρq = 6; For
the QS kernel q = 2, ρq = 1.421223.

For a one-sided fixed-smoothing t test, the testing-optimal b is not available from
the literature. We suggest using the rule in (11).

The parameter B̄ can be estimated by a standard VAR(1) plug-in procedure. This
is what we opt for in the new commands. Plugging the estimate of B̄ into (11) yields

b̂temp. The data-driven choice of bopt is then given by b̂opt = min(b̂temp, 0.5). We do not
use a b larger than 0.5 in order to avoid large power loss.

2.3 The orthonormal series case

For the orthonormal series case, Sun (2013) shows that under the fixed-smoothing
asymptotics,

FIV
d→ K

K − p+ 1
· Fp,K−p+1, (12)

where Fp,K−p+1 ∼ Fp,K−p+1 and Fp,K−p+1 is the F distribution with degrees of freedom
(p,K − p+ 1) . This is a very convenient result, as the fixed-smoothing asymptotic



8 Heteroscedasticity and Autocorrelation Robust

approximation is a standard distribution. There is no need to simulate critical values.
Let F1−α

p,K−p+1 be the 1− α quantile of the F distribution Fp,K−p+1, then we can use

F1−α
IV =

K

K − p+ 1
F1−α

p,K−p+1

as the critical value to perform the fixed-smoothing Wald test when an OS HAR variance
estimator is used.

Similarly,

tIV
d→ tK ,

where tK is the t distribution with degrees of freedom K. We can therefore use the
quantile from the tK distribution to carry out the fixed-smoothing t test.

The testing-optimal choice of K in the OS case is similar to the testing-optimal
choice of b is the kernel case. We can first compute the optimal b∗ for the following
configuration: q = 2, c2 = 1, ρd = π2/6. These are characteristic values associated with
the Daniell kernel, the equivalent kernel behind the OS HAR variance estimator using

Fourier bases. We then take K =
⌈

1
bc2

⌉
. More specifically, we employ the following K

value:

Kopt =


[
δ2G′

(p+2),δ2

(
X 1−α

p

)
4G′

p,δ2

(
X 1−α

p

)∣∣B̄∣∣
] 1

3

T
2
3 , if B̄ > 0[

(τ−1)α

G′
p

(
X 1−α

p

)
X 1−α

p

∣∣B̄∣∣
]1/2

T, if B̄ ≤ 0.

As before, the parameter B̄ is estimated by a standard VAR(1) plug-in procedure.
Plugging the estimate of B̄ into Kopt yields K̂temp. We truncate K̂temp to be between
p+ 4 and T . That is, we take

K̃temp =


p+ 4, if K̂temp ≤ p+ 4

K̂temp, if K̂temp ∈ (p+ 4, T ]

T, if K̂temp > T

.

Imposing the lower bound p+4 ensures that the variance of the approximating distribu-
tion Fp,K−p+1 is finite and that power loss is not very large. Finally, we round K̃temp to

the greatest even number less than K̃temp. We take this greatest even number, denoted

by K̂opt, to be our data-driven and testing-optimal choice for K.

2.4 The test procedure

The fixed-smoothing Wald test involves the following steps:

1. Specify the null hypothesis of interest H0 : Rθ0 = r and the significance level α.
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2. Estimate the model using the estimator in (1). Construct

ût = R(G′
TW

−1
0T GT )

−1G′
TW

−1
0T Z ′

t(Yt −Xtθ̂IV ).

3. Fit a VAR(1) model into {ût} and obtain a plug-in estimator B̄est. Compute b̂opt

or K̂opt as described in the previous two subsections.

4. For the kernel case, plug b̂
opt

into (8) and (9) to obtain K̂ and κ̂ and compute

F̂1−α
IV = κ̂F1−α

p,K̂
. For the OS case, compute

F̂1−α
IV =

K̂opt

K̂opt − p+ 1
F1−α

p,K̂opt−p+1
.

5. Calculate

Ω̂ =
1

T

T∑
s=1

T∑
t=1

k

(
t− s

b̂T

)
(ût − ûave) (ûs − ûave)

′
, (13)

Ω̂ =
1

K̂opt

K̂opt∑
j=1

[
1√
T

T∑
t=1

φj

(
t

T

)
ût

][
1√
T

T∑
s=1

φj

( s

T

)
ûs

]′

, (14)

respectively for the kernel case and the OS case.

