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Summary:

Modeling and drawing inference on the joint associations between single nucleotide 

polymorphisms and a disease has sparked interest in genome-wide associations studies. In the 

motivating Boston Lung Cancer Survival Cohort (BLCSC) data, the presence of a large number 

of single nucleotide polymorphisms of interest, though smaller than the sample size, challenges 

inference on their joint associations with the disease outcome. In similar settings, we find that 

neither the de-biased lasso approach (van de Geer et al., 2014), which assumes sparsity on the 

inverse information matrix, nor the standard maximum likelihood method can yield confidence 

intervals with satisfactory coverage probabilities for generalized linear models. Under this “large 

n, diverging p” scenario, we propose an alternative de-biased lasso approach by directly inverting 

the Hessian matrix without imposing the matrix sparsity assumption, which further reduces bias 

compared to the original de-biased lasso and ensures valid confidence intervals with nominal 

coverage probabilities. We establish the asymptotic distributions of any linear combinations of the 

parameter estimates, which lays the theoretical ground for drawing inference. Simulations show 

that the proposed refined de-biased estimating method performs well in removing bias and yields 

honest confidence interval coverage. We use the proposed method to analyze the aforementioned 

BLCSC data, a large scale hospital-based epidemiology cohort study, that investigates the joint 

effects of genetic variants on lung cancer risks.
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1. Introduction

To identify disease-related genetic markers, traditional genome-wide association studies 

typically analyze the marginal associations of the disease outcome with single nucleotide 

polymorphisms (SNPs), one at a time. As marginal associations do not account for the 

dependence among SNPs, false positive discoveries may occur as SNPs can be claimed 

as significant when they are correlated with the causal variants (Schaid et al., 2018). 

Alternatively, modeling the joint effects of SNPs within the target genes can reduce false 

positives around true causal SNPs and improve prediction accuracy (He and Lin, 2010), 

and also can pinpoint functionally impactful loci in the coding regions (Taylor et al., 

2001; Repapi et al., 2010) so as to better understand the molecular mechanisms underlying 

cancer (Guan and Stephens, 2011). For example, among a subset of 1,374 patients from 

the Boston Lung Cancer Survival Cohort (BLCSC), an epidemiology study that investigates 

molecular mechanisms underlying lung cancer, our goal is to study the joint associations 

of lung cancer risk with over 100 SNPs residing in nine target genes that have been 

reported to harbor relevant genetic variants (McKay et al., 2017). The results may aid in 

personalized medicine by properly implicating relevant genetic variants and their joint roles 

in pharmacogenomics (Evans and Relling, 2004). Statistically, the analysis requires reliable 

estimation and inference on a fairly large number of regression parameters.

With lung cancer mechanisms differing by smoking predisposition (Bossé and Amos, 2018), 

analyzing BLCSC among the 1,077 smokers and 297 non-smokers, separately, is necessary. 

Included in our models are 103 SNPs and 4 demographic variables, which, though smaller 

than the number of smokers or non-smokers, are large enough to defy the conventional 

maximum likelihood estimation (MLE) approach. In particular, for non-smokers, Table 2 

in Section 5 has shown unreasonably large MLE estimates with wide confidence intervals, 

e.g. a point estimate of −19.64 with a 95% confidence interval (−6,705.04, 6,665.75) for 

SNP AX-62479186. Failures of MLE in similar scenarios have been documented in Sur and 

Candès (2019), and further evidenced by our later simulation studies.

The asymptotic framework underlying these cases can be characterized as the number of 

parameters p increasing with the sample size n, rather than staying fixed, which is often 

referred to as the “large n, diverging p” scenario. Drawing inference with generalized linear 

models (GLMs) under this framework may facilitate a range of applications, because the 

setting enables us to build valid models when the collected information increases with 

more subjects included in the study (Wang, 2011). Several authors (Huber, 1973; Yohai and 

Maronna, 1979; Portnoy, 1984, 1985) investigated the relative order between p and n that 

ensures the validity of M-estimators in linear regression; He and Shao (2000) studied the 

consistency and the asymptotic normality of the M-estimators under different conditions 

and showed that p2 log(p)/n → 0 would be needed for linear and logistic regression; 

Wang (2011) developed an asymptotic theory for the estimated regression parameters 

from generalized estimating equations with clustered binary outcomes, provided p3/n → 
0. However, most of these methods incur substantial biases in empirical studies unless p is 

very small.
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Penalized regression methods have been developed over the decades to accommodate a 

large number of covariates. These methods, including the lasso (Tibshirani, 1996), the 

elastic net (Zou and Hastie, 2005) and the Dantzig selector (Candès and Tao, 2007) among 

many others, are considered to be useful alternatives to the traditional variable selection 

methods such as forward or stepwise selection, especially in genetic studies (Schaid et al., 

2018). These regularized methods yield biased estimates, and, thus, cannot be directly used 

for drawing inference such as constructing confidence intervals with a nominal coverage 

probability.

