
UC Irvine
UC Irvine Previously Published Works

Title

Hip load capacity and yield load in men and women of all ages

Permalink

https://escholarship.org/uc/item/0bc1r8f7

Authors

Keyak, JH
Kaneko, TS
Khosla, S
et al.

Publication Date

2020-08-01

DOI

10.1016/j.bone.2020.115321
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bc1r8f7
https://escholarship.org/uc/item/0bc1r8f7#author
https://escholarship.org
http://www.cdlib.org/


Hip Load Capacity – p. 1 

Hip Load Capacity and Yield Load in Men and Women of All Ages 

 

J.H. Keyak a,b,c,*, T.S. Kaneko a, S. Khosla d, S. Amin e,f, E.J. Atkinson g, T.F. Lang h,  

J.D. Sibonga i 

March 2, 2020 

 

aDepartment of Radiological Sciences, University of California, Irvine, CA, USA  

bDepartment of Biomedical Engineering, University of California, Irvine, CA, USA 

cDepartment of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 

USA 

dDivision of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA 

eDivision of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, 

MN, USA 

fDivision of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA 

gDivision of Biomedical Statistics and Informatics, Department of Health Sciences Research, 

Mayo Clinic, Rochester, MN, USA 

hDepartment of Radiology and Biomedical Imaging and School of Dentistry, University of 

California, San Francisco, CA, USA 

iDivision of Biomedical Research and Environmental Sciences, NASA Lyndon B. Johnson 

Space Center, Houston, TX, USA 

*Corresponding author: Joyce H. Keyak, PhD, Department of Radiological Sciences, University 

of California, Irvine, CA 92697-5000. Phone: 949-824-9421; Fax: 949-824-8115; Email: 

jhkeyak@uci.edu.

mailto:jhkeyak@uci.edu.Abstract


Hip Load Capacity – p. 2 

Abstract 

Quantitative computed tomography (QCT) based finite element (FE) models can 

compute subject-specific proximal femoral strengths, or fracture loads, that are associated with 

hip fracture risk. These fracture loads are more strongly associated with measured fracture 

loads than DXA and QCT measures and are predictive of hip fracture independently of DXA 

bone mineral density (BMD). However, interpreting FE-computed fracture loads of younger 

subjects for the purpose of evaluating hip fracture risk in old age is challenging due to limited 

reference data. The goal of this study was to address this issue by providing reference data for 

male and female adult subjects of all ages. QCT-based FE models of the left proximal femur of 

216 women and 181 men, age 27 to 90 years, from a cohort of Rochester, MN residents were 

used to compute proximal femoral load capacity in single-limb stance and posterolateral fall 

loading (Stance_LC and Fall_LC, respectively) [US Patent No. 9,245,069] and yield load under 

fall loading (Fall_yield). To relate these measures to information about hip fracture, the CT 

scanner and calibration phantom were cross-calibrated with those from our previous prospective 

study of hip fracture in older fracture and control subjects, the Age Gene/Environment 

Susceptibility (AGES) Reykjavik cohort. We then plotted Stance_LC, Fall_LC and Fall_yield 

versus age for the two cohorts on the same graphs. Thus, proximal femoral strengths in 

individuals above 70 years of age can be assessed through direct comparison with the FE data 

from the AGES cohort which were analyzed using identical methods. To evaluate younger 

individuals, reductions in Stance_LC, Fall_LC and Fall_yield from the time of evaluation to age 

70 years can be cautiously estimated from the average yearly cross-sectional decreases found 

in this study (108 N, 19.4 N and 14.4 N, respectively, in men and 120 N, 19.4 N and 21.6 N, 

respectively, in women), and the projected fracture loads can be compared with data from the 

AGES cohort. Although we did not set specific thresholds for identifying individuals at risk of hip 

fracture, these data provide some guidance and may be used to help establish diagnostic 
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criteria in future. Additionally, given that these data were nearly entirely from Caucasian 

subjects, future research involving subjects of other races/ethnicities is necessary.  

 

Keywords 

hip fracture; femur; bone strength; finite element analysis; osteoporosis; quantitative computed 

tomography  

 

Abbreviations 

FE  finite element 

Stance_LC finite element analysis-computed proximal femoral load capacity in single-limb 

stance loading 

Fall_LC finite element analysis-computed proximal femoral load capacity for loading 

representing a fall onto the posterolateral aspect of the greater trochanter. 

Fall_yield finite element analysis-computed proximal femoral yield load for a fall onto the 

posterolateral aspect of the greater trochanter.  
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Introduction 

Fracture of the proximal femur is a devastating consequence of inadequate proximal 

femoral whole bone strength which can occur from bone loss or problems experienced during 

development. Although treatments to slow loss and/or increase proximal femoral strength exist, 

identifying patients who are at long-term risk of fracture and need treatment is challenging. 