6. Construct the test statistic:

FIV =
[√

T (Rθ̂IV − r)
]′
Ω̂−1

[√
T (Rθ̂IV − r)

]
/p. (15)

Reject the null if FIV > F̂1−α
IV .

We can follow similar steps to perform the fixed-smoothing t test.

To construct two-sided confidence intervals for any individual slope coefficient, we
can choose the restriction matrix R to be the selection vector. For example, to select
the second element of θ, we can let R = (0, 1, 0, ..., 0). The 100 (1− α)% confidence
interval for Rθ0 is [

Rθ̂IV − t
1−α/2
IV ×

√
Ω̂R, Rθ̂IV + t

1−α/2
IV ×

√
Ω̂R

]
where t

1−α/2
IV is defined in (10). Here we have added a subscript ‘R’ to Ω̂ to indicate its

dependence on the restriction vector R.
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3 Fixed-smoothing Asymptotics: the Two-step GMM

When any element of Xt is endogenous and there are more instruments than the number
of regressors, we have an overidentified model. In this case, for efficiency considerations,
we may employ a two-step GMM estimator and conduct inferences based on this esti-
mator.

The two-step GMM estimator is given by

θ̂GMM = argmin
θ∈Θ

gT (θ)
′
[
WT (θ̂IV )

]−1

gT (θ)

= {S′
ZX [WT (θ̂IV )]

−1SZX}−1
[
S′
ZX [WT (θ̂IV )]

−1SZY

]
(16)

where

WT (θ) =
1

T

T∑
s=1

T∑
t=1

Qh(
s

T
,
t

T
) (vt (θ)− v̄ (θ)) (vs (θ)− v̄ (θ))

′
, (17)

vt (θ) = Z ′
t (Yt −Xtθ) , and v̄ (θ) =

∑T
t=1 vt (θ) /T.

Note that WT (θ̂IV ) is an estimator of the long run variance of moment process
{vt (θ0)}. It takes the same form as Ω̂ given in (4) but is based on the (estimated)

moment process {vt(θ̂IV )} instead of the (estimated) transformed moment process {ût} .

The Wald statistic is given by

FGMM =
√
T (Rθ̂GMM − r)

′ {
R[G′

TW
−1
T (θ̂GMM )GT ]

−1R′
}−1 √

T (Rθ̂GMM − r)/p,

(18)
and the t statistic is given by

tGMM =

√
T (Rθ̂GMM − r)√

R[G′
TW

−1
T (θ̂GMM )GT ]−1R′

.

Let Bp(r), Bd−p(r) and Bq(r) be independent standard Brownian motion processes
of dimensions p, d− p, and q, respectively. Denote

Cpp =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBp(r)dBp(s)

′, Cpq =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBp(r)dBq(s)

′ (19)

Cqq =

∫ 1

0

∫ 1

0

Q∗
h(r, s)dBq(r)dBq(s)

′, Dpp = Cpp − CpqC
−1
qq C ′

pq.

Under some conditions, Sun (2014b) shows that under the fixed-smoothing asymptotics

FGMM →d
[
Bp (1)− CpqC

−1
qq Bq (1)

]′
D−1

pp

[
Bp (1)− CpqC

−1
qq Bq (1)

]
/p,

tGMM →d

[
Bp (1)− CpqC

−1
qq Bq (1)

]√
Dpp

.
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The fixed-smoothing asymptotic distributions are nonstandard in both kernel and
OS cases. For the OS case, Hwang and Sun (2017) shows that a modified Wald statis-
tic is asymptotically F distributed and that a modified t statistic is asymptotically t
distributed. More specifically, the modified Wald and t statistics are given by

F c
GMM =

K − p− q + 1

K

FGMM

1 + 1
K JT

tcGMM =

√
K − q

K

tGMM√
1 + 1

K JT

where

JT = TgT (θ̂GMM )
′ [
WT (θ̂GMM )

]−1

gT (θ̂GMM )

is the usual J statistic for testing overidentification restrictions. It is shown that

F c
GMM →d Fp,K−p−q+1 and tcGMM →d tK−q.

So, we can employ [
1 +

1

K
JT

] [
K

K − p− q + 1

]
F1−α

p,K−p−q+1

as the critical value for the original Wald statistic FGMM and√
1 +

1

K
JT

√
K

K − q
t
1−α

2

K−q

as the critical value for the t statistic |tGMM | . As in the case with the first-step GMM,
as long as the OS HAR variance estimator is used, there is no need to simulate any
critical value.