One stream of inferential methods is the post-selection inference conditional on selected 

models (Lee et al., 2016), which requires conditional coverage to quantify the uncertainty 

associated with model selection. Other super-efficient procedures, such as SCAD (Fan 

and Li, 2001; Fan and Peng, 2004) and adaptive lasso (Zou, 2006), share the flavor of 

post-selection inference that is not the focus of this article. In particular, the inference based 

on the oracle estimation of Fan and Peng (2004) requires p5/n → 0.

Another school of methods is to draw inference by de-biasing the lasso estimates, termed de-

biased lasso or de-sparsified lasso, which relieves the restrictions of post-selection inference 

and possesses nice theoretical and numerical properties in linear regression models (van de 

Geer et al. 2014; Zhang and Zhang 2014; Javanmard and Montanari 2014).

van de Geer et al. (2014) extended de-biased lasso to GLMs and developed the asymptotic 

normality theory for each component of the coefficient estimates; based on this work, Zhang 

and Cheng (2017) proposed a multiplier bootstrap procedure to draw inference on a group of 

coefficients in GLMs. However, the de-biased lasso approach presented subpar performance 

with non-negligible biases and poor coverage of confidence intervals, as seen from Figures 

1 and 2 for a logistic example in Section 4 that mimics the BLCSC setting, because a key 

sparsity assumption on the inverse information matrix may not hold in GLM settings.

To address the limitation and for valid inference with GLMs, we propose a refined de-biased 

lasso estimating method specifically tailored to the “large n, diverging p” scenario as in the 

motivating BLCSC dataset. Our proposed method estimates the inverse information matrix 

by directly inverting the sample Hessian matrix, which requires no structural assumptions 

on the inverse information matrix. We establish the asymptotic distributions for any linear 

combinations of the resulting estimates, laying the theoretical foundation for applications. 

Simulations demonstrate its better performance in reducing biases and preserving confidence 

interval coverage probabilities than the conventional MLE and the original de-biased lasso 

(van de Geer et al., 2014) for a wide range of p/n ratios, and all three methods yield almost 

identical results when p is rather small relative to n.

The rest of this article is organized as follows. Section 2 describes in detail the model 

setup and the proposed refined de-biased lasso estimating method. Asymptotic results for 

the proposed method are provided in Section 3, followed by simulation studies in Section 

4. Findings on the joint associations between SNPs in target genes and lung cancer risks by 

applying the proposed method to the motivating BLCSC data are reported in Section 5. Not 
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to deviate from the main flow, we put off the discussion of the distinctions of the proposed 

method from the existing high-dimensional inference literature to Section 6.

2. Method

2.1 Background and set-up in generalized linear models

We start with some commonly used notation. For a vector a, ‖a‖q denotes its 

ℓq norm, q ⩾ 1. Denote by λmax(A) and λmin(A) the largest and the smallest 

eigenvalues of a symmetric matrix A, respectively. For a real matrix A = (Aij), let 

∥ A ∥ = sup ∥ x ∥2 = 1 ∥ Ax ∥2 = λmax ATA 1/2 be the spectral norm of A. The induced matrix 

ℓ1 norm is ‖A‖1 = maxj Σi |Aij|, and when A is symmetric, ‖A‖1 = maxi Σj |Aij| also holds. The 

element-wise ℓ∞ norm is ‖A‖∞ = maxi,j |Aij|. With two positive sequences an and bn, write 

an = O bn  if there exist c > 0 and N > 0 such that an < cbn for all n > N, and an = o(bn) if an/bn 

→ 0 as n → ∞. We write an ≍ bn if an = O bn  and bn = O an .

