
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Serial Dependence Study in Medical Image Perception via Generative Models

Permalink
https://escholarship.org/uc/item/0bb8x3hq

Author
Ren, Zhihang

Publication Date
2024
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bb8x3hq
https://escholarship.org
http://www.cdlib.org/


Serial Dependence Study in Medical Image Perception via Generative Models

By

Zhihang Ren

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Vision Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Whitney, Co-chair
Professor Stella X. Yu, Co-chair

Professor Bruno Olshausen
Professor Meng Lin

Spring 2024



Serial Dependence Study in Medical Image Perception via Generative Models

Copyright 2024
by

Zhihang Ren



1

Abstract

Serial Dependence Study in Medical Image Perception via Generative Models

by

Zhihang Ren

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor David Whitney, Co-chair

Professor Stella X. Yu, Co-chair

Medical imaging has been critically important for the health and well-being of millions of
patients. Although deep learning has been widely studied in the medical imaging area and
the performance of deep learning has exceeded human performance in certain medical diag-
nostic tasks, detecting and diagnosing lesions still depends on the visual system of human
observers (radiologists), who completed years of training to scrutinize anomalies. Routinely,
radiologists sequentially read batches of medical images one after the other. A basic un-
derlying assumption of radiologists’ precise diagnosis is that their perceptions and decisions
on a current medical image are completely independent of the previous reading history of
medical images. However, recent research proposed that the human visual system has visual
serial dependencies at many levels. Visual serial dependence means that what was seen in
the past influences (and captures) what is seen and reported at this moment.

In this dissertation, we first show that visual serial dependence has a disruptive effect on
radiological searches that impairs the accurate detection and recognition of tumors or other
structures via naive artificial stimuli. However, the naive artificial stimuli have been noted
by both untrained observers and expert radiologists to be less authentic, which can not help
to reveal the real scenarios of medical image perception. To solve this issue, we propose and
build a generative tool via generative adversarial networks (GANs) to generate authentic
medical images, replacing the simple stimuli in future experiments. Using the authentic
medical images from the GenAI medical image generation tool, we find that the perception
of the current simulated medical image was biased towards the previously seen medical
images, which strengthens the evidence of the existence of the visual serial dependence
effect in medical image perception. Finally, we collaboratively collect real diagnostic data
with a data annotation company. Through meticulous data analysis, we find significant
serial dependence effects in perceptual discrimination judgments, which negatively impacted
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performance measures, including sensitivity, specificity, and error rates. These findings help
understand one potential source of systematic bias and errors in medical image perception
tasks and hint at useful approaches that could alleviate the errors due to serial dependence.
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2.1 Stimuli and design of the Experiments 1 and 2. A. We created three objects with
random shapes (prototypes A/B/C, shown in a bigger size) and generated 48
morph shapes in between each pair (147 shapes in total). We used these shapes
as simulated lesions during radiological screening. B. Observers were presented
with a random shape (simulated lesion) hidden in a mammogram section, followed
by a noise mask. Radiologists were then asked to adjust the shape to match the
simulated lesion they previously saw, and pressed spacebar to confirm. During
the inter-trial-interval, a red fixation dot appeared in the center. The size of
the shape adjustment is identical to the size of the simulated lesion, but it was
enlarged for illustrative purposes. After a 250 ms inter-trial interval, the next
trial started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Continuous Report Discrimination index (C.R.D). A. For each observer, we plot-
ted a frequency histogram of the adjustment errors and fitted a Von Mises to
quantify adjustment performance. B. We then converted the von Mises fit into a
Cumulative Distribution Function. Continuous Report Discrimination index was
calculated by taking the half difference between 25 and 75th percentile in terms
of adjustment error morph units. C. Each dot shows CRD index for individual
observers in the two groups. Bars indicate average in Experiment 1 and 2, and
error bars indicate standard error . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 (See caption on next page.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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2.3 (See figure on previous page.) Serial dependence in the perception of simulated
lesions by expert radiologists and untrained observers. A, B. In units of shape
morph steps, the x-axis is the shortest distance along the morph wheel between
the current and one-back simulated lesion, and the y-axis is the shortest distance
along the morph wheel between the selected match shape and current simulated
lesion. Positive x-axis values indicate that the one-back simulated lesion was
clockwise on the shape morph wheel relative to the current simulated lesion, and
positive y-axis values indicate that the current adjusted shape was also clockwise
relative to the current simulated lesion. The average of the running averages
across observers (blue line) reveals a clear trend in the data, which followed
a derivative-of-von-Mises shape (model fit depicted as black solid line; fit on
average of running averages). Light-blue shaded error bars indicate standard
error across observers. Lesion perception was attracted toward the morph seen
on the previous trial. Importantly, it was tuned for the similarity between the
previous and current morph (feature tuning). C, D. The derivative-of-von-Mises
was converted into its source von Mises function (y-axis), and the relative morph
difference was plotted in terms of CRD units (x-axis). Violet-shaded error bars
indicate 95% confidence interval. The curve indicates the proportion of change in
response predicted by the change in the sequential stimulus. E, F. Bootstrapped
half amplitudes of the derivative of von Mises fit for 1, 2, and 3 trials back. Half
amplitude for 1-forward is shown as a comparison (grey bars). Each filled dot
represents the bootstrapped half amplitude (morph units) for a single observer.
Bars indicate the group bootstrap and error bars are bootstrapped 95% confidence
intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Serial dependence effect size estimation. A, B. Blue lines indicate the average of
the running averages across observers (same data as Fig. 2.2). Light-blue shaded
error bars indicate standard error across observers. We fitted a linear regression
on the response error as a function of the relative morph difference from −17
to +17 morph units (model fit depicted as green dashed line; fit on average of
running averages). Dark green shaded areas indicate the morph relative difference
considered in the regression analysis. C, D. Bootstrapped regression slopes for
1, 2, and 3 trials back. Each filled dot represents the regression slope for a single
observer. Bars indicate the group bootstrap slope and error bars are bootstrapped
95% confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Spatial tuning of serial dependence. A refers to Experiment 1, whereasB refers to
Experiment 2. Each red dot refers to a different relative angular distance between
current lesion and lesion in the 1-back trial, super-subject bootstrapped mean.
For example, a bin distance 0◦ indicates that current and previous simulated
tumor presented at the same location (30◦ of angular distance, for example).
Error bars are bootstrapped 95% confidence intervals. Dashed line indicates half-
amplitude zero (no bias) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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3.1 Pipeline. Controllable medical image generation using the proposed GANmodel.
(a) Medical image generation: novel and authentic medical images can be gener-
ated from random latent codes z. (b) Attribute manipulation: desired attributes
can be assembled together to satisfy certain experimental settings. Here, we use
mammogram as an example medical modality. Real mammograms with tumor
were utilized to train the proposed model. Our proposed model can be easily
adapted to other medical modalities, such as MRI, CT, and skin cancer images. 21

3.2 Architecture of proposed method. The architecture contains three sub-
networks, the encoder(E), the generator(G), and the discriminator(D). The train-
ing has two phases. In the first phase, the generator and discriminator will be
trained first without the encoder (E) via adversarial loss Ladversarial. In the sec-
ond phase, the generator (G) will be fixed. The encoder (E) and discriminator
(D) will be trained adversarially via the reconstruction loss Lreconstruction, the per-
ceptual loss Lperceptual, and the adversarial loss Ladversarial. The dashed arrows
indicate how to compute the corresponding loss metrics. . . . . . . . . . . . . . 25

3.3 Attribute manipulation pipeline. First, desired image attributes are com-
bined by merging image patches that contain those attributes. Then, the corre-
sponding latent code is produced by the encoder. The generator reconstructs the
image with desired attributes. At last, the desired image can be obtained after
the final optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 GAN generated results. The generated results for different medical image
modalities. Comparing the real samples to the generated samples, it is clear that
the generator has learned how to imitate tissue texture, tissue distribution, tissue
shapes, and color distribution. Thus, it appears to generate authentic images (see
below for psychophysical results confirming this). . . . . . . . . . . . . . . . . . 28

3.5 Interpolation results. Here, we show a mammogram loop gradually changing
among three anchor images. The mammograms between two of the anchor images
are generated by passing the interpolated codes of those two anchor images to
the trained generator. Any number of interpolated images between any pair of
anchors can be created. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Attribute manipulation results. The desired image attributes are combined
by merging the corresponding image patches (in Column A and B) directly. Then,
the encoder will encode the manipulated image attributes, and the generator
will produce the output correspondingly. After the final optimization, it is clear
that the proposed method can generate the mammograms with the desired lesion
texture and breast shape (Column F), compared to the results from the traditional
image blending method (Column D) and the proposed method without the final
optimization (Column E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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3.7 Human evaluation results. Participant performance is shown in the Receiver
Operating Characteristic (ROC) curves. It is clear that their performance is
near chance level (curves near the diagonal region), indicating that the generated
medical images are authentic. Here, P1 − PN and R1 − RN represent different
untrained observers and experts in corresponding experiments. . . . . . . . . . . 33

3.8 Which image is more similar to the reference? Image 1 Column shows the
distortion by Gaussian blur. Image 2 Column shows the distortions by contrast
distortion, geometric distortion, spatial shifting, and spatial rotation respectively.
The human judgements are marked using green ticks. It is clear that SSIM/PSNR
results disagree with human judgements while perceptual metric agree well with
human judgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Human evaluation results for MRI and Skin Cancer images. Participant
performance is shown in the Receiver Operating Characteristic (ROC) curves. It
is clear that their performance is near chance level (curves near the diagonal re-
gion), indicating that the generated medical images were authentic. Here, P1−PN

represent different untrained observers and experts in corresponding experiments. 41
3.10 Error-Timing Relation. The scatter plot shows the raw data of participants’

error and their decision duration. We fit a linear function to reveal the relation
between them. It is clear that the error and their decision time are not correlated.
The bottom density distribution represents the distribution of participants’ deci-
sion time. The orange line indicates the time point when stimuli disappeared. In
this experiment, 60.0% of the decisions were made before stimuli disappeared. . 42

4.1 Proposed method. We first train StyleGAN [127] on unlabeled data to generate
high quality skin cancer images which are semantically similar to the unlabeled
training dataset. Then, we train a feature encoder via self-supervised learning. At
last, a linear classifier is attached to the feature encoder to test the performance
of skin cancer classification on the scarce labeled data. . . . . . . . . . . . . . . 46

4.2 Proposed Pipeline. (a) Self-supervised learning pipeline: StyleGAN is first trained
using the unlabeled samples and generates authentic skin cancer samples to aug-
ment the original training dataset. Then we use self-supervised learning to train a
feature encoder. We generate augmented views for each sample in the augmented
dataset. The augmented views are treated as positive pairs that are trained to
pull towards each other. The augmented views from other samples form nega-
tive pairs that are pushed away from each other. (b) Classification pipeline: we
leverage the self-supervised trained feature encoder on the skin cancer image clas-
sification with limited labeled data. During training, we attach a fully connected
layer as the classifier. Only the parameters of the classifier are updated. . . . . . 50
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4.3 StyleGAN Architecture. Compared to traditional GAN models, whose genera-
tor directly takes in the latent code only from the input layer, the generator of
StyleGAN first maps the latent space to an intermediate latent space W using
a 8-layer Multilayer Perceptron (MLP). Then it will be merged into each convo-
lutional layer via adaptive instance normalization (AdaIN). Gaussian noise will
be added after each convolution before the activation layer. ”A” represents a
learned affine transform and ”B” represents learned per-channel scaling factors
to the noise input. (Figure is reprinted from [127]) . . . . . . . . . . . . . . . . 51

4.4 Illustration of the operations for SimCLR augmented views. Here, we show all
elementary operations. During training, each augmented view is generated by
randomly combining those operations. In this paper, we generated two augmented
views for self-supervised training. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Training samples extracted from BCN20000 [45]. It is clear that the variety of
the dataset is large. The images have various skin tones, dark corners, hairs,
and color patches, which makes the classification extremely hard without a good
feature encoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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4.7 Uncurated set of novel images produced by StyleGAN on BCN20000[45]. Com-
pared to the images from unlabeled training dataset, the generated samples well
maintained the semantic statistics, such as the skin tone, the dark corner of the
image, and some color patches. The generated skin cancer image resolution is
256× 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.8 Uncurated set of novel images produced by StyleGAN on HAM10000[251]. The
generated skin cancer images are semantically similar to the unlabeled training
samples. It is clear that compared to the images in BCN20000[45], HAM10000[251]
has less diverse image texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 PGGAN and StyleGAN skin cancer image generation quality comparison. It is
clear that overall StyleGAN generated skin cancer images have higher visual qual-
ity compared to those generated by PGGAN. As indicated by the red arrows, the
skin cancer image details, such as hair, lesion texture, surrounding skin texture
and color patches, are maintained sharper and more meaningful in StyleGAN
generated samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Generated samples via GAN. Here, we show a comparison between the real sample
(down-sampled mammograms from DDSM Dataset which are collected from the
hospital) and GAN-generated samples. After training, GAN learns the image
manifold of down-sampled real samples and then samples on the learned manifold
to generate novel simulated samples. Additionally, since the manifold has been
learned, interpolation can be applied to generate quantifiably similar images. The
resolution of the real and generated samples is equated. . . . . . . . . . . . . . . 64



ix

5.2 Comparison between stimuli used in previous experiments and current GAN-
generated stimuli. (A) Stimuli from previous works [171, 174]. A circular contin-
uum of simple shapes is generated first, then each shape is fused onto a mammo-
gram tissue background section to form the experiment stimuli. (B) We randomly
picked three anchor points in the latent space (Image A, B and C shown with solid
dots) and generated 48 interpolated morphs in between each pair (shown with
hollow dots) via GAN (147 morphs in total) to form a circular morph continuum.
In total, 20 circular continuums were generated. Here, we show 1 continuum as
an example. More continuum examples can be found in Figure 5.3. . . . . . . . 65

5.3 Three extra example continua. Each shows a circular morph continuum generated
from different anchor sets. Here, we only show 3 out of 48 interpolations between
anchor points. The actual similarity steps between sequential interpolations are
much closer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Stimuli and experiment design. A) An example circular continuum generated via
GAN. B) Observers were presented with a random morph on a specific morph
continuum, followed by a noise mask. They were then asked to adjust the morph
(the start point is randomly picked along the same morph continuum.) to match
the target morph they previously saw, and pressed space bar to confirm. During
the inter-trial interval, a black fixation dot appeared in the center. After a 250
ms inter-trial interval, the next trial started. . . . . . . . . . . . . . . . . . . . . 68

5.5 Derivative-of-von Mises curve fit for a representative continuum (one of the twenty
different morph continuums. In units of shape morph steps, the x-axis is the
shortest distance along the morph continuum between the current and one-back
simulated lesion, and the y-axis is the shortest distance along the morph contin-
uum between the selected match shape and current simulated lesion. Positive x
axis values indicate that the one-back simulated lesion was clockwise on the shape
morph continuum relative to the current simulated lesion, and positive y axis val-
ues indicate that the current adjusted shape was also clockwise relative to the
current simulated lesion. The average of the running averages across observers
(blue line) reveals a clear trend in the data, which followed a derivative-of-von-
Mises shape (model fit depicted as black solid line; fit on average of running
averages). Light-blue shaded error bars indicate standard error across observers.
We operationalized the strength of pull towards the previous observed stimuli as
the half amplitude of the derivate-of-von-Mises curve, as noted in red. . . . . . . 70



x

5.6 A) Bootstrapped half amplitudes of derivative of von Mises fit for 1, 2, and 3 trials
back. Half amplitude for 1-forward is shown as a comparison (grey bars). Each
filled dot represents the bootstrapped half amplitude for a single circular morph
continuum. Bars indicate the group bootstrap and error bars are bootstrapped
95% confidence intervals. B) Classification error analysis. Stimuli on the circular
continuum are categorized into 3 types according to the nearest anchor images.
Classification errors are categorized based on distance to the three anchors. Pro-
SD means the classification error on the current trial is attracted towards the
previous stimuli, while anti-SD means the current classification error is repelled
from (opposite) the previous stimulus. The differences in these two types of error
are computed for 1, 2, 3 trials back and for 1 trial forward as a control. . . . . . 72

6.1 Samples of skin cancer image stimuli. A total of 7798 images were drawn from
the ISIC 2019 Challenge Datasets [251, 43, 45], which contain various nevus and
melanoma lesions. In each trial, a single random sample image was selected
and presented to the participant. Observers judged whether the image was nevus
(benign) or malignant (yes/no forced choice design). Feedback was provided after
each trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Overview of all 7798 (6688 benign, 1110 malignant) unique images used, sorted
by the consensus malignancy rating value (−100: classified as benign by all users,
100: classified as malignant by all users). The five sample images below the ab-
scissa show a sequence of example images that had varying degrees of agreement,
from benign to malignant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 LPIPS semantic similarity [290] example image pairs. Based on this semantic
metric, we can group images into similar pairs vs. dissimilar pairs. Note the
patch-wise similarity that similar image pairs have. . . . . . . . . . . . . . . . . 80

6.4 Serial dependence in dermatological classification judgments negatively impacts
performance. Performance in the discrimination task was assessed with metrics of
sensitivity, specificity, d-prime (d’), criterion (c), and error rate. The abscissa of
each graph shows the similarity in the rated malignancy (Figure 6.2) of successive
pairs of images; 0 represents identical successive images, and 200 represents very
different sequential images. The ordinate of each graph shows the net change in
performance metric (e.g., sensitivity or d’) on the current trial as a function of
the similarity of the previous stimulus (N-1 trial) seen by the observer. When
the previous stimulus was moderately similar (central regions on the abscissa),
all performance metrics dropped, indicating worse performance. For example,
when the sequential images were moderately similar, there was an increase in
error rates of up to 4.1% on the current trial. Horizontal dashed lines indicate
the upper 95% boundary of the permuted null distribution for each bar.Asterisks
indicate statistical significance (∗ : p < 0.05; ∗∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001). . . . 82



xi

6.5 Serial dependence in dermatological discrimination judgments impacts perfor-
mance. Asterisks indicate statistical significance (∗ : p < 0.05; ∗∗ : p < 0.01).
Here, the similarity between sequential images was measured using the LPIPS
metric [290]. When similar sequential images were viewed by participants (“sim-
ilar” on the abscissa), participants had higher error rates, lower specificity, and
biased criterion. Sensitivity was not negatively impacted, interestingly, but this
was not significant and did not counteract the negative impacts found in all other
metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Serial dependence in dermatological discrimination judgments is temporally tuned.
(A) Error rates such as those in Figure 6.4 were computed for 1-back trials (just
as in Figure 6.4) and (B) for 2-back trials. The increased error rate near the
central part of the abscissa indicates that the similarity in the image presented 2
trials before the current trial impacted performance, but less so than the impact
of the 1-back stimulus. Gaussian curves were fit to the change in error rates as
well as in d’, and the amplitude was taken as a measure of the impact of serial
dependence (SD) on error rates and d’. (C) The amplitude of the Gaussian—
the strength of serial dependence (SD)—was the strongest for the N-1 stimulus
and weaker for the following N-2, N-3, and N-4 stimuli, indicating that serial
dependence is temporally tuned—stronger for more recent similar stimuli. . . . . 85

6.7 Relationship between difference in malignancy and the 1-back accuracy. The
abscissa shows the similarity in the rated malignancy (Figure 6.2) of successive
pairs of images; 0 represents identical successive images, and 200 represents very
different sequential images. The ordinate shows the net change in 1-back accuracy
on the current trial as a function of the similarity of the previous stimulus (N-1
trial) seen by the observer. When the previous stimulus was moderately similar
(central regions on the abscissa), responses were consistently attracted towards
the previous stimulus. This pulling effect was up to 7%. The dynamic change of
the 1-back accuracy is consistent with performance metrics’ change in Figure 6.4. 89

7.1 (A) Skin cancer samples and their corresponding embeddings. Each dot repre-
sents one of the 7,818 skin lesion images. The position of each dot is defined by
the internal image representation of the computer vision model. The model has
been trained to diagnose skin lesion images and reaches an almost perfect accu-
racy [101]. It is therefore expected that benign and malignant images are spatially
separated. This is one aspect of semantic similarity captured by these embed-
dings, images seem to be spatially located according to malignancy. (B) The 100
image clusters, represented with different colors, each cluster containing dozens
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Chapter 1

Introduction

1.1 Background

Medical imaging has transformed modern medicine, allowing clinicians to noninvasively ex-
amine and diagnose patients relatively quickly and easily. Cancer diagnosis via medical
imaging is critically important for public health, but it is still far from perfect. For example,
in breast cancer diagnosis with mammography, false negative and false positive rates have
been reported 6% to 46% and approximately 10% respectively. These errors are mostly due
to misperceptions and misinterpretations of x-ray images from radiologists [14, 50]. Whereas
some sources of errors have been fully identified and characterized (subsequent search misses
[24];low prevalence [68], etc.), errors in cancer image interpretation are still largely without
explanation [14]. Given the importance of this issue, a great deal of research has been carried
out in the last decades to understand how to identify and characterize the source of these
mistakes in order to mitigate them as much as possible.

While interpreting mammograms, radiologists are typically asked to detect any present
tumors and classify them as well as record their size, location, and type. Typically, radiol-
ogists will examine dozens to hundreds of mammograms one after the other in a short time
period. A major underlying assumption is that radiologists’ perceptions and decisions on a
current mammogram are completely independent of previous perceptual history. However,
recent theoretical and empirical research from our lab and others raises the possibility that
this is not true. Our visual system is characterized by visual serial dependency, a type of
sequential effect in which what has previously been seen influences (captures) what is seen
and reported at this moment.

Visual serial dependence is a common sequential effect of our visual system and it can
manifest in several domains, such as perception [75, 41, 173], decision making [1, 73], and
memory [137], and they occur with a variety of features and objects, including orientation[75],
position [173, 20], faces [161, 245, 246, 162], attractiveness [246, 282, 141], ambiguous objects
[270], ensemble coding of orientation [175], and numerosity [41, 46]. Visual serial dependence
is characterized by three main kinds of tuning. First, feature tuning: Visual serial dependence
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occurs only between similar features [75, 84, 173, 175], and not between dissimilar ones[84].
Second, temporal tuning: Visual serial dependence gradually decays over time[75, 173, 270].
Third, spatial tuning: Visual serial dependence occurs only within a limited spatial region
and it is strongest when previous and current objects are presented at the same location [75,
173, 20]. In addition, attention is a necessary component for Visual serial dependence [75].

The visual serial dependence benefits us because the world we live in and the scenes we
experience are usually highly structured, autocorrelated, and stable. However, this situation
is not always true. For visual search tasks in mammography, stimuli are not autocorrelated
either. Thus, when doing tasks such as tumor localization and classification, serial depen-
dence could introduce a bias in perceptual judgments which would bring in a reduction in
sensitivity and increase in errors. The negative impacts of serial dependence in search tasks
would be especially prominent in cases where there is low signal, high noise, high uncertainty,
or where fine discriminations are required [75, 39, 41, 173, 20, 170]. These are exactly the
challenging situations that radiologists routinely face when searching through scans.

This dissertation starts with our initial attempt via naive artificial stimuli. It shows that
visual serial dependence has a disruptive effect in radiologic searches that impairs accurate
detection and recognition of tumors or other structures[170]. However, this pilot project
utilized artificially morphed tumors and simple noisy backgrounds as stimuli which have
been noted by both näıve observers and expert radiologists to be less authentic. Recently,
Generative Adversarial Networks (GANs) have been well developed to generate authentic
images for certain categories, such as faces, cars, and landscapes [127, 130, 198]. It is intuitive
to apply GANs to medical images to generate authentic stimuli for our experiments.

Generative Adversarial Networks are special Convolutional Neural Networks (CNNs),
which consist of two networks, the generator(G) and the discriminator(D). These two net-
works are trained iteratively in an adversarial way where the generator(G) generates fake
but authentic images to fool the discriminator and the discriminator(D) discriminates the
real and fake images [95]. Using this promising computational model, high-quality images
with various categories can be generated, such as faces, cars, and landscapes [127, 130, 198].
However, the initial GAN model [95] cannot generate sharp and recognizable images, and
the training process is unstable. Later work improved the performance of GAN in different
ways. Some papers focus on model architectures [183, 35, 194]. Others focus on improving
the loss metrics and training strategies [98, 4, 26]. With these efforts, GAN training stability
has improved, and GAN can generate low-resolution images with sufficient quality.

Most recently, several approaches have made high-resolution image generation also pos-
sible. PGGAN [130] proposed to train the standard GAN from coarse to fine scale. The
parameters for low-resolution blocks are trained first. Then higher-resolution blocks are
added on gradually with the corresponding parameters updated accordingly. Based on the
same training strategy, StyleGAN [127, 128] proposed to first map the original latent space
Z into the W space through a non-linear mapping network. Then it is merged into the syn-
thesis network via adaptive instance normalization (AdaIN) at each convolutional block [57,
118]. This improves StyleGAN representations of scenes and details and allows it to produce
authentic high-resolution images. In the following project, we adopt StyleGAN as our back-
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bone to build a medical image generation tool. Moreover, a controllable approach is also
utilized to manipulate the attributes of the generated images. Using the authentic medical
images from the GenAI medical image generation tool, we find that the perception of the
current simulated medical image was biased towards the previously seen medical images,
which strengthens the evidence of the existence of the visual serial dependence effect in med-
ical image perception. Meanwhile, we also utilize this GenAI medical image generation tool
to augment the rare case image samples in skin cancer diagnosis and boost the classification
performance of self-supervised learning models.

Finally, we collaboratively collect real diagnostic data with a data annotation company.
Through meticulous data analysis, we find significant serial dependence effects in percep-
tual discrimination judgments, which negatively impacted performance measures, including
sensitivity, specificity, and error rates. In this data, we also find that medical trainees have
image-level idiosyncratic biases when they perform skin cancer diagnosis, and increased di-
agnostic proficiency is associated with more substantial idiosyncratic biases.

Overall, this dissertation introduces a series of projects aimed at understanding the serial
dependence effect in medical image perception with the help of the proposed medical image
generation tool via Generative Adversarial Networks (GANs).

1.2 Outline

The organization of this dissertation is presented as follows:
In Chapter 2, we utilize naive artificial medical image stimuli, revealing that visual serial

dependence has a disruptive effect in radiologic searches that impairs accurate detection and
recognition of tumors or other structures.

In Chapter 3, we introduce the generative tool via Generative Adversarial Networks
(GANs). It allows users to controllably generate desired lesions in medical images. We show
that this tool can generate authentic simulated medical image stimuli in many modalities.

In Chapter 4, we illustrate a side project where we utilize the proposed generative tool
to augment the rare case image samples in skin cancer diagnosis and boost the classification
performance of self-supervised learning models.

In Chapter 5, we use the authentic medical images from the GenAI medical image gen-
eration tool to design experiments and find that the perception of the current simulated
medical image was biased towards the previously seen medical images.