We note that Sun and Kim (2012) establish that the modified J statistic is asymp-
totically F distribution:

Jc
T :=

K − q + 1

qK
JT →d F (q,K − q + 1) .

For the two-step GMM with an estimated weighting matrix, a testing-optimal choice
of K has not been established in the literature, but see Sun and Phillips (2009) for a sug-
gestion for the smoothing parameter choice that is oriented towards interval estimation.
For practical implementations, Hwang and Sun (2017) suggest selecting K based on
the conventional AMSE criterion implemented by using the VAR(1) plug-in procedure.
More specifically,

K̂tmp =


 tr(Im2 +Kmm)(Ω̂v ⊗ Ω̂v)

4vec
(
B̂v

)′
vec

(
B̂v

)


1/5

T 4/5

 ,
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where Kmm is the m2×m2 commutation matrix and Im2 is the m2×m2 identity matrix.
In the above, B̂v is the plug-in estimator of

Bv = −π2

6

∞∑
j=−∞

j2Evtv
′
t−j

and Ω̂v is the plug-in estimator of the LRV of {vt} . The formulae for Ω̂v and B̂v

in terms of the estimated VAR(1) matrix and the error variance are available from
Andrews (1991). We then obtain K̃

tmp
by truncating K̂tmp to be between p+ q+4 and

T . Finally, we round K̃
tmp

to K̂mse, the greatest even number less than K̃
tmp

and use

K̂mse throughout the two-step procedure.

To conduct the two-step fixed-smoothing Wald test, we follow the steps below:

1. Specify the null hypothesis of interest H0 : Rθ0 = r and the significance level α.

2. Estimate θ0 by the IV estimator and construct v̂t = Z ′
t(Yt −Xtθ̂IV ).

3. Fit a VAR (1) model into {v̂t} and compute the data-driven choice K̂mse.

4. On the basis of K̂mse, construct the weighting matrix ŴT = WT (θ̂IV ) in (17).

5. Estimate θ0 by

θ̂GMM =
[
S′
ZXŴ−1

T SZX

]−1 [
S′
ZXŴ−1

T SZY

]
. (20)

6. Calculate the test statistic FGMM defined in (18) and the critical value

F̂1−α
GMM =

[
1 +

1

K̂mse

JT (θ̂GMM )

] [
K̂mse

K̂mse − p− q + 1

]
F1−α

p,K̂mse−p−q+1

7. If FGMM > F̂1−α
GMM , then we reject the null. Otherwise, we fail to reject the null.

With some simple modifications, the above steps can be followed to perform the
fixed-smoothing t test.

Following the same procedure as in the IV case, we can employ the two-step GMM
estimator and construct the associated 100 (1− α)% confidence interval for Rθ0 as

Rθ̂GMM ± t
1−α/2
GMM ×

√
R[G′

TW
−1
T (θ̂GMM )GT ]R′.

where

t
1−α/2
GMM =

√
1 +

1

K
JT

√
K

K − q
t
1−α/2
K−q
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4 The har command

4.1 Stata syntax

har depvar [varlist1] (varlist2 = instlist)
[
if

] [
in

]
kernel(string)

[
, noconstant

level(#)
]

4.2 Options

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

kernel(string) set the type of kernel. For the Bartlett kernel, any of the four usages
— kernel(bartlett), kernel(BARTLETT), kernel(B), or kernel (b) — produces the same
results. Similarly, for the Parzen, QS, and orthonormal series LRV estimators, we can
use any of the respective choices: (PARZEN, parzen, P, p), (QUADRATIC, quadratic,
Q, q), and (ORTHOSERIES, orthoseries, O, o). kernel() is required.

noconstant suppresses the constant term.

You must tsset your data before using har, see [TS] tsset.

Time series operators are allowed.

4.3 Saved results

The har uses ivregress to get the estimates of the model parameters. In addition to
the standard stored results from ivregress, har also stores the following results in e():
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Scalars
e(N) number of observations ∗e(sF) adjusted F statistic
∗e(ssdf) second degrees of freedom ∗e(kopt) data-driven optimal K of or-

thonormal bases
?e(kF) adjusted F statistic ?e(ksdf) second degrees of freedom
?e(lag) data-driven truncation lag ∗? e(fdf) first degrees of freedom

Macros
e(cmd) har e(cmdline) command as typed
e(carg) nocons or “ ” if specified e(varline) variable line as typed
e(depvar) name of dependent variable e(title) title in the estimation output
e(kerneltype) kernel in the estimation e(vcetype) title used to label Std. Err.