Dual-energy X-ray absorptiometry (DXA) has long been used clinically to evaluate areal bone 

mineral density (BMD) and bone mineral content (BMC) in the femoral neck, and total proximal 

femur. Although low areal BMD is statistically associated with an increased risk of hip fracture, 

DXA BMD cannot precisely distinguish between subjects who are at risk of fracture and those 

who are not, especially in those with intermediate BMD or osteopenia [1-4]. The two-

dimensional nature of DXA is an inherent limitation that prevents separate assessment of 

cortical and trabecular bone, which makes early diagnosis problematic. During aging and 

unloading, bone loss is greater in trabecular than in cortical bone, but the presence of dense 

cortical bone dominates measurements of DXA areal BMD which causes changes in trabecular 

BMD to be obscured [5-6]. Quantitative computed tomography (QCT), a three-dimensional 

technique for measuring BMD, offers a solution to this particular problem while providing 

additional benefits. Not only can QCT separately evaluate trabecular and cortical volumetric 

BMD and BMC, it can also provide measures of trabecular and cortical bone volume and 

geometry. Studies have shown that QCT measures can assess hip fracture risk independently 

of DXA BMD [7-9]. 

Although DXA and QCT measures are helpful for evaluating regional BMD and BMC, 

these techniques cannot capture complex three-dimensional geometrical and structural factors, 

such as the heterogeneous distribution of bone density, and variations in cortical thickness that 

influence hip fracture risk [10]. As with failure of any structure, fracture of the proximal femur 

occurs when an applied force (i.e. load) exceeds the structure’s ability to support that load (i.e. 

its load capacity). If the load capacity of the proximal femur is sufficient to withstand the loads 
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that it typically encounters, the risk of proximal femur fracture will be low. With that rationale, the 

present study focuses on an individual’s proximal femur load capacity as a biomechanical 

indicator of hip fracture risk. This load capacity can be calculated through use of CT scan-based 

finite element (FE) modeling, a robust biomechanical tool that can account for a subject’s 

individual proximal femoral geometry and three-dimensional bone density distribution. Thus, 

rather than using BMD as a bone health measure that is statistically associated with fracture 

risk, CT scan-based FE modeling constructs a biomechanical representation of the proximal 

femur that computes the minimum force required to cause fracture.  

Previous studies have shown that QCT-based FE-computed proximal femoral strength, 

or fracture load, is more strongly associated with measured fracture load than DXA and QCT 

measures [11-13] and is predictive of hip fracture independently of DXA BMD [14-16]. However, 

the current challenge of employing FE models to assess hip fracture risk is interpreting the FE 

model results. Although we would ideally compare a patient’s FE model load capacity with the 

loads the proximal femur experiences, these loads are too uncertain to obtain useful fracture 

predictions. As an alternative, we can compare a patient’s FE load capacity with those of 

subjects who have and have not had hip fractures. If a patient’s load capacity is greater than 

that of most subjects who have had hip fractures, we could conclude that the risk of fracture is 

comparatively low. On the other hand, if a patient’s load capacity is comparable to that of many 

subjects who have had hip fractures and less than that of subjects who have not had hip 

fractures, we would conclude that the patient is at relatively high risk of hip fracture. 

Unfortunately, the limitation of this approach is that most previous FE studies have focused on 

older subjects [14-19], making it difficult to evaluate patients early in life, while there is still time 

to treat and/or prevent bone loss due to aging, medical treatments (e.g. glucocorticoids or 

cancer treatment), spaceflight, congenital conditions or other factors. Therefore, the purpose of 

this study is to provide the reference data and guidance that will allow CT scan-based FE 



Hip Load Capacity – p. 6 

models of the proximal femur to be used to evaluate proximal femoral load capacity of adult 

male and female subjects of all ages. 

 

Methods 

Subject and Imaging Data 

We obtained anonymized QCT scans of the hips of 216 women and 181 men [mean age 

(range): 60.9 (27 to 90) years, and 59.9 (28 to 90) years, respectively] from the year 6 follow-up 

visit of a previous longitudinal study of an age-stratified random sample of Rochester, MN 

residents [20]. The subjects included here are a subset of that study and were selected because 

they had obtained both QCT scans and DXA scans at the year 6 follow-up time point. Subjects 

previously provided written informed consent that extended to the analyses presented here. 

Ninety-five percent of the men and 99% of the women were white. Thirty-five percent of the men 

and 32% of the women were obese as defined by a weight greater than 30% of the ideal weight 

for their height. Ninety-nine (46%) postmenopausal women had received estrogen therapy and 

35 (16%) women and 3 (2%) men had received bisphosphonate therapy at some time prior to the 

scan. Although there were initially no exclusion criteria in the sample, data from 6 women and 5 

men were excluded because CT scan image quality, presence of a prosthesis (6 subjects), or 

femoral head deformity (1 subject) prevented valid analysis, leaving 397 subjects (the Mayo 

cohort) for this study.  

