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Automated detection and analysis of depolarization events in 
human cardiomyocytes using MaDEC

Agnieszka F. Szymanskaa,*, Christopher Heylmanb, Rupsa Dattab, Enrico Grattonb, and 
Zoran Nenadica

aDepartment of Biomedical Engineering, University of California Irvine, Irvine CA, 92697, USA

bLaboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of 
California Irvine, Irvine CA, 92697, USA

Abstract

Optical imaging-based methods for assessing the membrane electrophysiology of in vitro human 

cardiac cells allow for non-invasive temporal assessment of the effect of drugs and other stimuli. 

Automated methods for detecting and analyzing the depolarization events (DEs) in image-based 

data allow quantitative assessment of these different treatments. In this study, we use 2-photon 

microscopy of fluorescent voltage-sensitive dyes (VSDs) to capture the membrane voltage of 

actively beating human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). We 

built a custom and freely available Matlab software, called MaDEC, to detect, quantify, and 

compare DEs of hiPS-CMs treated with the β-adrenergic drugs, propranolol and isoproterenol. The 

efficacy of our software is quantified by comparing detection results against manual DE detection 

by expert analysts, and comparing DE analysis results to known drug-induced electrophysiological 

effects. The software accurately detected DEs with true positive rates of 98–100% and false 

positive rates of 1–2%, at signal-to-noise ratios (SNRs) of 5 and above. The MaDEC software was 

also able to distinguish control DEs from drug-treated DEs both immediately as well as 10 min 

after drug administration.

Keywords

voltage-sensitive dye imaging; hiPS derived cardiomyocytes; signal detection; matched filter; 
classification

 1. Introduction

The derivation of human induced pluripotent stem cells (hiPS) from somatic human cells has 

opened broad opportunities in the study of human cardiac cells. Previously limited by their 

minimal proliferation, human cardiomyocytes were difficult to obtain in significant number 
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to allow widespread study. hiPS cells can be expanded into the required quantities and then 

differentiated into cardiomyocytes (hiPS-CM) as a new, and seemingly endless, source of 

cardiomyocytes [18, 30]. Accompanying this expanded availability, there has been an 

acceleration of the development of new methods for assessing the electrophysiological 

effects of drug compounds. Image-based tools for assessing excitable cells, such as 

cardiomyocytes, have particularly come to the fore [3, 5, 14, 22, 25, 27]. With these new 

data acquisition methods comes a need for automated, user friendly, analysis methods of 

these image-based data.

Voltage-sensitive dyes (VSD) are one such method for acquiring membrane voltage data. 

These dyes associate with cellular membranes and exhibit a characteristic increase in 

fluorescence intensity proportional to an increase in voltage across the membrane. This 

allows for non-invasive, non-destructive, and longitudinal assessment of hiPS-CM 

electrophysiology [11, 29]. VSDs have previously been used in neuronal [8, 21] and cardiac 

[7, 10, 15] cells and tissues. A wide range of VSD compounds and properties have been 

synthesized [29]. This study utilizes di-4-ANE(F)PPTEA, a hemicyanine class dye, to 

acquire a temporal fluorescent signal that corresponds to the changing voltage of hiPS-CM 

membranes.

To quantitatively assess these data acquired using VSDs in hiPS-CM, we built a custom 

Matlab software (MaDEC), capable of both detecting and analyzing individual VSD 

depolarization waveforms or depolarization events (DEs). Our previous work has analyzed 

hiPS-CM electrophysiology by performing supervised machine learning on predefined DE 

parameters [11] of already detected DEs. Here, detection is performed using a generalized 

matched filter for the entire waveform instead. This allows for non-biased event selection, as 

well as more reliable event selection in low-SNR environments. This detection method was 

previously shown to be successful for neuronal action potential detection in extracellularly 

recorded micro-electrode data [23], as well as neuronal calcium transient wave detection in 

calcium imaging data [24]. The detected DEs are subsequently compared, using a K-S test, 

across treatments and time points. The chronotropic drugs propranolol and isoproterenol 

were selected to validate this VSD-based approach and the corresponding analysis software. 

This method of analysis allows for quantitative assessment of the heterogeneity of DEs at a 

precise location on the membrane of an actively beating cardiomyocyte. Furthermore, this 

method allows quantitative assessment of how a given drug affects the DE shape of an 

actively beating cardiomyocyte.