Matrices
e(b) coefficient vector ∗e(sstderr) adjusted std error for each indi-

vidual coefficient
∗e(sdf) degrees of freedom of t statistic ∗e(st) the t statistic
∗e(sbetahat) the IV coefficient vector ?e(kbetahat) the IV coefficient vector
?e(kstderr) adjusted std error for each indi-

vidual coefficient
?e(kdf) degrees of freedom of the t statis-

tic
?e(kt) t statistic

Functions
e(sample) marks the estimation sample

note: ∗ for orthonormal series; ? for Bartlett, Parzen, QS kernels

We use the time series data downloaded from Stata’s official website http://www.stata-
press.com/data/r14/idle2.dta to illustrate the use of har. We illustrate har by analyzing
the influence of idle and wio on usr. The data consists of time series of 30 observations
covering the periods from 08:20 to 18:00. We have to ‘tsset’ the dataset before using
the command har.

Case 1: nonparametric Bartlett kernel approach, default confidence level 95%, testing-
optimal automatic bandwidth selection.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett)

Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 17) = 47.66
Data-driven optimal lag: 2 Prob > F = 0.0000

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529
wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646

The header consists of the kernel type, the data-driven testing-optimal truncation lag,
and the F statistic for the Wald test. The column title of the matrix reports coeffi-
cients, HAR standard errors, t statistics, the equivalent degrees of freedom, p-values,
and confidence intervals. Each covariate is associated with its own asymptotic t distri-
bution. This is different from the regular Stata commands regress and newey where
a single standard normal distribution is used. The reason is that the testing-optimal
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smoothing parameter b depends on the null restriction vector R. Each model parameter
corresponds to a different vector R and hence a different data-driven b and a different
t approximation.

Case 2: nonparametric Bartlett kernel approach, confidence level 99%, testing-
optimal automatic bandwidth selection, noconstant.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett) l(99) nocons

Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 3) = 8.88
Data-driven optimal lag: 13 Prob > F = 0.0549

HAR
usr Coef. Std.Err. t df P>|t| [99% Conf. Interval]

idle .0186886 .0101968 1.83 5 0.126 -.0224265 .0598037
wio .2759991 .0954198 2.89 5 0.034 -.1087473 .6607454

Case 3: nonparametric Parzen kernel approach, confidence level 95%, testing-optimal
automatic bandwidth selection.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(parzen)

Regression with HAR standard errors Number of obs = 30
Kernel: Parzen F( 2, 4) = 50.87
Data-driven optimal lag: 10 Prob > F = 0.0014

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .071317 -9.35 15 0.000 -.8191065 -.5150892
wio -.7792461 .1143269 -6.82 12 0.000 -1.028343 -.5301492

_cons 66.21805 6.922399 9.57 14 0.000 51.37099 81.06512

Case 4: nonparametric Quadratic Spectral kernel approach, confidence level 95%,
testing-optimal automatic bandwidth selection.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(quadratic)

Regression with HAR standard errors Number of obs = 30
Kernel: Quadratic Spectral F( 2, 4) = 46.84
Data-driven optimal lag: 5 Prob > F = 0.0017

HAR
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usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0697384 -9.57 16 0.000 -.8149366 -.5192591
wio -.7792461 .1131035 -6.89 13 0.000 -1.023591 -.5349009

_cons 66.21805 6.834698 9.69 15 0.000 51.65024 80.78587

Case 5: nonparametric orthonormal series approach, confidence level 95%, testing-
optimal automatic bandwidth selection.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(orthoseries)

Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 43.17
Data-driven optimal K: 6 Prob > F = 0.0007

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0706388 -9.44 14 0.000 -.8186029 -.5155927
wio -.7792461 .1122118 -6.94 12 0.000 -1.023735 -.5347576

_cons 66.21805 6.838414 9.68 14 0.000 51.55111 80.88499

In this case, the header reports data-driven testing-optimal K. This is different from the
nonparametric kernel approach.

5 The gmmhar command

5.1 Stata syntax

gmmhar depvar [varlist1] (varlist2 = instlist)
[
if

] [
in

] [
, noconstant

level(#)
]

5.2 Options

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95).

noconstant suppress constant term.