The QCT scans (Siemens, Sensation 64, 120kVp; 2-mm-thick slices; pixel size, 0.742 mm 

to 0.977 mm; convolution kernel, B30s) included a K2HPO4 calibration phantom (Model 3, 

Mindways Software, Inc., San Francisco, CA, USA), which was used to determine the 

K2HPO4  equivalent mineral density of each voxel (ρK, g/cm3). Inclusion of this phantom in the 

image with the subject is necessary to correct for the effects of variable subject size and 

composition, and other factors that can influence the CT Hounsfield units. The 2-mm-thick slices 

were converted to 3-mm-thick slices for consistency with previous FE studies [14,18,21,22]. 
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Fourier interpolation was performed over groups of three contiguous 2-mm-thick images to obtain 

six 1mm-thick contiguous images, followed by decimation (by averaging voxels in successive 

slices) to create two 3-mm-thick contiguous images.  

To enable direct comparison of the data from this investigation with that from our 

previous prospective study of hip fracture, the Age Gene/Environment Susceptibility (AGES) 

Reykjavik cohort [5,14,18], which used a Siemens, Sensation 4 scanner and a calcium 

hydroxyapatite (CHA) phantom, we cross-calibrated the CT scanners of the two studies. A 

custom anthropometric hip phantom simulating the pelvic area of the human body [23] was 

imaged on each of the CT scanners using the settings and calibration phantom that were used 

when scanning subjects at that site. The calibration phantom at each site was used to measure 

the QCT density of the anthropometric phantom in terms of K2HPO4 or CHA equivalent density, 

as applicable, and these QCT densities were then related to the actual density measurements 

of the anthropometric calibration phantom. These relationships were then used to determine a 

cross-calibration relationship between ρK on the Rochester scanner and the QCT CHA 

equivalent density (ρCHA, g/cm3) on the AGES scanner. This relationship was then applied at the 

voxel level to convert ρK obtained in Rochester to the CHA density equivalent to that obtained in 

the AGES study.  

Nonlinear FE models of the left proximal femur of each subject were used to compute 

proximal femoral load capacity in two loading conditions, one representing single-limb stance and 

one representing impact from a fall onto the posterolateral aspect of the greater trochanter 

(Stance_LC and Fall_LC, respectively) [US Patent No. 9,245,069][24]. As an additional measure 

of proximal femoral integrity, linear FE models were used to evaluate the yield load (i.e. the load 

at the onset of fracture) under fall loading (Fall_yield). Linear FE models of stance loading were 

not used because they could not predict measured fracture loads precisely [22]. 

For each subject, FE models of the left proximal femur were generated as follows. The CT 

scan images were segmented by one of the authors (TSK) using thresholding combined with an 
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edge following algorithm [25] that was integrated with in-house software to create a user-

interactive semi-automated segmentation procedure. The mesh was generated using linear 8-

node cube-shaped elements measuring 3mm on a side [26]. Material properties of the elements 

were computed from ρK of each voxel in the element, which was converted to ρCHA using the CT 

scanner cross calibration equation described above. The resulting ρCHA of each voxel was then 

used to compute ash density (ρash, g/cm3): ρash=0.88703ρCHA + 0.063343 [21,27-28]. Finally, ρash 

was used to compute an isotropic elastic modulus (E) and yield strength (S), which was assumed 

to be equal to the ultimate strength, for each voxel (Table 1) [14,21]. If the calculated value of ρash 

was less than zero, E and S were set equal to zero. The E and S of each element were then 

computed by averaging the respective values over all voxels in the element, while accounting for 

partial volume effects by scaling by the volume fraction of each voxel within the element. Poisson’s 

ratio was set to 0.4 [22,29-30]. 

The material properties of each finite element were specified by assigning a material 

definition to the element. Elements with a computed elastic modulus below 5 MPa were 

assigned a material with E=0.01 MPa (essentially zero). The subsequent material moduli that 

were used to define the element properties increased by 5%, with E = 5.125 × (1.05)n-2 MPa, 

where n=2,3,…[22]. Thus, the error introduced by grouping properties into specific materials 

was less than 2.5%. The elastic moduli of the materials formed the basis for the nonlinear FE 

models. 
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 1 

Table 1. Material properties used in linear and nonlinear finite element models. 

 Linear Fall Nonlinear Stance Nonlinear Fall 

Parameter All Densities 
Trabecular Bone 

(ρash ≤ 0.6037 g/cm3) 
Cortical Bone 

(ρash > 0.6037 g/cm3) 
Trabecular Bone 

(ρash ≤ 0.6037 g/cm3) 

Cortical Bone 
(ρash > 0.6037 g/cm3) 

E (MPa) 14900 
ρash

1.86 
14900 ρash

1.86 14900 ρash
1.86 14900 ρash

1.86 

S (MPa) 102 ρash
1.80 102 ρash

1.80 102 ρash
1.80 23.9 

εAB  0.00189 + 0.0241 ρash 0.0184 – 0.0100 ρash 0 

εAB’a  (15/3) εAB 0 

Ep (MPa)  –2080 ρash
1.45 –1000 −125,000ρash

1.45 −60,200 

Ep’(MPa) a  (3 E Ep ) / (15 E – 12 Ep) (3 E Ep ) / (15 E – 12 Ep) 