Denote by yi the response variable and xi = 1, xi
T T ∈ ℝp + 1 for i = 1, …, n, where “1” 

corresponds to the intercept term, and xi represents the p covariates. Let X be the n×(p+1) 

covariate matrix with xi
T being the ith row. We assume that yi, xi i = 1

n  are independent 

and identically distributed copies of (y, x). Define the negative log-likelihood function as 

the following, up to an additive constant irrelevant to the unknown parameters, when the 

conditional density of y given x belongs to an exponential family:

ρξ(y, x) = ρ y, xTξ = − yxTξ + b xTξ (1)

where b(·) is a known twice continuously differentiable function, ξ = β0, βT T ∈ ℝp + 1 denotes 

the vector of coefficients and β0 ∈ ℝ is the intercept parameter. The unknown true coefficient 

vector is ξ0 = β0
0, β0T T

.

2.2 De-biased lasso

With ρξ(y, x) = ρ(y, xT ξ) given in (1), denote by ρ̇ξ and ρ̈ξ its first and second order 

derivatives with respect to ξ, respectively. For any function g(y, x), let Png = n−1∑i = 1
n g yi, xi . 

Then for any ξ ∈ ℝp + 1, we denote the empirical loss function based on the random sample 

yi, xi i = 1
n  by Pnρξ = n−1∑i = 1

n ρξ yi, xi , and its first and second order derivatives with respect 

to ξ by Pnρ̇ξ = n−1∑i = 1
n ∂ρξ yi, xi / ∂ξ and Σξ = Pnρ̈ξ = n−1∑i = 1

n ∂2ρξ yi, xi / ∂ξ∂ξT. Two important 

population-level matrices are the information matrix, Σξ = E Σξ = E Pnρ̈ξ , and its inverse 

Θξ = Σξ
−1. With a tuning parameter λ > 0, the lasso estimator for ξ0 is defined as

ξ = arg min
ξ = β0, βT T ∈ ℝp + 1

Pnρξ + λ ∥ β ∥1 ,
(2)

where we suppress the dependence of λ on n and p for notational ease. We clarify that we 

do not penalize the intercept β0 in (2). As such, the theoretical properties for ξ , including 

the bounds of estimation errors and prediction errors, are still the same as those in van de 
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Geer (2008) and van de Geer et al. (2014), where all of the parameters are estimated via 

penalization (Bühlmann and van de Geer, 2011).

We briefly review the de-biased lasso estimator and its bias decomposition. The first order 

Taylor expansion of Pnρ̇ξ0 at ξ  gives

Pnρ̇ξ0 = Pnρ̇ξ + Pnρ̈ξ ξ0 − ξ + Δ, (3)

where Δ is a (p + 1)-dimensional vector of remainder terms with the jth element

Δj = 1
n ∑

i = 1

n
ρ̈ yi, aj

* − ρ̈ yi, xi
Tξ xijxi

T ξ0 − ξ ,

in which ρ̈(y, a) = ∂2ρ(y, a)/ ∂a2, and aj
* lies between xi

Tξ  and xi
Tξ0. In linear regression 

models, Δ = 0, which is not always the case for GLMs. Let M be a (p+1)×(p+1) matrix 

approximating Θξ0. Multiplying both sides of (3) by Mj, the jth row of M, we obtain the 

following equality for the jth component

ξ j − ξj
0 + −MjPnρ̇ξ

Ij

+ −MjΔ
IIj

+ MjPnρ̈ξ − ej
T ξ − ξ0

IIIj

= − MjPnρ̇ξ0, (4)

where ej is the unit vector with the jth element being 1. van de Geer et al. (2014) obtained 

the above decomposition by inverting the Karush–Kuhn–Tucker condition while using 

the node-wise lasso estimate of Θξ0, denoted by Θ, to be the approximation matrix M. 

Originally proposed for neighborhood selection in high-dimensional graphs (Meinshausen 

and Bühlmann, 2006), the node-wise lasso approach estimates a sparse matrix Θξ0 that 

consists of many zero elements. In (4), the asymptotic bias term Ij is estimable, and ξ j + Ij

corresponds to the de-biased lasso estimator in van de Geer et al. (2014) with M = Θ. In 

practice, the IIj and IIIj terms in (4) are not computable because they involve the unknown 

ξ0, and ignoring them may not help fully remove biases. Particularly, the sparse estimator 

Θ may result in non-negligible IIj and IIIj terms compared to Ij. Consequently, the Θ-based 

de-biased lasso estimator (van de Geer et al., 2014) incurs much bias and possesses an 

unsatisfactory inference performance for GLMs as evidenced by our simulations.