In this study, we use 2-photon microscopy of fluorescent VSD to assess the depolarization of 

the cell membrane voltage of actively beating hiPS-CM. Using MaDEC, we detect, quantify, 

and compare DEs of hiPS-CMs treated with common β-adrenergic drugs. The efficacy of 

our software is quantified by comparing detection results against manual DE detection by 

expert analysts, and comparing DE analysis results to known drug induced 

electrophysiological effects.
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 2. Methods

 2.1. Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte (hiPS-CM) Culture and 
Differentiation

hiPS-CMs were prepared for interrogation per the protocol previously described by 

Heylman, et. al [11]. Briefly, wtc11 hiPS cells were differentiated into cardiomyocytes using 

a serum-free defined medium protocol [16]. Cells began spontaneously beating on 

approximately Days 12–15, and were stained with VSD and imaged on Day 33.

 2.2. Voltage-Sensitive Dye Staining and Drug Exposure

Culture medium was replaced with fresh medium containing 1μM Di-4-ANE(F)PPTEA 

(purchased from Leslie Loew, University of Connecticut) and incubated for 15 min at 37°C. 

Cells were rinsed with RPMI/B-27 (+) insulin one time and then allowed to recover for at 

least 2 hours prior to imaging. After staining with VSD, cells were qualitatively confirmed 

to still be spontaneously beating before addition of drugs. Medium was then replaced with 

fresh medium containing either 10−5μM propranolol (SIGMA, P0884) or 10−7μM 

isoproterenol (SIGMA, I6504). Data was collected immediately after addition of drugs (less 

than 60 sec of exposure) and again 10 min or 15 min after addition to ensure complete 

exposure. Control images were captured from VSD stained cultures, not treated with either 

drug.

 2.3. Two-Photon Microscopy

A Zeiss LSM 710 microscope (Carl Zeiss, Jena, Germany) with a 40× water immersion 

objective (C-Apochromat 40X/1.20 W Korr M27) was used for all measurements. VSD was 

excited by an 850nm light produced by a titanium:sapphire Mai Tai laser (Spectra-Physics, 

Mountain View, CA). Excitation light was separated from emission signal with a 760nm 

dichroic. VSD fluorescence was collected in the 489–645 nm range. Line scan mode with 

128 pixels per line and a 1.58 μs pixel dwell time was used to acquire temporal VSD 

depolarization data. Given a 1.67 kHz sampling rate, the total scan time per line was 600 μs. 

Each measurement consisted of 100,000 line scan repeats (total scan time 60 s). The Zen 

software package (Zeiss, Jena, Germany) was used to control all microscope components 

and acquisition processes. Brightfield images were used to identify clusters of spontaneously 

beating cardiomyocytes. The system was then switched to line scan mode with the 

parameters specified above. Line scan data were acquired along a line that was manually 

drawn across cell membranes. After completion of data acquisition, the system was switched 

back to brightfield mode to confirm that the cells were still spontaneously beating.

 2.4. Data Pre-Processing

SimFCS commercial software developed in the Laboratory of Fluorescence Dynamics (LFD, 

University of California, Irvine) was used to analyze raw fluorescence data. A Gaussian 

tracking and correction algorithm (Supplemental Fig. 6) was used to compensate for motion 

artifacts resulting from the spontaneous beating of cell clusters. Fluorescence intensity along 

each corrected cell membrane trace was then extracted. Finally, a custom Matlab script that 
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fit and subtracted a biexponential function from the resultant data was used to remove 

photobleaching artifacts (Supplemental Fig. 7).

 2.5. Manual Identification of Depolarization Event

Intensity traces, X, for all drug and control conditions, as described in Sec. 2.2, were derived 

as described in Sec. 2.4, and plotted in Matlab. Three trained human analysts then 

independently identified DE peak times from each trace.

 2.6. DE Detection and Comparison Analysis (MaDEC)

We have designed a custom Matlab software package to detect, quantify, and compare DEs 

of hiPS-CMs treated with common β-adrenergic drugs. The package consists of two 

components. First, the DEs are detected using a Matched-filter for Depolarization Event 

(MaD) detection. The detected DEs are then quantitatively compared using our DE 

Comparison tool (DEC). Combined, these two tools are referred to as MaDEC. MaDEC was 

implemented in Matlab and is freely available along with a graphical user interface at 

sites.uci.edu/aggies/downloads or from the corresponding author.

 2.6.1. Matched-filter for Depolarization Event Detection (MaD)—The matched 

filter used here was first implemented in Szymanska et al. [24]. A few modifications were 

made to tailor the filter specifically to voltage-sensitive dye and cardiomyocyte data, 

resulting in the MaD detector. Briefly, given a fluorescence intensity signal , 

where N is the number of samples spanning a DE, and assuming Gaussian noise statistics, 

we can express a decision rule as

(1)

is the test statistic and matched-filter output,  is the DE template,  is 

the noise covariance matrix, γ is the threshold, H0 is the null hypothesis (the signal contains 

noise only), and H1 is the alternative hypothesis (the signal contains both noise and a DE). 