σmin (MPa)  43.1 ρash
1.81 0.42 S 

 2 

a  The formulae for εAB’ and Ep’ represent adjustments to εAB and Ep that account for the difference between the size of the finite 3 

elements (3mm) and the size of the specimens in which these post-yield parameters were measured (15 mm) [31]. The equations for 4 

trabecular bone were applied to cortical bone as well. 5 

 6 
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The nonlinear FE models were designed to behave much like a mechanical testing 

experiment under displacement control. Displacement was incrementally applied to the femoral 

head and the resulting reaction force values on the femoral head initially increased, reached a 

peak value (the proximal femoral strength), and then decreased. To achieve this mechanical 

behavior, the post-yield material properties for each material were represented by an initial 

perfectly plastic phase at stress S until the plastic strain was εAB’, followed by a strain softening 

phase with plastic modulus Ep’ until the stress was σmin, followed by an indefinite perfectly plastic 

phase [14,21,31]. Given that bone is anisotropic and these models employed isotropic properties, 

the post-yield properties had to be adjusted to obtain accurate proximal femoral fracture loads in 

different loading conditions. Thus, anisotropy was accounted for by employing different material 

strengths and post-yield properties in stance versus fall loading (Table 1). 

The elastic modulus of each material was used as the basis for calculating the post-yield 

material properties. Many of the post-yield properties depended on ρash, so the effective ρash for 

each material was first calculated from the equation between E and ρash (Table 1, 

ρash=(E/14900)(1/1.86)). The post-yield properties for each material were then calculated using the 

material’s ρash and the equations in Table 1 [14,21,31]. Thus, the linear elastic and nonlinear post-

yield mechanical properties described a simplified, density-dependent, nonlinear stress-strain 

curve for each material and its corresponding element(s) [14,21].  

Material yield was defined using the distortion energy theory, so element yield occurred 

when the FE-computed von Mises stress in the element exceeded the strength of the element, S. 

After yield, plastic flow was modeled assuming a plastic strain-rate vector normal to the von Mises 

yield surface and isotropic hardening/softening, which requires stress to increase/decrease 

uniformly in all directions. [32] 

For single-limb stance loading displacement was incrementally applied to nodes in a 3-

cm-diameter region on the femoral head and directed at 20° to the shaft axis in the coronal plane, 
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and the distal end of the proximal femur was fully constrained. For the nonlinear model of the fall 

loading condition, displacement was incrementally applied to nodes in a 3-cm-diameter region on 

the femoral head at 35° to the coronal plane and at 80° to the shaft axis with motion allowed 

transversely. Constraints were applied to nodes on the surface of the greater trochanter, over a 

thickness of 6 mm (two elements), to oppose the applied displacement while allowing for 

transverse motion. Note that these angles are measured within the plane containing the 

displacement vector and the shaft axis which does not coincide with any anatomic plane and 

results in an oblique, posterolateral loading condition. For the linear fall model, instead of applying 

displacement, a standard force of 1000 N, in the same direction as the displacement in the 

nonlinear models, was applied uniformly over the same nodes on the femoral head. Elements on 

the femoral head or greater trochanter that contained nodes to which force, displacement, or 

constraints were applied were assigned an elastic modulus of 20 GPa and a strength of 200 MPa 

to prevent severe element distortion. Nodes on the distal end of the model were fully restrained.  

Finite element analysis was performed using with ABAQUS v. 6.6-3 (Dassault Systèmes 

Simulia Corp.). The nonlinear models used the geometric nonlinearity and automatic time-

stepping options. For each increment of displacement, element strain and then stress were 

computed using the individual element’s stress-strain relationship, in conjunction with the 

distortion energy yield criterion, which enabled the resultant reaction force at the femoral head to 

be computed. The computed reaction force for each increment of displacement produced a force-

displacement curve analogous to a force-displacement curve during a mechanical testing 

experiment. Thus, the proximal femoral load capacity was defined as the maximum reaction force 

on the femoral head. For the linear fall FE models, the fall yield load was defined as the force at 

which 15 contiguous nonsurface elements exceeded their respective yield strengths [22]. Model 

linearity enabled this force to be determined from the element von Mises stress for the 1000 N 

applied load simply by scaling the model results. 

 



Hip Load Capacity – p. 12 

Statistics  

The data for men and women were first analyzed separately using descriptive statistics 

(Sigmastat/Sigmaplot, Systat Software, Inc.). To evaluate the relationship between FE strength 

and age and to test for sex differences, the data for men and women were analyzed together in 

a single model and multiple linear regression analysis was performed. The logarithm of FE-

computed bone strength measures served as the dependent variable when necessary to ensure 

a normal distribution of residuals about the regression line. We did not evaluate additional 

strength-related dependent variables, such as an estimated factor of safety (proximal femur 

strength divided by the applied force) for each loading condition because we found previously 

(in unpublished work) that parameters normalized by body weight, height or combinations 

thereof did not affect fracture predictions. We did not control for height or weight because, in our 

previous work, the relationship between fracture status and FE strength was independent of 

height and weight [14,18]. An interaction between age and sex was considered in the regression 

analyses after centering age on the mean age of all subjects. This interaction was retained if it 

was significant at the alpha=0.1 level. Results were considered significant when p<0.05.  