On the other hand, without the matrix sparsity assumption, one may obtain M by solving 

an optimization problem originally proposed for linear models (Javanmard and Montanari, 

2014):

min ζTΣξζ:ζ ∈ ℝp + 1, Σξζ − ej ∞ ⩽ μn (5)

for j = 1, …, p + 1 and μn ⩾ 0. Under the conditions in Theorem 1 of Section 3, the Hessian 

matrix Σξ is invertible with probability going to one as n → ∞, and the rows of Σξ
−1

 are 

solutions to (5) when μn = 0. As confirmed by our simulations in a variety of regimes, μn = 

0 generally performs the best in overall bias correction to IIj +IIIj and statistical inference as 
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μn varies from 0 to 1; see Section 4. This motivates us to replace M with Θ = Σξ
−1

, denote by 

Θj the jth row of Θ, and reexpress (4) as

ξ − ξ0 + −ΘPnρ̇ξ + ( − ΘΔ) = − ΘPnρ̇ξ0 . (6)

Therefore, we propose a refined de-biased lasso estimator based on Θ:

b = ξ − ΘPnρ̇ξ . (7)

We will show that our proposed method possesses desirable asymptotic properties and, in 

general, performs better than the original de-biased lasso approach (van de Geer et al., 2014) 

in finite sample settings.

3. Theoretical results

Without loss of generality, we assume that each covariate has been centered to have mean 

zero. Let Xξ = WξX be the weighted design matrix, where Wξ is a diagonal matrix with 

elements ωi(ξ) = ρ̈ yi, xi
Tξ 1/2, i = 1, …, n. Then, for any ξ ∈ ℝp + 1, Σξ can be rewritten 

as Σξ = Xξ
TXξ/n. Recall that the population information matrix Σξ = E Σξ = E Pnρ̈ξ , and its 

inverse matrix is Θξ = Σξ
−1, which are respectively equal to E(XTX/n) and {E(XTX/n)}−1 

only for linear models, but not for GLMs. The ψ2-norm (Vershynin, 2012) is useful for 

characterizing the convergence rate of Θ = Σξ
−1

. Explicitly, for a random variable Y, its 

ψ2-norm is defined as ∥ Y ∥ψ2 = supr ⩾ 1 r−1/2 E |Y |r 1/r, and Y is defined to be a sub-Gaussian 

random variable if ∥ Y ∥ψ2 < ∞. For a random vector Z ∈ ℝp + 1, its ψ2-norm is defined as 

∥ Z ∥ψ2 = sup ∥ a ∥2 = 1 ∥ Z, a ∥ψ2, and Z is called sub-Gaussian if 〈Z, a〉 is a sub-Gaussian 

random variable for all a ∈ ℝp + 1 with ‖a‖2 = 1 (Vershynin, 2012). We list the regularity 

conditions as follows.

Assumption 1: The elements in X are bounded almost surely. That is, ‖X‖∞ ⩽ K almost 

surely for a constant K > 0. In addition, the rows of X are sub-Gaussian random vectors.

Assumption 2: Σξ0 is positive definite with bounded eigenvalues such that, for two positive 

constants cmin and cmax, cmin ⩽ λmin Σξ0 ⩽ λmax Σξ0 ⩽ cmax < ∞.

Assumption 3: The derivatives ρ̇(y, a) = ∂ρ(y, a)/ ∂a and ρ̈(y, a) = ∂2ρ(y, a)/ ∂a2 exist for all (y, 

a). Further in some δ-neighborhood, δ > 0, ρ̈(y, a) is Lipschitz such that for some absolute 

constant cLip > 0,

max
a0 ∈ xi

Tξ0
sup

max a − a0 , a − a0 ⩽ δ
sup

y ∈ Y
ρ̈(y, a) − ρ̈(y, a)

a − a ⩽ cLip .

And the derivatives are bounded in the sense that there exist two constants K1, K2 > 0 such 

that
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max
a0 ∈ xi

Tξ0
sup

y ∈ Y
ρ̇ y, a0 ⩽ K1,

max
a0 ∈ xi

Tξ0
sup

a − a0 ⩽ δ
sup

y ∈ Y
ρ̈(y, a) ⩽ K2 .

Assumption 4: ‖Xξ0‖∞ is bounded from above almost surely.

Assumption 5: The covariance matrix E(XTX/n) is positive definite with eigenvalues 

bounded away from 0 and from above.