In Chapter 6, we analyze real diagnostic data collaboratively collected with a data an-
notation company. We find significant serial dependence effects in perceptual discrimination
judgments, which negatively impacted performance measures, including sensitivity, speci-
ficity, and error rates.

In Chapter 7, we visualize the findings of the same diagnostic data that medical trainees
have image-level idiosyncratic biases when they perform skin cancer diagnosis, and increased
diagnostic proficiency is associated with more substantial idiosyncratic biases.
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In Chapter 8, we provide a summary of the projects introduced throughout this disser-
tation.
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Chapter 2

Serial Dependence in the Perceptual
Judgments of Radiologists

2.1 Introduction

Cancer diagnosis in medical images is crucial for the health of millions of people, but it is
still far from perfect. For example, within mammography, false negative and false positive
rates have been reported to be 0.15% and 9%, respectively [190]. Some of these misdiag-
noses are due to misperceptions and misinterpretations of radiographs by clinicians [14, 50].
Interpretive errors in radiology are defined as the discrepancy in interpretation between the
radiologist and peer consensus [27, 260], and it has been proposed that perceptual errors
account for 60–80% of the total amount [87, 134].

Some sources of interpretive error have been identified and characterized, including search
and recognition errors [30, 193], cognitive biases [50, 158], search satisfaction [6, 12], sub-
sequent search misses [16, 24, 105], and low prevalence [279, 280, 218, 181, 68, 114, 149].
However, some other errors in cancer image interpretation are still without explanation [27,
260, 259]. Given the importance of this issue, a great deal of research has been carried out in
the last decades to understand how to identify and characterize the source of these mistakes
in order to mitigate them as much as possible.

When looking at a radiograph, clinicians are typically asked to localize lesions (if present),
and then to classify them by judging their size, class, and so on. Importantly, during this
visual search task, radiologists often examine dozens or hundreds of images in batches,
sometimes seeing several related images one after the other. During this process, a main
underlying assumption is that radiologists’ percepts and decisions about a current image are
completely independent of prior perceptual events. Recent theoretical and empirical research
has raised the possibility that this is not true.

The visual system is characterized by visual serial dependency, a type of sequential effect
in which what was previously seen influences (captures) what is seen and reported at this
moment [39, 75]. Serial dependencies can manifest in several domains, such as perception [41,
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42, 75, 173], decision making [1, 73], and memory [9, 78, 137], and they occur with a variety
of features and objects, including orientation, position, faces, attractiveness, ambiguous
objects, ensemble coding of orientation, and numerosity [20, 46, 75, 79, 141, 162, 175, 244,
245, 270, 282]. Serial dependence is characterized by three main kinds of tuning. First,
feature tuning: serial dependence occurs only between similar features and not between
dissimilar ones [75, 84, 175, 173]. Second, temporal tuning: serial dependence gradually
decays over time [75, 173, 270]. Third, spatial tuning: serial dependence occurs only within
a limited spatial window; it is strongest when previous and current objects are presented at
the same location, and it gradually decays as the relative distance increases [20, 44, 75, 173].
In addition, attention is a necessary component for serial dependence [75, 83, 133].

The empirical results above prompted our theoretical suggestion that perception occurs
through Continuity Fields—temporally and spatially tuned operators or filters that bias our
percepts towards previous stimuli through serial dependence [2, 41, 75, 245, 246]. Continuity
Fields are a helpful, beneficial mechanism for promoting perceptual stability because they
produce a smoothed percept that better matches the autocorrelation in the world in which
we live [75, 161, 175]. In contrast to the highly structured and stable physical world, retinal
images are constantly changing due to external and internal sources of noise and disconti-
nuities from eye blinks, occlusions, shadows, camouflage, retinal motion, and other factors.
Rather than processing each momentary image or object as being independent of preceding
ones, the visual system favors recycling previously perceived features and objects. By incor-
porating serially dependent perceptual interpretations, the visual system smooths perception
(and decision making and memory [137]) over time and helps us perceive a continuous and
stable world despite noise and change.

The benefits of serial dependence arise because the world we encounter is usually auto-
correlated. But it is not always. In some artificial, human-contrived, situations the world is
not autocorrelated. One obvious example of this are visual stimuli attended in laboratory ex-
periments (in visual psychophysics, cognition, psychology, neurophysiology, and many other
domains). Often stimuli are randomly ordered, with the assumption that trials are treated
independently by the brain [187, 276]. Serial dependence negatively impacts the ability to
measure performance in these cases [75, 85, 161].

Visual search in clinical settings, such as reading radiographs or pathology slides, is an
even more striking example where stimuli may not be autocorrelated. When seeing and judg-
ing lesions under such circumstances, serial dependence could introduce a bias in perceptual
judgments that may result in a significant reduction in sensitivity and increase in errors.
The negative impacts of serial dependence in search tasks would be especially prominent in
cases where there is low signal, high noise, high uncertainty, or where fine discriminations
are required [20, 39, 41, 42, 75, 175]. These are exactly the challenging situations that
radiologists routinely face when searching scans. We hypothesize that because of serial de-
pendence, radiologists’ perceptual decisions on any given current radiograph could be biased
towards the previous images they have seen. To preview our results, we measured recognition
of simulated tumors in trained clinicians and found that their perceptual judgments were
significantly affected by serial dependence.
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2.2 Method

Observers and apparatus

All experimental procedures were approved by and conducted in accordance with the guide-
lines and regulations of the UC Berkeley Institutional Review Board. Participants provided
informed consent in accordance with the IRB guidelines of the University of California at
Berkeley. All participants had normal or corrected-to-normal vision, and were all näıve to
the purpose of the experiment. Fifteen trained radiologists (gender: 4 female, 11 males; qual-
ification: 11 experts, 3 residents, & 1 fellow; age: 27–72 years) participated in Experiment
1. They were recruited at RSNA, Radiological Society of North America Annual Meeting
(Chicago, US December 1st–6th, 2019). Of the fifteen, two participants did not complete
the study, and their data were excluded. Eleven non-expert observers (7 female; aged 19–21
years) participated in Experiment 2. Sample size was determined based on radiologists’
availability at RSNA, and was similar to current studies of serial dependence [42, 171, 199].
Eleven non-expert observers (7 female; aged 19–21 years) participated in Experiment 2.
They were recruited from a student pool at UC Berkeley.

Stimuli were generated on a 13.3 inch 2017 MacBook Pro with a 28.7 cm × 18 cm screen
with PsychoPy [203, 202]. The refresh rate of the display was 60 Hz and the resolution 1440
× 900 pixels. Stimuli were viewed from a distance of approximately 57 cm. Observers used
a laptop keyboard for all responses.

Stimuli and design

To simulate the screening performed by radiologists, we created three objects with random
shapes and generated 48 morph shapes in between each pair (147 shapes in total; Fig. 2.1A).
We used these shapes as simulated lesions. On each trial, radiologists viewed a random
simulated lesion superimposed on a mammogram section and were then asked to adjust a
shape to match the simulated lesion they previously saw. The stimuli consisted of light-gray
shapes based on 3 original prototype shapes (A/B/C; Fig. 2.1A). A set of 48 shape morph
shapes was created between these prototypes, resulting in a morph continuum of 147 shapes.
The shapes were approximately 3.7◦ width and height. Each shape was blurred by using
a gaussian blur function in OpenCV with a gaussian kernel size of 1.55◦. On each trial, a
random shape was presented at a random angular location relative to central fixation (0.35◦)
in the peripheral visual field (4.4◦ eccentricity, from center to center). The shape was em-
bedded in a random mammogram (30% transparency level) and was presented for 500 ms
(Fig. 2.1B). Mammograms were taken from The Digital Database for Screening Mammogra-
phy [23] (100 possible alternatives) and enlarged to fit the screen. The mammograms ( 2000
× 4500 pixels) were enlarged three times and cut at a central position such that about 15%
of each x-ray was displayed. This resulted in breast tissue covering the entire screen. Next,
we presented a mask composed of random Brownian noise background (1/f 2 spatial noise).
After the mask, a random shape drawn from the morph continuum (width and height: 3.7◦;
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color: light-gray) appeared at the fixation point location, and observers were asked to adjust
the shape to match the perceived shape using the left/right arrow keys (continuous report,
adjustment task; left–right arrow keys to adjust the shape). The starting shape was ran-
domized on each trial. Observers were allowed to take as much time as necessary to respond
and pressed the spacebar to confirm the chosen shape. Following the response and a 250 ms
delay, the next trial started.

Figure 2.1: Stimuli and design of the Experiments 1 and 2. A. We created three objects with
random shapes (prototypes A/B/C, shown in a bigger size) and generated 48 morph shapes
in between each pair (147 shapes in total). We used these shapes as simulated lesions during
radiological screening. B. Observers were presented with a random shape (simulated lesion)
hidden in a mammogram section, followed by a noise mask. Radiologists were then asked to
adjust the shape to match the simulated lesion they previously saw, and pressed spacebar to
confirm. During the inter-trial-interval, a red fixation dot appeared in the center. The size
of the shape adjustment is identical to the size of the simulated lesion, but it was enlarged
for illustrative purposes. After a 250 ms inter-trial interval, the next trial started

During the experiment, observers were asked to continuously fixate a red dot in the
center (0.35◦ radius). On each trial, they were first presented with a shape in a random
location at 4.4◦ eccentricity, followed by a noise mask (Fig. 2.1). Observers were then asked
to adjust a shape to match the one they previously saw (adjustment task). Observers
performed 3 blocks of 85 trials each (Fig. 2.1B). In a preliminary session, observers completed
a practice block of 10 trials. Mean adjustment time was 3240± 804 ms in Experiment 1 and
2980± 578 ms in Experiment 2. The only difference between Experiment 1 and 2 were the
participants. In Experiment 1, we tested trained radiologists, whereas in Experiment 2, we
tested students from the UC Berkeley population. Equipment and experimental design were
otherwise identical.
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2.3 Data analysis

Feature tuning analysis

We measured response errors on the adjustment task to determine whether a subject’s judg-
ment of each simulated lesion was influenced by the previously seen lesions. Response error
was computed as the shortest distance along the morph wheel between the match morph and
the target one (current response – current shape morph). For each participant’s data, trials
were considered lapses and were excluded if adjustment error exceeded 3 standard deviations
from the absolute mean adjustment error or if the response time was longer than 20 s. Less
than 2% of data was excluded on average.

Response error was compared to the difference in shape between the current and previous
trial, computed as the shortest distance along the morph wheel between the previous target
lesion (n-back) and the current target shape (current response – current shape morph). We
quantified feature tuning by fitting a von Mises distribution to each subject’s data points (see
details below). Additionally, for each observer, we computed the running circular average
within a 20 morph units window. Figure 2.3A-B shows the average of the moving averages
across all the observers, and the corresponding von Mises fit. Figure 2.3E-F shows the
half-amplitudes von Mises distribution for individual observers.

Temporal tuning analysis

We quantified temporal tuning by fitting a derivative of von Mises to each subject’s data
using the following equation:

y = −aκ sin (x− µ)eκ cos (x−µ)

2πI0(κ)

where parameter y is response error on each trial, x is the relative orientation of the
previous trial, a is the amplitude modulation parameter of the derivative-of-von-Mises, µ
indicates the symmetry axis of the von Mises derivative, κ indicates the concentration of the
von Mises derivative, and I0(κ) is the modified Bessel function of order 0. In our experiments,
µ is set to 0. We fitted the von Mises derivative using constrained nonlinear minimization
of the residual sum of squares. As a measure of serial dependence, we reported half the
peak-to-trough amplitude of the derivative-of-von-Mises (Figure 2.3E, F). We used the half
amplitude of the von Mises, the parameter a in the above equation, to measure the degree to
which observers’ reports of simulated lesions were pulled in the direction of n-back simulated
lesions. For example, if subjects’ perception of a lesion was repelled by the 1-back simulated
tumor (e.g., because of a negative aftereffect), or not influenced by the 1-back lesion (because
of independent, bias-free perception on each trial), then the half-amplitude of the von Mises
should be negative or close to zero, respectively.

For each subject’s data, we generated confidence intervals by calculating a bootstrapped
distribution of the model-fitting parameter values. For each observer, we resampled the data
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with replacement 5000 times [61]. The relationship on each trial between response error and
relative difference in shape (between the current and previous trial) was maintained. On
each iteration, we fitted a new von Mises to obtain a bootstrapped half-amplitude and width
for each subject.

Previous research recently showed that individual observers can have idiosyncratic biases
in object recognition and localization, which are unrelated to serial dependence. For example,
there are individual stable differences in perceived position and size, originating from a
heterogeneous spatial resolution that carries across the visual hierarchy [142, 266]. For this
reason, we conducted an additional control analysis to remove such potential unrelated biases
before fitting the von Mises derivative function. We plotted observer’s error values (current
response - current shape morph) as a function of the actual stimulus presented (current shape
morph), and fit a radial basis function (30 Gaussian Kernels used) to the data. This allowed
us to quantify the idiosyncratic bias for each observer. For example, observers may make a
consistent error in reporting a simulated lesion of 20 morph units as being 10, thus creating
a systematic error of −10 morph units. Conversely, if there was no systematic error, all
error would approximate zero. We then regressed out the bias quantified by the radial basis
fit by subtracting it from the observer’s error. This subtraction left us with residual errors
that did not include the idiosyncratic biases unrelated to serial dependence. Importantly, the
addition of this control analysis—removing systematic biases unrelated to serial effects—had
no significant impact on the serial dependence results. It did not generate or increase the
measured serial dependence.

As an additional method to rule out potential unrelated biases on the serial dependence
effect, we explored the effect of future trials on the current response [78, 179]. That is, we
compared the current trial response error to the difference in shape between the current
and following trial (n-forward). Since observers have not seen the future trial shape, their
current response in a given trial should not be in any ways related to the shape that will be
presented to them next.

Spatial tuning analysis

In order to measure the spatial tuning of serial dependence, we binned trials according to
the distance between the current and previous shape angular locations (Fig. 2.4). First, we
divided trials from each observer into 3 main relative angular distance groups: 0◦ − 60◦,
61◦ − 120◦, and 121◦ − 180◦ for 1-back trials. For example, a relative angular distance
of 0◦ indicates that previous and current lesions were presented at the same location (for
example, 45◦ and 45◦ of angular distance in previous and current trials). Similarly, a relative
angular distance of 60◦ indicates that previous and current lesions were presented at 30◦

and 90◦ of angular distance. The distance between successive shape locations was computed
as

√
(§current− §previous)2 + (†current− †previous)2. Second, we extracted 60 random

trials from each observer for each distance group, and collapsed all the trials from all the
observers in three super-subject groups. Third, for each super-subject we fitted a derivative
of von Mises and computed the half amplitudes. Fourth, we performed a regression line
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analysis across the three half amplitudes of the distance groups. For each super-subject, this
analysis yielded a slope of the regression line, which reflects how much serial dependence
varies as a function of distance between sequential stimuli. We repeated the procedure 5000
times, by resampling the data with replacement on each iteration.

2.4 Results

We tested whether serial dependence influenced recognition of simulated lesions when viewing
consecutive images of mammogram tissues in radiologists and untrained observers. Response
error (y-axis) was computed as the shortest distance along the morph wheel between the
match shape and the simulated lesion. Average response error was similar across groups;
9.2±1.8 morph units in Experiment 1 (radiologists) and 8.9±1.8 in Experiment 2 (untrained
observers; t(22) = 0.34, p = 0.74).

Figure 2.2: Continuous Report Discrimination index (C.R.D). A. For each observer, we
plotted a frequency histogram of the adjustment errors and fitted a Von Mises to quantify
adjustment performance. B. We then converted the von Mises fit into a Cumulative Dis-
tribution Function. Continuous Report Discrimination index was calculated by taking the
half difference between 25 and 75th percentile in terms of adjustment error morph units. C.
Each dot shows CRD index for individual observers in the two groups. Bars indicate average
in Experiment 1 and 2, and error bars indicate standard error

To further quantify discriminability of the simulated lesions, we fit a von Mises func-
tion to each observer’s response error frequency distribution (Fig. 2.2A) and computed the
corresponding Cumulative Distribution Function (CDF; Fig. 2.2B). The CDF was gener-
ated with a ceiling and floor parameters of 0.1 and 0.9, respectively, and a free x-axis shift
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parameter to allow for any observers’ bias to be taken into account. For each observer’s indi-
vidual CDF, a Continuous Report Discrimination index (C.R.D.) was defined as half of the
difference between the 25th and 75th percentile of their Cumulative Distribution Function
(Fig. 2.2C). This measure can be considered as the equivalent of JND (Just Noticeable Dif-
ference) for continuous reports. The mean CRD was 3.97±0.26 morph units for radiologists
and 4.08± 0.25 morph units for untrained observers.

To test whether radiologists’ lesion perception was pulled by lesions in previous mam-
mograms, we plotted the adjustment error on the current trial in relation to the difference
in shape between the current and previous trial, computed as the shortest distance along
the morph wheel between the previous lesion and the current lesion. A derivative-of-von
Mises curve was then fitted to the observers’ data (Fig. 2.3A, B, see Feature Tuning analy-
sis). We bootstrapped each subject’s data 5000 times and reported the mean bootstrapped
half-amplitude as a metric of the sequential dependence (Fig. 2.3E, F).

In Experiment 1, all participants except for one displayed a positive von Mises half-
amplitude, indicating that lesion perception on a given trial was significantly pulled in the
direction of the lesion presented in the previous trial (p < 0.001, group bootstrap, n = 13,
Fig. 2.3E). Even the lesion two trials in the past influenced current judgments (p = 0.01,
group bootstrap, Fig. 2.3E). No attraction was found for 3-trials back (p = 0.09, group
bootstrap, Fig. 2.3E). A similar pattern of results was found in Experiment 2 with untrained
observers. Lesion perception on a given trial was significantly pulled in the direction of
lesions presented in the previous trial for 1 and 2 trials back (n = 11; 1-Back; p < 0.001,
2-Back; p < 0.001, group bootstrap, Fig. 2.3F) but not for 3-back (n = 11; p = 0.128, group
bootstrap, Fig. 2.3F). There was no statistical difference between radiologists and untrained
observers for 1-back and 2-back (Fig. 2.3; 1-back, p = 0.88; 2back, p = 0.19), whereas there
was a statistical difference for 3-back (p = 0.02; but no serial dependence was detected in
those conditions).

As a control for possible confounds or artifacts, we checked whether lesion perception
could have been biased from lesions one, two, or three trials in the future. As expected,
lesion perception was not significantly influenced by future stimuli for radiologists (1-forward,
group bootstrap half amplitude: 0.27 morph units, p = 0.50; 2-forward, group bootstrap
half amplitude: 0.35 morph units, p = 0.5, 3-forward group bootstrap half amplitude: 0.5
morph units, p = 0.38). The same was true for näıve observers (1-forward, group bootstrap
half amplitude: −0.83 morph units, p = 0.16; 2-forward, group bootstrap half amplitude:
0.22 morph units, p = 0.72; 3-forward, group-bootstrap half amplitude: 0.23 morph units,
p = 0.67).

Average response time was similar across Experiments; 3244 ± 845 ms in Experiment
1 and 2980 ± 578 ms in Experiment 2 (t(22) = 0.834, p = 0.41). Lesion recognition was
therefore strongly attracted toward lesions in previous mammograms seen more than 5s or
10s ago (Fig. 2.3E, F). These results suggest a featural tuning (Fig. 2.3A, B) and temporal
tuning of 5–10 s (Fig. 2.3E, F), in accordance with previous literature [75, 84, 173, 185, 245,
270].

In order to further characterize the strength of the serial dependence effect, we computed
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Figure 2.3: (See caption on next page.)
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Figure 2.3: (See figure on previous page.) Serial dependence in the perception of simulated
lesions by expert radiologists and untrained observers. A, B. In units of shape morph steps,
the x-axis is the shortest distance along the morph wheel between the current and one-back
simulated lesion, and the y-axis is the shortest distance along the morph wheel between the
selected match shape and current simulated lesion. Positive x-axis values indicate that the
one-back simulated lesion was clockwise on the shape morph wheel relative to the current
simulated lesion, and positive y-axis values indicate that the current adjusted shape was also
clockwise relative to the current simulated lesion. The average of the running averages across
observers (blue line) reveals a clear trend in the data, which followed a derivative-of-von-Mises
shape (model fit depicted as black solid line; fit on average of running averages). Light-blue
shaded error bars indicate standard error across observers. Lesion perception was attracted
toward the morph seen on the previous trial. Importantly, it was tuned for the similarity
between the previous and current morph (feature tuning). C, D. The derivative-of-von-Mises
was converted into its source von Mises function (y-axis), and the relative morph difference
was plotted in terms of CRD units (x-axis). Violet-shaded error bars indicate 95% confidence
interval. The curve indicates the proportion of change in response predicted by the change in
the sequential stimulus. E, F. Bootstrapped half amplitudes of the derivative of von Mises
fit for 1, 2, and 3 trials back. Half amplitude for 1-forward is shown as a comparison (grey
bars). Each filled dot represents the bootstrapped half amplitude (morph units) for a single
observer. Bars indicate the group bootstrap and error bars are bootstrapped 95% confidence
intervals

how much the current simulated lesion was captured by lesions in the previous trial. We
converted the derivative-of-von Mises into its source von Mises function. In order to compare
our effect with shape discriminability, we divided the relative morph difference (previous
tumor - current tumor; x-axis) by the average CRD index (from Fig. 2.2C). The plots in
Fig. 2.3B, C show the proportion of change in response (efficiency) predicted by the change
in the sequential stimulus. Serial dependence captured the current (simulated) tumor with
peaks of 22−25%, and expanded over a large discriminability range (from −10 to +10 CRD
units).

As an additional analysis, we investigated how much adjustment errors were biased more
towards the shape category on the previous trial compared to other previous object cate-
gories. Shape categories A/B/C were defined as the prototype A/B/C ± 24 morph units
(49 morph units in total). Adjustment responses were coded as indicating category A/B/C.
We computed the percentage of mistakes towards the shape category in 1-back trials, and
normalized the index by subtracting 33.33% (chance percentage level) from each percentage
index (see Fig. 2 in [171] for an in-depth explanation of the analysis). Observers misclassi-
fied the simulated lesion on a current trial as the lesion in 1-back trials 8% more often than
expected by chance.

In order to further quantify the strength of the 1-back serial dependence effect, we con-
ducted a linear regression analysis on the response error as a function of the relative morph
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Figure 2.4: Serial dependence effect size estimation. A, B. Blue lines indicate the average
of the running averages across observers (same data as Fig. 2.2). Light-blue shaded error
bars indicate standard error across observers. We fitted a linear regression on the response
error as a function of the relative morph difference from −17 to +17 morph units (model
fit depicted as green dashed line; fit on average of running averages). Dark green shaded
areas indicate the morph relative difference considered in the regression analysis. C, D.
Bootstrapped regression slopes for 1, 2, and 3 trials back. Each filled dot represents the
regression slope for a single observer. Bars indicate the group bootstrap slope and error bars
are bootstrapped 95% confidence intervals
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difference (from −17 to +17 morph units on the x-axis in Fig. 2.3A, B, 25% of the central
range). Average slope was 0.132± 0.10 in Experiment 1 and 0.143± 0.10 in Experiment 2,
thus meaning that both radiologists and untrained participants exhibited a perceptual pull
of 13% towards simulated lesions viewed 1 trial back (Fig. 2.4, radiologists; 1-back, p < 0.01;
2-back, p = 0.30; 3-back, p = 0.09; näıve observers; 1-back, p < 0.01; 2-back, p < 0.001;
3-back, p = 0.01).

Figure 2.5: Spatial tuning of serial dependence. A refers to Experiment 1, whereas B refers
to Experiment 2. Each red dot refers to a different relative angular distance between current
lesion and lesion in the 1-back trial, super-subject bootstrapped mean. For example, a
bin distance 0◦ indicates that current and previous simulated tumor presented at the same
location (30◦ of angular distance, for example). Error bars are bootstrapped 95% confidence
intervals. Dashed line indicates half-amplitude zero (no bias)

As previously mentioned, an important property of serial dependence is spatial tuning [20,
41, 75, 79, 173]. We therefore investigated whether serial dependence in simulated radio-
logical screening is affected by the spatial distance between current and previous lesions.
On each trial, the simulated lesion was presented at a fixed distance from the center but
at random angular distance. Hence, we predicted that serial dependence will be highest
when current and previous lesions are presented at a close relative distance, and will grad-
ually decay as relative distance increases. For each participant, we divided the trials into
three groups based on the relative distance of the 1-trial back stimulus (Fig. 2.5; See Spatial
Tuning analysis section).

In Experiment 1, serial dependence occurred for an angular distance groups of 0◦ − 60◦

and 61◦− 120◦, (0◦− 60◦: p < 0.001; 61◦− 120◦: p < 0.001 group bootstrapped distribution;
Fig. 2.5A), whereas no serial dependence occurred for an angular distance group of 121◦−180◦
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(121◦−180◦: p = 0.20; group bootstrapped distribution; Fig. 2.5A). There was no statistical
difference across the two groups for relative distances of 0◦ − 60◦ (p = 0.29), 61◦ − 120◦

(p = 0.11) and 121◦ − 180◦ (p = 0.42). In order to further characterize spatial tuning for 1-
trial back, we performed a regression analysis on the three distance groups. Regression slope
was significantly different from zero, thus indicating a gradual decay of serial dependence
with increased relative distance (slope = −0.89; p = 0.05; group bootstrapped distribution).
These results are consistent with prior findings that serial dependence is modulated by the
relative location of the sequential targets. Therefore, in a radiological screening environment,
the current lesion may be misperceived as more similar to the previous one if current and
previous lesions are presented at similar locations. Interestingly, untrained observers from
Experiment 2 did not show the same spatial tuning: serial dependence occurred at all tested
angular distance groups (0◦ − 60◦: p < 0.05; 61◦ − 120◦: p < 0.001; 121◦ − 180◦: p < 0.05;
group bootstrapped distribution; Fig. 2.5) with no gradual decay as a function of spatial
separation. When performing a regression analysis on the three distance groups, regression
slope was not significantly different from zero (slope = −0.05; p = 0.90; group bootstrapped
distribution; Fig. 2.5B). The implications of this result will be discussed in the next section.

Taken together, our results show that simulated tumor recognition is strongly biased
towards previously presented simulated lesions up to 10s in the past. Importantly, this
sequential effect occurs with expert radiologists and exhibits all the defining properties of
traditional serial dependence: feature tuning (Fig. 2.3A, B), temporal tuning (Fig. 2.3E, F)
and spatial tuning (Fig. 2.5A).