To detect DEs in the entire line scan, the matched filter is convolved with the full line scan 

signal , where T ≫ N, and DEs are identified as peaks of activity above the 

threshold, γ.

 MaD Detector Training Protocol: The MaD detector is completely data driven as both s 
and Σ from Eq. 1 are estimated from the data. This allows the detector to be very flexible in 

accommodating various DE sizes, shapes, and durations, depending on the drug treatment 

applied and the specific data collected. The detector was trained under three detection 

conditions. The first was no drug exposure (control); the second was isoproterenol exposure 

and included data immediately after and 10 min after addition of isoproterenol; the third was 

propranolol exposure and included data immediately after and 10 min after addition of 

propranolol. The appropriately trained detector was then used to extract DEs from the data.
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In order to estimate s and Σ, 20 high-SNR DEs (N = 800 ≃ 0.48 s), as well as 20 noise-only 

data samples, were identified manually for each detection condition. Analysts identified 

between 81 and 142 DEs in the control data, depending on the analyst (Table 2). Therefore, 

the 20 control training DEs represent 14–25% of the total control DEs. Similarly, the 20 

isoproterenol training DEs represent 15–16% of the total isoproterenol DEs, and the 20 

propranolol training DEs represent 24% of the total propranolol DEs. These training DEs 

were then aligned to their peak values, and averaged to construct s for each detection 

condition. The identified training noise samples were subdivided into windows (N = 800 ≃ 

0.48 s), and auto-covariance sequences, r(k), were then calculated at lags k ∈ {−399, −398, 

⋯, 399} for each noise window. The total available noise in each detection condition is 

difficult to quantify, however we can present the training noise for each detection condition 

in terms of a percentage of the full data for that detection condition. The training noise 

samples in the control condition, isoproterenol condition, and propranolol condition 

represent 14%, 7%, and 15% of the control, isoproterenol, and propranolol data, 

respectively. The Σ for each detection condition was generated by averaging the auto-

covariance sequences across that detection condition’s noise windows.

The size of s and each noise window was empirically selected as N = 800 ≃ 0.48 s to ensure 

that most DEs were captured in full, although some data sets did exhibit both wider and 

slimmer DEs depending on the drug treatment. The number of noise windows for a given 

drug treatment varied depending on the length of available noise-only segments in the pre-

processed data. Likewise, the shape and SNR of DEs used for estimating s varied between 

drug treatments. Examples of s from both propranolol and isoproterenol drug treatments, as 

well as the control, are shown in Fig. 1. The average SNR of the training DEs, as well as the 

number of training noise windows available for each drug treatment is listed in Table 1.

 2.6.2. DE Comparison (DEC) Analysis—Once the DEs were detected from each 

data trace, the individual spikes were extracted from the data and normalized such that the 

average DE for any given data trace had a minimum value of 0 and a maximum value of 1. 

This approach allowed us to preserve within data trace variations around the average DE, 

while also normalizing DE amplitudes across different data traces. We chose to normalize 

the DEs because their amplitudes are highly dependent on photobleaching, exact position in 

the imaging plane, as well as how much of the VSD each membrane initially absorbed. It is 

therefore unreliable to compare DE amplitudes across treatments and time. Each DE was 

defined by a window consisting of 800 time points (≃0.48 s) centered on the maximum 

value of the DE. The average waveforms were calculated for each data trace. The full-width 

half-max (width), the positive slope at half-max (upslope), and the negative slope at half-

max (downslope) were calculated for each identified DE. These parameters were compared 

as a function of drug treatment and time elapsed after drug treatment using a two-sample 

Kolmogorov-Smirnov (K-S) test at a 5% significance level.

 3. Results

A total of 7 data traces, from 5 cell cultures, were tested. The first 5 conditions are a control 

(cell culture 1), immediately after addition of isoproterenol (cell culture 2), 10 min after 

addition of isoproterenol (cell culture 2), immediately after addition of propranolol (cell 
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culture 3), and 10 min after addition of propranolol (cell culture 3). These conditions will 

now be referred to as Control-1, Iso-1 0min, Iso-1 10min, Pro-1 0min, and Pro-1 10min, 

respectively. In order to better test MaDEC in low-SNR environments we also provide 

results for a low-SNR control data case (cell culture 4), as well as a low-SNR 15 min after 

addition of isoproterenol case (cell culture 5). These two conditions will now be referred to 

as Control-2 and Iso-2 15min, respectively.