 

Comparative Data 

To relate the FE results from the Mayo cohort to information about hip fracture, we 

supplemented these results with the FE-computed strength data from the hip fracture (45 men, 

72 women) and control (94 men, 145 women) subjects of the AGES study [14,18].  This work 

involved prospective QCT scans of 5500 subjects, age 67 to 93 years, who were followed for 4 

to 7 years. The FE-computed fracture loads for the AGES and Mayo cohorts, which used 

identical FE modeling methods, were graphed together to enable FE-computed fracture loads 

for male and female adults of all ages to be related to those of hip fracture in older subjects. We 

calculated the 50th, 75th and 100th percentiles for each type of FE measure in the fracture group 

and showed those values on the graphs to assist with interpretation. 
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Results 

The 397 FE models consisted of 5804 to 15371 nodes and 4504 to 12677 elements, 

reflecting the variation in subject size. The CT scanner cross-calibration equation that converted 

QCT density data from ρK on the Mayo scanner to ρCHA on the AGES scanner was ρCHA (g/cm3) 

= 1.14 ρK − 0.017. The maximum elastic modulus in this cohort was 27.5 GPa, reflecting the 

young age of the subjects. The FE results and subject characteristics are summarized in Table 

2, along with comparable data from the AGES cohort. The nonlinear FE models of one female 

and one male subject did not reach a peak load when subjected to the fall loading condition, 

resulting in missing data during the statistical analysis.  

 

Table 2. Summary of Mayo cohort subjects and FE model results: Mean ± SD (range) 

 Male Female 

Age (years) 59.9  ± 16.6 (28 − 90) 60.9 ± 14.5 (27 − 90) 

Height (cm) 176.3 ± 7.2 (157.0 − 195.4) 162.3 ±   6.1 (148.5 − 179.2) 

Weight (kg) 90.2 ± 16.5 (53.0 − 134.0) 74.4 ± 15.4 (51.0 − 128.5) 

Stance_LC (N) 10943 ± 3101 (3722 − 18969) 8456 ± 2735 (2617 − 18258) 

Fall_LC (N) 3966 ± 678 (2305 − 6303) 3256 ± 614 (1717 − 5308) 

Fall_yield (N) 1601 ± 637 (434 − 3871) 1229 ± 530 (280 − 2975) 
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Table 3. Summary of AGES cohort subjects and FE model results: Mean ± SD (range)a 

 Male Female 

 Control Hip Fracture Control Hip Fracture 

Age (years) 
79.6 ± 5.2 
(70 – 90) 

80.0 ± 5.6 
(71 – 93) 

79.3 ± 5.7 
(67 – 92) 

79.5 ± 5.9 
(67 – 93) 

Height (cm) 
174.9 ± 6.6 

(162.4 – 190.5) 
174.6 ± 5.9 

(159.2 – 187.1) 
159.2 ± 5.6 

(139.3 – 173.0) 
159.6 ± 6.1 

(145.1 – 173.4) 

Weight (kg) 
82.6 ± 14.8 

(52.4 – 135.0) 
79.1 ± 13.9 

(50.3 – 114.0) 
68.3 ± 13.7 

(37.2 – 112.0) 
64.5 ± 15.1 

(39.2 – 111.2) 

Stance_LC (N) 
10587 ± 2949 

(4772 – 21784) 
8081 ± 2011 

(3123 – 12898) 
7220 ± 2348 

(2978 – 16330) 
6024 ± 1575 

(3085 – 10675) 

Fall_LC (N) 
3839 ± 564.0 
(2408 – 5499) 

3281 ± 539.2 
(1723 – 4269) 

2954 ± 555.8 
(1816 – 4535) 

2688 ± 435 
(1700 – 4419) 

Fall_yield (N) 
1692 ± 671 

(638 – 4257) 
1226 ± 476 

(276 – 2254) 
1008 ± 476 

(314 – 3071) 
844 ± 333 

(353 – 1945) 

a Data obtained from [14] except for Fall_yield, which was from [18] 
 

The FE-computed proximal femoral strengths were associated with age (Age, years), 

centered age (cAge = Age – 60.44 years) and sex (Figure 1) through the following equations, 

where Sex=0 for women and 1 for men: 

• Log10[Stance_LC (N)] = 3.907 + 0.111 Sex – 0.00560 cAge + 0.00151 Sex × cAge 

R2=0.405; standard error of the estimate (SEE) = 0.116 

• Fall_LC (N) = 4435 + 690.9 Sex – 19.40 Age 

R2=0.399; SEE=571.067 

• Log10[Fall_yield (N)] = 3.051 + 0.115 Sex – 0.00695 cAge + 0.00309 Sex × cAge 

R2=0.270; SEE=0.173 
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All constants and coefficients except those of the interactions were significant at the p<0.001 

level and indicate that, at 60.44 years of age (cAge=0), Stance_LC, Fall_LC and Fall_yield were 

23% (2351 N), 14% (691 N) and 23% (341 N) less in women than in men, respectively. 