2.5 Discussion

We found that the perceptual decisions of radiologists were subject to serial dependence.
Simulated lesion recognition was biased towards simulated tumors presented up to 10 s in
the past (Fig. 2.3A). Importantly, radiologists exhibited a perceptual pull of 13% towards
previously seen tumors (Fig. 2.4). Moreover, serial dependence alone resulted in 8% more
miscategorizations than were expected by chance or due to noise. This perceptual pull
exhibited all three tuning characteristics of Continuity Fields: feature tuning (Fig. 2.3A,
B), temporal tuning (Fig. 2.3E, F) and spatial tuning (Fig. 2.5A). In Experiment 2, we
found largely similar results with untrained observers, with the exception that less clear
spatial tuning was found. Taken together, these results show that radiologists’ perceptual
judgements are affected by serial dependence.

Our results extend previous work, which investigated the impact of serial dependence in
a simulated clinical search task [171]. In untrained observers, it was found that shape classi-
fication performance was strongly impaired by recent visual experience, biasing classification
judgments toward the previous image content. Whereas those results can be considered as
proof of the concept that serial dependence can be detrimental in clinical tasks, the present
study extended this in several ways including (1) testing trained radiologists, (2) using actual
mammogram textured backgrounds as stimuli and (3) implementing a more thorough con-
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tinuous report task instead of a classification judgment. The results thus show that trained
radiologists, as well as näıve observers, suffer from serial dependence. Future research will
investigate whether this kind of error occurs in a more realistic radiological screening setting.

Interestingly, we did not find spatial tuning in Experiment 2 with untrained observers.
Whereas this seems like a somewhat surprising result, it must be considered that the maxi-
mum relative distance in our experiments was 8.8◦ (double the radius), and previous litera-
ture has shown that the spatial window where serial dependence occurs is around 10◦ − 15◦

or even larger [44, 75, 171]. The potentially interesting result, therefore, is the finding of nar-
rower spatial tuning with expert radiologist observers. The reason for this narrowed spatial
tuning is unknown, but it does raise questions about the role of familiarity and expertise.
Serial dependence is known to scale with uncertainty [41], and it is possible that the spatial
tuning of serial dependence varies with familiarity as well.

In addition to differences in expertise and familiarity, an additional difference between
the two groups of observers in these experiments could be attentional. Previous literature
has shown that serial dependence is gated by attention [75, 79, 163, 208]. In comparison to
untrained observers, radiologists may pay more attention to the stimuli or attend to different
features of the stimuli; therefore, serial dependence tuning may differ with expertise.

It might be argued that our results can be explained by a mere motor response bias, i.e.
the motor response during the adjustment task may be biased towards the previous motor
response. However, a large literature has shown that serial dependence still occurs when no
adjustment is given in the previous trial, thus ruling out a mere motor effect [75, 175, 173].
In addition, a simple motor bias cannot explain why serial dependence was tuned for the
relative spatial location, biasing simulated tumor judgments only when current and previous
tumors were presented at a close angular distance (Fig. 2.5A). Neither can it explain relative
featural difference, biasing tumor adjustment only when current and previous tumors were
similar enough (Fig. 2.3A, B).

Beyond the motor component, there is an intense debate on the underlying mechanism(s)
of serial dependence. Among others, serial dependence was proposed to occur on the per-
ception [41, 75, 173], decision [84, 199] and memory level [9, 20]. Our results do not allow us
to disentangle on which level(s) serial dependence actually occurs. There is psychophysical
evidence that serial dependence acts on perception, thus biasing object appearance towards
the past [41, 75, 80]. How serial dependence in perception actually occurs is still a matter of
debate; it was recently shown that awareness is required for serial dependence to occur, thus
suggesting that a top-down feedback from high level areas is crucial for serial dependence [80,
133].

It may be argued that the duration of the mammogram presentation (500 ms) is too
short and radiologists observe mammograms for a much longer period of time. In fact,
the average duration of radiograph fixation for hitting the first mass has been reported as
1.8 − 2s, which is surprisingly brief [147, 193]. Interestingly, sufficiently long mammogram
exposure durations may lead to the opposite effect, i.e. negative aftereffect. It was found
that when adapting normal observers to image samples of dense or fatty tissues, exposure
to fatty images caused an intermediate image to appear denser (and vice versa) [138, 139,
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140]. Importantly, mammogram perception was biased away from the past. Future research
will establish under which conditions these two biases (perception biased towards or away
from the past) arise in radiological screening.

Limitations of current study

Our results show that radiologists suffer from significant serial dependence in their perceptual
judgments. Whether these significant serial dependencies are left at the door of the reading
room is as-yet untested. However, the results here show that radiologists are not immune
from sequential effects in perceptual decisions. This is only a first step, and there are
many improvements required to optimize the ecological validity of our findings. Future
improvements will be implemented in order to fully address the impact of serial dependence
in a clinical setting.

First, the stimuli. Our study tested serial dependence with a generated set of shape
stimuli, but actual tumor images will be required to test the role of serial dependence in
radiological screening. In addition, within a radiograph, there can be a variety of features
which may be interpreted as tumors, from actual masses, to microcalcifications, architectural
distortions, and focal asymmetries. Future research will test whether these features, as well
as actual lesions, suffer from serial dependence.

Second, the task. We chose a continuous report paradigm in our experiments, as it
provides precise trial-wise errors and has proven to be very reliable in measurements of serial
dependence in the past [41, 40, 83, 75, 84, 161]. Given the radiologists’ time constraints
and resulting limited number of trials, we considered this task to be relatively efficient. The
untrained observer data provides a useful baseline in this respect. A previous paper that
used a 3AFC classification task found a similar amount of serial dependence in untrained
observers as that found here [171]. Nevertheless, as the actual task of the radiologist involves
classifying lesions and localizing them, implementing more realistic tasks with radiologists
will be important in future studies.

Third, mammogram duration. Although radiologists fixate radiographs for slightly longer
durations (500 ms in the present and 1.8−2s reported in the literature [147, 193]), they were
shown to perform above chance in detecting abnormalities in chest radiographs with 200
ms duration [151]. It will be interesting to test which biases arise with increasing stimulus
duration, whether a positive one (as shown by our results), a negative one [138, 139, 140],
or no bias at all.

Finally, whereas our results may indicate that radiological screening is detrimentally
affected by serial dependence, they also open avenues to mitigate this bias. Since serial
dependence was shown to occur only under restricted featural, spatial, and temporal condi-
tions, some strategies could be implemented to induce perceptual decisions outside of these
conditions. For example, mammograms could be presented at different spatial locations.
Because of spatial tuning, the relative distance between lesions would be so large that serial
dependence would no longer occur. Other strategies may be implemented based on temporal
and featural tuning as well.
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Chapter 3

Controllable Medical Image
Generation via GAN

3.1 Introduction

Medical imaging has transformed modern medicine, allowing clinicians to noninvasively ex-
amine and diagnose patients relatively quickly and easily. In recent decades, there have
been dramatic advances in the medical imaging technologies themselves, ranging from MRI,
CT, PET, photography, ultrasound, among many other techniques. The improvements are
astounding, but it is noteworthy that ultimately the data provided by these techniques re-
quires critical human involvement in detection, selection, interpretation, and diagnoses. The
imaging techniques themselves are not the only bottleneck for obtaining accurate diagnoses.

Fortunately, along with the technological development, there have also been concomitant
advances in the application and use of these technologies. For example, there is a recent
surge in computer vision and medical image perception research. These two areas involve,
respectively, artificial (algorithmic) and human users. In both machines and humans, there is
a great deal of potential to improve the use of medical imaging in clinical practice. In addition
to the more ambitious goals of automated diagnoses, filtering, or cuing clinicians [226, 167,
111, 289], there are distinct and more immediately pressing goals of improving clinicians’
medical image perception and decisions [259, 273]. For example, in the realms of training,
error detection, diagnostic support, among others [260].

To improve both machine and human medical image perception, it is necessary to have
sufficient source data. Unfortunately, labeled and de-identified public medical imaging data
is scarce. Sometimes researchers resort to collecting their own data from nearby hospitals,
usually from local areas that cannot represent the broader population. Second, even if
larger datasets are collected, the necessary data processing procedures such as data de-
identification, labeling, and categorizing are tedious, time-consuming, and very expensive.
For example, in certain medical imaging tasks, such as lesion segmentation, in order to
prepare the training data, it requires experts to perform meticulous annotations that are



CHAPTER 3. CONTROLLABLE MEDICAL IMAGE GENERATION VIA GAN 21

Figure 3.1: Pipeline. Controllable medical image generation using the proposed GAN
model. (a) Medical image generation: novel and authentic medical images can be generated
from random latent codes z. (b) Attribute manipulation: desired attributes can be assembled
together to satisfy certain experimental settings. Here, we use mammogram as an example
medical modality. Real mammograms with tumor were utilized to train the proposed model.
Our proposed model can be easily adapted to other medical modalities, such as MRI, CT,
and skin cancer images.

costly and time intensive [272]. Moreover since collected medical images are specific to
each individual patient, it can be difficult to find specific images or image properties that
satisfy certain desired experimental configurations [171]. Of course, due to intricate tissue
structures, manipulating attributes of those collected medical images using traditional image
processing methods is difficult or impossible, at least in a realistic manner.

The data scarcity problem has presented a major challenge to research on medical image
perception. At a broad level, medical image perception research studies the visual and
cognitive processes that clinicians rely on to make decisions. As in other domains of human
factors, the goal of understanding those mechanisms is to improve (i.e., guide, cue, facilitate,
speed, etc) clinician performance. Recently, in many psychophysical experiments, artificial
medical stimuli have been employed [139, 171]. The artificial medical stimuli are often
composed of simple shapes or textures with some form of noise background [257, 139, 171].
Related approaches involve using real medical images but superimposing clearly artificial
”targets” [139, 171]. An advantage of these approaches is that they are relatively easy to
generate and control in a precise manner, which is important for studying the cognitive and
perceptual systems of clinicians [139, 171]. For example, the image attributes and ”targets”
are easy to manipulate such that researchers can perform shape morphing and background
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replacement. This level of stimulus control is necessary in perception research to study
things like visual search for lesions, visual recognition of lesions, inattentional blindness,
cognitive load and interference, etc. However, those artificial medical images are obviously
inauthentic, completely unlike what clinicians routinely examine. Thus, the results of these
experiments fall invariably within a shadow of a doubt about clinical applicability.

Therefore, generating authentic and easily controllable medical images is critical for the
entire field of medical image perception research. Alleviating this limit is only recently re-
alistic, with the impressive development of deep learning in computer vision. For example,
Generative Adversarial Network (GAN) is one of the promising models that have achieved
great success on image generation tasks. GAN can generate high-quality authentic images
with various categories [127, 130, 198], such as faces, cars, landscapes, and so on. Addition-
ally, various methods can be applied to manipulate the attributes of Generative Adversarial
Networks’ outputs [183, 35, 198].

In this paper, we utilize Generative Adversarial Network (GAN) to generate authentic
medical images (Fig 3.1 (a)). We also adopt a controllable approach to manipulate specific
attributes of the generated images (Fig 3.1 (b)). The proposed method is tested on various
medical image modalities such as mammogram, MRI, CT, and skin cancer images. For
example, via controllable generation, we can create authentic mammograms with desired
tumor and breast shapes. We also recruited both expert clinicians and untrained participants
to discriminate the authenticity of each image (real vs GAN generated) in an objective
psychophysical experiment. Finally, we investigate the perceptual loss which is utilized in the
controllable generation. Various experiments verify the success of the proposed controllable
medical image generation model.

Contributions: We propose a framework for controllable medical image generation with
the following contributions.

• We propose to utilize Generative Adversarial Network (GAN) to generate medical
images and verify the results on various medical image modalities such as mammogram,
MRI, CT, and skin cancer images.

• We adopt a controllable approach to manipulate the attributes of the generated images
in order to meet certain experimental configurations.

• We compare traditional similarity measurements with the perceptual metric in medical
imaging.

We note that a shorter conference version of this paper appeared in [214]. Our initial
conference paper was more limited in scope and did not extend the model to multiple medical
image modalities. This paper extends the model to MRI, CT, and skin cancer images. More-
over, this paper compares traditional similarity measurements with the perceptual metric in
medical imaging.
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3.2 Related work

Convolutional Neural Networks

The idea of Convolutional Neural Networks (CNN) is from the discovery of the edge detector
in cat’s striate cortex [120]. Based on this finding, Fukushima [86] invented the first simple
hierarchical, multilayered artificial neural network. After decades of development, LeCun
et. al. [156] leveraged CNN for hand-written ZIP Code numbers recognition and trained the
network end-to-end via gradient descent. This fully automatic image recognition model can
be applied to many image categories and types. The great success is mainly attributed to the
convolution operation, which can reveal the latent semantic information of an image, and the
shared hierarchical kernels, which make the convolution shift-invariant. During training, the
loss is computed based on specific metrics for certain tasks, updating the model parameters
while it back propagates through the whole network.

However, the computation is heavy, which limits the model’s capacity and ability for high-
resolution images. With the deployment of Graphical Processing Unit (GPU), CNNs [144,
240, 232, 241, 106] have shown promise in computer vision tasks, such as image classifica-
tion [106], object detection [93, 92, 212, 211], and object segmentation [107]. Recently, many
medical imaging tasks have been utilizing CNNs [82, 228, 132]. Compared to traditional im-
age processing methods, CNNs have much better performance with much faster inference
speed.

Generative Adversarial Networks

Generative Adversarial Networks are special Convolutional Neural Networks, which consist
of two networks, the generator(G) and the discriminator(D). These two networks are trained
iteratively in an adversarial way where the generator(G) generates fake but authentic images
to fool the discriminator and the discriminator(D) discriminates the real and fake images [95].
Using this promising computational model, high-quality images with various categories can
be generated, such as faces, cars, and landscapes [127, 130, 198]. However, the initial
GAN model [95] cannot generate sharp and recognizable images, and the training process
is unstable. Later work improved the performance of GAN in different ways. Some papers
focus on model architectures [183, 35, 194]. Others focus on improving the loss metrics and
training strategies [98, 4, 26]. With these efforts, GAN training stability has improved, and
GAN can generate low-resolution images with sufficient quality.

Recently, several approaches make high-resolution image generation also possible. PG-
GAN [130] proposed to train the standard GAN from coarse to fine scale. The parameters
for low-resolution block are trained first. Then higher-resolution blocks are added on grad-
ually with the corresponding parameters updated accordingly. Based on the same training
strategy, StyleGAN [127, 128] proposed to first map the original latent space Z into the W
space through a non-linear mapping network. Then it is merged into the synthesis network
via adaptive instance normalization (AdaIN) at each convolutional block [57, 118]. This
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improves StyleGAN representations of scenes and details and allows it to produce authen-
tic high-resolution images. In this paper, we adopt StyleGAN as our backbone for medical
images generation. Moreover, a controllable approach is also utilized to manipulate the
attributes of the generated images.

In medical image applications, [82] utilized DCGAN [207] and ACGAN [194] to generate
CT liver lesion patches and boosted the liver lesion classification performance. [103] proposed
to use WGAN [98] to generate MR images for data augmentation and physician training.
[191] used GAN to predict CT images from MR images. [29] proposed an Auto-GAN to
synthesize missing modality for medical images. Moreover, GAN has been widely used
for skin cancer image generation and purification [18, 19, 91]. Our approach is different
from aforementioned methods. In addition to purely generating new samples as GANs
traditionally do, our method can also edit specific images via the encoder of our model.

Perceptual Loss

CNN features have already been utilized for calculating similarity for years. [3] proposed
to use pre-trained AlexNet features for image quality measurement. Perceptual loss, which
is also based on CNN features, was first proposed in [124] for style transfer [90] and su-
per resolution tasks. Both are ill-posed problems. For style transfer, there is no absolute
ground truth image for reference. For image super resolution, one low-resolution image can
have many corresponding high-resolution images which can be down-sampled to the same
low-resolution image. Thus, per-pixel metric is no longer suitable since semantic similar-
ity matters. Recently, traditional similarity metrics, such as Structural Similarity Index
Measure(SSIM) and Peak Signal-to-Noise Ratio (PSNR), are found to be inconsistent with
human perception, and a perceptual metric has been utilized to measure the semantic simi-
larity in many papers [157, 293, 119, 290]. In this paper, we use perceptual loss to regularize
the encoder training and guide the latent code optimization in the encoding procedure.

3.3 Method

Here, we adapt the Generative Adversarial Network for medical image generation. In order
to manipulate the image attributes, an encoder is added to encode certain image attributes
into the latent code z which is the input of the GAN generator.

Our proposed model is composed of two parts. The first part is the GAN part which
involves the generator(G) and the discriminator(D). The generator(G) will generate au-
thentic(fake) images from the latent codes z, and try to fool the discriminator(D) during
training. The discriminator(D) will discriminate whether the image is real (i.e. sampled
from real images) or fake (i.e. generated from the generator), and try to beat the generator
by distinguishing the fake images from the real ones. The second part of the model is the
encoder(E), which can encode image attributes into the latent code z. This latent code can
then be utilized to generate the image through the generator. Therefore, it can allow us to



CHAPTER 3. CONTROLLABLE MEDICAL IMAGE GENERATION VIA GAN 25

Figure 3.2: Architecture of proposed method. The architecture contains three sub-
networks, the encoder(E), the generator(G), and the discriminator(D). The training has two
phases. In the first phase, the generator and discriminator will be trained first without the
encoder (E) via adversarial loss Ladversarial. In the second phase, the generator (G) will be
fixed. The encoder (E) and discriminator (D) will be trained adversarially via the recon-
struction loss Lreconstruction, the perceptual loss Lperceptual, and the adversarial loss Ladversarial.
The dashed arrows indicate how to compute the corresponding loss metrics.

manipulate the generated image by manipulating the latent code through the encoder. The
architecture is shown in Fig 3.2.

While training, the GAN part is first trained progressively [127] via adversarial loss
LAdversarial. The training process can be formulated as

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼q(z)[log(1−D(G(z)))] (3.1)

where pdata(x) and q(z) indicate the real data distribution and the latent space distribu-
tion respectively, x is the sampled real image, z is the sampled latent code.

Then, we train the encoder part. After training the GAN part, the generator(G) is fixed.
While training the encoder network, traditional methods [10] regularize the encoder on the
latent space, encouraging the encoder to encode the same latent codes for the corresponding
generated images regardless of the reconstructed images. This method can degrade the re-
construction quality. Instead, we adopt the idea from In-domain GAN inversion [292], where
the regularization of the encoder is on the image space. In particular, the encoded vector
is passed into the generator(G) again and the regularization is on the reconstructed image.
The L2 reconstruction loss LReconstruction and the perceptual loss [124] LPerceptual are utilized
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for the regularization. Additionally, adversarial loss LAdversarial is also utilized to guarantee
that the reconstructed image looks authentic. The whole process can be summarized as
follows

min
E
||x−G(E(x))||2 + λ1||F (x)− F (G(E(x)))||2

− λ2Ex∼pdata(x)[logD(G(E(x)))]
(3.2)

min
D

Ex∼pdata(x)[logD(G(E(x)))]− Ex∼pdata(x)[logD(x)]

+
γ

2
Ex∼pdata(x)[||∇xD(x)||22]

(3.3)

where pdata(x) indicates the real data distribution, x is the real image, E represents the
encoder, F represents the VGG feature extraction [232], and λ1, λ2 and γ are weights for the
perceptual loss, the adversarial loss, and the gradient penalty [98].

Since the inverse mapping via the encoder(E) will not always be perfect, in order to get
the optimal inverse latent code, we apply another optimization on the latent code. This
optimization will update the latent code based on the reconstruction loss and the perceptual
loss within the neighborhood of the original encoded vector (the encoder regularization).
The optimization process can be described as below

zinv = min
z
||x−G(E(x))||2 + λ3||F (x)− F (G(z))||2

+ λ4||z − E(G(z))||2
(3.4)

where zinv is the optimized inverse code, λ3 and λ4 are weights for the perceptual loss,
and the code reconstruction loss (i.e., the encoder regularization). This optimization metric
can be computed using the whole image region (for image reconstruction) or the region of
interest (for image manipulation).

Medical image synthesis

In general, informative images lie on a manifold. Through the GAN training, the genera-
tor(G) learns a transformation from the latent space to the image space, imitating the real
image manifold of the training dataset. Thus, we can utilize this learned transformation to
generate images authentic to the real images. First, the latent code z will be sampled from
the latent space. Then, the generated image x = G(z) is produced by the generator.

Using the learned transformation, we can also generate similar medical images. As a
manifold, the nearby images on the manifold are similar to each other. Therefore, we can
sample a series of latent codes zi on a closed path C, then passing these latent codes into
the generator(G), we can obtain a series of gradually and continuously morphing images xi.

xi = G(zi), zi ∼ C (3.5)
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Attribute manipulation

While training the encoder(E), without the discriminator(D), the encoder and the genera-
tor form an autoencoder [210, 178]. The training encourages the encoder to embed useful
image attributes into the latent code. Since the generator is pretrained under the GAN, the
generator has learned how to reconstruct the embedded image attributes with proper tissue
context.

In order to manipulate the image attributes, we first need to combine the desired image
attributes into one assembled image x′. The combination can be achieved by merging image
patches Pi which contain the desired image attributes.

x′ =
n⋃

i=1

Pi (3.6)

Then this assembled image x′ will be encoded by the encoder, z′ = E(x′), obtaining the
corresponding image attributes latent code z′. The generator will finally reconstruct those
image attributes with proper tissue texture, xreconstruct = G(z′).

Since the image with all desired attributes may not exist on the image manifold, the
reconstructed image may not have the exact desired attributes as we designed. The final
optimization (shown in Equation 3.4) can be conducted on the region where the attributes
need to be accurate. The pipeline for attribute manipulation is shown in Fig 3.3.

Figure 3.3: Attribute manipulation pipeline. First, desired image attributes are com-
bined by merging image patches that contain those attributes. Then, the corresponding
latent code is produced by the encoder. The generator reconstructs the image with desired
attributes. At last, the desired image can be obtained after the final optimization.

3.4 Experiments and Results

Implementation details

For the Generative Adversarial Network (GAN), we adopt StyleGAN [127]. The training is
progressive. Starting from 8 × 8, the latter resolution blocks are added progressively after
the previous blocks finish training. The output image resolution is 256×256. While training
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(a) Mammogram

(b) MRI

(c) CT

(d) Skin Cancer

Real Samples Generated Samples

Figure 3.4: GAN generated results. The generated results for different medical image
modalities. Comparing the real samples to the generated samples, it is clear that the gener-
ator has learned how to imitate tissue texture, tissue distribution, tissue shapes, and color
distribution. Thus, it appears to generate authentic images (see below for psychophysical
results confirming this).
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the encoder, the generator is fixed. Only the encoder and discriminator parameters are
updated. For the perceptual loss, VGG [232] conv4 3 feature layer is utilized. As for the
hyperparameters, λ1 = 0.00005, λ2 = 0.1, λ3 = 0.00005, λ4 = 2, and γ = 10. We use the
Adam optimizer [135] with β1 = 0.9 and β2 = 0.99. The learning rate is set to 0.0001.
Pytorch is utilized for coding.

For mammogram images, we use DDSM [23] dataset which contains 2, 620 normal, benign,
and malignant cases. Only the benign and malignant cases are utilized for training. For
MRI images, we utilize fastMRI [287] multi-coil dataset which contains 7135 images. For
CT images, DeepLesion [283] dataset is used. We utilize the abdomen image dataset which
contains 14601 images. For skin cancer images, we use images from ISIC Archive 1 which
contains 69445 images in total.

GAN generated results

For different medical image modalities, we train the whole network separately using corre-
sponding datasets. After the GAN part has been trained, we randomly sample latent codes
z and pass them to the generator. The generated results for Mammogram, MRI, CT, and
Skin Cancer are shown in Fig 3.4. Compared to the real samples on the left, the gener-
ated samples on the right appear very similar, and this holds across different medical image
modalities. It is clear that the generator has learned the semantic statistics of the training
dataset for different medical image modalities. The generator can generate authentic tissue
texture, tissue distribution, tissue shapes, and color distributions. Moreover, not only can
the generator reconstruct the original medical images, but also it can produce novel and
authentic medical images which do not actually exist in the real world.

Since the GAN training in general learns the manifold of the training dataset, we can
also generate gradually and continuously morphing medical images for certain experiments.
First, the latent codes need to be sampled from a closed path in the latent space. To do so,
we randomly pick three anchor points in the latent space and calculate the interpolations
between each pair of them. Then, passing those codes to the generator, we can obtain the
gradually and continuously morphing medical images. The result is shown in Fig 3.5. Due to
the space limit, we only show three interpolations between each pair; arbitrarily fine grained
interpolations can be created between any number of pairs.

Attribute manipulation

Our proposed model can generate desired medical images by manipulating the image at-
tributes. For illustration, we show how we generate mammograms with the desired lesion
patch and desired breast shapes. The results are shown in Fig 3.6.

First, we combine the desired image attributes, i.e. the lesion patch (Fig 3.6A) and shape
templates (Fig 3.6B), by merging the lesion patch and shape templates directly. Then we en-

1https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main



CHAPTER 3. CONTROLLABLE MEDICAL IMAGE GENERATION VIA GAN 30

Figure 3.5: Interpolation results. Here, we show a mammogram loop gradually changing
among three anchor images. The mammograms between two of the anchor images are gener-
ated by passing the interpolated codes of those two anchor images to the trained generator.
Any number of interpolated images between any pair of anchors can be created.

code these intermediate combined images (Fig 3.6C) using the encoder and pass the codes to
the generator. The reconstructed images from the generator are shown in Fig 3.6E (without
optimization). It is clear that the shapes are already the same as the shape templates and
the overall texture is authentic. But the desired lesion texture is not maintained. After the
last step of optimization over the lesion patch, as it is shown in Fig 3.6F, the lesion texture
is recovered. We also compare the results with the ones produced by a traditional image
blending method. As it is shown in Fig 3.6D, the transition region between the lesion texture
and the shape template background is not natural. Our proposed method can maintain both
the breast shape and the lesion texture while generating authentic tissue texture.

Human evaluation

To verify the authenticity of the generated images for different medical image modalities, we
conducted an online psychophysical experiment, recruiting both untrained participants (i.e.
no knowledge of medical imaging) and experts (e.g. radiologists or practicing clinicians who
routinely read radiographs).



CHAPTER 3. CONTROLLABLE MEDICAL IMAGE GENERATION VIA GAN 31

Tumor Texture

Shape Template Directly Merging Image Blending W/O Optimization W/ Optimization

A B C D E F

Figure 3.6: Attribute manipulation results. The desired image attributes are combined
by merging the corresponding image patches (in Column A and B) directly. Then, the
encoder will encode the manipulated image attributes, and the generator will produce the
output correspondingly. After the final optimization, it is clear that the proposed method
can generate the mammograms with the desired lesion texture and breast shape (Column
F), compared to the results from the traditional image blending method (Column D) and
the proposed method without the final optimization (Column E).