You must tsset your data before using gmmhar, see [TS] tsset.

Time-series operators are allowed.
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5.3 Saved results

The gmmhar uses ivregress to get the colname in e(b) for the output table in gmmhar tab.ado.
In addition to the standard stored results from ivregress, gmmhar also stores the fol-
lowing results in e():

Scalars
e(N) number of observations e(sF) adjusted F statistic
e(sfdf) first degrees of freedom e(ssdf) second degrees of freedom
e(kopt) data-driven optimal K for the

OS variance estimator
e(J) J statistic for testing the over

identification

Macros
e(cmd) gmmhar e(cmdline) command as typed
e(carg) nocons or “ ” if specified e(varline) variable line as typed
e(vcetype) orthonormal series e(title) title in estimation output
e(depvar) name of the dependent variable e(exog) exogenous variables
e(endog) endogenous variables e(inst) instrument variables

Matrices
e(betahat) two-step gmm coefficient vector e(sstderr) adjusted std error for each indi-

vidual coefficient
e(sdf) degrees of freedom of the t statis-

tic
e(st) t statistic

Functions
e(sample) marks the estimation sample

5.4 Examples

To illustrate the use of gmmhar in the two-step GMM framework, we estimate a quarterly
time-series model relating the change in the U.S. inflation rate (D.inf) to the unemploy-
ment rate (UR) for 1959q1-2000q4. As instruments, we use the second lag of quarterly
GDP growth, the lagged values of the Treasury bill rate, the trade-weighted exchange
rate, and the Treasury medium-term bond rate. We fit our model using the two-step
efficient GMM method.

Case 6: nonparametric orthonormal series approach, confidence level 95%, AMSE
automatic bandwidth selection.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)

Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 46 F( 1, 43) = 2.05

Prob > F = 0.1597

HAR
D.inf Coef. std.Err. t df P>|t| [95% Conf. Interval]

UR -.0971458 .067901 -1.43 43 0.160 -.2340812 .0397895
_cons .5631061 .3936908 1.43 43 0.160 -.2308471 1.357059



18 Heteroscedasticity and Autocorrelation Robust

HAR J statistic = .92614349
Reference Dist for the J test: F( 3, 44)
P-value of the J test = 0.4361
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

In this case, the header reports the data-driven K value by the AMSE method. In
the above table, the negative coefficient on the unemployment rate is consistent with
the basic macroeconomic theory: lowering unemployment below the natural rate will
cause an acceleration of price inflation. The fixed-smoothing J test is now far from
rejecting the null, giving us greater confidence that our instrument set is appropriate.

Case 7: nonparametric orthonormal series approach, noconstant, confidence level
99%, AMSE automatic bandwidth selection.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON),nocons l(99)

Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 40 F( 1, 37) = 0.01

Prob > F = 0.9119

HAR
D.inf Coef. std.Err. t df P>|t| [99% Conf. Interval]

UR .0014583 .0130865 0.11 37 0.912 -.0340768 .0369934

HAR J statistic = .95768181
Reference Dist for the J test: F( 3, 38)
P-value of the J test = 0.4226
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

6 Monte Carlo Evidence

In this section, we use the commands har and gmmhar to evaluate the coverage accuracy
of the 95% confidence intervals based on the fixed-smoothing asymptotic approxima-
tions. If the coverage rate, i.e., the percentage of confidence intervals in repeated exper-
iments that contain the true value, is close to 95%, the nominal coverage probability,
then the confidence intervals so constructed have accurate coverage, and the asymptotic
approximations are reliable in finite samples. For comparison, we include the results
from the commands newey and ivregress in our report.
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6.1 Specifications

DGP for har

We consider the data generating process

yt = x0,tγ + x1,tβ1 + x2,tβ2 + εt, (21)

where x0,t ≡ 1 and x1,t, x2,t and εt follow independent AR(1) processes:

xj,t = ρxj,t−1 +
√

1− ρ2ej,t, j = 1, 2; εt = ρεt−1 +
√
1− ρ2e0,t,

or MA(1) processes:

xj,t = ρej,t−1 +
√
1− ρ2ej,t, j = 1, 2; εt = ρet−1,0 +

√
1− ρ2et,0.

The error term ej,t ∼ iidN(0, 1) across j and t. In the AR case, the processes are
initialized at zero. We consider ρ = 0.25, 0.5, 0.75.