Interactions between Sex and cAge were identified for Log10(Stance_LC) (p=0.045) and 

Log10(Fall_yield) (p=0.006), indicating that, when subjects 70 years of age were compared with 

same-sex subjects 10 years younger, Stance_LC was 13.8% lower in women and 9.9% lower in 

men, and Fall_yield was 17.4% lower in women and 9.3% lower in men.  For Fall_LC, there was 

no interaction between sex and age (p=0.35), so Fall_LC was 19.4 N lower per year of age in 

both sexes, or 5.9% lower per 10 years of age in women compared with 4.9% in men.  Between 

age 30 and 70 years, the average effects of age on Stance_LC, Fall_LC and Fall_yield were, 

respectively, 108 N, 19.4 N and 14.4 N lower per year in men and 120 N, 19.4 N and 21.6 N 

lower per year in women.  

 

Discussion 

The purpose of this study was to provide reference data and guidance to facilitate 

interpretation of CT scan-based FE-computed proximal femoral strengths of adult male and 

female subjects of all ages. Our results from the Mayo cohort constitute reference data for FE-

computed proximal femoral strengths for subjects age 27 to 90 years.  These reference data 

allow direct comparison of patient load capacity in stance and fall loading and fall yield load with 

those of this cohort. However, these reference data alone are not sufficient to determine if a 

subject is at long-term risk of fracture. To provide a more complete evaluation, these reference 

data need to be considered along with FE-computed strength values for hip fracture subjects. 

To facilitate this goal, while acknowledging the limitations described below, we combined the 

results for the Mayo cohort with those of the AGES cohort, using identical methodologies and 

cross-calibration of imaging hardware.  
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The computed load capacities indicate the minimum force required to cause a complete 

fracture (collapse) of the proximal femur and are associated with incident hip fracture in both 

men and women. Of the two load capacities, the stance load capacity is most strongly 

associated with fracture in both men and women. The reductions in strength associated with 

fracture in stance loading, 2377 N (22%) in men and 975 N (14%) in women, are respectively 

greater than those in fall loading, 484N (13%) in men and 206 N (7%) in women. The reductions 

in strength associated with fracture in each loading condition are also considerably greater in 

men than in women, indicating that identifying patients at risk of fracture is much more difficult in 

women than in men. In men, but not women, the fall load capacity is associated with incident hip 

fracture after accounting for areal BMD [14]. 

We included the fall yield load in this study even though yield load is not as strong a 

predictor of fracture as load capacity because yield load may be a more sensitive measure for 

evaluating changes in trabecular bone. In our models, fracture under fall loading begins in the 

trabecular bone [33], which is reflected most strongly by the fall yield load. Therefore, decreases 

in the yield load of an individual may be an early indicator of declining load capacity and future 

increases in hip fracture risk. Fall yield load may also be useful for evaluating interventions that 

affect trabecular bone, such as exercise [34-35].  

Although comparisons between the Mayo and AGES cohorts must be made cautiously, 

the 100th percentiles for the stance load capacity (12.9 kN in men and 10.7 kN in women) and 

fall load capacities (4.3 kN in men and 4.4 kN in women) may be used as conservative 

thresholds to indicate that a patient is at high risk of fracture. However, the load capacities for 

fracture and non-fracture subjects in the AGES cohort overlap, making it difficult to set a less 

conservative value. This overlap occurs because subjects with low FE-computed load capacities 

who are at high risk of fracture do not always encounter forces that exceed the load capacity. 

This is especially true in older women because the load capacity in fracture and control subjects 

is identical in the oldest women [14]. Setting a threshold below which a patient is deemed at risk 
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of fracture is inherently subjective, which is why we have included several percentiles for the 

AGES cohort in Figure 1. Although we have included separate graphs for men and women, it is 

not clear whether men and women should have different fracture thresholds considering the 

substantial overlap between female fracture and control subjects in the AGES.  