Participants

Six untrained observers (3 females, age range: 22-25) and seven experts (3 females, age
range: 32-39) participated in the mammogram online survey. Two experts were excluded
from the mammogram online survey (one dropped out and the other gave the same response
on every trial). Five untrained observers (3 females, age range: 23-25) and seven experts (3
females, age range: 28-40) participated in the CT online survey.

All subjects reported to have normal or corrected-to-normal vision. Participants voluntar-
ily participated and were offered $15 per hour as optional compensation. In our experience,
radiologists typically refuse this modest compensation. The experiments were approved by
the Institutional Review Board at the University of California, Berkeley. Participants pro-
vided informed consent.
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Stimuli

For the mammogram online survey, 50 real mammograms and 50 fake (model generated)
images were included. For the CT online survey, 50 real CT images and 50 fake CT images
were presented. All the images were randomly selected from the corresponding data pools.

Procedure

The task was to rate each image from 0 (fake/generated image) to 10 (real image) in the data
pool. Each individual image was shown for 5 seconds, and observers were asked to respond
as quickly as possible. The experiment was self-paced, so observers viewed the stimuli as
long as they wanted (up to 5 sec), and they did not have time limit for giving responses.
To ensure that participants did not randomly guess (or lapse), a small number of repetitive
trials were also included in the online survey to establish a baseline test-retest reliability
estimate. We compute the similarity among those repetitive trials.

Results

The results for mammogram and CT images in terms of the Receiver Operating Characteris-
tic (ROC) curves are shown in Fig 3.7. For both untrained participants and radiologists, and
for both mammogram and CT images, their performance curves are near the diagonal (i.e.
the chance level performance region), indicating that the generated medical images appeared
authentic. The area under the curve (AUC) can also confirm the chance-level performance.
The mean AUCs are 0.52 (p=0.395, permutation test) and 0.60 (p=0.126, permutation test)
for untrained participants and radiologists respectively in mammogram online survey. The
mean AUCs are 0.42 (p=0.888, permutation test) and 0.42 (p=0.844, permutation test) for
untrained participants and radiologists respectively in CT online survey. As shown in the
permutation tests, the large p-values indicate that performance is not statistically different
from random performance.

Although the observers were not able to accurately discriminate real from fake images,
this does not mean that observers randomly responded or failed to pay attention to the
task. To confirm this, we calculated the test-retest reliability of each observers responses for
repeated images. From the small number of repeated trials, the average test-retest similarity
is 0.65, indicating “good” consistency. For a near-threshold task, the noise ceiling is not
1, and 0.65 is ”good” in the sense that it is statistically reliable and significant [76, 77,
38]. The similarity is computed using Sokal-Michene metric [288]. It is noteworthy that
observers can have high test-retest reliability despite low sensitivity (low AUC). The test-
retest reliability indicates that observers tended to make the same judgments in repeated
trials: they consistently confused some real (fake) images as being fake (real). This resulted
in low sensitivity (low AUC) but consistent responses (”good” test-retest reliability).

We also provide the results of MRI and Skin Cancer images in the Appendix 3.6 to
avoid redundancy. Results indicate the same conclusion that the generated medical images
appeared authentic.
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Figure 3.7: Human evaluation results. Participant performance is shown in the Receiver
Operating Characteristic (ROC) curves. It is clear that their performance is near chance
level (curves near the diagonal region), indicating that the generated medical images are
authentic. Here, P1 − PN and R1 − RN represent different untrained observers and experts
in corresponding experiments.
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Limitations

Online studies have a range of potential limitations [17]. However, it has been well doc-
umented in the literature that online studies can reveal even very subtle psychophysical
phenomena reliably, and the methods are established [225, 209, 51]. In our online experi-
ment, variations in the environment or monitor settings that might occur could add noise to
the data, but they wouldn’t generate the high test retest reliability we found, or the consis-
tent pattern of results. The growing literature on internet-based psychophysics is consistent
with this [225]. Moreover, we believe that our data adds a unique perspective on this issue:
the advantages of online experiments are pronounced in cases where subjects are rare and/or
very expensive to recruit, as is the case with the experienced and highly trained radiologist
observers reported here. Future studies should consider online data collection for medical
image perception tasks, in order to broaden representation, diversity, and improve sample
sizes.

Another consideration with the experiments here is the images were viewed for at most
5 seconds. The experiment was self-paced, and the participants could view the images as
long as needed to make a choice, but this was limited to 5 seconds maximum viewing. There
are both theoretical and empirical reasons that 5 seconds is likely to be sufficient for the
task (see Appendix C), but it is conceivable that performance could change if observers were
forced to view the images for prolonged periods of time. Future experiments should therefore
examine the temporal integration of the visual processes that contribute to discrimination
of near-metameric medical images.

Perceptual loss

Currently, perceptual loss has been utilized as a similarity metric in many computer vision
tasks [157, 293, 119, 290]. In this section, we investigate the perceptual loss as a similarity
metric in medical imaging domain. We compare its results with the results of Structural
Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR), which are two
common similarity metrics.

In the experiment, we utilize random samples from mammogram, MRI, CT, and skin
cancer images as reference images (256× 256). First, we apply traditional image distortions
on those reference images, such as Gaussian blur, contrast distortion, geometric distortion,
spatial shifting, and spatial rotation. Then, we calculate the similarity measurements for
different outputs from traditional image distortions with respect to the reference images.
Detailed computation algorithms can be found in Appendix 3.6.

For quantitative comparison, we show the similarity measurement results in the following
tables. For the SSIM and PSNR metrics, the larger the measurement is, the more similar
it is between the measured image and the reference image (indicating by ↑). For perceptual
metric, the smaller the measurement is, the more similar it is between the measured image
and the reference image (indicating by ↓). Table 3.1, Table 3.2, Table 3.3, Table 3.4 show the
similarity measurements for mammogram, MRI, CT, and skin cancer images respectively.
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Table 3.1: Similarity Measurements for Mammogram Images

Image 1 Image 2
SSIM↑ 0.93 0.89

PSNR(dB)↑ 38.99 30.61
Perceptual↓ 0.96 0.64

Table 3.2: Similarity Measurements for MRI Images

Image 1 Image 2
SSIM↑ 0.84 0.68

PSNR(dB)↑ 34.42 33.01
Perceptual↓ 3.89 2.96

Table 3.3: Similarity Measurements for CT Images

Image 1 Image 2
SSIM↑ 0.54 0.24

PSNR(dB)↑ 31.04 29.91
Perceptual↓ 27.77 7.42

Table 3.4: Similarity Measurements for Skin Cancer Images

Image 1 Image 2
SSIM↑ 0.87 0.74

PSNR(dB)↑ 36.26 31.58
Perceptual↓ 3.15 1.99

For qualitative comparison, we compare the similarity measurement between Gaussian
blur outputs (Fig 3.8 Image 1 Column) and the outputs from the rest of the traditional
image distortions (Fig 3.8 Image 2 Column). We first asked human participants to give their
judgements of which image was more similar to the reference image. The results are labeled
with green check marks as shown in Fig 3.8. Then, according to the similarity measurements,
we select the images which are preferred by SSIM/PSNR or perceptual loss metric. It is clear
that SSIM and PSNR disagree with human judgements. However, the similarity decisions
from the perceptual loss metric are consistent with human judgements. Thus, the perceptual
metric is more suitable for the similarity measurement in medical imaging area.

3.5 Discussion

In this paper, we utilize Generative Adversarial Networks for medical image generation. Our
results demonstrate generalizability of the proposed approach across different modalities,
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Reference

SSIM/PSNR Prefer Perceptual Metric Prefer

Image 1 Image 2

Figure 3.8: Which image is more similar to the reference? Image 1 Column shows
the distortion by Gaussian blur. Image 2 Column shows the distortions by contrast dis-
tortion, geometric distortion, spatial shifting, and spatial rotation respectively. The human
judgements are marked using green ticks. It is clear that SSIM/PSNR results disagree with
human judgements while perceptual metric agree well with human judgements.
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such as mammogram, MRI, CT, and skin cancer images. We also manipulate the generated
images such that they contain desired attributes. Compared to traditional image blending
methods which mainly edit locally, our proposed method not only embeds the desired image
attributes but also edits the surrounding tissue texture accordingly to make the overall tissue
texture distribution reasonable. Through adversarial training, the GAN model here learns
an estimated manifold which is similar to the image manifold of the training dataset. This
estimated manifold well-characterizes the semantic statistics of the training dataset, such as
the tissue texture, tissue distribution, tissue shapes, and color distribution. Thus, once the
contents of certain regions is altered, the GAN knows how to edit the surrounding region
to match the semantic statistics of the training dataset, producing authentic manipulated
images.

Our model can generate a vast range of possible stimuli that accomplish a range of specific
and controllable goals. For example, the model can output specific body part shapes, lesion
types and locations, background and tissue textures, etc. Additionally, our model is capable
of generating gradually and continuously morphing medical images. In certain medical image
perception tasks, such as visual search [55, 278], visual detection and recognition [189], and
decision making [250, 249], this kind of controllable medical image stimuli can be very
useful. The intrinsic problem using real medical image data is that individual differences
are substantial: it is not realistic to collect gradually morphing medical images from real
medical image data (e.g., finding a sequence of naturally occurring tumors that smoothly
morph between shapes or textures is highly unlikely). Using our proposed method, we can
generate any number of authentic medical image stimuli that gradually morph. Moreover,
all the images are generated via interpolation, which allows us to control the grain of the
morphing.

For the perceptual loss metric, researchers [290] have found that traditional similarity
metrics, such as SSIM and PSNR, are not consistent with human perception of typical natural
images. But deep neural network based perceptual metrics can, surprisingly, agree with
human judgement. Through experiments, we find the same conclusion in medical imaging
domain as well that perceptual metrics preferred medical images are more perceptually
similar to the reference images compared to traditional similarity metrics. Thus, perceptual
loss metric provides an important measurement for what counts as similar in medical imaging.
Using perceptual loss metric as the similarity measurement, we can also generate metamers
for any specific medical image. The metamers are a cluster of perceptually similar images
which have been widely used in perception researches.

Medical image perception research is growing fast. Typical approaches directly or indi-
rectly assume that computer vision will be an alternative to clinical practice. Our study
introduces an additional but very different perspective, which is to use computer vision to
improve research on medical image perception. Clinicians will not be replaced anytime soon
(if ever). To help clinicians make better judgments, we need to understand clinician percep-
tion, cognition, and decision. That requires having stimuli (datasets) that are simultaneously
realistic (from the perspective of clinicians) and also controllable. Without this, it will be
impossible to make the connection between the cognitive mechanisms that clinicians possess,
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and their diagnostic success in their practice.
Interestingly, the model and morphing approach we present here could be readily ex-

tended to three-dimensional volumetric images. Volumetric medical imaging is increasingly
standard practice in clinical setttings. The GAN model and morphing approach can be com-
bined in future work to flexibly create volumetric data sets. Moreover, the GAN model is
currently unconditioned. We can also change it to conditional GANmodel such that changing
certain part of the latent code (not through the encoder) can directly modify corresponding
attributes of the output image.

3.6 Conclusion

In this paper, we propose to use Generative Adversarial Network (GAN) for medical image
generation. We test our method on various medical image modalities such as mammogram,
MRI, CT, and skin cancer images. Human evaluations verify the success of our method. We
also adopt a controllable approach to manipulate the attributes of the generated images in
order to meet certain experimental configurations. In the experiments, we successfully gen-
erate mammograms with the desired lesion texture and breast shape. The same approach
can also be applied to MRI, CT, skin cancer images, and other medical imaging modali-
ties. Finally, we compare traditional similarity measurements with the perceptual metric in
medical imaging. We find that the perceptual metric performs better than the traditional
similarity metrics such as SSIM and PSNR.
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Appendix A. Similarity Measurements

A.1 SSIM

The Structural Similarity Index Measure (SSIM) is computed over various patches of an
image. The measure between two patches x and y of the same size is:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(3.7)

where µx is the average of x, µy is the average of y, σ2
x is the variance of x, σ2

y is the
variance of y, σxy is the covariance of x and y, c1 = (k1L)

2 and c2 = (k2L)
2 are two variables

to stabilize the division with weak denominator with L = 2#bits per pixel − 1, k1 = 0.01, and
k2 = 0.03.

A.2 PSNR

Given a m× n reference image I and its distorted version K, the PSNR is defined as:

PSNR = 20 log10(MAXI)− 10 log10(MSE) (3.8)

where MAXI is 255 for 8-bit images, and the MSE is computed as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (3.9)

A.3 Perceptual loss

We utilize the same perceptual loss as [124]. The loss network is VGG-16 [232]. For the
reference image r and the distorted image x, the perceptual loss is defined as:

L(x, r) = λcl
ϕ,j
feat(x, r) + λsl

ϕ,J
style(x, r) (3.10)

where λc and λs are scalars. In the experiment, we set λc = 1 and λs = 1 × 105. ϕ
represents the VGG network. lϕ,jfeat(x, r) is the feature reconstruction loss. Let ϕj(x) be the
activation of the jth layer of the network ϕ with a shape of Cj × Hj × Wj. The feature
reconstruction loss is defined as:

lϕ,jfeat(x, r) =
1

CjHjWj

||ϕj(x)− ϕj(r)||22 (3.11)

The style reconstruction loss is defined as:

lϕ,Jstyle(x, r) = ||G
ϕ
j (x)−Gϕ

j (r)||2F (3.12)
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where Gϕ
j (x) is the Gram matrix with a shape of Cj × Cj. The elements of the Gram

matrix can be computed as:

Gϕ
j (x)c,c′ =

1

CjHjWj

Hj∑
h=1

Wj∑
w=1

ϕj(x)h,w,cϕj(x)h,w,c′ (3.13)

Appendix B. Human Evaluation of Generated MRI

and Skin Cancer Images

We also collected human evaluation experiment data for MRI and Skin Cancer images. For
the MRI experiment, four observers (1 expert, age range: 25-39) participated. For the Skin
Cancer experiment, five observers (1 expert, age range: 20-39) participated. Unlike CT and
mammogram image experiments, we could not recruit sufficient experts for MRI and Skin
Cancer online surveys. All experiments were approved by the Institutional Review Board at
UC Berkeley and the participants provided informed consent. Stimuli were 50 real and 50
fake corresponding images. All participants followed the same experimental procedures as
described in Sec 3.4.

The results for MRI and Skin Cancer images in terms of the Receiver Operating Charac-
teristic (ROC) curves are shown in Fig 3.9. The mean area under the curves (AUCs) are 0.57
(p=0.241, permutation test) and 0.62 (p=0.123, permutation test) for MRI and Skin Cancer
respectively. Notably, although we did not have experts for these MRI and Dermatology
tests, we did have one trained radiologist participate and their data echoes the untrained
observers, all of which are consistent with the CT and mammogram data.

Appendix C. Stimulus Duration Considerations

There are both empirical and theoretical reasons for limiting the display to 5 seconds, and
the empirical results confirm that 5 seconds was more than sufficient for observers to reach
a reliable decision.

First, previous research has demonstrated that radiologists can reliably discriminate ra-
diographs in well under 1 second [151, 30, 31, 195, 88, 186, 70, 69, 122, 116]. In our
experiment, we provide far more time than 1 second. Moreover, in self paced studies with
static radiographs, radiologists often spend less than 5 seconds [227].

Second, our results show that accuracy does not vary with decision time. The decision
time is reported as the time from the first viewing of the page to the final “submit” click by
the observer. This is a conservative estimate of the decision duration. The relation between
the error and decision time is shown in Fig 3.10. The fitted line reveals that error and decision
time are not correlated; more time did not make observers more accurate. Moreover, in this
experiment, 60.0% of the decisions were made before stimuli disappeared. Notably, the peak
of response density does not occur at the 5 seconds boundary. It occurs around 2 seconds,
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Figure 3.9: Human evaluation results for MRI and Skin Cancer images. Participant
performance is shown in the Receiver Operating Characteristic (ROC) curves. It is clear
that their performance is near chance level (curves near the diagonal region), indicating that
the generated medical images were authentic. Here, P1 − PN represent different untrained
observers and experts in corresponding experiments.
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which indicates that the 5 seconds stimulus duration limit does not pressure participants’
decision.
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Figure 3.10: Error-Timing Relation. The scatter plot shows the raw data of participants’
error and their decision duration. We fit a linear function to reveal the relation between
them. It is clear that the error and their decision time are not correlated. The bottom
density distribution represents the distribution of participants’ decision time. The orange
line indicates the time point when stimuli disappeared. In this experiment, 60.0% of the
decisions were made before stimuli disappeared.

Third, the significant test-retest reliability demonstrates that observers were consistent
in their responses. If exposure duration limited performance, it would add noise and that
test-retest reliability would be low [70].

Together, all of these considerations suggest that the duration of the image was probably
not the limiting factor. From the examples here, it seems visually clear that scrutinizing
the real and generated images for more than a few seconds does not make them appear
more or less similar. This hints that the metameric quality of the images is not due to
a time constraint. Nevertheless, we did not force observers to scrutinize the images for
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more than 5 seconds, and it is conceivable that forcing an extended viewing of the images
could improve performance. For this reason, it will be valuable in future studies to examine
the temporal integration of the visual processes that contribute to discrimination of near-
metameric medical images.
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Chapter 4

Improve Image-based Skin Cancer
Diagnosis with Generative
Self-Supervised Learning

4.1 Introduction

Skin cancer is increasingly becoming a public health concern. It is the most common cancer
in many countries including the United States [100, 99]. In certain developing countries, e.g.
Brazil, the situation is even worse [230]. Currently, the best method for early detection of
skin cancer is to track the changes in skin lesions. But it is hard to implement in developing
countries due to the scarcity of experts and their availability in remote areas. Thus, in Brazil,
certain types of skin cancer, such as basal cell cancer (BCC) and squamous cell cancer (SCC),
are usually diagnosed at advanced stages [231].

Teledermatology provides a promising technology for monitoring skin cancer [177, 74,
37, 33]. This is mainly attributed to the accessibility and ubiquity of smartphones. App
users can be diagnosed remotely by a group of dermatology experts without meeting the
dermatologist in-person. Dermatologists can therefore serve not only their local patients but
also patients far from their working site. Most available mobile health apps for skin cancer
detection utilize machine learning algorithms which heavily rely on handcrafted features [33].
Currently, deep learning has been widely utilized in medical image analysis, where features
are learned automatically by neural networks.

Deep learning has achieved great success in general image recognition tasks [106, 117,
243], and researchers have also applied deep learning methods to medical image analysis, in
particular; For example, in lesion classification [284, 169], lesion detection [152, 188], lesion
segmentation [286, 123], and so on. While the models become deeper and deeper, a data
scarcity issue emerges. Supervised models need ground truth labels along with image data.
For traditional computer vision tasks, researchers have created publicly labeled datasets,
such as ImageNet [52], Microsoft COCO [165], and CIFAR-10 [143]. However, collecting
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and labeling those data is tedious and expensive. In medical image arenas, researchers
usually collect data from hospitals. But the requisite data processing procedures, such as
file categorization, annotation, and data de-identification, are time-consuming. Moreover,
it requires experts (e.g., extensively trained and highly paid radiologists or pathologists) to
perform meticulous annotations that is even harder or impossible [272]. For teledermatology
and other mobile health technologies, the data scarcity issue may be even worse due to the
lack of users at the early stage.

With limited labeled data, few-shot learning [234, 239, 236] has become popular. In few-
shot learning, we are given some categories where each category only has a limited number
of images. Few-shot learning methods [234, 239, 236] utilize the knowledge learned from
some base categories which are different from the given categories. Hence, it is possible to
learn a novel category by showing one or several images [71]. Few-shot learning has already
been successful in handwritten characters, birds, dogs, and other natural images [234, 112].
However, it is still difficult to apply the few-shot learning techniques to medical images
because of the lack of base category data.

Unsupervised learning is a promising approach to reduce the labelling cost for training
deep neural networks [281, 196, 34, 108, 96]. Unsupervised learning methods [281, 196, 34,
108] aim to learn a useful representation directly from unlabeled data. Then, the learned
representation can be reused for supervised learning with limited labeled data [34], thus
reducing the cost of data labeling. For traditional computer vision tasks, there are usually
sufficient unlabeled data for self-supervised learning. However, in clinical practice, medical
images with lesions are anomalies, and are therefore rare and naturally hard to find and
collect. In particular, certain skin cancers, such as Merkel cell carcinoma, are so rare that
it is impossible to find sufficient data [109]. Therefore, it is still difficult for medical image
tasks to obtain adequate data for self-supervised learning. Notably, the effectiveness of
the learned representation with self-supervised learning depends on the size of the unlabeled
dataset [108]. It is thus critical to augment the unlabeled data when the amount of unlabeled
data itself is limited in medical image analysis.

To improve the performance of self-supervised learning on skin cancer images, we propose
to use a Generative Adversarial Network (GAN) to augment the unlabeled dataset. Gen-
erative Adversarial Networks have been utilized to create a range of authentic images [198,
129, 127, 128], including faces, cars, landscapes, and so on. Trained on real image datasets,
a GAN can learn to estimate the manifold that represents the training images. Through
training, the learned manifold and the real image manifold can be practically aligned. In
doing this, GANs can learn both local and global statistics of the real images from the
training dataset, and the generated images can have similar semantic content to that of real
images. However, it is unclear whether GAN generated images can be utilized to boost the
performance of self-supervised learning on skin cancer images.

In this paper, we investigate how to leverage GAN generated skin cancer images to
improve the self-supervised learning performance on skin cancer classification task for tele-
dermatology (Fig. 4.1). We first train StyleGAN [127] on unlabeled data to generate high
quality skin cancer images which are semantically similar to the unlabeled training dataset.
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Figure 4.1: Proposed method. We first train StyleGAN [127] on unlabeled data to generate
high quality skin cancer images which are semantically similar to the unlabeled training
dataset. Then, we train a feature encoder via self-supervised learning. At last, a linear clas-
sifier is attached to the feature encoder to test the performance of skin cancer classification
on the scarce labeled data.

Then, we train a feature encoder via self-supervised learning using the augmented training
dataset which includes the StyleGAN generated images and the labeled training images. At
last, a linear classifier is attached to the feature encoder to test the performance of skin
cancer classification on the scarce labeled data.

Contributions

In this paper, we propose to use a Generative Adversarial Network (GAN) to augment
training data for self-supervised learning on skin cancer images. The contributions of this
work can be summarised as follows:

• We propose to use StyleGAN [127] for data augmentation to boost the self-supervised
skin cancer classification accuracy. To the best of our knowledge, it is the first time
that GAN-based data augmentation is applied to self-supervised learning algorithms
for skin cancer image classification tasks.

• The self-supervised skin cancer classification accuracy can be boosted by 11.17% on
BCN20000 [45] and 3.07% on HAM10000 [251] after StyleGAN-based data augmenta-
tion.
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4.2 Related work

Generative Adversarial Networks: The GAN is a promising image synthesis model.
The model consists of two networks, a generator network and a discriminator network.
Inspired by game theory, those two networks are trained in an adversarial process where the
generator generates fake but authentic images to fool the discriminator and the discriminator
discriminates between the real and fake images repeatedly [95]. Conceptually, the training
process can be described as a minmax game, which is formulated as follows:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

where G represents the generator, D represents the discriminator, pdata(x) indicates the
real data distribution, and pz(z) indicates the noise vector distribution. While generating
new images, the generator takes in noise vectors z sampled from distribution pz(z) and maps
onto the estimated image manifold. The training process guarantees that the estimated
image manifold is aligned with the training image manifold by optimizing this minmax loss,
i.e. the adversarial loss. Ideally, this minmax game has a global optimum at pg = pdata(x),
where pg is implicitly defined by the generator G while G(z) is the sample when z ∼ pz(z).

Originally, the training process of Generative Adversarial Networks (GAN) is highly
unstable. This makes the optimum point of the training hard to reach. Hence, the generated
images from this pioneering work are blurry and hard to recognize. Later work [98, 4, 26]
focuses on improving the loss metrics and training strategies, which improves the generated
image quality. A modified approach, the PGGAN [129] proposed to train the GAN in a
coarse to fine manner. Starting with low resolution, high resolution layers will be added
and trained after the lower layers. Upon the same training strategy, StyleGAN [127] added
another mapping from original latent space Z into theW space through a non-linear mapping
network and then merged into the synthesis network via adaptive instance normalization
(AdaIN) at each convolutional layer [57, 118]. This potentially improves the representational
ability of StyleGAN and allows it to generate stunningly high resolution images.

In medical image applications, Frid-Adar et al. [82] utilized DCGAN [207] and ACGAN
[194] to generate CT liver lesion patches and boosted the liver lesion classification perfor-
mance. Han et al. [103] proposed to use WGAN [98] to generate MR images for data
augmentation and physician training. Nie et al. [191] used GAN to predict CT images from
MR images. And, Cao et al. [29] proposed an Auto-GAN to synthesize missing modality for
medical images. In particular, GAN has been widely used for skin cancer image generation
and purification [19, 91, 18].

Unsupervised Learning: Unsupervised learning aims at learning useful represen-
tations from unlabeled data. In [281], Wu et al. try to learn an embedding function by
enforcing the features to be discriminative among individual instances. In unsupervised
contrastive learning, the goal is to learn a good representation by pulling together positive
sample pairs and pushing apart negative sample pairs. The idea of unsupervised contrastive
learning is instantiated via different self-supervised learning methods [196, 113, 32, 34, 108,
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96] in which the positive sample pairs are crafted by applying different data augmentations
on the same image. In self-supervised learning, the augmentations of the same image are
attracted and the augmentations of different images are repulsed in the embedding space. In
particular, SimCLR [34] leverages the composition of data augmentations and large batch
sizes to improve the effectiveness of the representation. MoCo [108] uses a momentum en-
coder to improve the consistency of the queue of negative samples. From an augmented view
of an image, BYOL [96] trains an online network to predict a target network representation
of the same image under a different augmented view.

In addition to supervised learning approaches, several groups have applied unsupervised
learning to medical image registration and classification tasks [8, 291, 148]. For example,
Armanious et al. [5] proposed an unsupervised translation framework for PET-CT transla-
tion and MR motion correction. Li et al. [160] utilized multi-modal data for retinal disease
diagnosis via self-supervised learning. In particular for skin cancer images, [22, 262, 7] used
self-supervised learning for skin cancer classification tasks.

Traditional Data Augmentation: Data augmentation is a traditional approach to
improve model generality. Common methods include cropping, rotation, occlusion, flipping,
shearing, zooming in/out, image blurring, and changing brightness or contrast. In supervised
learning, traditional augmentation methods have been widely utilized [144]. But the per-
formance improvement is limited since those elementary image operations do not introduce
much variety to the training data. Recently, GAN-based data augmentation methods have
been widely utilized. Shin et al. [229] used GAN-based data augmentation to improve the
performance of tumor segmentation in brain MRI. Lim et al. [164] proposed an adversarial
autoencoder to augment the data for unsupervised anomaly detection. Waheed et al. [258]
proposed CovidGAN to enhance the performance of CNN for COVID-19 detection.