DGP for gmmhar

We follow Hwang and Sun (2017) and consider a linear model of the form:

yt = x0,tγ + x1,tβ1 + x2,tβ2 + εy,t, (22)

where x0,t ≡ 1 and x1,t, x2,t are scalar endogenous regressors. The unknown parameter
vector is θ = (γ, β1, β2)

′ ∈ R3. We have m instruments z0,t, z1,t, z2,t, · · · , zm−1,t with
z0,t ≡ 1. The reduced form equations for x1,t and x2,t are given by

xj,t = zj,t +

m−1∑
i=d

zi,t + εxj ,t, j = 1, 2.

We consider two different experiment designs: the autoregressive (AR) design and
the centered moving average (CMA) design. In the AR design, each zi,t follows an
AR(1) process of the form

zi,t = ρzi,t−1 +
√
1− ρ2ezi,t for i = 1, 2, ...,m

where ezi,t =
(
eizt + e0zt

)
/
√
2 and et = [e0zt, e

1
zt, . . . , e

m−1
zt ]′ ∼ iidN(0, Im). By construc-

tion, each non-constant zit has unit variance and the correlation coefficient between
the non-constant zi,t and zj,t for i 6= j is 0.5. The GDP for εt = (εy,t, εx1,t, εx2,t) is
the same as that for (z1,t, · · · , zm−1,t) except for the dimensional difference. We take
ρ = −0.5, 0.5, 0.8.

In the CMA design, εy,t is a scaled and centered moving average of an iid sequence

εy,t =
∑j=L

j=−L et+j/
√
2L+ 1, where et ∼ iidN(0, 1) and L is the number of leads and

lags in the average. The instruments are generated according to

zi,t =

et−L+i−1 − (2L+ 1)
−1

L∑
j=−L

et+j

√
(2L+ 1) /2L, i = 1, 2, · · · ,m− 1.
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The error term in the reduced form equation is given by εxj ,t =
(
εy,t + exj ,t

)
/
√
2,

where exj ,t ∼ iidN(0, 1) and is independent of the sequence {et} . We take L = 3. The
number of moment conditions is set to be m = 3, 4, 5 with the corresponding degrees
of overidentification being q = 0, 1, 2. We consider the sample size T = 100 and the
significance level 5%. Throughout we are concerned with testing the slope coefficients
β1 and β2. We employ the HAR variance estimators based on the Bartlett, Parzen, QS
kernels and orthonormal Fourier series. The number of simulation replications is 1000.

In both sets of Monte Carlo experiments, we set γ = 1, β1 = 3, β2 = 2 without loss
of generality.
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Figure 1: Empirical coverage rates of 95% confidence intervals of β1 in model (21): the
y-labels 0.25, 0.5, and 0.75 indicate the AR or MA parameter
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Figure 2: Empirical coverage rates of 95% confidence intervals of β2 in model (21): the
y-labels 0.25, 0.5 and 0.75 denote the AR or MA parameter
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6.2 Results

Figures 1 and 2 report the empirical coverage rates of the 95% confidence intervals for
β1 and β2, respectively. The results are based on the command har applied to the data
generated by the model in (21). It is clear from these two figures that confidence intervals
based on the fixed-smoothing approximations have more accurate coverage than those
based on the normal approximation, which is adopted in the command newey. As ρ
increases, coverage accuracy deteriorates in each case. When ρ is equal to 0.75, the
confidence intervals based on the fixed-smoothing asymptotic approximations are still
reasonably accurate. In contrast, confidence intervals produced by newey undercover
the true value substantially.

Figures 3-6 report the simulation results based on the commands gmmhar and ivregress
gmm for the IV regression. For the ivregress command, the weighting matrix is based
on the option “wmatrix (hac kernel opt (#))”, that is, the weighting matrix is based
on a kernel HAC estimator using the data-driven truncation lag proposed by Newey and
West (1994).
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Figure 3: Empirical coverage rates of 95% confidence intervals of β1 in model (22): the
y-labels −0.5, 0.5 and 0.8 indicate the values of the AR parameter, and the y-sublables
3, 4, and 5 indicate the number of instruments used