 3.1. Detection

 3.1.1. Manual Depolarization Event Identification—Three trained analysts 

identified DE peak times in all 7 presented data traces. The number of identified DEs as well 

as the average DE SNR for each analyst and each data trace is shown in Table 2. The SNR of 

a given DE was calculated as , where E is the expectation 

operator, and  was calculated from 20 noise samples manually selected from each 

given data trace. Each analyst’s percentage of agreement with unanimously identified DEs is 

also presented as a global measure of analyst consistency.

The average SNR of the DEs identified in the Control-1 trace was 5.67. The unanimously 

identified Control-1 DEs had a slightly higher SNR of 5.71. The average analyst agreement 

with unanimous Control-1 DEs was 98.87% (only 1 DE was not unanimous). The average 

SNRs for the Iso-1 and Pro-1 data sets were an order of magnitude higher than the Control-1 

DEs. Iso-1 DEs identified by analysts had an average SNR of 69.74, and unanimous Iso-1 

DEs had a slightly higher SNR of 70.58. Here the average analyst agreement was 99.03% 

(only 2 DEs were not unanimous). Analysts were unanimous about 100% of the Pro-1 DEs 

and the average Pro-1 DE SNR was 30.97. Examples of the DEs identified by the analysts in 

each of these drug treatments are shown in Fig. 2

The average SNR of the DEs identified in the Control-2 trace was 3.07. The unanimously 

identified Control-2 DEs had a slightly higher SNR of 3.19. Given this relatively low SNR, 

the average analyst agreement with unanimous Control-2 DEs was only 75.52%. The 

average SNR of the Iso-2 15min trace was even lower, at 0.63. Unanimously identified Iso-2 

15min DEs had an SNR of 0.65. Similarly, the average analyst agreement with unanimous 

Iso-2 15min DEs was very low, at only 68.83%. Examples of the DEs identified by the 

analysts in both of these low-SNR conditions are shown in Fig. 3

 3.1.2. MaD Detector Performance—A total of 5 detection cases were considered: 

Control-1, Iso-1, Pro-1, Control-2, and Iso-2, where the last 2 (Control-2 and Iso-2) 

represent specially selected low-SNR data. Unanimous DEs between all 3 analysts were 

used as the ground-truth for assessing MaD performance. If a detected DE was within 0.12 

s, or one quarter of the length of a typical DE, of the true peak time, it was considered a true 

positive (TP). Otherwise, the detected DE was considered a false positive (FP). Examples of 

detected DEs are shown in Figs. 2 and 3.

A true positive vector tp was used to represent all of the ground-truth DEs in a given 

detection case. If a given DE was successfully detected (TP) it was assigned a value of 1, 

and 0 otherwise. Similarly, a false positive vector fp was used to represent all of the detected 
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DEs in a given detection case, with each detected DE assigned a value of 1 if the DE was a 

FP, and 0 otherwise. The means of tp and fp, representing TP and FP rates respectively, were 

then calculated at 45 incrementally increasing thresholds for each detection case. The TP 

and FP rates at each threshold were then used to generate receiver operating characteristic 

(ROC) curves for each detection case (Figs. 2 and 3).

The threshold at which detector performance is closest to TP = 100% and FP = 0% is the 

optimal threshold and constitutes the best detector performance for that detection case. All 

following performance metrics are presented as TP or FP Rate [95% confidence interval]. 

The best performance for the Control-1 case was TP = 97.92 [92.15, 100.00] % and FP = 

1.75 [0.00, 5.26] % at a threshold of 4 standard deviations above the noise mean. The best 

performance for the Iso-1 case was TP = 100.00 [100.00, 100.00] % and FP = 0.78 [0.00, 

2.33] % at a threshold of 8 standard deviations above the noise mean, and the best 

performance for the Pro-1 case was TP = 98.81 [96.43, 100.00] % and FP = 1.19 [0.00, 3.57] 

% at a threshold of 6 standard deviations above the noise mean. Overall, the MaD detector 

performed on par with human analysts and accurately identified DEs at SNR levels of 5 and 

above.

Performance decreased in the low-SNR detection cases. The best performance for the 

Control-2 case was TP = 72.37 [61.84, 81.58] % and FP = 16.67 [7.58, 25.76] % at a 

threshold of 4 standard deviations above the noise mean. The best performance for the Iso-2 

case was TP = 65.79 [49.99, 81.59] % and FP = 13.79 [0.44, 27.14] % at a threshold of 2 

standard deviations above the noise mean. Note that the training used for detection in the 

Control-2 and Iso-2 cases was derived from the Control-1 and Iso-1 data sets, respectively. 