Our proposed method aims to utilize GAN generated skin cancer images to augment
the training data for self-supervised learning. Unlike [19, 91, 18], which mainly aim at skin
cancer image generation, and [22, 262, 7], which mainly focus on the unsupervised learning
for skin cancer images, our proposed method leverages the advantages of both methods and
improves the performance of the self-supervised learning.

4.3 GAN Augmentation for Self-Supervised Learning

on Skin Cancer Images

In this paper, we propose to utilize Generative Adversarial Networks (GANs) to generate
synthetic unlabeled data, which is then used for self-supervised learning of skin cancer images.
For traditional computer vision tasks, unlabeled data is easy to collect. However, for medical
image analysis, even unlabeled data is scarce, particularly for some rare diseases. Our
proposed approach allows self-supervised learning on a limited number of unlabeled data.
The self-supervised pre-trained model can be further utilized to boost performance on skin
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cancer image classification.

Self-supervised learning on skin cancer images

It is infeasible to train deep neural networks with a limited number of labeled skin cancer
images, so we employed self-supervised learning to pretrain the model on unlabeled images.
In self-supervised learning, the goal is to learn a useful representation directly from unla-
beled data. Several factors influence the success of self-supervised learning: the amount of
unlabeled data [108], the training batch size [34], and the composition of data augmentation
operations [34]. In contrast to natural images, unlabeled medical images are also expensive to
collect. Therefore, we augment the unlabeled data with GAN generated synthetic images to
increase the size of the unlabeled dataset. We employ two recently proposed self-supervised
learning methods, SimCLR [34] and BYOL [96], to pretrain the model on unlabeled images.

SimCLR

SimCLR [34] is a recently proposed contrastive self-supervised learning method. The goal of
SimCLR is to learn representations by attracting differently augmented views of the same
data example in the latent space. For each image x in a given set of N images, SimCLR
generates two augmented views of x via a stochastic data augmentation module, resulting
in a total of 2N images. The two differently augmented views of the same image form a
positive pair and the other 2(N − 1) images are negative samples. SimCLR applies a neural
network base encoder and a projection head to embed each image in a latent space. The
embedded vector is denoted as z. For a positive pair {zi, zj}, the contrastive loss is written
as,

ci,j = − log
exp(zTi zj/τ)∑2N

k=1,k ̸=i exp(z
T
i zk/τ)

(4.2)

where τ is a temperature parameter. Positive pairs will be attracted in the latent space
by minimizing Equation 4.2.

BYOL

More recently, BYOL [96] was proposed as a self-supervised learning method which does
not rely on negative samples. BYOL learns the representation by iteratively predicting one
augmented view of a given image via a differently augmented view of the same image.

Formally, given an image x, BOYL applies stochastic data augmentation to generate two
augmented views x′ and x′′. The online network with parameter θ generates a representation
z′θ based on x′ and the target network with parameter ξ generates a representation z′′ξ based
on x′′. Then the target network outputs a prediction cθ(z

′
θ) of z′′ξ with a classifier cθ. The

prediction cθ(z
′
θ) and z′′ξ are both L2-normalized and are optimized to be close via a mean

squared error L′
θ,ξ. The loss function is further symmetrized by feeding x′ to the target
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network and x′′ to the online network to obtain L′′
θ,ξ. The final loss function is written as

Lθ,ξ = L′
θ,ξ + L′′

θ,ξ.
The parameter θ of the online network is optimized via stochastic gradient descent and

the parameter ξ of the target network is updated with a moving average,

θ ← OPT (θ,∇Lθ,ξ) ξ ← γξ + (1− γ)θ (4.3)

where OPT is an optimizer and ∇Lθ,ξ is the gradient of the loss function. γ is a hyperpa-
rameter which controls the smoothness of the moving average.

(b) Classification Pipeline

(a) Self-Supervised Learning Pipeline

Figure 4.2: Proposed Pipeline. (a) Self-supervised learning pipeline: StyleGAN is first
trained using the unlabeled samples and generates authentic skin cancer samples to augment
the original training dataset. Then we use self-supervised learning to train a feature encoder.
We generate augmented views for each sample in the augmented dataset. The augmented
views are treated as positive pairs that are trained to pull towards each other. The augmented
views from other samples form negative pairs that are pushed away from each other. (b)
Classification pipeline: we leverage the self-supervised trained feature encoder on the skin
cancer image classification with limited labeled data. During training, we attach a fully
connected layer as the classifier. Only the parameters of the classifier are updated.
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Method

In this section, we describe the proposed pipelines of data augmentation with GAN for
self-supervised learning on skin cancer images. The pipeline of our proposed method is
shown in Figure.4.2. First, StyleGAN is trained on the unlabeled skin cancer images and
generates authentic samples for self-supervised learning. Then we train the feature encoder
on the augmented dataset including the scarce labeled images and the generated samples
from StyleGAN. At last, we leverage the self-supervised learned feature encoder on the skin
cancer image classification task on scarce labeled data.
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Figure 1. While a traditional generator [30] feeds the latent code
though the input layer only, we first map the input to an in-
termediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convo-
lution layer. Gaussian noise is added after each convolution, be-
fore evaluating the nonlinearity. Here “A” stands for a learned
affine transform, and “B” applies learned per-channel scaling fac-
tors to the noise input. The mapping network f consists of 8 lay-
ers and the synthesis network g consists of 18 layers — two for
each resolution (42 � 10242). The output of the last layer is con-
verted to RGB using a separate 1⇥ 1 convolution, similar to Kar-
ras et al. [30]. Our generator has a total of 26.2M trainable param-
eters, compared to 23.1M in the traditional generator.

spaces to 512, and the mapping f is implemented using
an 8-layer MLP, a decision we will analyze in Section 4.1.
Learned affine transformations then specialize w to styles
y = (ys,yb) that control adaptive instance normalization
(AdaIN) [27, 17, 21, 16] operations after each convolution
layer of the synthesis network g. The AdaIN operation is
defined as

AdaIN(xi,y) = ys,i
xi � µ(xi)

�(xi)
+ yb,i, (1)

where each feature map xi is normalized separately, and
then scaled and biased using the corresponding scalar com-
ponents from style y. Thus the dimensionality of y is twice
the number of feature maps on that layer.

Comparing our approach to style transfer, we compute
the spatially invariant style y from vector w instead of an
example image. We choose to reuse the word “style” for
y because similar network architectures are already used
for feedforward style transfer [27], unsupervised image-to-
image translation [28], and domain mixtures [23]. Com-
pared to more general feature transforms [38, 57], AdaIN is
particularly well suited for our purposes due to its efficiency
and compact representation.

Method CelebA-HQ FFHQ
A Baseline Progressive GAN [30] 7.79 8.04
B + Tuning (incl. bilinear up/down) 6.11 5.25
C + Add mapping and styles 5.34 4.85
D + Remove traditional input 5.07 4.88
E + Add noise inputs 5.06 4.42
F + Mixing regularization 5.17 4.40

Table 1. Fréchet inception distance (FID) for various generator de-
signs (lower is better). In this paper we calculate the FIDs using
50,000 images drawn randomly from the training set, and report
the lowest distance encountered over the course of training.

Finally, we provide our generator with a direct means
to generate stochastic detail by introducing explicit noise
inputs. These are single-channel images consisting of un-
correlated Gaussian noise, and we feed a dedicated noise
image to each layer of the synthesis network. The noise
image is broadcasted to all feature maps using learned per-
feature scaling factors and then added to the output of the
corresponding convolution, as illustrated in Figure 1b. The
implications of adding the noise inputs are discussed in Sec-
tions 3.2 and 3.3.

2.1. Quality of generated images
Before studying the properties of our generator, we

demonstrate experimentally that the redesign does not com-
promise image quality but, in fact, improves it considerably.
Table 1 gives Fréchet inception distances (FID) [25] for var-
ious generator architectures in CELEBA-HQ [30] and our
new FFHQ dataset (Appendix A). Results for other datasets
are given in Appendix E. Our baseline configuration (A)
is the Progressive GAN setup of Karras et al. [30], from
which we inherit the networks and all hyperparameters ex-
cept where stated otherwise. We first switch to an improved
baseline (B) by using bilinear up/downsampling operations
[64], longer training, and tuned hyperparameters. A de-
tailed description of training setups and hyperparameters is
included in Appendix C. We then improve this new base-
line further by adding the mapping network and AdaIN op-
erations (C), and make a surprising observation that the net-
work no longer benefits from feeding the latent code into the
first convolution layer. We therefore simplify the architec-
ture by removing the traditional input layer and starting the
image synthesis from a learned 4⇥ 4⇥ 512 constant tensor
(D). We find it quite remarkable that the synthesis network
is able to produce meaningful results even though it receives
input only through the styles that control the AdaIN opera-
tions.

Finally, we introduce the noise inputs (E) that improve
the results further, as well as novel mixing regularization (F)
that decorrelates neighboring styles and enables more fine-
grained control over the generated imagery (Section 3.1).

We evaluate our methods using two different loss func-
tions: for CELEBA-HQ we rely on WGAN-GP [24],

2

Figure 4.3: StyleGAN Architecture. Compared to traditional GAN models, whose genera-
tor directly takes in the latent code only from the input layer, the generator of StyleGAN
first maps the latent space to an intermediate latent space W using a 8-layer Multilayer
Perceptron (MLP). Then it will be merged into each convolutional layer via adaptive in-
stance normalization (AdaIN). Gaussian noise will be added after each convolution before
the activation layer. ”A” represents a learned affine transform and ”B” represents learned
per-channel scaling factors to the noise input. (Figure is reprinted from [127])

StyleGAN-based Data Augmentation

StyleGAN is the state-of-the-art high resolution image synthesis model. The architecture is
shown in Figure.4.3. Unlike a traditional generator, the latent code z will first be mapped
to w in an intermediate latent space through a non-linear mapping network, i.e. a 8-layer
Multilayer Perceptron (MLP). Then the learned affine transformations specialize w to styles
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y = (ys,yb) that control adaptive instance normalization (AdaIN) [57, 118] operations after
each convolution layer of the synthesis network. The AdaIN operation is defined as

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i (4.4)

where xi is the feature map at each layer. It will be normalized separately, then scaled
and biased according to the scalar components from styles y.

StyleGAN is trained in a progressive manner similar to PGGAN [129]. The training
starts from 4× 4 resolution. Then after previous resolution layers finish training, layers for
the next resolution will be attached for training. In this paper, the generator network consist
of 14 layers – two for each resolution (42–2562). The final resolution for the generated image
is 256× 256.

Using the same training dataset as the one for self-supervised learning, we train a Style-
GAN. Then, we sample vectors z in the latent space and pass them into the StyleGAN
generator to generate extra skin cancer images for data augmentation. Finally, the GAN-
generated images and original training data are combined together for self-supervised learn-
ing. In total, 20, 000 skin cancer images are generated for data augmentation, augmenting
the training dataset size to 25, 000.

(a) Original (b) Resize and Crop (c) Horizontal Flip (d) Color Jitter (e) Grascale (f ) Gaussian Blur

Figure 4.4: Illustration of the operations for SimCLR augmented views. Here, we show all
elementary operations. During training, each augmented view is generated by randomly
combining those operations. In this paper, we generated two augmented views for self-
supervised training.

Self-supervised learning on skin cancer images

For SimCLR [34], we use a Resnet18 [106] backbone for feature encoding. During training,
we generate 2 augmented views for each image via random cropping, random horizontal
flipping, random color jittering, and random grayscaling. Augmented views from the same
image are treated as positive pairs. In SimCLR, the positive pairs are attracted in the latent
space. While for augmented views from different images, they are negative pairs, which will
be repelled from each other. Positive pairs augmented from an example skin cancer image
are shown in Figure.4.4. For BYOL [96], we generate 2 augmented views by using the same
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image operations as SimCLR. And the online network and target network are optimized
iteratively. After self-supervised learning, the feature encoder is fixed.

For both methods, we use 5, 000 images randomly subsampled from the training dataset
(BCN20000 [45] or HAM10000 [251]) to train the feature encoder. We do not use all the
image from the training dataset because we aim to simulate the data scarcity problem which
widely exists in medical image arenas. Moreover, in this data scarcity setting, we can test
whether the GAN-based data augmentation is able to boost the self-supervised learning
performance. While using StyleGAN-based data augmentation, we add the aforementioned
20, 000 generated samples together with the original training images for self-supervised learn-
ing.

Classification via StyleGAN-boosted feature encoder

For the baseline model, we use the Resnet18 [106] feature encoder trained by self-supervised
learning methods as mentioned in the previous section using subsampled 5, 000 skin cancer
images. We add one fully connected layer attached to the feature encoder to classify the
skin cancer images. Then, we finetune this classifier. Samples from this dataset are shown
in Figure.4.5.

Figure 4.5: Training samples extracted from BCN20000 [45]. It is clear that the variety
of the dataset is large. The images have various skin tones, dark corners, hairs, and color
patches, which makes the classification extremely hard without a good feature encoder.
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During training, the feature encoder parameters are fixed, and only the parameters of the
last fully connected layer will be optimized. The training utilizes 80% of the scarce labeled
dataset (5000 images subsampled from BCN20000 [45] or HAM10000 [251]). The remaining
20% of the dataset is used for testing. For all the experiments, we repeatedly train the
last fully connected layer for 5 times with different random seeds and record the mean test
accuracy and its standard deviation.

4.4 Experiments

In the experiments, we investigate the following questions:

• Does the self-supervised pretraining improve the accuracy of the skin cancer classifica-
tion?

• Does the StyleGAN-based data augmentation improve the quality of the representation
learned by self-supervised learning?

• Does the quantity of augmented images influence the improvement of skin cancer clas-
sification performance?

Evaluation datasets

BCN20000 [45] is the dataset from the International Skin Imaging Collaboration (ISIC) 2019
Challenge. It contains 25, 331 labeled but unbalanced skin cancer images. 8 skin cancer types
are included: nevus, melanoma, basal cell carcinoma, seborrheic keratosis, actinic keratosis,
squamos cell carcinoma, dermatofibroma, vascular lesion.

HAM10000 [251] is the dataset from the ISIC 2018 Challenge. It contains 10, 000 skin
cancer images, including actinic keratosis, basal cell carcinoma, benign keratosis, dermatofi-
broma, melanocytic nevi, melanoma, and vascular lesion.

Both datasets are highly imbalanced. The quantity of each skin cancer category varies a
lot. Compared to HAM10000 [251], BCN20000 [45] is a more challenging dataset. BCN20000
contains lesions found in hard to diagnose locations (nails and mucosa) [45]. Most of the
images would be considered hard-to-diagnose [45].

Model training and implementation details

The latent vector for StyleGAN generator has the dimension of 512. The generator consists
of 14 layers – two for each resolution (42–2562). The discriminator has the mirrored structure
of the generator – also two for each resolution (2562–42). We use the Adam optimizer [135]
with β1 = 0.0 and β2 = 0.99. The learning rate is set to 0.002. During training, the images
are reshaped to 256× 256.
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While training via SimCLR [34], we augment 2 views for each training image. We train
the Resnet18 [106] backbone for 200 epochs with a batchsize of 256. The learning rate is set
to 0.0003. During training, the images are reshaped to 96× 96.

For the fine tuning, we attach 1 fully connected layer to the Resnet feature encoder for
skin cancer image classification. We fix the parameters for the feature encoder and train the
attached fully connected layer 200 epochs. The Adam optimizer [135] is used with default
parameters. The learning rate is 0.0001.

Quantitative Results

With vs. Without Self-supervised Pretraining

In order to investigate whether self-supervised learning would improve the accuracy of the
skin cancer classification, we compare the classification results using the feature encoder
with and without self-supervised pretraining on both BCN20000 [45] and HAM10000 [251].
For the result without self-supervised pretraining, we randomly initialize the Resnet18 fea-
ture encoder parameters. While for self-supervised pretraining, we train a Resnet18 feature
encoder using SimCLR and BYOL. During testing, we attach a fully connect layer as the
classifier and train its parameters with the feature encoder parameters fixed. Here, both
SimCLR and BYOL are trained using the 5, 000 images subsampled from BCN20000 [45]
or HAM10000 [251]. The comparison of the skin cancer classification accuracy is shown in
Table.4.1.

BCN20000 HAM10000
w/o pretraining 26.05±1.24% 67.87±0.38%

SimCLR 34.73±1.07% 71.84±0.23%
BYOL 35.71±2.04% 71.37±0.36%

Table 4.1: Classification accuracy w/o vs. w/ self-supervised pretraining on BCN20000[45]
and HAM10000[251]

On BCN20000 [45], the classification accuracy is 26.05 ± 1.24% without self-supervised
pretraining. SimCLR and BYOL achieve 34.73 ± 1.07% and 35.71 ± 2.04% respectively.
On HAM10000 [251], the classification accuracy is 67.87 ± 0.38% without self-supervised
pretraining. SimCLR and BYOL achieve 71.84± 0.23% and 71.37± 0.36% respectively.

Clearly, with SimCLR and BYOL self-supervised pre-training, we can improve the skin
cancer classification accuracy compared to a random feature encoder (without self-supervised
pretraining). This indicates that self-supervised learning methods can learn useful represen-
tations directly from unlabeled skin cancer images. It further reveals that it is possible to
utilize the knowledge from unlabeled images to improve the medical image classification.
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With vs. Without StyleGAN-based Data Augmentation

We then investigate whether the StyleGAN-based data augmentation would improve the self-
supervised learning performance on the skin cancer classification. First, we train a Resnet18
network as the feature encoder via self-supervised learning using 5, 000 skin cancer images
subsampled from BCN20000 [45] or HAM10000 [251]. We utilize both SimCLR and BYOL.
For the StyleGAN-based data augmentation, 20, 000 generated skin cancer images are added
into the training dataset for self-supervised learning, augmenting the training dataset size
to 25, 000. The comparison of the skin cancer classification accuracy is shown in Table.4.2.

BCN20000 HAM10000
SimCLR w/o DA 34.73±1.07% 71.84±0.23%
SimCLR w/ DA 38.55±0.44% 72.52±0.25%
BYOL w/o DA 35.71±2.04% 71.37±0.36%
BYOL w/ DA 46.88±0.48% 74.44±0.28%

Table 4.2: Classification accuracy w/o vs. w/ GAN-based Data Augmentation (DA) on
BCN20000[45] and HAM10000[251]

For SimCLR, the classification performance is boosted from 34.73 ± 1.07% to 38.55 ±
0.44% on BCN20000[45], and the classification performance is boosted from 71.84 ± 0.23%
to 72.52 ± 0.25% on HAM10000[251]. For BYOL, the classification performance is boosted
from 35.71 ± 2.04% to 46.88 ± 0.48% on BCN20000[45], and the classification performance
is boosted from 71.37± 0.36% to 74.44± 0.28% on HAM10000[251].

Clearly, the StyleGAN-based data augmentation can improve the self-supervised learning
performance on the skin cancer classification. Since we are using the feature encoder trained
via self-supervised learning methods, it further indicates that the StyleGAN-based data
augmentation can help self-supervised learning methods learn more useful representation
from unlabeled skin cancer images.

Influence of the StyleGAN Augmented Sample Quantity

In this experiment, we vary the quantity of both raw unlabeled training images and StyleGAN
augmented samples to train self-supervised classification via SimCLR. The experiment is
conducted on BCN20000[45]. The quantity of raw unlabeled images is set at 1k, 3k, 5k and
7k. The quantity of StyleGAN augmented samples is set at 0, 10k and 20k. We investigate
the classification accuracy under different combinations of those two parameters, i.e. at
different augmentation ratio. The augmentation ratio is defined as follow.

ratio =
Qraw

Qaugmentation

(4.5)
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where Qraw is the quantity of raw unlabeled images and Qaugmentation is the quantity of
StyleGAN augmented samples. The skin cancer classification accuracy at different augmen-
tation ratios is shown in Fig.4.6.
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Figure 4.6: Classification accuracy on BCN20000[45] at different StyleGAN augmented sam-
ple quantities.

From the bar chart, it is clear that without StyleGAN-based data augmentation, increas-
ing the raw unlabeled image quantity can help to improve the self-supervised classification
result. While applying StyleGAN-based data augmentation, for small raw unlabeled images
quantities where the augmentation ratio is large, such as 1k and 3k, the skin cancer classi-
fication accuracy can gain a lot. However, for larger raw unlabeled images quantities where
the augmentation ratio is small, such as 5k and 7k, the accuracy boost is reduced.

Qualitative Results

StyleGAN generated results

After StyleGAN has been trained, we randomly sample latent codes z, then pass them to the
generator. The generated images are shown in Figure.4.7 and Figure.4.8 for BCN20000[45]
and HAM10000[251] respectively. From the generated results, it is clear that the StyleGAN
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Unlabeled Samples Generated Samples

Figure 4.7: Uncurated set of novel images produced by StyleGAN on BCN20000[45]. Com-
pared to the images from unlabeled training dataset, the generated samples well maintained
the semantic statistics, such as the skin tone, the dark corner of the image, and some color
patches. The generated skin cancer image resolution is 256× 256.

Unlabeled Samples Generated Samples

Figure 4.8: Uncurated set of novel images produced by StyleGAN on HAM10000[251]. The
generated skin cancer images are semantically similar to the unlabeled training samples. It is
clear that compared to the images in BCN20000[45], HAM10000[251] has less diverse image
texture.
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generator has learned the semantic statistics of the training dataset, such as the skin tone,
the dark corner of the image, and some color patches. Moreover, the generator can utilize
the learned statistics to produce novel images which do not exist in the real world.

Additionally, it is clear that BCN20000[45] is a more challenging dataset since it has more
diverse image texture compared to HAM10000[251]. Intuitively, this indicates that compared
to HAM10000, images in BCN20000 scatter in a sparser way on the image manifold such that
StyleGAN based data augmentation can efficiently interpolate between the image samples.
On the contrary, HAM10000 is less diverse, i.e., the image samples are locally denser on the
image manifold. Therefore, the performance boost from StyleGAN based data augmentation
is limited on HAM10000.

Comparison between PGGAN and StyleGAN

We also train PGGAN to perform the skin cancer image generation on BCN20000[45]. We
compare PGGAN generation quality with StyleGAN generation quality because they both
share the same progressive training manner and have similar network structures. During
training, we use the same number of epochs with the same optimizer setting and learning
rate. The generation results are randomly picked for both models and are arranged based
on certain semantics. The comparison is shown in Figure.4.9.

PGGAN Generated Samples StyleGAN Generated Samples

Figure 4.9: PGGAN and StyleGAN skin cancer image generation quality comparison. It is
clear that overall StyleGAN generated skin cancer images have higher visual quality com-
pared to those generated by PGGAN. As indicated by the red arrows, the skin cancer image
details, such as hair, lesion texture, surrounding skin texture and color patches, are main-
tained sharper and more meaningful in StyleGAN generated samples.
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In general, StyleGAN generation is better than the PGGAN generation visually. As
indicated by the red arrows, StyleGAN can generate sharper details for hair, lesion texture,
surrounding skin texture and color patches, while those details are blurry and unreasonable
in PGGAN generated skin cancer images. This is attributed to the non-linear mapping
network from original latent space Z into theW space and the merging branch via adaptive
instance normalization (AdaIN) at each convolutional layer [57, 118] in StyleGAN.

4.5 Discussion

In this paper, we showed that StyleGAN is capable of synthesising authentic skin cancer
images. This is valuable because the ability to generate images like those presented here
helps ameliorate the significant problem of data scarcity. In particular, for rare skin cancer
cases, the data augmentation benefit is even larger. Thus, the proposed approach can reduce
the cost and human effort required for teledermatology.

Moreover, other mobile health apps will also suffer data scarcity issue at the early stage.
We can apply the proposed method to other medical modalities as well. The generated
images can also be used in other domains, such as medical image perception and medical
image analysis.

A second goal of this paper was to test whether StyleGAN generated samples can be
utilized for data augmentation for self-supervised learning. We found that StyleGAN-based
data augmentation significantly boosted the performance of self-supervised skin cancer clas-
sification. Essentially, using the generated images helped the classifier better discriminate
skin lesions. In a followup experiment, we found that the classification performance improve-
ment was most significant in cases when there were fewer labeled training data. That is, the
benefit of augmenting data is most pronounced when labeled data are scarce.

Compared to supervised learning, self-supervised learning only requires a small quantity
of labeled data at the final training stage. Thus, with the gradually growing unlabeled
training data from users, self-supervised learning system is easier to scale. Moreover, it only
requires experts to label a small amount of key data. Therefore, it is more suitable for mobile
health app systems. With our proposed generative self-supervised learning, the performance
of mobile health apps could be much improved.

4.6 Conclusion

In this paper, we trained StyleGAN to augment the training dataset for self-supervised
learning of skin cancer images for teledermatology. Our model was able to generate authentic
skin cancer images, and those images were effective as a source of augmentation for self-
supervised learning. The benefit of augmenting real datasets with StyleGAN-based generated
data was most prominent when the original dataset was limited in size. Therefore, when real
data are scarce (for example, in several types of skin cancer including Merkel cell carcinoma),
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the augmentation approach presented here could be highly beneficial. This, in turn, could
be very helpful for mobile health applications.
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Chapter 5

Serial dependence in perception
across naturalistic GAN-generated
mammograms

5.1 Introduction

Clinical diagnosis based on radiographs is not always perfect because of misperceptions
and misinterpretations[14, 50]. Some sources of interpretive error have been identified and
characterized, including search and recognition errors[30, 193], cognitive biases[50, 158],
search satisfaction[6, 12], subsequent search misses[16, 24, 105], and low prevalence[279, 280,
218, 181, 68, 114, 149]. However, some other errors in cancer image interpretation are still
without explanation[27, 260, 259]. Thus, a great deal of research has been carried out in
the last several decades to identify and characterize the sources of these errors in order to
mitigate them.

Radiologists often read dozens or hundreds of radiographs in batches [180], sometimes
looking at several related images one after the other. Their job is to localize the lesions (if
present), and then to recognize them by judging their size, class, and so on. A main under-
lying assumption here is that radiologists’ perceptual decisions about the current radiograph
are independent of prior perceptual experience.

Recent theoretical and empirical research suggests that this assumption is not true. For
example, the human visual system is characterized by visual serial dependency, a type of
sequential effect in which what was previously experienced influences (captures) what is seen
and reported at this moment[39, 75]. Serial dependencies can manifest in several domains,
such as perception[41, 42, 75, 173], decision making[1, 73], and memory[9, 78, 137], and they
occur with a variety of features and objects, including orientation[75, 175], position[20, 173],
faces[161, 245], attractiveness[246, 282, 141], ambiguous objects[270], ensemble coding of ori-
entation[175], and numerosity[41, 46]. Serial dependence is characterized by three main kinds
of tuning. First, feature tuning: serial dependence occurs only between similar features and
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not between dissimilar ones[75, 84, 175, 173]. Second, temporal tuning: serial dependence
gradually decays over time[75, 173, 270]. Third, spatial tuning: serial dependence occurs
only within a limited spatial window; it is strongest when previous and current objects are
presented at the same location, and it gradually decays as the relative distance increases[20,
44, 75, 173]. In addition, attention is a necessary component for serial dependence[75, 83,
133].