Figures 3 and 4 contain the results for the AR design, and Figures 5 and 6 contain
the results for the CMA design. Under both designs, the confidence intervals based the
command gmmhar, which uses the fixed-smoothing t approximations, are much more
accurate than those based on the command ivregress gmm, which uses the normal
approximation. Under both designs, the coverage accuracy of the confidence intervals
produced by ivregress gmm deteriorates quickly as the number of instruments increases.
This is especially true when the Parzen and QS kernels are used. In contrast, the
coverage accuracy of the confidence intervals produced by gmmhar does not appear to
be affected by the number of instruments.
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Figure 4: Empirical coverage rates of 95% confidence intervals of β2 in model (22): the
y-labels −0.5, 0.5 and 0.8 indicate the values of the AR parameter, and the y-sublables
3, 4, and 5 indicate the number of instruments used

7 The hart and gmmhart commands

hart and gmmhart are the post-estimation commands that should be used immediately
after the respective estimation commands har and gmmhar. These two commands
perform the Wald type of tests but employ more accurate fixed-smoothing critical values.
The test statistics are given in (2) and (18), respectively.

7.1 Stata syntax

The syntaxes of hart and gmmhart are as follows:

hart coeflist, kernel(string)
[
, accumulate level(#)

]
syntax 1

hart exp=exp
[
=...

]
, kernel(string)

[
, accumulate level(#)

]
syntax 2

gmmhart coeflist,
[
, accumulate

]
syntax 1

gmmhart exp=exp
[
=...

]
,

[
, accumulate

]
syntax 2

Syntax 1 tests that the listed coefficient are jointly 0;

Syntax 2 tests a single or multiple linear restrictions.

hart implements the test described in Section 2 for testing the null H0 : Rθ0 = r
against the alternative H1 : Rθ0 6= r.

gmmhart implements the test described in Section 3 for the same null and alternative
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Figure 5: Empirical coverage rates of 95% confidence intervals of β1 in model (22): the
y-labels 3, 4, and 5 indicate the number of instruments used.
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Figure 6: Empirical coverage rates of 95% confidence intervals of β2 in model (22): the
y-labels 3, 4, and 5 indicate the number of instruments used.

hypotheses.

The options kernel(string) and level(#) in hart must be consistent with those in
har.

7.2 Options

Three options are available to the hart command.

level(#) sets the confidence level 1 − α (or the significance level α). The default is
level(95), which corresponds to confidence level 95% and significance level 5%.

accumulate tests the hypothesis jointly with previously tested hypotheses.
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kernel(string) sets the type of kernel.

7.3 Saved results

The commands hart and gmmhart store the following in r():

Scalars
∗?r(firdf) the first degrees of freedom ∗?r(secdf) the second degrees of freedom
∗?r(kopt) the datadriven optimal K ?r(lag) the datadriven optimal trunca-

tion lag
∗?r(F) the adjusted F statistic

Matrices
?r(thetaiv) the iv coefficient vector ∗r(thetagmm) the two-step gmm coefficient vec-

tor

? for hart; ∗ for gmmhart.

7.4 Examples

We provide some examples to illustrate the use of hart and gmmhart. We will use the
data in Section 4 for hart and data in Section 5 for gmmhart.

Case 8: We use hart to test different null hypotheses based on the Bartlett kernel.
The first two commands test that the coefficients on idle and wio are jointly zero. These
two commands produce numerically identical results. The last command tests the null
that the coefficient for wio is equal to 1.168 times the coefficient for idle.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(bartlett)

Regression with HAR standard errors Number of obs = 30
Kernel: Bartlett F( 2, 17) = 47.66
Data-driven optimal lag: 2 Prob > F = 0.0000

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0715786 -9.32 22 0.000 -.8155428 -.5186529
wio -.7792461 .11897 -6.55 13 0.000 -1.036265 -.522227

_cons 66.21805 6.984346 9.48 19 0.000 51.59965 80.83646

. hart idle=wio=0, kernel(bartlett)
F( 2, 17) = 47.66

Prob > F = 0.0000

. qui hart idle=0, kernel(bartlett)

. hart idle=wio, kernel(bartlett) acc
F( 2, 17) = 47.66

Prob > F = 0.0000

. hart 1.168*idle=wio, kernel(bartlett)
F( 1, 14) = 0.00
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Prob > F = 0.9989

Case 9: We use hart to test that the coefficients on idle and wio are jointly zero
again, but now we employ the orthonormal series LRV estimator.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(O)

Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 43.17
Data-driven optimal K: 6 Prob > F = 0.0007

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle -.6670978 .0706388 -9.44 14 0.000 -.8186029 -.5155927
wio -.7792461 .1122118 -6.94 12 0.000 -1.023735 -.5347576

_cons 66.21805 6.838414 9.68 14 0.000 51.55111 80.88499

. hart (idle=0) (wio=0), kernel(O)
F( 2, 5) = 43.17

Prob > F = 0.0007

.