It is common to assume bounded covariates as in Assumption 1 and bounded eigenvalues 

for the information matrix as in Assumption 2 in high-dimensional inference literature (van 

de Geer et al., 2014; Ning and Liu, 2017). Assumption 2 is needed to derive the rate of 

convergence for ξ . Assumption 3 specifies the required smoothness and local properties 

of the loss function ρ(y, xT ξ) (van de Geer et al., 2014). Since each element of Xξ0 is 

the (transformed) conditional mean of yi, it is reasonable to assume its boundedness in 

Assumption 4 as in van de Geer et al. (2014) and Ning and Liu (2017) for generalized 

linear models, and in Kong and Nan (2014) and Fang et al. (2017) for the Cox models. Also 

Assumption 4 is needed to bound the variance of yi and keep it away from 0 for generalized 

linear models. Assumption 5 is a mild requirement for random covariates; a similar 

condition on the sample covariance matrix can be found in Wang (2011). Unlike van de 

Geer et al. (2014), we have avoided an assumption on the boundedness of ∥ Θξ0xi ∥ ∞, which 

is not verifiable and closely related to the sparsity requirement of Θξ0 under Assumption 1.

Let s0 denote the number of non-zero elements in ξ0, and consider b = ξ − ΘPnρ̇ξ as defined 

in (7). Theorem 1 establishes asymptotic normality for (multiple) linear combinations of b , 

with a proof provided in Web Appendix A.

Theorem 1: With, λ ≍ {log(p)/n}1/2 assume that p2/n → 0 and s0 log(p)(p/n)1/2 → 0 as n → 
∞. Under Assumptions 1–5, we have that Σξ is invertible with probability going to one, and 

that

i. for a constant vector αn ∈ ℝp + 1 with ‖αn‖2 = 1,

n1/2αn
T b − ξ0

αn
TΘαn

1/2
D N(0, 1) as n ∞;

ii. for a fixed integer m > 1 and a constant matrix An ∈ ℝm × (p + 1) satisfying 

∥ An
T ∥ ⩽ c* for some constant c* and AnΘξ0An

T F  for some F ∈ ℝm × m,

n1/2An b − ξ0 D Nm(0, F) as n ∞ .
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Remark 1: Theorem 1 enables us to construct a 100×(1−r)% confidence interval for 

αn
Tξ0 as αn

Tb − zr/2 αn
TΘαn/n

1/2, αn
Tb + zr/2 αn

TΘαn/n
1/2

, where 0 < r < 1 and zr/2 is the 

upper (r/2)th quantile of the standard normal distribution. Here, αn can be arbitrarily 

dense, instead of having only a few non-zero elements such as αn = ej in van de 

Geer et al. (2014). A 100×(1−r)% confidence region for Anξ0 can be constructed as 

a ∈ ℝm:n Anb − a T AnΘAn
T −1 Anb − a ⩽ χm, r

2 , where χm, r
2  is the upper rth quantile of χm

2.

Remark 2: In a linear regression setting with Y = (y1, …, yn)T, some algebra shows that 

the proposed estimator (7) is identical to the MLE, (XTX)−1XTY, regardless of the choice of 

the initial estimate, ξ . Therefore, as a by-product, Theorem 1 characterizes the asymptotics 

of the MLE for linear models with a diverging number of coefficients, which only requires 

p2/n → 0. This can be shown following a similar proof of Theorem 1 with Δ = 0 for linear 

regression models, where Θ is free of regression parameters. It is obvious that regularity 

conditions can be simplified for linear regression models.

Remark 3: Binary covariates, particularly dummy variables for categorical covariates, 

satisfy the assumptions for Theorem 1. Therefore, applications of Theorem 1 encompass 

inference for categorical covariates, such as drawing inference on comparisons between 

multiple intervention groups or testing associations of multi-level categorical covariates with 

outcomes.

4. Numerical experiments

Under the “large n, diverging p” scenario, we compare the estimation biases and coverage 

probabilities of confidence intervals across the following estimators: (i) the original de-

biased lasso estimator obtained by using the node-wise lasso estimator Θ in van de Geer 

et al. (2014) (ORIG-DS), (ii) the conventional maximum likelihood estimator (MLE), and 

(iii) our proposed refined de-biased lasso estimator b , based on the inverse matrix estimation 

Θ = Σξ
−1

 (REF-DS).

Simulations using the logistic and Poisson regression models yield similar observations, and 

we only report results from logistic regression. A total of n = 1,000 observations, each with 

p = 40, 100, 300, 400 covariates, are simulated. Within xi = 1, xi
T T

, xi are independently 

generated from Np(0, Σx) before being truncated at ±6, and yi | xi ~ Bernoulli(μi), where 

μi = exp xi
Tξ0 / 1 + exp xi

Tξ0 . The intercept β0
0 = 0, and β1

0 varies from 0 to 1.5 with 40 equally 

spaced increments. In addition, four arbitrarily chosen elements of β0 take non-zero values, 

two with 0.5 and the other two with 1, and are fixed throughout the simulation. In some 

settings, the maximum likelihood estimates do not exist due to divergence and are not 

shown. The covariance matrix Σx of xi takes an autoregressive structure of order 1, i.e. 