Because our visual world is stable–objects that were present a moment ago tend to still be
present at this moment–we benefit from serial dependence most of the time. This is because it
is more efficient to simply recycle perceptual history[75, 41, 173], using the past to predict the
present. However, this recycling is not always beneficial. When stimuli are randomly ordered
or in unnatural situations–such as when the visual world is not autocorrelated or stable–
serial dependence can negatively impact perceptual decisions[75, 85, 161]. For example,
visual search in clinical settings, such as reading randomly ordered radiographs or pathology
slides, is a striking example where stimuli may not be autocorrelated. In this case, the past
may not be a good predictor of the present, and serial dependence in perceptual decisions
would be problematic. In fact, empirical experiments have found that clinicians’ perceptual
decisions can be biased towards the previous images they have seen[171, 174].

A drawback of previous work[171, 174] is that serial dependence was measured with
unrealistic stimuli, such as random geometric shapes superimposed on a mammogram sec-
tion (Figure 5.2A). Although well-controlled, these images are clearly inauthentic and are
therefore far from naturalistic mammograms[171, 174]. Unfortunately, because serial de-
pendence has only been measured with unrealistic stimuli, it remains unclear whether serial
dependence in perceptual judgments would even occur for truly realistic radiographs.

In this study, we aim to measure the presence of sequential effects in the perceptual deci-
sions of observers who view controlled, realistic GAN-generated radiographs. To accomplish
this, we created authentic-looking medical images generated by a computer vision model.
The model allows precise control over the stimulus space, while simultaneously ensuring that
the simulated radiographs are realistic. In fact, a previous study found that these images are
indistinguishable from (i.e., metameric with) down-sampled real radiographs, even to many
professional clinicians[214, 213]. We hypothesize that even with authentic-looking simulated
mammograms, perceptual decisions about any given current image will be biased toward the
previously seen images, due to serial dependence.

5.2 Methods

Mammogram Generation

In computer vision, generative models[136, 95] have been utilized for authentic image gen-
eration for years. In particular, Generative Adversarial Networks (GANs) are a promising
method to create authentic images in different modalities such as human faces, places, ani-
mals, cars, and so on[98, 129, 127]. Similar approaches have also been applied for medical
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Real Samples Generated Samples

Figure 5.1: Generated samples via GAN. Here, we show a comparison between the real
sample (down-sampled mammograms from DDSM Dataset which are collected from the
hospital) and GAN-generated samples. After training, GAN learns the image manifold of
down-sampled real samples and then samples on the learned manifold to generate novel
simulated samples. Additionally, since the manifold has been learned, interpolation can be
applied to generate quantifiably similar images. The resolution of the real and generated
samples is equated.

image generation[103, 82, 214, 215]. In this study, we adopted a controllable medical image
generation method[214, 213] to create all stimuli used in our experiments. Because of the
GAN generation paradigm, the generated samples share the similar data distribution as the
real samples maintaining the variety of the real ones. A comparison between down-sampled
real samples and generated samples is shown in Figure 5.1.

Once the GAN was pretrained, we randomly picked three anchor points in the latent
space and generated interpolations between each of the three anchor points. Each anchor
points and the corresponding interpolations are latent vectors with the size of 512. 1 Then,
we passed the anchors as well as the interpolations through the pretrained generator to
generate the corresponding images, forming a circular continuum (Figure 5.2B). One hundred
and forty-seven images (48 between each anchor) were generated on the circular continuum
with size 256× 256 2. In the experiment, 20 circular continuums like this were generated by
creating 20 sets of anchors and passing them along with the corresponding interpolations to
the pretrained generator. In total, we generated 2940 images. Four example continua are
shown in Figure 5.3.

Since the images within a given continuum were generated based on interpolations in the
latent space, nearby images on the circular continuum are similar, while distant images on
the circular continuum differ from each other. With random picking, the generated image

1Please see the publications[214, 213] for thorough details about the model and latent space.
2The reason we used 256 × 256 was for proof of concept and because the training takes exponentially

longer with higher-resolution images.
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A. Stimuli from previous works 46, 47

B. GAN Generated Stimuli 

Figure 5.2: Comparison between stimuli used in previous experiments and current GAN-
generated stimuli. (A) Stimuli from previous works [171, 174]. A circular continuum of simple
shapes is generated first, then each shape is fused onto a mammogram tissue background
section to form the experiment stimuli. (B) We randomly picked three anchor points in
the latent space (Image A, B and C shown with solid dots) and generated 48 interpolated
morphs in between each pair (shown with hollow dots) via GAN (147 morphs in total) to
form a circular morph continuum. In total, 20 circular continuums were generated. Here,
we show 1 continuum as an example. More continuum examples can be found in Figure 5.3.
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Figure 5.3: Three extra example continua. Each shows a circular morph continuum generated
from different anchor sets. Here, we only show 3 out of 48 interpolations between anchor
points. The actual similarity steps between sequential interpolations are much closer.
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sequence can represent a certain variety of the real samples. Moreover, moving around
the circular continuum, the tissue texture, tumor size, tumor location, and other semantic
properties gradually change and return to the same place when looping through all the
GAN-generated mammograms on this circular continuum.

Dataset

Training data for the Generative Adversarial Network (GAN) is from the Digital Database
for Screening Mammography (DDSM[23]). It contains 2, 620 normal, benign, and malignant
cases with verified pathology information. The images were first center cropped then resized
to 256×256 for training. In order to generate stimuli containing tumors for the visual search
task, only benign and malignant cases were utilized for training. Several down-sampled real
samples are shown in Figure 5.1.

Participants and Apparatus

All experimental procedures were approved by and conducted in accordance with the guide-
lines and regulations of the UC Berkeley Institutional Review Board. Participants provided
informed consent in accordance with the IRB guidelines of the University of California at
Berkeley. All participants had normal or corrected-to-normal vision, and were all näıve to
the purpose of the experiment. 80 non-expert participants (28 males, aged 18-72; 52 fe-
males, aged 18-62) participated in the experiment. They were students and affiliates at UC
Berkeley.

Experiments were coded with PsychoPy and published on Pavlovia. Participants were
able to access the experiment by themselves through the Internet. Sets of 4 participants were
assigned to the same circular continuum, and there were 20 circular continuums in total (for
a total of 80 observers). Participants used a keyboard for all responses.

Experiment Design

The 20 circular morph continua mentioned in Sec. 5.2 were used to test the perceptual
decisions of the participants. Each simulated mammogram of any continuum contains a
particular pattern of lesions and texture, and these characteristics gradually change along
the circular continuum. On each trial, participants viewed a random simulated mammogram,
which was randomly extracted from one of the 20 circular continua mimicing the randomness
in real diagnostic scenarios. The simulated mammogram was presented for 500 ms. Next, we
presented a mask composed of random Gaussian noise for 1000 ms (to avoid the possibility
of afterimages). After the mask, a random simulated mammogram drawn from the same
morph continuum appeared at the fixation point location, and participants were asked to
adjust the simulated mammogram to match the perceived simulated mammogram using the
left/right arrow keys (continuous report, adjustment task; left–right arrow keys to adjust
the simulated mammogram along the circular morph continuum). The starting simulated
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A）S muli B）Experiment Design

Figure 5.4: Stimuli and experiment design. A) An example circular continuum generated via
GAN. B) Observers were presented with a random morph on a specific morph continuum,
followed by a noise mask. They were then asked to adjust the morph (the start point
is randomly picked along the same morph continuum.) to match the target morph they
previously saw, and pressed space bar to confirm. During the inter-trial interval, a black
fixation dot appeared in the center. After a 250 ms inter-trial interval, the next trial started.

mammogram was randomized on each trial. Participants were allowed to take as much
time as necessary to respond and pressed the space bar to confirm the chosen simulated
mammogram was the correct match. Following the response and a 250 ms delay, the next
trial started. A concise experiment pipeline can be found in Figure 5.4B.

During the experiment, participants were asked to continuously fixate a black dot in
the center. In total, each participant performed 3 blocks of 85 trials. Between each block,
participants were allowed to take a break. In a preliminary session, observers completed a
practice block of 10 trials to familiarize themselves with this experiment. Among the 80
participants, 3 participants were removed from data analysis because they hit the space bar
all the time during the experiment without any adjustments.

Data Analysis

Response error was computed as the smallest difference along the morph continuum between
the match morph and the target morph (current match morph - current target morph). For
each participant’s data, trials were removed if the response error was 3 standard deviations
away from the mean response error or if the response time was longer than 20s. The average
reaction time was 3.42 ± 2.47 seconds.

Previous research shows that individual observers can have idiosyncratic biases in object
recognition and localization, which are unrelated to serial dependence [266, 142]. For ex-
ample, observers may make a consistent error in reporting a simulated lesion of 20 morph
units as being 10, thus creating a systematic error of −10 morph units. Conversely, if there
was no systematic error, all error would approximate zero. For this reason, we conducted an
additional data processing strategy to remove such potential unrelated biases before further
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analyses. We modeled observers’ response error as a function of the target morph presented
by fitting a Radial Basis Function (RBF) where 30 Gaussian kernels are utilized. This al-
lowed us to quantify the idiosyncratic bias for each observer. We then regressed out the bias
quantified by the radial basis fit by subtracting it from the observer’s error. This subtraction
left us with residual errors that did not include the idiosyncratic biases unrelated to serial
dependence.

Feature Tuning Analysis

The difference in morphs between the current and previous trial is computed as the smallest
difference along the morph continuum between the previous target morph (n-back) and
the current target morph (previous target morph - current target morph). In order to
quantify the feature tuning characteristic of serial dependence, we fit a derivative of Von
Mises distribution to each observer’s data points. The derivative of Von Mises distribution
can be expressed by the following equation:

y = −aκ sin(x− µ)eκ cos(x−µ)

2πI0(κ)
(5.1)

where parameter y is response error on each trial, x is the relative orientation of the
previous trial, a is the amplitude modulation parameter of the derivative-of-von-Mises, µ
indicates the symmetry axis of the von-Mises derivative, κ indicates the concentration of the
von-Mises derivative, and I0(κ) is the modified Bessel function of order 0. In our experiments,
µ is set to 0. We fitted the von-Mises derivative using constrained nonlinear minimization
of the residual sum of squares. As a measure of serial dependence, we reported half the
peak-to-trough amplitude of the derivative-of-von-Mises.

Additionally, for each observer, we computed the running circular average within a 20
morph units window. Figure 5.5 (blue line) shows the average of the moving averages across
all the observers, and the corresponding von Mises derivative fit.

Temporal Tuning Analysis

In this study, we report half the peak-to-trough amplitude of the derivative-of-von-Mises as
a measure of serial dependence (Figure 5.5). Sequentially, we can get the strength of 1-back,
2-back and 3-back serial dependence effects by fitting the derivative of Von Mises distribution
on the data points where the difference in morphs between the current and previous trial
is computed as the smallest difference along the morph continuum between the 1-, 2-, and
3-trial back target morph and the current target morph.

Additionally, as a control analysis, we explored the effect of future trials on the current
response to check for potential unrelated biases and artifacts that might be lurking in the
data [78, 179]. In particular, we calculated whether the current trial response error depended
in some fashion on the difference in stimuli between the current and 1-forward (following)
trials. Since observers have not seen the future trial stimulus, their current response in a
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Half amplitude

Figure 5.5: Derivative-of-von Mises curve fit for a representative continuum (one of the
twenty different morph continuums. In units of shape morph steps, the x-axis is the shortest
distance along the morph continuum between the current and one-back simulated lesion,
and the y-axis is the shortest distance along the morph continuum between the selected
match shape and current simulated lesion. Positive x axis values indicate that the one-
back simulated lesion was clockwise on the shape morph continuum relative to the current
simulated lesion, and positive y axis values indicate that the current adjusted shape was
also clockwise relative to the current simulated lesion. The average of the running averages
across observers (blue line) reveals a clear trend in the data, which followed a derivative-of-
von-Mises shape (model fit depicted as black solid line; fit on average of running averages).
Light-blue shaded error bars indicate standard error across observers. We operationalized
the strength of pull towards the previous observed stimuli as the half amplitude of the
derivate-of-von-Mises curve, as noted in red.

given trial should not be influenced by the future morph stimuli. If there are artifacts in
the data, however, (for example observers perseverate on a particular response from trial to
trial), there might appear to be an effect of future stimuli on the current response. This
analysis reveals and serves as a control for such artifacts [75, 174].
Bootstrapping: For each result we obtained, we resampled the data with replacement,
processed the sampled data recursively for 5000 times, and reported the mean result with
95% confidence intervals.
Permutation Test: Significance testing was done through permutation tests. Data was
randomly shuffled and processed 5000 times. The 97.5% upper bound of the permuted null
distribution was compared with the error bar from bootstrapping to confirm the significance
of the result.

In an additional analysis, to more intuitively convey the magnitude of the serial depen-
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dence effect, we analyzed the percentage difference between pro-SD (pulling effect due to
serial dependence) and anti-SD (repelling effect against serial dependence) for 1, 2, and 3
trials back. Stimuli on the circular continuum were categorized into 3 types according to the
nearest anchor images. Trials in which the response image was not within the same cate-
gory as the target image were considered classification errors, which are misjudgments of the
image category. Classification errors that are in a direction consistent with the previously
seen stimulus are Pro-SD errors, and those that are in a direction opposite the previously
seen stimulus are Anti-SD errors. In principle, classification errors should be randomly dis-
tributed, not biased in either direction. As a sanity check, we also analyzed the percentage
difference between pro-SD and anti-SD for 1 trial forward. Because future trials naturally
are not correlated with current trials.

5.3 Results

The goal of this experiment was to test whether perceptual decisions on consecutive realistic
GAN-generated images of mammograms were biased towards the previously seen images.
Here, observers’ response error in a particular trial was computed as the shortest distance
along the morph continuum between the actual observed shape and the chosen answer shape.
Average response error was 17.26±5 morph units, and average reaction time was 3.43±1.50
seconds.

To test whether there are sequential effects in observers’ judgments of realistic GAN-
generated mammograms, we first analyzed the response error in relation to the difference in
stimulus shape between the current and previous trials for each continuum separately. Then,
we fitted a derivative-of-Von-Mises (DoVM) function to this data (Figure 5.5).

We operationalized serial dependence, the pull towards previous stimuli, as the half am-
plitude of the DoVM curve of each continuum. We bootstrapped the half amplitude and
reported the average bootstrapped half amplitude for each continuum: all continua showed
a positive half amplitude (Figure 5.6A). Importantly, the average half amplitude across all
continua was significant (average bootstrapped 1-back half amplitude = 2.77 morph units,
p < 0.001, permutation analysis), which suggests an influence of the simulated radiograph
in the previous trial on the current response. The influence of previous stimuli extended to
two trials back (average bootstrapped 2-back half amplitude = 1.38 morph units, p < 0.01,
permutation analysis). In contrast, the stimuli presented three trials prior had no influence
on the current response (average bootstrapped 3-back half amplitude = 0.09 morph units,
p > 0.05, permutation analysis). To control for artifacts, we calculated the influence of the
stimuli presented in the next trial on the current response. We found a modest bias, as
found in previous studies of sequential effects [179, 36], but, importantly, the 1-back and
2-back effects were significantly larger than this 1-forward baseline (1-back versus 1-forward:
p < 0.05; 2-back versus 1-forward: p < 0.05. This confirms that there are sequential effects
in perceptual decisions about realistic GAN-generated mammograms.

To quantify the serial dependence effect in an alternative manner, we also analyzed the
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Figure 5.6: A) Bootstrapped half amplitudes of derivative of von Mises fit for 1, 2, and
3 trials back. Half amplitude for 1-forward is shown as a comparison (grey bars). Each
filled dot represents the bootstrapped half amplitude for a single circular morph continuum.
Bars indicate the group bootstrap and error bars are bootstrapped 95% confidence intervals.
B) Classification error analysis. Stimuli on the circular continuum are categorized into 3
types according to the nearest anchor images. Classification errors are categorized based on
distance to the three anchors. Pro-SD means the classification error on the current trial is
attracted towards the previous stimuli, while anti-SD means the current classification error
is repelled from (opposite) the previous stimulus. The differences in these two types of error
are computed for 1, 2, 3 trials back and for 1 trial forward as a control.

percentage difference between pro-SD and anti-SD classification errors (Figure 5.6B). Overall,
the classification error rate is 28.35%. The 1-back and 2-back percentage differences were
6.85% and 3.96% respectively, indicating the dominance of serial dependence in the sequential
effects in perceptual decisions of participants. Essentially, when there are classification errors,
these are much more likely to be in the direction of previous stimuli. The 3-back percentage
difference was 0.1%. Overall, serial dependence dominated the sequential effects for 1 and
2 trials back. In addition, the sanity check of 1 trial forward, 0.03%, shows no influence of
future trials on classification errors in the current trial. This is expected and confirms that
there were no artifacts masquerading as serial dependence.

5.4 Discussion

Serial dependence in medical image perception has been studied for years[171, 174]. However,
none of the previous research used realistic medical images. In previous studies, the stimuli
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incorporated simple geometric shapes and artificial backgrounds consisting of either healthy
tissue texture or simple noise patterns. Although the prior empirical results indicate the
existence of serial dependence in the perception of those unrealistic stimuli, whether serial
dependence extends to and occurs for realistic medical images remained unknown.

In this study, we tested whether there is serial dependence in perceptual judgments of
more realistic GAN-generated radiographs. We utilized authentic-looking simulated medical
image stimuli created with a Generative Adversarial Network[214, 213]. The magnitude of
serial dependence found in the current study was similar to that found in previous studies.
Prior studies found that perceptual judgments were pulled towards the stimulus presented
in the previous trial, and the pull effect was around 15% for 1-back trials. Moreover, this
effect lasted up to 10 seconds or more in the past[174]. The results in the current study
were comparable. For example, the half amplitudes of the DoVM curve in Figure 5.6 show a
similar effect size as that previously reported. This indicates that serial dependence affects
untrained observers’ judgments of the simulated radiographs. The fact that clinicians show
serial dependence in other domains [171, 174], and the fact that serial dependence can
increase with expertise [252] hints at the possibility that clinicians may not be immune from
serial dependence. Nevertheless, whether serial dependence influences clinician judgments
of the more realistic GAN-generated radiographs here remains an important question for
future research.

In addition to replicating and extending the presence of serial dependencies in percep-
tual judgments of realistic medical images, our study also highlights the broader point that
computer vision tools can be used in concert with psychophysical experiments to isolate and
shed light on human performance limits. Computer vision models, in this approach, are
not employed with the goal of replacing human readers. Rather, computer vision is used
to create controlled stimuli that allow human performance to be more accurately assessed,
controlled, and potentially enhanced. Computer vision models are in the service of human
behavior.

There are several caveats and concerns that readers will have noted. It may be argued,
for example, that the presentation duration of the simulated mammogram was too short
(500 ms) or too low resolution (256x256) in our study, whereas clinicians typically have
longer periods of time to process higher-resolution radiographs. In fact, the average fixation
duration when targeting the first mass has been reported as 1.8–2s, which is surprisingly
brief [147, 193]. Moreover, when scrolling through volumetric images, the viewing time in
any given slice can be a fraction of a second. In addition, peripheral viewing and effectively
lower resolution images can be sufficient to detect abnormalities [68, 70, 25]. Conversely,
images viewed for a sufficiently long exposure duration can lead to negative aftereffects. For
example, it was found that adapting normal observers to image samples of dense or fatty
tissues caused a subsequent image to appear less dense (and vice versa; a type of negative
aftereffect) [138, 139, 140]. Sequential effects (either repulsive or attractive) can therefore
emerge across many different exposure durations.

In addition to the fixed duration of the stimuli in this experiment, this study has some
additional limitations. First, we chose a continuous report matching task in our experiments,



CHAPTER 5. SERIAL DEPENDENCE IN PERCEPTION ACROSS NATURALISTIC
GAN-GENERATED MAMMOGRAMS 74

as it provides precise trial-wise errors and has proven to be very reliable in measurements
of serial dependence in the past [41, 40, 83, 75, 84, 161]. However, the actual task of the
typical radiologist is far more complicated, and involves detecting, locating and classifying
the lesions. Future studies should therefore implement more realistic tasks. Second, we
only tested untrained observers in this study. Future studies should also recruit clinician
observers. Third, the simulated mammograms were only presented briefly in our experiment,
to mimic the brevity of images viewed in quick succession. To generalize the results here,
it will be necessary to test which biases arise with longer presentation durations. Fourth,
even though we utilized both benign and malignant images for training, we did not consider
the malignancy of the stimuli in the GAN model and experiments. Future studies can
investigate how malignancy can be disentangled in the GAN model and how malignancy may
influence the diagnostic tasks. Our goal in this study was to test the presence of sequential
effects in judgments of more realistic and controlled GAN-generated medical images and
we found evidence for this. However, the caveats and concerns described here prevent us
from concluding that serial dependence impacts clinical image interpretation in real clinical
practice. The results raise the possibility, though, and, if there are serial dependencies in
clinical interpretations, then the consecutive similarity between images from one or more
patients could matter. Future work is needed to test this.

5.5 Conclusion

In this study, we utilized a Generative Adversarial Network(GAN) to produce authentic-
looking GAN-generated mammograms. These realistic stimuli were used in a psychophysical
experiment that tested for serial dependence in perceptual judgments. We found that the
perception of the current simulated mammogram was biased towards the previously seen
mammograms. On average, perceptual judgments of naturalistic GAN-generated mammo-
grams had 7% categorization errors that were pulled in a direction consistent with serial
dependence, and this pulling effect lasted up to 10 seconds in the past. Our study pro-
vides evidence that serial dependence may contribute to decision errors in the perception of
realistic-looking medical images.
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Chapter 6

Serial Dependence in Dermatological
Judgments

6.1 Introduction

The natural visual world is autocorrelated: objects do not spontaneously pop into or out of
existence in the typical visual experience, and what was present a moment ago tends to still
be present at this moment. The human visual system has developed adaptive mechanisms
that take advantage of these natural autocorrelations by introducing serial dependence in
perceptual interpretations. Due to this mechanism, objects recognized at one moment appear
more like similar objects seen in the last several seconds. The result of this serial dependence
is that perceptual experience seems smoother and more stable than it should be. This
is beneficial because without it, the visual world would look jittery and unstable; object
identities would appear to fluctuate due to changes in lighting, viewpoint, blinks, and myriad
sources of internal and external noise [75, 42].

It is intuitive that human vision benefits from recycling visual history, smoothing and
stabilizing perceptual experience in the natural world. However, the benefit of serial de-
pendence has limits because the visual world is not always natural. In certain artificial,
human-designed visual tasks, such as medical image perception or randomized laboratory
experiments, visual stimuli are no longer naturally autocorrelated. Visual images in these sit-
uations can vary randomly from one moment to the next. If the visual system imposes serial
dependence, smoothing or reusing previous visual history, this could introduce systematic
errors by attracting current perception towards previous visual history.

Studies have shown that this is exactly what happens. Serial dependence systematically
biases current perception toward visual history in many tasks, such as perception of orienta-
tion [75], attractiveness [246, 244], and emotional expression [253]. Serial dependence also
introduces systematic perceptual errors in medical image perception tasks [174]. However,
these studies were conducted under lab conditions with highly artificial stimuli and exper-
imental designs that are not typical in clinical practice [174]. More recently, progress in
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Generative Adversarial Networks (GANs) affords the opportunity to generate more realistic
simulated medical images as stimuli [213, 216]. However, even in these studies, the relatively
complex psychophysical tasks were not comparable to realistic, clinically relevant scenarios.

In this study, we address several of the shortcomings in prior work and we test whether
serial dependence occurs in a teledermatology setting, one of the most important and com-
monly employed subsets of telemedicine [204, 201]. Remote store-and-forward telederma-
tology, which involves sequential judgments of static images, is an especially fast growing
area of telemedicine [60, 271, 269, 159], and it requires the involvement of clinicians because
automated systems are not sufficient to make accurate diagnostic classifications [115, 131,
81]. The question in the present study is whether sequential judgments of dermatological
lesions in a remote store-and-forward setting result in serial dependence.

We analyzed 758,139 skin cancer diagnostic judgments from 1137 participants collected
from an app developed by Centaur Labs, a US medical Artificial Intelligence (AI) company
based in Boston. The task was a straightforward 2AFC (two-alternative forced choice)
(yes/no) discrimination, with a goal of diagnosing whether an actual skin cancer image
was nevus (benign) or melanoma (malignant). This is comparable to a realistic, remote
store-and-forward teledermatology task, with a more natural two-alternative forced choice
(yes/no) design.

We found that there was statistically significant serial dependence in discrimination judg-
ments that was tuned to the sequential similarity in the malignancy of the lesions. The
consequence of the serial dependence was a statistically significant reduction in metrics of
sensitivity and specificity, including reduced d-prime (d’) and increased error rates. Addi-
tionally, using a recent Learned Perceptual Image Patch Similarity (LPIPS) computer vision
model, we quantified serial dependence as a function of the semantic similarity between
sequential images and found that serial dependence varied as a function of the patchwise
similarity between sequential images.

Together, our results suggest that serial dependence in perceptual decisions may impact
realistic dermatological judgments, at least under certain circumstances akin to those in
remote store-and-forward teledermatology [247, 285].

6.2 Materials and Methods

Experiment Stimuli

All skin cancer images utilized in the trials on the app were subsampled from ISIC 2019
Challenge Datasets [251, 43, 45]. This set of images contains two types of lesion, i.e.,
nevus and melanoma, indicating benign and malignant cases. The images were dermoscopy
images after manual correction of color hue, luminance, and alignment and were taken by
different devices using polarized and non-polarized dermatoscopy. Samples of skin cancer
image stimuli are shown in Figure 6.1. In summary, for all the skin cancer images that were
shown, 57.3% were benign and 42.7% were malignant.
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Figure 6.1: Samples of skin cancer image stimuli. A total of 7798 images were drawn from
the ISIC 2019 Challenge Datasets [251, 43, 45], which contain various nevus and melanoma
lesions. In each trial, a single random sample image was selected and presented to the
participant. Observers judged whether the image was nevus (benign) or malignant (yes/no
forced choice design). Feedback was provided after each trial.