The low analyst agreement, ranging from 76% to 69%, in these low-SNR detection cases 

made it very difficult to reliably select training samples from the Control-2 and Iso-2 data 

traces. Therefore, training from the higher SNR data traces had to be used instead. If training 

data could be reliably selected from the Control-2 and Iso-2 data traces, it is likely that the 

lower quality of the training samples would adversely affect detection performance.

 3.1.3. White Gaussian Noise vs Fully Colored Noise—The full noise covariance 

extracted from the training data (Sec. 2.6.1) is a very accurate estimate of the noise 

parameters. However, if the training noise sample is too small the full noise covariance could 

be poorly estimated and it may be advantageous to make the simplifying assumption that the 

noise is temporally white. The parameters, Σi,j, of the noise covariance matrix Σ, are zero if i 
≠ j, under the White Gaussian Noise (WGN) assumption. Furthermore, the diagonal 

parameters of Σ are all σ2. The covariance matrix then takes on the form Σ = σ2IN×N, and the 

matched filter output is then calculated as

(2)

We have tested the effects of employing the WGN assumption on the data presented in this 

paper. All subsequent results are presented at best performance as (TP%/FP%). Although the 

WGN assumption is a less accurate representation of the noise parameters than the full noise 
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covariance, performance under the WGN assumption was not significantly affected in the 

Iso-1 (100.00%/0.78%) or Pro-1 (97.62%/2.38%) detection cases (ROC curves not shown in 

the interest of space). The Control-1 case, suffered slightly in performance (93.22%/5.17%), 

but is still within the previously quoted confidence interval. The Control-2 case showed a 

more marked decrease in detection efficacy (85.53%/32.29%). Curiously, the Iso-2 case, 

which has the lowest SNR of all of the data presented in this work, showed an increase in 

both the best TP rate, and the best FP rate (89.47%/34.62%), which resulted in a comparable 

overall performance.

These results imply that the matched filter under a WGN assumption is sufficient for DE 

detection at SNR levels of 5 and higher, but may lead to a decrease in detection efficacy at 

lower SNRs.

 3.2. DE Analysis

The DEs detected at optimal thresholds as determined in Sec. 3.1.2 were used for spike 

analysis. All p-values associated with this analysis, as well as the average DEs of the 

treatments being compared, are shown in Figs. 4 and 5. Two DE groups were considered 

distinguishable if at least one of the metrics being measured (DE widths, upslopes and 

downslopes) were statistically different between the two groups, as determined by KS-tests. 

The drug treatments were first compared with controls, and then across time elapsed since 

drug administration.

The higher SNR drug treated data (Iso-1 and Pro-1) were compared to the higher SNR 

control (Control-1). The Iso-1 0min drug treatment was statistically distinguishable from 

Control-1 in width (p-value = 3.6 × 10−5), upslope (p-value = 7.9 × 10−7), and downslope 

(p-value = 6.4 × 10−6). This difference was maintained 10 min after isoproterenol was 

administered (Iso-1 10min) (width p-value = 5.0 × 10−8, upslope p-value = 0.02, downslope 

p-value = 1.6 × 10−7). DEs measured immediately after propranolol administration (Pro-1 

0min) were also already statistically distinguishable from Control-1 in width (p-value = 7.0 

× 10−11), upslope (p-value = 2.5 10−3), and downslope (p-value = 1.1 × 10−4). This 

difference was also maintained 10 min after propranolol was administered × (Pro-1 10min) 

(width p-value = 1.5 × 10−7, upslope p-value = 1.1 × 10−8, downslope p-value = 5.5 × 10−7). 

These results (shown in Fig. 4) indicate that this analysis method can distinguish DEs from 

control and drug treatments even less than a minute after the drug is administered (0min 

cases). The distinctions are also maintained 10 min after drug administration.

To show that the method is also applicable in a low-SNR setting, we performed a DE 

comparison analysis on Control-2 (average SNR = 3.07) and Iso-2 15min (average SNR = 

0.63). The Iso-2 15min drug treatment was statistically distinguishable from Control-2 in 

width (p-value = 0.02), but not in either upslope (p-value = 0.68) or downslope (p-value = 

0.25). These results are shown in Fig. 5. We would expect the DE width difference to be 

most pronounced among these two cases. This is reflected in the results. As SNR is 

decreased the DE widths remain the only distinguishable parameters, while upslope and 

downslope no longer differ between the two cases.
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The drug treatments were then compared in time to evaluate if the 0 min cases could be 

distinguished from the 10 min cases. The Iso-1 0min case was statistically distinguishable 

from the Iso-1 10min case in all three parameters (width p-value = 2.2 × 10−4, upslope p-

value = 1.6 × 10−5, downslope p-value = 8.3 × 10−4). The Pro-1 0min case was statistically 

distinguishable from the Pro-1 10min case in width (p-value = 0.01) and upslope (p-value = 

1.4 × 10−3), but was not statistically different in downslope (p-value = 0.28).