AR(1), with correlation ρ = 0.7, or a compound symmetry structure with correlation ρ = 0.7. 

The tuning parameter in the ℓ1 penalized regression is selected by 10-fold cross-validation, 

and the tuning parameter for the node-wise lasso estimator Θ is selected using 5-fold 

cross-validation. Both tuning parameter selection procedures are implemented using glmnet 

(Friedman et al., 2010). For every β1
0 value, we summarize the average bias, empirical 
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coverage probability, empirical standard error and model-based estimated standard error 

over 200 replications.

Figure 1 illustrates the simulation results for estimating β1
0 under the autoregressive 

covariance structure, and Figure 2 under the compound symmetry structure. The three 

methods in comparison behave similarly with only 40 covariates included in the model, and 

the MLE yields slightly larger biases. The MLE estimates display much more biases than 

those obtained by the other two methods with 100 covariates, and do not always exist due 

to divergence. When the MLE estimates do exist, they manifest more variability than the 

original and refined de-biased lasso estimates, and are with lower coverage probabilities. 

In contrast, our refined de-biased lasso approach outperforms the MLE because the former 

utilizes sparse lasso estimates as the initial estimates and is numerically more stable than the 

latter.

There are systematic biases in the original de-biased lasso estimator by van de Geer et 

al. (2014), which increase with the magnitude of β1
0. When signals are non-zero, the model-

based standard errors produced by van de Geer et al. (2014) slightly underestimate the true 

variability. These factors contribute to the poor coverage probabilities of van de Geer et al. 

(2014) when the signal size is not zero. In contrast, the refined de-biased lasso estimator 

gives the smallest biases and has an empirical coverage probability closest to the nominal 

level across different settings, though with slightly higher variability than van de Geer et 

al. (2014). This is likely because our proposed de-biased lasso approach does not utilize 

a penalized estimator of the inverse information matrix. We take note that as the refined 

de-biased lasso method needs to invert the Hessian matrix, which could become more 

ill-conditioned if the dimension increases, its performance may deteriorate as the dimension 

of covariates increases.

As we alluded to in Section 2, the refined de-biased lasso estimator is related to Javanmard 

and Montanari (2014), and we have conducted additional simulations to compare them, 

referred to as “REF-DS” and “Tuning” respectively. Figure 3, which depicts the results 

of a logistic regression model with n = 500 observations and p = 40, 100, 200, 300, 400 

covariates, shows that μn = 0 generally performs the best in bias correction and honest 

confidence interval coverage when μn varies from 0 to 1; see the simulation setup and 

additional results in Web Appendix B.

5. Boston lung cancer data analysis

Lung cancer is the top cause of cancer death in the United States. The Boston Lung 

Cancer Survival Cohort (BLCSC), one of the largest hospital-based cohorts in the country, 

investigates the molecular causes of lung cancer. Recruited to the study were the lung 

cancer cases and controls from the Massachusetts General Hospital and the Dana-Farber 

Cancer Institute since 1992 (Miller et al., 2002). We apply the proposed refined de-biased 

lasso approach, together with the method by van de Geer et al. (2014) and the MLE for 

comparison, to a subset of the BLCSC data and examine the joint effects of SNPs from nine 

target genes on the overall risk of lung cancer.
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Genotypes from Axiom array and clinical information were originally available on 1,459 

individuals. Out of those individuals, 14 (0.96%) had missing smoking status, 8 (0.55%) 

had missing race information, and 1,386 (95%) were Caucasian. We include a final number 

of n = 1,374 Caucasians with complete data, where n0 = 723 were controls and n1 = 651 

were cases. Denote the binary disease outcome by yi = 1 for cases and 0 for controls. 