Participants

The users of the app are predominantly medical students, with some medical residents.
Individual participant information such as age, sex, and demographics that are typically
gathered in scientific experiments are not known for this group of observers because this
information is saved in the user profile of the app and was not available to us. However, it
is known that all users had normal or corrected-to-normal vision. Since the use of the app
does not work outside of the United States, users must be located in the U.S. at the time of
app usage. Before using the app, users gave consent to have Centaur Labs use the data they
provide through app usage. Users received earnings from a predefined money pool (around
US$ 50) for each task they participated in.

Experiment Design

For the dermatological classification task that was investigated in this study, users first
completed a training session of 10 trials with 10 separate stimuli. This training explained
the procedure of the task and prepared users for the actual classification task, which was
identical to the training.

In each trial, a random skin cancer image was selected and presented to the participant.
Below the image, they were prompted to choose one of the two possible responses, “benign”
or “malignant”. Feedback was provided after every trial to inform users if their response was
correct or incorrect. Afterward, users voluntarily moved on to the next trial at their own
pace. Users were told they could end the task at any time.

We were provided with 758,139 data points across 13 variables, which were collected
between 4 September 2020 and 21 June 2021. Each data point corresponded to one decision of
a user, classifying a dermatological image as either benign or malignant. After pre-processing,
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756,001 data points from 1137 users were used for further analyses (pre-processing steps and
exclusion criteria are illustrated in Appendix 6.5).

Serial Dependence

Serial Dependence has three main kinds of tuning. First, feature tuning: serial dependence
occurs most strongly between relatively similar features and not between identical ones or
highly dissimilar ones [75, 84]. For example, when two identical images are seen in succession,
serial dependence does not bias judgments in any direction because the images are identical;
likewise, if the two successive images are extremely different from each other (e.g., apples and
oranges), then serial dependence does not bias judgments either. Only when two successive
images are moderately similar is there a serial dependence in perceptual judgments. Serial
dependence is also temporally tuned: the magnitude of serial dependence gradually decays
over time or with intervening visual information [75, 270]. Third, spatial tuning: serial
dependence occurs only within a limited spatial region, and it is strongest when previous
and current objects are presented at the same location [75, 20]. In general, we can utilize
feature and temporal tuning as the most important metrics to probe the serial dependence
effect and to rule out other artifacts, such as simply repeating the same response or lapsing.

To measure the presence of feature tuning, we measured serial dependence as a function
of the similarity in sequential stimuli. In this study, we adopt two metrics of similarity.
One is malignancy similarity, where malignancy is estimated based on a popularity vote.
The “similarity” in this respect is an abstracted concept based on behavioral judgments
of independent observers. What counts as similar is not necessarily in the image or pixel
domain but in the degree of malignancy (Figure 6.2). The second form of “similarity” that we
quantified is semantic similarity, using a popular Learned Perceptual Image Patch Similarity
(LPIPS) metric [290] approach borrowed from computer vision.

Malignancy Similarity

The malignancy of each stimulus was estimated based on a popularity vote: −100 means all
users classified the lesion as benign; 100 means all users classified the lesion as malignant.
Figure 6.2 shows the distribution of malignancy over all stimuli. “Malignancy similarity,”
used in subsequent analyses of serial dependence, was computed as the malignancy difference
between any two sequential stimuli. Any two adjacent stimuli on the abscissa of Figure 6.2
have high similarity; conversely, any two distantly separated stimuli have low similarity.

Semantic Similarity

The semantic similarity is computed via the Learned Perceptual Image Patch Similar-
ity (LPIPS) metric [290]. This is a popular nonlinear similarity metric utilized in com-
puter vision. For deep learning models, there are deep features after each convolutional
layer [145, 232, 106]. The semantic similarity is computed as a sum of weighted differences
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Figure 6.2: Overview of all 7798 (6688 benign, 1110 malignant) unique images used, sorted by
the consensus malignancy rating value (−100: classified as benign by all users, 100: classified
as malignant by all users). The five sample images below the abscissa show a sequence of
example images that had varying degrees of agreement, from benign to malignant.

between the corresponding deep features at different layers. If the semantic similarity is
small, two images would share more patch-wise similarity in the pixel domain, with 0 rep-
resenting identical. In particular, we utilized AlexNet [145] as the backbone of the LPIPS
metric. Figure 6.3 shows two groups of similar and dissimilar skin cancer images based on
LPIPS metric. A similar pair is defined as a pair of images whose similarity is less than the
mean similarity of all image pairs, and vice versa.

Diagnostic Performance Evaluation

To measure the presence of serial dependence, we analyzed users’ performance in the derma-
tological classification task. Multiple metrics from signal detection theory were utilized, in-
cluding Sensitivity or Hit Rate (HR) = TP/(TP + FN), Specificity = TN/(TN + FP ), and
Error Rate = (FN + FP )/(TP + FN + FP + TN), where “Positive” (P) represents the
malignant case, and “Negative” (N) represents the benign case. Then, TP (True Positive),
FN (False Negative), FP (False Positive), and TN (True Negative) can be defined accord-
ingly. We also utilized d-prime (d′) and the criterion (c) to evaluate observers’ discrimination
and bias. These can be computed as follows:

d′ = z(HR)− z(FAR)

c = −0.5 ∗ (z(HR) + z(FAR))
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Similar Pairs Dissimilar Pairs

Figure 6.3: LPIPS semantic similarity [290] example image pairs. Based on this semantic
metric, we can group images into similar pairs vs. dissimilar pairs. Note the patch-wise
similarity that similar image pairs have.

where z(·) is the inverse cumulative distribution function of the standard normal distribution,
and False Alarm Rate (FAR) = FP/(FP + TN).

Feature Tuning Analysis

We evaluated the diagnostic performance metrics described above while taking into account
the sequential similarity between successive images that each observer saw. There were
two types of similarity that we evaluated. In the first one, the malignancy similarity, we
computed the n-back similarity as |Mt−n −Mt|, where Mt represents the malignancy of the
current trial image and Mt−n represents the malignancy of the n-back trial image. We used
the absolute value of the difference because the sign of the malignancy does not matter.
Then, we grouped the malignancy similarities with a group range of 10, resulting in a total
of 20 similarity groups. Performance metrics were computed within each group. In the
end, we obtained the sensitivity, specificity, d’, c, and error rate in relation to the n-back
malignancy similarity.

The n-back semantic similarity can be obtained directly from the LPIPS metric [290],
f(It−n, It), where It represents the current trial image, It−n represents the n-back trial image,
and f(·) is the LPIPS model. Then, the semantic similarities were grouped with a group
range of 0.02, with groups that have insufficient trials excluded. We analyzed groups in the
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semantic similarity range of [0.3, 0.68]. Performance metrics were also computed within each
group. In the end, we obtained the performance metrics in relation to the n-back semantic
similarity.

In order to probe the impact of serial dependence on diagnostic performance, we measured
the net change of those metrics relative to what is expected by chance. To conservatively
estimate this “chance” baseline, we used the future trial (N + 1) stimulus because this
stimulus is not predictable and cannot influence the past. Essentially, because the stimuli
are randomly ordered, the current response is only predictive of the future stimulus about
half of the time, which gives a baseline estimate of chance performance. If the current
judgment is pulled toward the previous stimulus (serial dependence), then the current trial
accuracy will decrease relative to that chance performance. By using the future (N + 1)
accuracy as a baseline, we control for any systematic response biases that observers might
have [179, 200]. For example, simply pressing the same button on every trial results in a
response bias, but this will not show up as measured serial dependence because the serial
dependence is normalized relative to the N + 1 trial.

Finally, we computed the net change in sensitivity, specificity, d’, criterion, and error rate
as a function of the sequential similarity between successive images. As serial dependence
only occurs for relatively similar features, we expected the serial dependence effect, if present,
to be maximal when sequential stimuli are moderately similar.

Temporal Tuning Analysis

After checking the feature tuning characteristics, we fit Gaussian curves (Equation (6.1)) on
top of the net change graphs to quantify the magnitude of the serial dependence effect (as
shown in Section 6.3).

f(x|µ, σ2) =
a√
2πσ2

e−
(x−µ)2

2σ2 (6.1)

where x is the data variable, µ and σ are the mean and standard deviation of the Gaussian
distribution, and a is an amplitude modulation parameter. Here, a, µ, and σ will be op-
timized during curve fitting. After fitting, we report the peak value of the fitted Gaussian
curve as the amplitude of the serial dependence effect.

We analyzed the serial dependence effect magnitude of 1-back (N-1), 2-back (N-2), 3-back
(N-3), and 4-back (N-4) trials. Then, we obtained the relation between the serial dependence
effect magnitude and intervening time between trials.

6.3 Results

Overall summary statistics revealed that observers were highly sensitive to the malignancy
discrimination task. Across the user population, sensitivity was 78.72%, specificity was
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74.74%, d’ was 1.46, c was −0.065, and the error rate was 18.6%. These metrics indi-
cate that observers were able to perform the dermatological judgment task, consistent with
the observers having some degree of expertise. These overall metrics, however, do not reveal
whether dermatological judgments on a given image are impacted by sequential dependencies.

*
*

**

***

**

***

***

***

***

**

*

**

***

**

***

***

** ** ***

**

**

**

*

*

***

***

***

** ***

***
***

***

**
*

*

***

***

*

**

*

*
*

***

***

***

***
***

*** ***

*

Identical Similar Dissimilar

Figure 6.4: Serial dependence in dermatological classification judgments negatively impacts
performance. Performance in the discrimination task was assessed with metrics of sensitivity,
specificity, d-prime (d’), criterion (c), and error rate. The abscissa of each graph shows the
similarity in the rated malignancy (Figure 6.2) of successive pairs of images; 0 represents
identical successive images, and 200 represents very different sequential images. The ordinate
of each graph shows the net change in performance metric (e.g., sensitivity or d’) on the
current trial as a function of the similarity of the previous stimulus (N-1 trial) seen by
the observer. When the previous stimulus was moderately similar (central regions on the
abscissa), all performance metrics dropped, indicating worse performance. For example,
when the sequential images were moderately similar, there was an increase in error rates of
up to 4.1% on the current trial. Horizontal dashed lines indicate the upper 95% boundary
of the permuted null distribution for each bar.Asterisks indicate statistical significance (∗ :
p < 0.05; ∗∗ : p < 0.01; ∗ ∗ ∗ : p < 0.001).
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Our primary goal was to measure whether serial dependence was present in dermatological
judgments. To do this, we calculated the performance metrics above on a trial-wise basis, as
a function of the sequential similarity between successive images, as illustrated in Section 6.2.

Figure 6.4 shows the net change in sensitivity, specificity, d’, criterion (c), and error
rate as a function of the malignancy similarity between current and previous images (1-
back or N-1 trial image). The abscissa of each graph shows the similarity in the rated
malignancy (Figure 6.2) of successive pairs of images; 0 represents identical successive images,
200 represents very different sequential images, and the middle range represents similar
images. When the previous stimulus was moderately similar (central regions on the abscissa),
all performance metrics dropped, indicating worse performance. The worst case occurred
when the uncertainty reached the maximum. This is consistent with the findings in previous
studies [75, 174]. In summary, sensitivity decreased up to 5.4% on the current trial, specificity
was decreased up to 3.5% on the current trial, d’ was decreased up to 0.20 on the current
trial, criterion (c) was biased up to 0.036 on the current trial, and the error rate was increased
up to 4.1% on the current trial. Horizontal dashed lines indicate the upper 95% boundary
of the permuted null distribution for each bar. Asterisks indicate statistical significance
(p < 0.05, 0.01, 0.001).

As the semantic similarity via the LPIPS metric is nonlinear, we clustered the perfor-
mance metrics within small groups into two super-groups, i.e., groups of similar and dissimilar
images. The 1-back (N-1) net change in performance for similar and dissimilar sequential
images is shown in Figure 6.5. When similar sequential images were viewed by participants
(“similar” on the abscissa), participants had higher error rates, lower specificity, and biased
criterion. In particular, the net change in the error rate from similar to dissimilar groups
was up to 3.38%, the net change in the specificity from similar to dissimilar groups was up
to 7.53%, and the net change in the criterion from similar to dissimilar groups was up to
0.185. The was not a significant change in d’ or sensitivity between similar and dissimilar
groups. Overall, there was a negative impact of serial dependence on performance measured
by most metrics, including, crucially, the error rate.

After analyzing 1-back (N-1) serial dependence via malignancy similarity, we conducted
the same analysis for 2-back (N-2), 3-back (N-3), and 4-back (N-4) trials. Then, Gaussian
curves (as described in Equation (6.1)) were fitted onto the intermediate results of feature
tuning as shown in Figure 6.6A,B. The amplitude was taken as a measure of the impact
of serial dependence on error rates and d’. As shown in Figure 6.6C, the amplitude of the
Gaussian was the strongest for the N-1 stimulus and weaker for the following N-2, N-3, and
N-4 stimuli, indicating that serial dependence is temporally tuned—stronger for more recent
similar stimuli. In particular, the serial dependence (SD) amplitude for error rates decreased
from 3.14% to 0.63%, and the SD amplitude for d’ decreased from 0.17 to 0.038.
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Figure 6.5: Serial dependence in dermatological discrimination judgments impacts perfor-
mance. Asterisks indicate statistical significance (∗ : p < 0.05; ∗∗ : p < 0.01). Here, the
similarity between sequential images was measured using the LPIPS metric [290]. When
similar sequential images were viewed by participants (“similar” on the abscissa), partic-
ipants had higher error rates, lower specificity, and biased criterion. Sensitivity was not
negatively impacted, interestingly, but this was not significant and did not counteract the
negative impacts found in all other metrics.

6.4 Discussion

The goal of this study was to test if there is serial dependence in the perceptual judgments
of real skin lesions in a relatively realistic situation akin to remote store-and-forward tele-
dermatology [60, 269, 74, 255]. We found that there was significant serial dependence in
observer judgments of malignancy, and this effect was tuned to the similarity in the sequen-
tial images. Moreover, the effects were temporally tuned, strongest for more recent similar
stimuli, consistent with the diagnostic criteria of serial dependence.

Serial dependence is a specific process in which the brain smooths perceptual interpre-
tations over time to improve efficiency and accuracy and stabilizes the appearance of the
natural world [75, 42]. Serial dependence has been found in many perceptual tasks ranging
from low-level [94] to high-level cognition [172]. It has also been reported in some clinically
relevant domains but with less realistic stimuli and tasks [174]. Serial dependence is not
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Figure 6.6: Serial dependence in dermatological discrimination judgments is temporally
tuned. (A) Error rates such as those in Figure 6.4 were computed for 1-back trials (just
as in Figure 6.4) and (B) for 2-back trials. The increased error rate near the central part of
the abscissa indicates that the similarity in the image presented 2 trials before the current
trial impacted performance, but less so than the impact of the 1-back stimulus. Gaussian
curves were fit to the change in error rates as well as in d’, and the amplitude was taken
as a measure of the impact of serial dependence (SD) on error rates and d’. (C) The
amplitude of the Gaussian—the strength of serial dependence (SD)—was the strongest for
the N-1 stimulus and weaker for the following N-2, N-3, and N-4 stimuli, indicating that
serial dependence is temporally tuned—stronger for more recent similar stimuli.

a generalized repetition of responses, and it is not just lapsing, central tendency biases, or
other artitfacts [75, 42, 200].

The serial dependence effect we found here is not due to artifacts such as lapsing, central
tendency, repeated button presses, or perseverating on the same response. Those kinds of
artifacts are problematic, and they can have a serious detrimental influence on dermato-
logical judgments, but they are not serial dependence, per se. As in previous studies [75,
84, 200], here, we dissociated serial dependence from these other artifacts using three ap-
proaches. First, we confirmed that the measured serial dependence effect here was tuned
to the sequential similarity between images. A perseverating or stereotyped response (e.g.,
pressing the same button over and over again for any number of reasons) does not result in
biases that are tuned to the similarity between sequential images. Instead, it simply results
in a uniform and stable shift in criterion. Second, we dissociated serial dependence from
lapsing, stereotyping, and other artifacts by controlling for any biases that seem to depend
on the future. Serial dependence is mainly a bias of the current perceptual decision toward
past experience. The future stimulus is unpredictable and random, and therefore cannot
influence the current decision. However, if there are stereotyped responses (e.g., simply re-
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peating the same button press or central tendency biases), this will result in what seems like
the future being predictive of the present. By subtracting out this future bias, we isolated
the 1-trial back effect. This approach—measuring and controlling artifacts by using the
future—is a common control in studies of serial dependence [179, 200, 174, 216]. Finally, in
a third control, we created permuted and shuffled null distributions. These control for over-
all biases, lapsing, and stereotyped responses among other potential artifacts as well. All of
these controls together demonstrate that serial dependence genuinely impacted performance
in dermatology judgments.

Previous studies have tried to measure criterion and d’ in dermatological judgments over
time [268, 153, 263], but they did not examine trial-wise effects. Serial dependence is a trial-
by-trial effect [75, 42, 174, 216]: sometimes it happens in random sequences (when sequential
stimuli are coincidentally similar) and sometimes it does not happen (when sequential stimuli
happen to be different). In typical vision science experiments, stimuli are random and
their sequential similarity is not measured, considered, or controlled. Serial dependence will
therefore not show up in typical analyses because (1) responses are pooled or collapsed across
blocks of trials and (2) sequential similarity is unknown or ignored. So, it is not surprising
that serial dependence was not found in a previous study [277] because that study did not
measure sequential stimulus similarity and it pooled trials together in blocks, washing out
any serial dependence that may have been present. The results of the large data set here
confirm that serial dependence is likely to be present in other similar data sets, such as [277].
Serial dependence does not show up in simple signal detection metrics such as d’ and criterion
unless one takes into account the trial-wise nature of the effect. Serial dependence is not just
a shift in the criterion, and it is not just a change in d’. It can result in both shifts in criterion
and d’, as we found here, but these are dynamic over time–they fluctuate from trial to trial.
We were able to measure changes in SDT (Signal Detection Theory) metrics including d’
and criterion because we analyzed the data in a trial-wise manner and, more importantly,
conditioned the analysis on the sequential similarity between stimuli. We found that d’
decreases for similar (non-identical) stimuli. However, if the stimuli are nearly identical or
are very different, then there is no decrease in d’. Likewise, we found that criterion changed
depending on the sequential similarity between successive stimuli. Both of these results are
important: they indicate that standard SDT metrics including d’ and criterion should not
be treated as rigid and fixed over time but should be considered as dynamic features that
can reflect the fluctuations of stimuli in the world. Future studies of clinician perception and
performance should consider the dynamic nature of signal detection metrics.

Serial dependence is a phenomenon that has been observed in many domains, from low-
level perception to high-level cognition [75, 137, 42, 94, 172]. An outstanding question in the
literature on the basic mechanisms of serial dependence is whether feedback might modulate
it. For example, one might speculate that trial-wise feedback could reduce or eliminate serial
dependence. The results here speak to this question because observers did receive feedback
during the task. Despite that feedback, there was still a significant serial dependence that
was tuned to both feature similarity and time. This suggests that feedback (even where
it is possible) is not a panacea to eliminate serial dependence. Pragmatically, of course,
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feedback is not possible in clinically relevant settings because there is no prior ground truth
in medical image perception. Nevertheless, it is theoretically and practically valuable to know
that feedback is not enough to overcome the visual system’s built-in smoothing operations
that cause serial dependence.

There are several limitations in this study. First, this study only investigated one source
of perceptual bias–serial dependence. Of course, there are other sources of bias, individual
observer differences, attentional differences, lapsing, and myriad other sources of error. We
controlled these because our goal was to isolate one particular operationally defined source
of perceptual bias: serial dependence. Whether there are interactions among serial depen-
dence and other types of perceptual bias is an open question for future research. A second
limitation of this study is that the skin cancer images utilized in the experiment contained
only two types of lesion, i.e., nevus (benign) and melanoma (malignant). Though the der-
matological classification task is similar to realistic skin cancer diagnostic scenarios in some
teledermatology settings, it does not fully capture the range or variety of various skin cancer
disease types. Moreover, for the images presented to participants, 57.3% were benign and
42.7% were malignant. This deviates from a realistic distribution, where malignant cases are
typically much rarer than benign cases. That said, serial dependence does not hinge on the
rate of malignancy—it impacts d’ independent of target frequency, and it is, therefore, likely
to occur even for rare target situations. However, the issue of disease prevalence remains a
very important and open question for future research.

Another limitation is that this study is restricted to store-and-forward teledermatol-
ogy, which is naturally different from office-based dermatology clinics in several ways, such
as available resources and diagnostic procedures. For example, office-based clinicians have
multi-modal information about the lesion available, not just photographs, and clinical deci-
sions are more complex than binary ones as in our study. However, during the COVID-19
pandemic, we witnessed a rapid shift from office-based dermatology clinics into telederma-
tology [205, 206]. In line with these recent developments, the teledermatology market size
is forecasted to be $67.43 billion in 2030 [121, 217]. Accordingly, we chose to investigate re-
mote store-and-forward teledermatology, as it is a highly scalable and increasingly employed
form of telemedicine. Finally, it is important to mention that most participants recruited
in this study were medical students rather than experts. However, clinicians are not always
more accurate than medical students or residents [277]. The reasons for this difference in
performance might be the recency of training, attention, or other factors. The simple as-
sumption that trained (older) clinicians are better than less trained (younger) ones is not
clear for remote store-and-forward teledermatology, in particular. Future research is needed
to explore how expertise might interact with remote teledermatology [277].

There are several additional important avenues of future investigation. Future work
should test whether the serial dependence found here is spatially tuned. For example, if
sequential images were viewed on different screens (rather than a single mobile device),
would there be a reduction in serial dependence? Moreover, how does attention to the task
modulate the serial dependence in dermatological judgments? Future studies should address
these questions, along with designs that incorporate a larger variety of lesions and a more
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realistic distribution of malignancy. Finally, future studies should also focus on how to utilize
serial dependence tuning functions, i.e., feature tuning and temporal tuning that we found
here to potentially alleviate the biases reported here.

6.5 Conclusions

In this study, we analyzed 758, 139 skin cancer diagnostic records from an online app in which
participants made a series of malignancy discrimination judgments. We quantified sequential
malignancy similarity and sequential semantic similarity between successively viewed images,
and we investigated classification performance as a function of these similarity metrics. We
found significant serial dependence effects in perceptual discrimination judgments, which
negatively impacted performance measures, including sensitivity, specificity, and error rates.
Moreover, we showed that the serial dependence was tuned to the similarity in the images,
and it decayed over time. These findings help understand one potential source of systematic
bias and errors in medical image perception tasks and hint at useful approaches that could
alleviate the errors due to serial dependence.

Appendix A. Data Preprocessing

In total, 7 of the 13 variables of the data provided by the app are of interest to this research
paper and define each data point. They are defined as: User ID (defining a unique ID for
each user of the app), score (defining if the answer given has been correct (100) or incorrect
(0)), response submitted at (defining at what particular time the response of the user was
given), problem appeared at (defining at what particular time the image appeared on the
device of the user), origin (defining the image name of the particular image shown), current
correct answer (defining if the correct answer is either malignant or benign), and chosen
answer (defining if the answer given is either malignant or benign).

Prior to analyses, the following steps were conducted to include only valid data points
in the analyses: first, all data points with a larger response time than 3600 s (1 h) were
excluded. As data were collected on a smartphone app, it is assumed that for responses
over 1 h, the app was running without users paying attention to it. Second, all remaining
data points with a longer response time than three standard deviations of the raw data were
excluded, which is a common method to exclude outliers [182]. Third, all users with less
than 10 trials were excluded to achieve reliable data for the calculation of n-back accuracy.
In total, 1083 data points were excluded due to invalidity. The exclusion of these data points
did not qualitatively change the pattern of results.
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Figure 6.7: Relationship between difference in malignancy and the 1-back accuracy. The
abscissa shows the similarity in the rated malignancy (Figure 6.2) of successive pairs of
images; 0 represents identical successive images, and 200 represents very different sequential
images. The ordinate shows the net change in 1-back accuracy on the current trial as a
function of the similarity of the previous stimulus (N-1 trial) seen by the observer. When
the previous stimulus was moderately similar (central regions on the abscissa), responses
were consistently attracted towards the previous stimulus. This pulling effect was up to 7%.
The dynamic change of the 1-back accuracy is consistent with performance metrics’ change
in Figure 6.4.

Appendix B. Evidence of Attracting Effect

Overall, we found significant serial dependence effects in dermatological discrimination judg-
ments. One of the important properties of serial dependence is the attracting effect. Here,
we show evidence of attraction in perceptual discrimination judgments as well. We defined
the 1-back accuracy as

1-back accuracy =
#current response == previous stimulus label

#trials

Next, we measured the net change of the 1-back accuracy relative to what is expected
by chance. Similarly, we used the future trial (N + 1) stimulus as the “chance” baseline.
If there is an attracting effect, the 1-back accuracy will be greater than 0. In reverse, if a
repulsion effect occurs, the 1-back accuracy will be smaller than 0. In summary, we found
evidence of an attracting effect when previous stimuli were moderately similar, thus aligning
with the serial dependence property (Figure 6.7).
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Chapter 7

Idiosyncratic biases in the perception
of medical images

7.1 Background

Clinicians routinely depend on visual processing to make diagnostic decisions, and their
experience with medical image stimuli and tasks is understood to be critical. Indeed, pro-
ficiency largely determines whether clinicians can perform well in clinical diagnostic tasks
[150, 146, 223]. However, studies have repeatedly demonstrated that individual clinicians
vary significantly in their diagnostic performance [66, 72, 11, 63, 242, 64, 155, 65]. It is
of crucial importance to understand the nature of these individual variations, because this
could help optimize training and selection criteria to improve clinical diagnostic accuracy.

There are two axes that characterize clinicians’ proficiency in medical image perception.
The first one—the one that has been most intensively studied in the past—is the visual
sensitivity of clinicians [233, 47, 15, 154, 238, 237]. Visual sensitivity here refers to the clini-
cians’ visuospatial and object recognition skills, which contribute to the individual variations
in diagnostic accuracy. Sensitivity differences could originate from genetic variations that
affect basic visual perceptual abilities of human observers [275, 294, 265, 295], as well as
variability in clinician experience and training [166, 63, 13, 176, 184, 220].

The second axis that characterizes proficiency is also the under-explored one: the visual
biases of individual clinicians. In the past decade, accumulating research has revealed that
untrained observers can have many visual biases[248, 75, 197] and these biases can vary
strongly from individual to individual [275, 125, 264, 224, 270, 97, 274, 28, 49, 266, 48, 267].
These idiosyncratic biases exist at every level of human visual perception, from the lowest
level such as localization, motion, and color perception[224, 270, 142, 126, 67, 266], to higher-
level object and face perception[275, 219, 28, 49, 48]. For instance, despite the extensive
exposure to faces, human observers vary dramatically in their face recognition abilities[56,
222, 221, 264, 21]. Recent studies have started to shed light on this topic and revealed that
clinicians, as human observers, also have their own visual biases towards medical images
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[174, 216]. These biases could serve as a non-exclusive, alternative origin of the substantial
individual differences in clinician diagnostic performance.