In summary, KS-tests of DE widths, upslopes and downslopes revealed that DEs 

immediately after isoproterenol administration are distinguishable from controls. Similarly, 

DEs immediately after propranolol administration are distinguishable from controls. These 

differences are maintained 10 min after drug administration. DEs immediately after drug 

administration were also distinct from DEs 10 min after drug administration, in both the 

isoproterenol and propranolol cases. Lastly, isoproterenol treated cells were distinguishable 

from controls even at SNRs of 3 and below. These results indicate that KS-test comparisons 

of DE widths, upslopes, and downslopes, can accurately distinguish drug-treated DEs from 

controls, even at low SNRs, and can also distinguish drug-treated DEs based on the time 

after drug administration.

 4. Discussion

 4.1. Biological Relevance

Development of next generation human cardiac in vitro pre-clinical testing platforms is 

progressing at a rapid pace [4, 9, 20]. Non-invasive, high-throughput, automated 

electrophysiology analysis methods that can provide data at the subcellular scale in 

engineered 3D cardiac tissues are necessary to make these platforms feasible as a rapid and 

reliable predictor of the cardiac side effects of novel drugs under consideration for clinical 

trials. The combination of using image-based electrophysiology (2-photon microscopy of 

fluorescent VSD) and advanced automated signal processing (MaDEC) allows for the 

collection and quantitative analysis of electrophysiological data on the spatio-temporal scale 

needed in these advanced pre-clinical cardiac tissue models.

Furthermore, although the DEs presented here appear periodically, the MaD algorithm takes 

a generalized approach to signal detection. This allows for the detection of irregular DEs 

that may be indicative of drug-induced side effects. Early after depolarization (EAD) and 

delayed after depolarization (DAD) events are potentially lethal and may occur at irregular 

intervals [6, 28]. MaD does not incorporate the expected periodicity of cardiac DEs into the 

detection algorithm, allowing for the flexibility to detect these types of events. In the event 

that periodic signals are explicitly desired at low-SNR, the MaD detector could be modified 

to apply a variable threshold to pick up low-SNR DEs at the expected time intervals, without 

increasing the number of FPs throughout the entire dataset.

 4.2. Effects of Differing Training Samples

For some applications, it may be advantageous to reduce the training samples size, in the 

interest of time. In our experience, the noise sample is highly dependent on the length of 

individual noise segments identified by the user. If long noise segments (more than 10 times 
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the window size) are available, then as little as 10 segments can be sufficient for accurate DE 

detection. Similarly, the signal sample is dependent on SNR. If high SNR (SNR ≥ 5) DEs 

are available for training, then as little as 10 samples is sufficient for accurate DE detection. 

However, if the signal SNR is lower, then at least 20 samples should be used to maximize 

detection efficacy. Note that data pre-processing has little effect on SNR and serves only to 

remove large scale artifacts produced by the motion of the beating cell membrane and 

photobleaching of the VSD. Therefore variations in pre-processing methods should not 

affect the training paradigm.

It may also be useful to be able to re-use training samples between different data sets. To 

determine how re-using training samples from one data set to detect DEs from a different 

data set affects detection performance, we compared detection performance when a native 

training sample (derived from the data being tested) is used with detection performance 

when a non-native training sample (derived from data of a different cell membrane than the 

one being tested) is used. For this analysis we only tested the Control-1, Iso-1, and Pro-1 

detection cases, as the low-SNR cases may not lead to reliable enough conclusions. All 

subsequent results are presented at best performance as (TP%/FP%). Using a non-native 

isoproterenol training sample on the Iso-1 data resulted in (96.88%/4.62%) using the full 

noise covariance, and (99.22%/0.78%) under the WGN assumption (ROC curves not shown 

in the interest of space). Similarly, using a non-native propranolol training sample on the 

Pro-1 data resulted in (90.48%/9.52%) using the full noise covariance, and (100.00%/0.00%) 

under the WGN assumption. In the Control-1 case, using a non-native control training 

sample resulted in (98.31%/1.69%) using the full noise covariance, and (96.61%/1.72%) 

under the WGN assumption. The detector worked well even when Iso-1 training was used 

on Pro-1 data (85.71%/26.53% using full noise covariance; 100.00%/0.00% under the WGN 

assumption) and vice versa (79.69%/28.67% using full noise covariance; 98.44%/1.56% 

under the WGN assumption).