Among the 1,077 smokers, 595 had lung cancer, whereas out of the 297 non-smokers, 56 

were cases. Other demographic characteristics, such as education level, gender and age, are 

summarized in Web Appendix C. Using the target gene approach, we focus on the following 

lung cancer-related genes: AK5 on region 1p31.1, RNASET2 on region 6q27, CHRNA2 
and EPHX2 on region 8p21.2, BRCA2 on region 13q13.1, SEMA6D and SECISBP2L on 

region 15q21.1, CHRNA5 on region 15q25.1, and CYP2A6 on region 19q13.2. These genes 

may harbor SNPs associated with the overall lung cancer risks (McKay et al., 2017). In our 

dataset, each SNP is coded as 0,1,2, reflecting the number of copies of the minor allele, and 

minor alleles are assumed to have additive effects. After applying filters on the minor allele 

frequency, genotype call rate, and excluding highly correlated SNPs, 103 SNPs remain in 

the model. Since smoking may modify associations between lung cancer risks and SNPs, for 

example, those residing in region 15q25.1 (Gabrielsen et al., 2013; Amos et al., 2008), we 

conduct analysis stratified by smoking status. Among the smokers and non-smokers, we fit 

separate logistic regression models, adjusting for education, gender and age.

We apply these methods to draw inference on all of the 107 predictors, two of which are 

dummy variables for education originally with three levels, no high school, high school and 

at least 1–2 years of college. Our data analysis may shed light on the molecular mechanism 

underlying lung cancer. Due to limited space, Table 1 lists the estimates for 11 selected 

SNPs and demographic variables among smokers, and Table 2 for non-smokers. These SNPs 

are listed as they are significant based on at least one of the three methods among either the 

smokers or the non-smokers. Details of the other SNPs are omitted. Since the number of the 

non-smokers is only about one third of the smokers, the MLE has the largest standard errors 

and tends to break down among the non-smokers; see, for example, AX-62479186 in Table 

2, whereas the two de-biased lasso methods give more stable estimates. The estimates by our 

proposed refined de-biased lasso method (REF-DS) and the method by van de Geer et al. 

(2014) (ORIG-DS) share more similarities in the smokers in Table 1 than in the non-smokers 

in Table 2. Overall, the method by van de Geer et al. (2014) has slightly narrower confidence 

intervals than our proposed de-biased lasso estimator due to the penalized estimation for Θξ0. 

These results generally agree with our simulation studies.

For some SNPs, our proposed method and the method by van de Geer et al. (2014) 

yield estimates with opposite directions; see AX-38419741 and AX-15934253 in Table 1, 

and AX-42391645 in Table 2. Among the non-smokers, the 95% confidence interval for 

AX-31620127 in SEMA6D by our proposed method is all positive and excludes 0, while 

the confidence interval by the method of van de Geer et al. (2014) includes 0; the directions 

for AX-88907114 in CYP2A6 are the opposite in Table 2. CHRNA5 is a gene known for 

predisposition to nicotine dependence (Halldén et al., 2016; Amos et al., 2008; Gabrielsen 

et al., 2013). Though AX-39952685 and AX-88891100 in CHRNA5 are not significant 

at level 0.05 in marginal analysis among the smokers, their 95% confidence intervals in 
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Table 1 exclude 0 by all of the three methods. Indeed, AX-88891100, or rs503464, mapped 

to the same physical location in the dbSNP database, was found to “decrease CHRNA5 
promoter-derived luciferase activity” (Doyle et al., 2011). The same SNP was also reported 

to be significantly associated with nicotine dependence at baseline, as well as response to 

varenicline, bupropion, nicotine replacement therapy for smoking cessation (Pintarelli et 

al., 2017). AX-39952685 was found to be strongly correlated with SNP AX-39952697 in 

CHRNA5, which was mapped to the same physical location as rs11633585 in dbSNP. All of 

these markers were found to be significantly associated with nicotine dependence (Stevens et 

al., 2008). The stratified analysis also suggests molecular mechanisms of lung cancer differ 

between smokers and non-smokers, though additional confirmatory studies are needed.

6. Concluding remarks

We have proposed a refined de-biased lasso estimating method for GLMs by directly 

inverting Hessian matrices in the “large n, diverging p” framework. We have showed that 

if p2/n = o(1) and (p/n)1/2s0 log(p) = o(1), along with some other mild conditions, any 

linear combinations of the resulting estimates are asymptotically normal and can be used 

for constructing hypothesis tests and confidence intervals. By way of empirical studies, we 

have showed that when p is small relative to n, the proposed refined de-biased lasso yields 

estimates nearly identical to the MLE and the original de-biased lasso by van de Geer et al. 

(2014). In contrast, the proposed method outperforms the latter two in bias correction and 

confidence interval coverage probabilities when p < n but p is relatively large, indicating a 

broad applicability.