For evaluating subjects above age 70, proximal femoral strengths can be compared with 

those of both the Mayo and AGES cohorts, and the percentiles in the AGES hip fracture group 

may be used to guide an assessment of fracture risk. However, to evaluate younger subjects, 

the effect of aging must be considered. The results for the Mayo cohort provide relationships 

between the proximal femoral strengths and age that can be used to estimate where an 

individual may fall relative to the AGES cohort percentiles. That said, these estimates must be 

made with caution because our data are from a cross-sectional study and because some of the 

Mayo cohort received medications that could affect bone. That said, in the Mayo cohort, the 

stance load capacity in male and female subjects 30 to 90 years of age demonstrated a cross-

sectional decrease of 108 N/y and 120 N/y, respectively, which were similar to those we 

reported previously in older subjects, 90 N/y and 134 N/y, respectively, in a longitudinal cohort 

of non-fracture subjects from the AGES Reykjavik study [5], indicating that these estimates 

appear reasonable. Fall load capacity was not included in the previous study, but fall yield load 

decreased much faster in the older subjects of the AGES longitudinal study, 24.4 N/y in men 

and 32.8 N/y in women, than in the Mayo cross-sectional cohort, 19.4 N/y in both sexes. This 

finding may indicate that that fall yield load decreases with age faster in older than in younger 

subjects and may reflect the greater sensitivity of fall yield load to trabecular bone status 

compared with stance load capacity.  

The data presented in Figure 1 represent criteria for evaluating proximal femoral 

strengths, and potentially hip fracture risk, that are more robust than DXA measures because 

FE models can account for structural features that cannot be detected by DXA. Although 

osteoporotic levels of DXA areal BMD, with total hip BMD T-scores below < −2.5, are strongly 
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associated with increased risk of hip fracture [3], DXA is a poor predictor of hip fracture in 

patients with T-scores in the non-osteoporotic range. For example, Wainwright et al. [4] showed 

that, of 243 hip fracture patients from a cohort of 8065 women, more than half had DXA total hip 

BMD T-scores above −2.5 and 6% had T-scores greater than −1.0. Fundamentally, DXA cannot 

be a reliable method for evaluating hip fracture risk because it cannot incorporate key structural 

features that influence proximal femoral strength. For example, significant cortical thinning of the 

femoral neck and associated changes in cortical/trabecular geometry occur with age but are 

only weakly reflected by changes in DXA areal BMD [10,36]. As a result, reductions in DXA 

areal BMD tend to understate age-related reductions in proximal femoral strength [5,37] and 

associated increases in hip fracture risk [14].  

Our previous report [19] illustrates the relationships between DXA T-scores and our load 

capacities for the Mayo cohort. These relationships clearly show that many of the Mayo subjects 

with T-scores between −2.5 and −1.0 have load capacities well below the 75th percentiles and 

may therefore be at risk of hip fracture. Amin et al. [1] suggested using FE analysis to evaluate 

individuals with DXA T-scores between −2.5 and −1.0. This approach is reasonable considering 

the advantages of finite element analysis over DXA for evaluating the structural integrity of the 

proximal femur.  

An important limitation of this study is that the Mayo cohort is 97% Caucasian, 

representing the overall population of the Rochester area, and the AGES cohort is entirely 

Caucasian. Therefore, the results from these studies are applicable to Caucasians but should 

be used with caution when evaluating other races/ethnicities. Additionally, 33% of the Mayo 

cohort subjects were obese, which was not the case in the AGES cohort. Therefore, the 

percentiles for the AGES fracture group may not reflect obese subjects, including those in the 

Mayo cohort. Some subjects in the Mayo cohort also received medications that could have 

decreased or increased hip fracture risk. In the AGES cohort, the effect of medications did not 

significantly influence the association between FE model results and fracture incidence, so 
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comparisons between subjects taking medications and the AGES cohort are valid. Finally, some 

subjects in the Mayo cohort may have had or will have hip fractures as they age. We did not 

identify subjects who fractured because low trauma fractures were not distinguished from high 

trauma fractures and because the rate of hip fracture in a group this small produces relatively 

few hip fractures. Therefore, the Mayo cohort should be considered representative of a 

Caucasian population, whose risk of hip fracture is similar to that of the population in the 

Rochester area, and who may be obese and/or take medications that affect fracture risk. 

Another limitation is that QCT data for the Mayo and AGES cohorts were obtained on 

two different CT scanners using different calibration phantoms. We addressed this limitation by 

cross-calibrating the CT scanners and calibration phantoms using a specially designed 

anthropometric calibration phantom [23]. Although cross-calibrating is inherently imperfect 

because phantoms do not always reflect the way the CT scanner depicts body habitus and 

tissue composition, our anthropometric phantom incorporated the human body shape and beam 

hardening effect of the pelvic bone structure, and has been previously validated, so the effect of 

using different scanners and phantoms was minimized. That said, the impact and importance of 

this cross-calibration was not trivial and should be considered when comparing these data with 

data from other scanners. Prior to cross-calibration, the FE results from the Mayo and AGES 

cohorts differed substantially. We had originally accounted for the different calibration phantoms 

by using a relationship, ρash=1.22ρK + 0.0526 [38], to calculate ash density from ρK. This 

relationship was obtained from a different make and model of CT scanner (GE 9800 Research 

Scanner) and a different K2HPO4 calibration phantom than used in the present study, which led 

to Stance_LC, Fall_LC and Fall_yield values in the Mayo cohort that exceeded the results 

presented here by 37% (31% to 40%), 11% (−3% to 26%) and 32% (22% to 38%), respectively. 