In all of these cases we see that detection performance is maintained if a non-native training 

sample is used. Furthermore, efficacy is most often preserved under the WGN assumption. 

When the full noise covariance is used with a non-native training sample, detection 

performance may begin to degrade, indicating that in the absence of a native noise 

covariance, the filter may perform better using a WGN approximation than using a well 

estimated but inaccurate, non-native noise covariance.

 4.3. DE Analysis

The automated MaDEC approach allows for quantitative comparison of DEs recorded from 

different drug treatments and time points using VSDs. In this study, MaDEC was able to 

identify significant changes in DE width, upslope, and downslope immediately after 

treatment with either propranolol or isoproterenol. These changes were sustained when 

measured 10 min after exposure to each drug. Furthermore, MaDEC identified changes in 

DE width between isoproterenol treated cells and controls, even at SNRs of 3 and below. 

Propranolol and isoproterenol both act on β-adrenoreceptors in cardiac cells as a β-blocker 

and β-adrenergic agonist, respectively. β-adrenoreceptors modulate calcium influx during an 

action potential.
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Calcium transport from the L-type calcium channels determines the delay before 

repolarization. This delay determines the width of the DE, also known as the plateau phase. 

The upslope of a cardiac action potential, primarily driven by fast sodium channels, would 

not be expected to be affected by β-adrenergic modulation [17]. The downslope may be 

affected to a lesser degree than the width since the balance of decreasing calcium channel 

activity and increasing delayed rectifier potassium channel (IKS, IKR, IK1) activity initiate 

the downslope.

Both isoproterenol- and propranolol-treated cell behavior, quantified by MaDEC, exhibited 

significant changes in width and downslope after drug administration. However, the cells 

also demonstrated an unexpected difference in upslope after drug administration. For the 

isoproterenol-treated cells, this difference decreased with time (p-value = 7.9 × 10−7 for 

Iso-1 0min vs Control-1, and p-value = 0.02 for Iso-1 10min vs Control-1), and seemed to be 

trending towards being insignificant. This indicates that the difference in upslope may be 

due to an initial shock from isoproterenol administration and that the effects may fade as the 

tissue stabilizes. In contrast, the difference in upslope seemed to increase in time for the 

propranolol-treated cells (p-value = 2.5 × 10−3 for Pro-1 0min vs Control-1, and p-value = 

1.1 × 10−8 for Pro-1 10min vs Control-1). However, both of the p-values are so close to zero, 

that they’re difficult to reliably compare. When low-SNR isoproterenol-treated cell data 

(Iso-2 15min) was compared with a low-SNR control (Control-2), only differences in DE 

widths were detected. Finally, we’d like to note that the DE widths of isoproterenol-treated 

cells increased with respect to controls, in both low-SNR and high-SNR scenarios. The 

mechanism of action of isoproterenol (β-adrenergic agonists) would lead us to expect a 

decrease in the width of the DE. Despite this unexpected, yet consistent, result, MaDEC still 

correctly identified and quantified the effect of the drug, emphasizing its impartial approach 

to DE detection and analysis.

 4.4. Comparison with Existing Methods

VSDs address limitations of existing methods for measuring hiPS-CM DEs. Patch clamping 

offers precise measurement of transmembrane voltages, but is invasive in nature, requiring 

destructive membrane puncture to position electrodes that prevents longitudinal experiments. 

Only single cells may be assessed using a complex apparatus [2, 13, 26]. The growing field 

of organ-on-a-chip platforms demands non-invasive fluorescence based in situ endpoints for 

assessing hiPS-CM [12, 19]. VSD fluorescence intensity measurements using 2-photon 

microscopy are noninvasive, non-destructive, and allow for longitudinal electrophysiological 

assessment of live, 3D, cardiac tissues in microfluidic-based devices.

Quantitative assessment of the heterogeneity of the DEs of actively beating cardiomyocytes 

is critical to understanding the electrophysiology underlying these cardiac tissue models. 