But, how, exactly, are individual biases related to diagnostic performance? This relationship—
between perceptual biases and proficiency—remains unanswered in the previous literature.
There are two opposing predictions about their association: 1) Biases could be reduced
among skilled readers. This might be expected, given the numerous studies revealing that
training can reduce visual biases [256, 102, 110, 104, 192, 54, 89]. 2) An opposing predic-
tion is that biases will not vanish with proficiency [174, 267, 216]. Instead, biases may be
exaggerated or even more consistent within more skilled individual readers. On its face, this
is counterintuitive. However, a recent study hinted this possibility in untrained observers
performing non-diagnostic tasks [267]. Nevertheless, it remains unclear whether diagnostic
performance in skilled observers could be directly associated with visual biases.

To address this possibility, we analyzed a relatively large dataset of dermatological
judgments collected through a digital medical training application, DiagnosUs, containing
758, 139 diagnoses from 1, 173 participants, using 7, 818 images. Dermatological judgments
are ideal for addressing the possible association between proficiency and perceptual biases be-
cause images of skin lesions are naturally limited to two-dimensions (non volumetric) within
the visual modality, they are increasingly used in remote store-and-forward applications, and
they are available at a large scale.

To isolate the precise nature of idiosyncratic biases, we characterized the individual
stimulus-level effects, by breaking down clinicians’ biases based on image content, using
a deep computer vision model. It is likely that medical images vary in their ambiguity, and
thus vary in difficulty and uncertainty [235]. Because visual biases can be exaggerated when
uncertainty increases [75, 142], it is conceivable that perceptual biases manifest under more
difficult circumstances. We employed a novel image clustering technique to perform content-
based image analysis and further investigated whether individual differences in visual biases
remain homogeneous across different lesion images. To foreshadow, our results revealed that
these biases are more prominent among images that have higher uncertainty (difficulty),
echoing our hypothesis about increasing biases under ambiguous circumstances.

Together, our findings indicate that medical trainees have unique, idiosyncratic biases
in their perception of skin lesion images. These biases do not vanish even in highly skilled
observers. Instead, surprisingly, they turn out to play an essential role in distinguishing
skilled observers (high performers) from less skilled observers (low performers), especially
when ambiguous and difficult medical images are involved. Our study provides a new per-
spective to potentially improve clinicians’ diagnostic performance by further understanding
the individual biases that help skilled observers stand out.
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7.2 Methods

Datasets and participants

The data used in this research comprises 7, 818 pigmented skin lesion images along with
user melanoma diagnoses. The images are curated by the International Skin Imaging Col-
laboration (ISIC) [251, 43, 45], which is the largest publicly available collection of quality-
controlled dermoscopic images of skin lesions. The dataset contains two types of lesion,
nevus and melanoma, corresponding to benign and malignant cases. The dermoscopy im-
ages underwent manual correction of color hue, luminance, and alignment and were captured
via different devices using polarized and non-polarized dermoscopy. Samples of skin lesion
image stimuli are shown in Fig. 7.1.

Skin lesion diagnoses were collected through DiagnosUs, an app developed by Centaur
Labs, a US medical Artificial Intelligence (AI) company based in Boston, MA. The diagnosis
dataset contains the skin lesion image ID reference to the ISIC Archive, the participant
anonymous ID, the participant diagnosis, and the response time. The original diagnostic
dataset contained 758, 139 diagnoses from 1, 173 participants.

The participants were mostly composed of medical students, with some medical residents.
Individual subject information such as age or sex is not known. All participants have normal
or corrected-to-normal vision. Users receive earnings from a predefined money pool (around
50 USD) for each task they complete.

Task

After downloading the DiagnosUs app and giving consent to have Centaur Labs use the data
they provide through app usage, users can choose between different tasks. For the dermato-
logical classification task that was investigated in this study, users first completed a training
session of 10 trials with 10 separate stimuli. This training explained the procedure of the
task and prepared users for the actual classification task, which was identical to the train-
ing. In each trial, a random skin lesion image was selected and presented to the participant.
Below the image, they were prompted to choose one of the two possible responses, “benign”
or “malignant”. Feedback was provided after every trial to inform users if their response was
correct or incorrect. Afterward, users voluntarily moved on to the next trial at their own
pace. Users were told they could end the task at any time.

Feature extraction and clustering

We used the top-performance model of SIIM-ISIC Melanoma Classification Challenge to
extract image features [101]. This deep learning model is an ensemble of convolutional
neural network (CNN) models with different architectures. In this study, we only used the
best-performing model within the ensemble for embedding. The model was pretrained by
predicting the diagnosis for each skin lesion image. In the end, the model would yield an
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embedding of a 2048 dimension, i.e., the feature vector, for each skin lesion image. Then, we
utilized t-SNE[254] to map the 2048-dimensional embeddings into a two-dimensional map.
Moreover, we clustered the 7, 818 mapped image embeddings into 100 clusters using the
K-means algorithm [168]. On average, image clusters contained 78 images.

Data analysis

We first filtered out diagnoses with negative response time (only one diagnosis). Given that
response times spanned up to multiple hours, we identified outlier data points using the
interquartile range defined as IQR = Q3 − Q1 [53, 261], where Q1 is the 25th percentile of
the response times, and Q3 the 75th percentile. Outlier diagnoses were identified as the data
points with response time lower than Q1 − 1.5 ∗ IQR or higher than Q3 + 1.5 ∗ IQR. In the
end, it shrinks the analysis size to 76, 051 diagnoses.

While computing accuracy standard deviations of image clusters and estimating partic-
ipants’ proficiency, we randomly sampled 25% of each participant’s diagnoses. With the
remaining 75% of data, we filtered out participants without at least 2 trials in each of the
image clusters. In other words, we only used diagnoses of participants with at least 2 diag-
noses in each of the 100 clusters, leaving 81 participants and 333, 600 diagnoses remaining
for analysis.

Within-subject correlation in diagnostic accuracy was calculated with a split-half corre-
lation for each participant with respect to image clusters. We first assigned every diagnosis
to their associated image clusters. We then used a non-parametric bootstrap method to
estimate split-half correlations [62]. On each iteration, for each participant and each image
cluster, we randomly split the diagnoses into two halves and calculated the mean accuracy
for each half. Next, the two halves were correlated and then the Pearson’s r value was
transformed into a Fisher z value. We averaged the z values across all participants for the
first analysis, and then within each performance group for the second analysis. We repeated
this procedure 1, 000 times to estimate the mean within-subject correlations and 95% boot-
strapped confidence intervals.

Between-subject consistency was calculated similarly. After splitting every participant’s
data into two random halves (i.e., by randomly selecting with replacement 50% of the data
on each iteration), we correlated one half from one participant with one half from another
participant. At each iteration, 200 random pairs of participants were sampled, and the
pairwise correlations were then averaged to estimate the between-subject consistency. By
repeating the procedure 1, 000 times, we obtained the mean between-subject correlations
and 95% bootstrapped confidence intervals. The first analysis relied on all participants,
while the second analysis computed between-subject consistency for each performance group
separately.

Next, we estimated the expected chance level within and between-subject correlations
by calculating permuted null distributions. On each iteration, and for each participant and
image cluster, we again split the diagnoses into two halves, as we did in the bootstrap
procedure. We then randomly shuffled the diagnostic accuracy values across clusters. The
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resulting correlations from individual participants (within-subject) or different pairs of par-
ticipants (between-subject) were averaged together to get the permuted within-subject or
between-subject correlations. This permutation method allowed us to estimate the null cor-
relations by correlating the response accuracy of different stimuli with each other while at the
same time preserving the relationship between similar stimuli[58, 59]. This permutation pro-
cedure was repeated 1, 000 times to estimate permuted null distributions for within-subject
and between-subject consistency. We performed this test successively with all participants
and then separately for each performance group. The mean empirical bootstrapped correla-
tions were then compared to their corresponding permuted null distributions to estimate the
statistical significance of the mean bootstrapped within and between-subject correlations.

7.3 Results

All our analyses of participants’ diagnostic performance were conducted on a fine scale of 100
skin cancer ”image clusters” to reveal more detail about individual differences. Image clusters
were formed by grouping embeddings from the EfficientNet computer vision model[243, 101],
trained to diagnose skin lesion images. Fig. 7.1A shows the skin lesion image samples and
the corresponding color-coded embeddings by malignancy. Visualization is implemented via
t-SNE[254]. Each dot in the figure represents a skin lesion image. Fig. 7.1B shows the 100
clusters produced by the computer vision model[101] via the K-Means clustering algorithm
[168].

By grouping neighboring embeddings into clusters, we expected images within one clus-
ter to be ”semantically similar”. One aspect of similarity seems to be the malignancy
of images, as detailed in Fig. 7.1A. Another aspect of this similarity may be captured
by Fig. 7.2 where patterns of diagnostic accuracy and standard deviation seem to arise
from the image clusters. The diagnostic test accuracy of each image cluster is defined as
Accuracy = Hits + Correct Rejections

Number of diagnoses
. The gold standard test is used as ground truth, with

melanoma diagnoses defined as positive instances and nevus diagnoses as negative instances.
To better analyze individual differences, we computed participants’ diagnostic accuracy

relative to the average acurracy within each of the 100 clusters. Fig. 7.3 illustrates the
relative accuracy of 5 representative participants. In addition to the obvious deviations from
the group performance, and unique patterns between the individual observers, it is also
clear that there are many individual differences, particularly in the high standard deviation
regions (Fig. 7.2B) between the benign and malignant groups of images (Fig. 7.1A). Fig.
7.12 shows a broader overview of individual differences through the relative accuracy of 30
participants. Additional performance metrics, such as sensitivity, specificity, d prime (d’),
and criterion (c) are depicted in Fig. 7.8, 7.9, 7.10, and 7.11 and the average of each metric
across all participants can be found in Fig. 7.7.

To investigate the individual differences, we calculated the within-subject correlation and
between-subject correlation based on participants’ diagnostic accuracy over corresponding
skin lesion image clusters. We obtained significant within-participant correlation (Fig. 7.4,
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Figure 7.1: (A) Skin cancer samples and their corresponding embeddings. Each dot repre-
sents one of the 7,818 skin lesion images. The position of each dot is defined by the internal
image representation of the computer vision model. The model has been trained to diagnose
skin lesion images and reaches an almost perfect accuracy [101]. It is therefore expected
that benign and malignant images are spatially separated. This is one aspect of seman-
tic similarity captured by these embeddings, images seem to be spatially located according
to malignancy. (B) The 100 image clusters, represented with different colors, each cluster
containing dozens of similar skin lesion images. Due to the large number of clusters, some
colors occur multiple times. Participants’ skin lesion diagnostic performance metrics were
evaluated on those clusters.

orange bar; mean r = 0.72, permutation test, p < 0.001) and between-participant correlation
(Fig. 7.4, blue bar; mean r = 0.62, permutation test, p < 0.001). Importantly, the within-
subject correlation is significantly higher than the between-subject correlation (permutation
test, p < 0.001). This indicates that observers agree with themselves more than they agree
with each other. As expected, this aligns with previous individual difference findings on
medical image perception tasks [267].

We also investigated the individual differences as a function of proficiency. To measure
participants’ proficiency, we randomly sampled a fifth of each participant’s response diag-
noses to estimate their individual diagnostic accuracy. Participants were then split into two
halves, a ”high-performance group” and a ”low-performance group”. We conducted the same
individual difference analysis as performed in Fig. 7.4 for each proficiency group and found
that results similar to Fig. 7.4 also hold for both groups. In other words, for both low-
and high-performance groups, within-participant and between-participant correlations were
significant (Fig. 7.5A, permutation tests, all p < 0.001; high-performance group within-
subject mean Pearson’s r = 0.81 and between-subject mean r = 0.73; low-performance
group within-subject mean r = 0.61 and between-subject mean r = 0.53), and the within-
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Figure 7.2: (A) Diagnostic test accuracy per cluster across all participants. (B) Standard
deviation of response diagnoses per cluster across all participants. Visually, it seems that
the three main groups of images (dots) are associated with different accuracy and standard
deviations. Note that the location of the dots are solely defined using the computer vision
model, while the color-coding is independently based on the participants’ diagnoses. Given
the differences in standard deviation across clusters, the model may group ambiguous images
and easily classified images separately.

subject correlation was significantly higher than the between-subject correlation for each
group (permutation tests, p < 0.001).

Among all participants’ responses, the majority of the diagnoses were accurate, as illus-
trated by the average cluster accuracy in Fig. 7.2A. Because some disagreement is necessary
for potential individual differences to arise, we analyzed idiosyncratic biases as a function of
participant disagreement. To measure participant disagreement, we relied on the standard
deviation of participant accuracy of each cluster. We successively subsampled clusters to
measure individual biases within increasing disagreement levels.

Starting with all clusters, we successively removed clusters with the lowest disagreement
levels by using a lower bound threshold on the standard deviation of participant accuracy.
The first batch of clusters filtered out were the image clusters containing skin lesions that were
virtually perfectly diagnosed (i.e., easy diagnoses for most observers), and the last remaining
clusters contained the most contentious skin lesion images, associated with lower diagnostic
accuracy. Fig. 7.5 shows the first and last cases of the 14 different disagreement levels tested.
Fig. 7.5A analyzes all 100 clusters, while Fig. 7.5B analyzes the most contentious image
clusters with the highest disagreement levels. The remaining thresholds will be discussed
with Fig. 7.6.

For both Fig. 7.5A and 7.5B, we found that the within-participant and between-participant
correlations were significant (permutation tests, p < 0.001), and within-subject correlations
were significantly higher than the between-subject correlations (permutation tests, p < 0.05).
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Figure 7.3: Relative diagnostic accuracy per cluster for 5 participants. Each dot represents
a skin lesion image. Color coding illustrates participants’ diagnostic accuracy compared to
the mean performance of all participants within each cluster. The cluster average accuracy
across all participants is represented in Fig. 7.2A.

This confirms that there was group-wide agreement and also significant individual differences
(more consistency in the within-observer diagnoses than the between-observer diagnoses).

Moreover, for almost all disagreement levels, we found that the high-performance group
showed higher within-participant and between-participant correlations than the low-performance
group (permutation tests, p < 0.001). That means the high-performance participants
had significantly more agreement both within and between themselves. When consider-
ing the most contentious clusters (Fig. 7.5B) we found that high-performance participants
had a significantly lower between-subject correlation than the low-performance group (Fig.
7.5B, highest horizontal square bracket; permutation test, p < 0.01). That is, the high-
performance group showed more disagreement than the low-performance group. This is a
potential sign of higher idiosyncratic biases in the high-performance group. For less am-
biguous clusters (smaller thresholds), we found that the high-performance group showed
higher within-participant and between-participant correlations than the low-performance
group (permutation tests, p < 0.001).

In a detailed analysis, we measured the average difference between the within-participant
correlation and between-participant correlation, i.e., the idiosyncratic bias magnitude, at
different disagreement levels for both low- and high-performance groups. We found an in-
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Figure 7.4: Individual differences analysis across all participants. Within-subject correlation
and between-subject correlation were averaged across all participants. The within-subject
correlation was significantly higher than the between-subject correlation, represented by the
horizontal square bracket. Error bars represent the 95% bootstrapped confidence intervals,
and the 97.5% upper bounds of the permuted null distributions for the within-subject and
between-subject correlations are shown as horizontal black lines. ***p < 0.001.

creasing idiosyncratic bias magnitude difference between the two groups with respect to
the standard deviation threshold (Fig. 7.6). In other words, as the images got more dif-
ficult to diagnose, the high-performance group showed more idiosyncratic bias than the
low-performance group. High-performing individuals therefore have more stable individual
perceptual biases. For the cluster subsets with a standard deviation higher than 0.375,
we found that the high-performance group showed a significantly higher idiosyncratic bias
magnitude than the low-performance group. Thus, proficiency is associated with higher
idiosyncratic biases.

7.4 Discussion

In this study, we used a large dataset of teledermatology records to isolate and identify the
nature of individual observer-specific biases in the perception of skin lesions and to deter-
mine how these are related to proficiency. Our results demonstrated that, counterintuitively,
proficiency is associated with increased idiosyncracy—increased and more consistent biases
within individual observers. Rather than becoming more alike and homogeneous, skilled
observers tend to have more unique patterns of perceptual bias. Skilled observers are not
worse performers, they are simply more unique. The results confirm the importance of pro-
ficiency, and, more importantly, they reveal the growing importance of individual differences
that arise with proficiency. The results have consequential implications for individualized
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Figure 7.5: (A) Within-subject and between-subject correlations of the low- and high-
performance groups. Correlation coefficients were significant (permutation tests, p < 0.001).
The horizontal black lines mark the 97.5% upper bounds of the permuted null distributions.
For both groups, within-subject correlations were also significantly higher than between-
subject correlations, denoting that both low and high performers exhibited idiosyncratic
biases. (B) Given a disagreement threshold, we filtered out image clusters with lower levels
of participant disagreement. Using the remaining clusters, we computed the within-subject
and between-subject correlations of each group. Here, we showed the 0th (A) and 100th
(B) percentiles, respectively the lowest and highest disagreement threshold used. *p < 0.05,
**p < 0.01, ***p < 0.001

clinician training, paired-reader performance and optimization, bias-mitigation strategies,
and the use of computer vision in assessing and assisting clinicians.

To isolate and measure individual differences in observer performance, we harnessed a
computer vision model in conjunction with 758, 139 skin cancer diagnostic judgments col-
lected from 1, 173 medical trainees. This computer vision model is important and necessary:
it clustered skin lesion images based on pixel-level similarity, and thus provided the an-
chors for our analysis to unravel the counterintuitive relationship between proficiency and
bias. Previous papers could not have addressed the association between proficiency and bias
because they did not have a way of clustering or analyzing image properties. Therefore, pre-
vious analyses are limited to a global-level of description. Our study also uniquely harnessed
the power of large scale behavioral measures: it provided solid evidence of image-specific
individual differences. Indeed, it is the novel combination of massive behavioral measures
along with computer vision modelling that reveals the counterintuitive relationship between
proficiency and bias.

Our results may raise a number of questions that we address in the following discussion.
First, it might be argued that stronger idiosyncratic biases exhibited by skilled observers
could simply result from the high-performance group being more attentive to the task or
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Figure 7.6: Idiosyncratic bias magnitude difference between the two groups with respect
to cluster standard deviation thresholds (participant disagreement thresholds). Using the
remaining clusters, we computed the idiosyncratic bias magnitude difference. (A) Given one
subset of clusters (i.e. disagreement threshold) we measured the difference between within-
participant correlation and between-participant correlation (idiosyncratic bias magnitude)
for each group. (B) We then computed the difference of magnitude between the two perfor-
mance group. Note that (A) is the same figure as Fig. 7.5B with a different y-axis range.
(C) We repeated this procedure for increasing disagreement thresholds. The bootstrapped
idiosyncratic bias magnitude and the permutation test values are represented by the dark
blue line and the pink line respectively. The yellow columns represent the percentage of re-
maining image clusters after apply thresholds. Star markers denote where the permutation
test is statistically significant, i.e., when the difference between the blue line and pink line is
significant. Asterisks represent Bonferroni-adjusted p-value significance with *p < 0.05 and
***p < 0.001.
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lapsing less frequently. By comparing participant reaction times, we found that the time
taken to submit diagnoses between the two groups was comparable and not significantly
different (t-test, p > 0.05). Hence, it is unlikely that the stronger individual differences
within the high-performers simply arose due to difference of attentiveness. Furthermore,
while higher levels of attention could account for the higher within- and between-correlations
of high-performers in some settings (Fig 7.5A), it may not explain altogether the increased
difference of self-consistency and group-agreement displayed by skilled observers.

One might be concerned about the internal consistency of these idiosyncratic biases, that
these biases are not systematic. Using the split-half Pearson’s correlation, participants had
a significant internal reliability of 0.68 (permutation test, p < 0.001). When measuring
the internal reliability of each group, we found that high-performers reached a correlation
coefficient of 0.77 (permutation test, p < 0.001) and the low-performers 0.58 (permutation
test, p < 0.001). Furthermore, we measured a Cronbach’s alpha of 0.95, underscoring the
high internal consistency of participants’ answers.

Leveraging the fact that images were sometimes diagnosed multiple times by one partic-
ipant, we evaluated participants’ test-retest reliability. That is, we assessed whether partici-
pants reported similar diagnoses when assessing the same image at different times. We found
that participants showed significant reliability (permutation tests, p < 0.001), with Pearson’s
r coefficients of 0.44 for all participants, 0.46 when considering only the high-performance
group, and 0.40 for low-performers.

One may worry that the skin lesion images utilized in the experiment contained only
two types of lesion, i.e., nevus (benign) and melanoma (malignant). This does not capture
the full range or variety of various skin cancer disease types. Moreover, for the images
presented to participants, 57.3% were benign, and 42.7% were malignant. Although the
skin cancer types and prevalence of the skin lesion images utilized in the experiment are
somewhat different from typical scenarios, the skin lesion images are extracted directly from
real diagnostic records. They contain a variety of different lesions, and textures, and include
different skin cancer subtypes. This diversity allows the computer vision model to cover
more territory. Thus, the size and scope of the dataset is a strength, which helps to reflect
the biases that clinicians may actually have in routine store-and-forward diagnosis. Future
studies can expand the lesion categories and investigate the effect of more lesion types in
typical skin cancer diagnostic scenarios. Whether disease prevalence may influence individual
differences is another interesting question to investigate in future studies.

All the data in this study were collected online because our goal was to investigate re-
mote store-and-forward teledermatology. Whether in-person dermatologists might exhibit
the same sorts of idiosyncratic biases as a function of proficiency remains unclear and should
be investigated in future work. Because teledermatology has attracted a great deal of atten-
tion and increased in popularity recently, our results are valuable in explaining diagnostic
errors and understanding the relationship between bias and proficiency in remote medicine.
However, we acknowledge that the results here should not be extrapolated to in-person set-
tings because telemedicine is not directly comparable to in-person diagnosis. For example,
in the clinic, dermatologists have access to much more information, including tactile cues, a
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larger field of view, and a variety of other sources of information.
Another question that might arise is whether time pressure or constraints may have

imposed a burden on observers that led to the biases. This is not a likely explanation
because participants had unlimited time to respond to each image. So the biases are not
due to time pressure or a speed-accuracy trade-off.

The findings reported here hint at several promising avenues to improve remote store-
and-forward diagnostic performance. Our visualization directly revealed the idiosyncratic
”fingerprints” of perceptual bias in medical image judgments. Taking into account these
fingerprints could improve individual clinician training by selectively shaping and mitigating
the idiosyncratic biases. Existing training programs and approaches [256, 102, 110, 104, 192,
54, 89], which treat observers as having uniform biases, or as a uniform group, cannot address
the heterogeneity of the biases. Highlighting this, the observers here received feedback about
their performance on every trial, and yet that feedback did not mitigate the biases. Only by
characterizing the individual clinician-level fingerprint of biases can observer-specific training
programs be developed that might correct these biases.

The idiosyncratic perceptual biases reported here also have very important implications
for multiple reader approaches in medical image diagnosis. Multi-reader improvement hinges
on independence between clinicians, but our results here demonstrate that what counts as
independent requires knowing very precisely the idiosyncratic image-level biases of individ-
ual clinicians. Knowing these fingerprints for individual observers means that independent
observers could be strategically paired, thus improving performance above and beyond even
the most skilled individual observer.

7.5 Conclusions

In summary, we found that medical trainees have image-level idiosyncratic biases when they
perform skin cancer diagnosis, and increased diagnostic proficiency is associated with more
substantial idiosyncratic biases. Isolating these fingerprints of perception could be valuable
in the future to improve individualized training, computer assisted diagnosis, paired-reader
approaches, and bias mitigation strategies.

Appendix A. Additional performance metrics
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Figure 7.7: Cluster evaluation metrics averaged across all participants. Each dot represents
a skin lesion image. Colors encode diagnostic metrics evaluated at the cluster-level, when
considering all participants’ diagnoses.



CHAPTER 7. IDIOSYNCRATIC BIASES IN THE PERCEPTION OF MEDICAL
IMAGES 104

Figure 7.8: Diagnostic sensitivity per cluster for 5 participants compared to the cluster aver-
age across all participants. Because we interested in individual differences, after computing
diagnostic metrics for one participant at the cluster-level, we compute the difference between
this participant and the average of all participants within each cluster.
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Figure 7.9: Relative diagnostic specificity per cluster for 5 participants
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Figure 7.10: Relative diagnostic d’ per cluster for 5 participants
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Figure 7.11: Relative diagnostic criterion per cluster for 5 participants
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Figure 7.12: Relative diagnostic accuracy per cluster for 30 participants. Each dot represents
a skin lesion image. Given that not all participants submitted a diagnosis for each image,
some fingerprints contain fewer images (dots) than others. The accuracy (color) is computed
at the cluster level.



109

Chapter 8

Conclusion

In the research discussed in this dissertation, we extended the visual serial dependence study
in the medical image perception area. Chapter 2 illustrates our initial attempt to verify
the existence of the visual serial dependence effect in medical image diagnosis via naive
artificial medical image stimuli. We found that visual serial dependence has a disruptive
effect in radiologic searches that impairs accurate detection and recognition of tumors or
other structures. However, due to the limitation of the stimuli generation methods, the naive
artificial stimuli have been noted by both untrained observers and expert radiologists to be
less authentic, which can not help to reveal the real scenarios of medical image perception.
To solve this obstacle, we proposed and built a generative tool via generative adversarial
networks (GANs) to generate authentic medical images, replacing the simple stimuli in future
experiments. The GenAI tool is introduced in Chapter 3. We also elaborate on another usage
of our proposed GenAI tool in Chapter 4, i.e., to augment the rare case image samples in
skin cancer diagnosis and boost the classification performance of self-supervised learning
models. Using the authentic medical images from the GenAI medical image generation tool,
in Chapter 5, we find that the perception of the current simulated medical image was biased
towards the previously seen medical images, which strengthens the evidence of the existence
of the visual serial dependence effect in medical image perception. Finally, in Chapter 6,
we analyzed real diagnostic data collaboratively collected with a data annotation company.
We found significant serial dependence effects in perceptual discrimination judgments, which
negatively impacted performance measures. We further visualized new findings of the same
diagnostic data in Chapter 7. In particular, we found that medical trainees have image-
level idiosyncratic biases when they perform skin cancer diagnosis, and increased diagnostic
proficiency is associated with more substantial idiosyncratic biases.

In closing, the research discussed in this dissertation reveals that visual serial dependence
exists in medical image perception. These findings help understand one potential source of
systematic bias and errors in medical image perception tasks and hint at useful approaches
that could alleviate the errors due to serial dependence. The research also sheds light on
the interdisciplinary area of human vision and computer vision, showing potential success in
combining both fields.
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