Ultimately, the cross-calibration equation between the Mayo and AGES scanners, ρCHA (g/cm3) 

= 1.14 ρK − 0.017 for 120 kVp was similar to equations obtained by Faulkner et al. [39] for 140 

kVp, ρCHA (g/cm3) = 1.18 ρK − 0.002, and for 80 kVp, ρCHA (g/cm3) = 1.14 ρK − 0.004 (obtained 
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on a GE 9800 Research Scanner). Despite the similarity, even a 4% difference in slope can 

lead to a greater difference in mechanical properties due to the nonlinear density-property 

relationships, so cross-calibration using the actual scanners and phantoms is essential to obtain 

valid comparisons.  

The quantitative results of this study are specific to the FE modeling method that was 

used [US Patent No. 9,245,069][24]. For example, the fall load capacities reported by Amin et 

al. [1] and Keaveny et al. [37] were notably greater than those found here, and the annual cross-

sectional decreases in proximal femoral strength, 55 N/y and 61 N/y in men and women [37], 

respectively, were about triple those found here, despite being from a closely related cohort. 

These differences can be attributed to the substantial differences in FE methodologies of the 

studies. The importance of differences between the CT-based FE methodologies used by 

various investigators and the need to address them was recently discussed by Lee et al. [40]. 

To our knowledge, the FE modeling method used in the present study is the only one that 

computes stance and fall load capacities, the maximum forces that the proximal femur can 

support during single-limb stance and a fall onto the posterolateral aspect of the greater 

trochanter. Introducing this methodology dramatically improved the precision of FE-computed 

strengths in stance loading [41] and we more recently implemented this method for 

posterolateral fall loading as well [14]. Most other proximal femur FE modeling methods predict 

that ever-increasing forces and displacements can be applied to the femoral head and cannot 

represent collapse of the bone during fracture [1,12,15,37,42]. Our models also employ a 

posterolateral fall loading condition, which provides lower fracture forces than lateral fall loading 

[1,16] that are more strongly associated with fracture in men [14]. Differences between FE 

modeling methods [36,40] with respect to loading conditions, complex nonlinear mechanical 

properties, failure theories, and the precise definition of proximal femoral strength can affect the 

ability of the model to reflect the actual mechanical behavior of the proximal femur and the force 

of fracture. Therefore, comparisons with the results presented here must be made with care. 
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 In conclusion, the Mayo cohort represents a reference database for FE-computed 

proximal femoral strengths of Caucasian adult men and women of all ages. The relationship 

between FE-computed strength and hip fracture can be examined through comparison with the 

FE data from the AGES cohort of older fracture and control subjects which were analyzed using 

identical methods and cross-calibration of imaging hardware. To evaluate long-term sufficiency 

of proximal femoral strengths in younger subjects, future decreases in bone strength due to 

aging can be estimated from the Mayo cohort data, and the projected bone strengths can be 

cautiously compared with those of the AGES cohort. Although strict criteria for identifying 

subjects at risk of fracture based on FE-calculated proximal femoral strengths have not been 

identified, these data may be useful for establishing criteria in future. 
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Figure 1. Computed load capacities in single-limb stance (a) and posterolateral fall loading (b), and computed yield load in 
posterolateral fall (c) for the Mayo and AGES cohorts versus age in men (left) and women (right). In each graph, the Mayo cohort 
regression line, 95% confidence interval for the regression line, and 95% confidence interval for the population are indicated by a 
solid line, short dashed lines and long dashed lines, respectively. The 50th, 75th and 100th percentiles for men (left) and women (right) 
in the AGES fracture group are indicated.  Regression lines between FE strength and age in the AGES fracture group were 
significant only for women and are shown only in the graphs on the right (heavy solid lines).   
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Figure 1. Computed load capacities in single-limb stance (a) and posterolateral fall loading (b), and computed yield load in 
posterolateral fall (c) for the Mayo and AGES cohorts versus age in men (left) and women (right). In each graph, the Mayo cohort 
regression line, 95% confidence interval for the regression line, and 95% confidence interval for the population are indicated by a 
solid line, short dashed lines and long dashed lines, respectively. The 50th, 75th and 100th percentiles for men (left) and women (right) 
in the AGES fracture group are indicated.  Regression lines between FE strength and age in the AGES fracture group were 
significant only for women and are shown only in the graphs on the right (heavy solid lines).   
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Figure 1. Computed load capacities in single-limb stance (a) and posterolateral fall loading (b), and computed yield load in 
posterolateral fall (c) for the Mayo and AGES cohorts versus age in men (left) and women (right). In each graph, the Mayo cohort 
regression line, 95% confidence interval for the regression line, and 95% confidence interval for the population are indicated by a 
solid line, short dashed lines and long dashed lines, respectively. The 50th, 75th and 100th percentiles for men (left) and women (right) 
in the AGES fracture group are indicated.  Regression lines between FE strength and age in the AGES fracture group were 
significant only for women and are shown only in the graphs on the right (heavy solid lines).  
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