Additional simulations for linear regression models (results not shown here) indicate that, 

however, both our proposed method (equivalent to the MLE, see Remark 2) and the original 

de-biased lasso method perform well with no obvious difference between these two methods 

for wide ranges of p/n. This is likely due to the fact that the Hessian matrix for a linear 

model is free of regression parameters.

Theorem 1 gives some sufficient range of p relative to n to guide practical settings, but does 

not necessarily exhaust all possible working scenarios in a finite sample setting. In fact, we 

have shown through simulations that the asymptotic approximations given in Theorem 1 

work well in finite sample settings with wide ranges of p and n. Nevertheless, searching for 

more relaxed conditions of p and n warrants more in-depth investigations.

With a slightly stronger requirement of s0 log(p)/(p/n)1/2 → 0 than s0 log(p)/ n 0 specified 

in van de Geer et al. (2014), Theorem 1 obtains stronger results than theirs in i) drawing 

inference for any linear combinations of regression coefficients, ii) releasing sparsity 

assumptions on Θξ0xi ∞, and iii) dropping the boundedness assumption on Θξ0; see Web 

Appendix D for detailed discussion. Moreover, a referee pointed out a recent work on linear 

regression models (Bellec et al., 2018) that may help provide slightly less stringent sparsity 

conditions by relaxing the logarithmic factor; however, such generalization to GLMs is 

beyond our scope.
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Lastly, we comment on the difficulties of applying some existing methods to draw 

inference with high-dimensional GLMs. With extensive simulations, we have discovered 

unsatisfactory bias correction and confidence interval coverage with the original de-biased 

lasso in GLM settings (van de Geer et al., 2014); for example, see the simulation results 

under the “large p, small n” scenario in Web Appendix B. Our further investigation 

pinpoints an essential assumption that hardly holds for GLMs in general, which is that 

the number of non-zero elements in the rows of the high-dimensional inverse information 

matrix Θξ0 is sparse and of order o[{n/log(p)}1/2] (van de Geer et al., 2014). The theoretical 

developments in van de Geer et al. (2014) rely heavily on this sparse matrix assumption. The 

ℓ0 sparsity conditions on high-dimensional matrices are not uncommon in the literature of 

high-dimensional inference. A related ℓ0 sparsity condition on w* = I * − 1
γγIγθ

*  can be found in 

Ning and Liu (2017), where I* is the information matrix under the truth, but it is not well 

justified in a general setting for GLMs. When testing a global null hypothesis β0 = 0, the 

sparsity of Θξ0 reduces to the sparsity of the covariate precision matrix, which becomes less 

of an issue (Ma et al., 2020). Therefore, we generally do not recommend the de-biased lasso 

method when p > n for GLMs.

Data Availability Statement

The Boston Lung Cancer Survival Cohort data are not publicly available due to access 

restrictions.
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Figure 1. 
Simulation results: Bias, coverage probability, empirical standard error, and model-based 

standard error for β1
0 in logistic regression. Covariates are simulated from Np(0, Σx) before 

being truncated at ±6, where Σx has an AR(1) with ρ = 0.7. The sample size is n = 1,000 and 

the number of covariates p = 40, 100, 300, 400. The oracle estimator, that is, the maximum 

likelihood estimator under the true model, is plotted as a reference in orange solid lines. 

The methods in comparison include our proposed refined de-biased lasso in olive dot-dash 

lines, the original de-biased lasso by van de Geer et al. (2014) in blue dashed lines, and the 

maximum likelihood estimation in red dotted lines.

Xia et al. Page 15

Biometrics. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Simulation results: Bias, coverage probability, empirical standard error, and model-based 

standard error for β1
0 in a logistic regression. Covariates are simulated from Np(0, Σx) before 

being truncated at ±6, where Σx has a compound symmetry structure with ρ = 0.7. The 

sample size is n = 1,000 and the number of covariates p = 40, 100, 300, 400. The oracle 

estimator, that is the maximum likelihood estimator under the true model, is plotted as a 

reference in orange solid lines. The methods in comparisons include our proposed refined 

de-biased lasso in olive dot-dash lines, the original de-biased lasso by van de Geer et al. 

(2014) in blue dashed lines, and the maximum likelihood estimation in red dotted lines.
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Figure 3. 
Simulation results: Bias, coverage probability, ratio between average model-based standard 

error and empirical standard error in a logistic regression to verify the selection of the tuning 

parameter μn = 0 in Eq. (5) for ξj
0 = 1.
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