Case 10: The case is the same as Case 9, but no constant is included in the har

regression.

. webuse idle2

. tsset time
time variable: time, 1 to 30

delta: 1 unit

. har usr idle wio, kernel(o) nocons

Regression with HAR standard errors Number of obs = 30
Kernel: Orthonormal Series F( 2, 5) = 12.00
Data-driven optimal K: 6 Prob > F = 0.0123

HAR
usr Coef. Std.Err. t df P>|t| [95% Conf. Interval]

idle .0186886 .0084701 2.21 8 0.058 -.0008434 .0382206
wio .2759991 .1206479 2.29 8 0.051 -.0022156 .5542137

. hart idle wio, kernel(o)
F( 2, 5) = 12.00

Prob > F = 0.0123

.

Case 11: We use gmmhart to test three different hypotheses based on the two-step
GMM estimator with the (inverse) weighting matrix estimated by the orthonormal series
approach.
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1. Test that the coefficient on UR is 0;

2. Test that the coefficient on UR is 0 again but with a shorter command;

3. Test that the coefficient on UR is -0.09715.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf =100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp=100 * log( GDP / L4.GDP )
(10 missing values generated)

. gmmhar D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)

Two-step Efficient GMM Estimation Number of obs = 158
Data-driven optimal K: 46 F( 1, 43) = 2.05

Prob > F = 0.1597

HAR
D.inf Coef. std.Err. t df P>|t| [95% Conf. Interval]

UR -.0971458 .067901 -1.43 43 0.160 -.2340812 .0397895
_cons .5631061 .3936908 1.43 43 0.160 -.2308471 1.357059

HAR J statistic = .92614349
Reference Dist for the J test: F( 3, 44)
P-value of the J test = 0.4361
Instrumented: UR
Instruments: L2.ggdp L.TBILL L.ER L.TBON

. gmmhart UR=0
F( 1, 43) = 2.05

Prob > F = 0.1597

. gmmhart UR
F( 1, 43) = 2.05

Prob > F = 0.1597

. gmmhart UR=-0.09715
F( 1, 43) = 0.00

Prob > F = 1.0000

8 Conclusion

In this article, we present the new estimation command har and the post-estimation
test command hart in Stata. These commands extend the existing commands for lin-
ear regression models with time series data. We use the more accurate fixed-smoothing
asymptotic approximations to construct the confidence intervals and conduct various
tests. For the OLS and IV regressions, there are two main differences between the
tests based on the new commands har/hart and the tests based on the Stata com-
mands newey/test. First, the bandwidth parameter is selected in different ways. While
newey/test use a single data-driven smoothing parameter for all tests, har/hart use
different smoothing parameters for different tests. The smoothing parameter behind
har/hart is tailored towards each test or parameter under consideration. Second, for
the case with a single restriction, newey uses the standard normal approximation while
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har uses a t approximation. For joint tests with more than one restrictions, newey/test
use a chi-squared approximation while har/hart use an F approximation.

We also introduce another new pair of Stata commands gmmhar/gmmhart to be
used in an over-identified linear IV regression. In this case, the efficient estimator
minimizes a GMM criterion function that uses a long run variance estimator as the
weighting matrix. So the underlying nonparametric LRV estimator plays two different
roles: it is a part of the GMM criterion function and a part of the asymptotic variance
estimator. Recent research has established more accurate distributional approximations
that account for the estimation uncertainty in the LRV estimator in both occurrences.
Given that the new approximations are less convenient when a kernel LRV estimator is
used, we recommend using an OS LRV estimator, in which case the modified F and t
statistics converge to standard F and t distributions, respectively.

The Monte Carlo evidence shows that the fixed-smoothing confidence intervals are
more accurate than the conventional confidence intervals. The simulation results pro-
duced by the commands har and gmmhar are consistent with those produced by the
authors using Matlab.

Both estimation commands har and gmmhar and the corresponding post-estimation
test commands are designed for linear OLS or IV regressions. While these two regres-
sions are most popular in practice, it is worthwhile to update the commands in the
future so that they can accommodate general GMM models with nonlinear moment
conditions.
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