Many existing quantitative analysis tools studying cardiomyocyte activity were developed 

for calcium imaging applications. These are often focused on automated region of interest 

(ROI) identifications [22, 3, 1]. These image analysis tools are not readily applicable to VSD 

imaging of cell membranes, where two-dimensional regions of interest, are not necessarily 

spherical and are more difficult to identify. Algorithms focusing on line-scan data, and 

similar to the MaD detector presented here, have been developed for Ca2+ spark detection in 
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cardiac ventricular myocytes [14], as well as elementary calcium release events in muscle 

[27]. However, these algorithms focus only on detecting the signal and do not provide 

further analysis tools for quantitatively assessing changes in tissue or cell activity with 

varying experimental parameters (such as drug administration). MaDEC can automatically 

and accurately detect, extract, quantify, and compare VSD-based DEs across drug treatments 

and time points after drug administration. Unlike other VSD-approaches that use pre-defined 

waveform features, MaDEC uses a data-driven sample of the entire waveform to detect DEs, 

resulting in a non-biased DE selection criterion that can accurately detect waveforms at 

SNRs ≥ 3. Also, unlike other approaches, DE parameters such as width, upslope and 

downslope, are compared across normalized waveform populations. The method’s lack of 

reliance on absolute fluorescence amplitude ensures that results are not biased by the amount 

of dye the cells took up, or the cells’ exact positions in the imaging plane.

 5. Conclusion

MaDEC is a useful new tool for the study of cardiomyocyte electrophysiology. Combined 

with the use of voltage-sensitive dyes, it allows for non-invasive, image-based, and 

automated analysis of cardiac DEs. This study demonstrates the ability of this tool to detect 

and quantify changes in DEs as a function of drug treatment and as a function of time. The 

software is freely available at sites.uci.edu/aggies/downloads or from the corresponding 

author, and can be easily modified to assess the electrophysiology of other excitable cell 

populations (e.g. neurons) [23] and data types (e.g. calcium reporters, patch clamp) [24].
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Figure 1. 
Examples of training templates s from control (left), isoproterenol (middle), and propranolol 

(right) data. Each template is 0.48 s long.
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Figure 2. 
Detector Performance. The figure consists of three pre-processed intensity traces from the 

control (Top), isoproterenol (Middle), and propranolol (Bottom) drug treatments. The circles 

above each data trace represent the DEs identified by analysts 1–3 (bottom to top 

respectively). The triangles above each data trace represent MaD detected DEs, using the 

optimal thresholds identified in the corresponding ROC curves to the right. The optimal 

threshold is identified as the one resulting in the detector performance closest to TP = 100% 

and FP = 0%. The error bars represent 95% confidence intervals. The optimal performance 

for each drug treatment case is presented under each ROC curve. The MaD detector 

performed with a TP rate of 98–100% and a FP rate of 1–2% for all 3 drug treatments.
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Figure 3. 
Detector Performance At Low SNR. The figure consists of two pre-processed intensity 

traces from the low SNR control (Top), and the low SNR isoproterenol (Bottom) drug 

treatments. The circles above each data trace represent the DEs identified by analysts 1–3 

(bottom to top respectively). The triangles above each data trace represent MaD detected 

DEs, using the optimal thresholds identified in the corresponding ROC curves to the right. 

The error bars represent 95% confidence intervals. The optimal performance for each drug 

treatment case is presented under each ROC curve. As the SNR decreased, the performance 

of the MaD detector also decreased. Performance was still adequate for SNR ≃ 3, but not for 

SNR ≤ 1.
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Figure 4. 
DE analysis with respect to drug treatment and time after drug administration. 6 panels are 

shown. Each panel shows the average DEs of the two specified drug treatments, with 

standard deviations shaded around the average. The title of each panel identifies the two 

treatments being compared. The text below the title indicates whether the DE populations 

were different in width, upslope, and downslope, and provides p-values. The top 3 panels, 

going from left to right, compare Iso-1 0min, (green) to Control-1 (red), Iso-1 10min (light 

teal) to Control-1, and Iso-1 0min to Iso-1 10min. Both Iso-1 0min and Iso-1 10min were 

different from Control-1, and were different from each other, in all three parameters (width, 

upslope, downslope). The bottom 3 panels, going from left to right, compare Pro-1 0min 

(purple) to Control-1 (red), the Pro-1 10min (blue) to Control-1, and Pro-1 0min to Pro-1 

10min. Both Pro-1 0min and Pro-1 10min were different from Control-1 in width, upslope, 

and downslope. They were also different from each other in width, and upslope.
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Figure 5. 
DE analysis with respect to drug treatment for the lower SNR data. Iso-2 15min (orange) 

and Control-2 (red) were different in width, but not in upslope or downslope.
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Table 1

Training sample information for each drug treatment. Average training DE SNR is the average SNR of the 20 

DEs selected for training for a given drug treatment. The number of windows the training noise sample for 

each data set could be split into is also listed.

Training Condition Average Training DE SNR Number of Training Noise Windows

Control 3.77 34

Isoproterenol 148.07 17

Propranolol 158.97 37
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