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Abstract

We investigate a method for formulating context- and task-
specific computational models of human performance in a con-
strained semantic memory task. In particular, we assume that
memory retrieval can only use a simple process – a random
walk – and examine whether the effect of context and task
specifications can be captured via a straightforward network
estimation method that is sensitive to context and task. We find
that a random walk model on the context-specific networks
mimics aggregate human performance.
Keywords: Network analysis; Semantic search; Spreading ac-
tivation; Semantic memory; Random walks

Introduction
What concepts and facts are relevant in a given context? The
type of knowledge that is likely to be important in a given sit-
uation is dependent on a large number of contextual factors.
For example, consider an astronomy professor discussing the
motion of planets in the solar system. The relevant facts de-
pend heavily on contextual factors: Is she talking to a grad-
uate student in her laboratory, adults from her community,
or her four year old daughter? Is she trying to discuss why
Mercury’s orbit is more elliptical than would be expected as-
suming Newtonian physics, or instead trying to explain why
the sun is so bright? Her knowledge of the cosmos is an ex-
tremely rich and interconnected set of concepts and facts. The
concepts and facts relevant to her given situation are likely
dependent on a host of contextual factors, ranging from com-
municative goals to the content of task at hand. How does
memory facilitate the retrieval of the appropriate set of con-
cepts and facts adapted to a given context?

Although people recall different facts given different tasks
and contexts, most work in retrieval from semantic memory
(people’s memory for facts and concepts) attempts to mitigate
any effects of context or task, rather than account for them.
For example, Abbott, Austerweil, and Griffiths (2015) used
human performance in a previous study (Nelson, McEvoy, &
Schreiber, 2004) of the free association task (e.g., “say the
first word that comes to mind when you hear ‘dog”’) to es-
timate a network representation for semantic memory. This
model was then used to capture human performance in a dif-
ferent task: human retrieval of members of a specified cate-
gory (e.g., ”name all of the animals you can in 3 minutes”),
which is a semantic fluency task. Previous work had used the
same network representation as the above to capture human
performance in a different constrained memory search task

(Griffiths, Steyvers, & Firl, 2007): Say the first word that
comes to mind starting with a specific letter. Different pro-
cesses were assumed to capture human performance in the
two different tasks, but they used the same semantic network.

Researchers using spatial representations for semantic
memory model different tasks by changing the process used
on a single representation. For example, Landauer, Foltz, and
Laham (1998) estimated a spatial representation for semantic
memory by applying latent semantic analysis to a represen-
tative sample of texts read by students. They used that rep-
resentation with a simple retrieval process (return word with
smallest cosine distance to the target) to capture human per-
formance on the synonym portion of the TOEFL exam, a test
of English proficiency. Using the same representation, but
changing the retrieval process, other researchers captured hu-
man performance on the remote association task, which is a
complex, constrained semantic search task (Smith, Huber, &
Vul, 2013). Different representations are sometimes exam-
ined, but typically it is to argue either that other reasonable
representations have comparable results (Smith et al., 2013),
or that one representation captures how people encode knowl-
edge in semantic memory better than another representation
(Jones & Mewhort, 2007). Across all of these studies, the se-
mantic representations do not depend on the context or task.

In this paper, we investigate a method for deriving con-
text and task specific computational models of human per-
formance in a constrained semantic memory task. To do so,
we assume that memory retrieval can only use a simple pro-
cess, a random walk. We describe a method for construct-
ing context- and task-specific networks from human perfor-
mance. We find that our network estimation technique with a
random walk process is able to capture human success rates
in a constrained semantic search task.

Prior work
One method for formalizing human retrieval from seman-
tic memory is to model retrieval as a search problem over
an associative semantic network (Collins & Loftus, 1975;
Lehmann, 1992; Richens, 1956). In these semantic networks,
words represent nodes, and edges represent the correspond-
ing words are associated in some manner. Edges can be de-
fined based on a variety of linguistic or cognitive features
including synonyms, hierarchical relations, co-occurrence,
free-association or shared features. In addition, the edges
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can further have weights to encode the association strength
of the words. Network representations are increasingly used
to study and model the interaction of cognition and language.
See Baronchelli, Ferrer-i Cancho, Pastor-Satorras, Chater,
and Christiansen (2013); Beckage and Colunga (2016) for re-
views on the contribution of network science to the study of
language and human cognition.

Recent analysis of semantic retrieval tasks, such as verbal
fluency where individuals list words from a particular cat-
egory, suggest that some types of search through semantic
memory can be well explained by random walks on a net-
work Abbott et al. (2015); Griffiths et al. (2007). They did
so by deriving a network from a large data set of free asso-
ciation results (Nelson et al., 2004). Every cue and associate
was a node in the network and an edge was created from node
A to node B if the word corresponding to B was said as a re-
sponse when a participant was given the word corresponding
to A as a cue. Edges can be given weights by assigning them
to be the number of times that cue-associate pair was pro-
duced by a participant. However, it is unclear whether a ran-
dom walk process can capture how people solve other related
tasks. For example, can a random walk on the same seman-
tic network capture how people connect loosely related words
through pairs of associated words? Here we test whether this
type of directed search, with a specific goal in mind (a target
word), can also be captured by a random walk process. To ex-
plore this question, we consider a semantic word game where
individuals must make a sequence of decisions for navigation.

Previous work has illustrated that even rich human perfor-
mance in some memory tasks can be modeled using a ran-
dom walk process. For example, when recalling animals from
memory, animals tend to be listed in clusters (e.g., four farm
animals followed by two pets). Further, the retrieval of ani-
mals is consistent with optimal foraging theory (Hills, Jones,
& Todd, 2012). People switch clusters when the time to re-
trieve a subsequent animal is larger than the overall average
time between animal retrievals. To capture this behavior, pre-
vious work modeled the production of the list of animals as a
random walk on a standard semantic network that emits ani-
mals whenever the walk visits a previously unvisited animal
node. The animals in the list produced by this process are
clustered and the random walk retrieval behavior is also con-
sistent with optimal foraging theory (Abbott et al., 2015). In
our work we use a random walk model over a semantic net-
work to capture human performance in semantic navigation
task where people connect a source word to a target word.
The random walk model is not intended as a full model of hu-
man retrieval in this task, but serves as a baseline to compare
different possible representations and inspire future work.

Previous work explored a semantic navigation problem
where people were given a source and target word that were
loosely related (Beckage, Steyvers, & Butts, 2012). Their
task was for participants to get from the source to the tar-
get word by selecting a word to move to from a set of
words strongly associated to the source (or current) word.

Whichever word was chosen would become the new ”source”
word, and this repeated until participants reached the target
word. They found that human performance cannot be ex-
plained via random guessing or choosing the strongest free
associate to the current source word. This suggests that peo-
ple utilize information present in the network to get closer to
the target word. One aspect that was not considered in their
analysis is the role of task and context on participant perfor-
mance — for example, often the current word would be one
that the participant observed in a previous round.

We examine whether creating a context- and task-specific
network based on a participant’s previous choices and experi-
ence can be used to explain their performance in future trials.
In other words, can we change the network representation in
a systematic way such that a random walk process performs
better than in a standard network representation? To exam-
ine this question, we analyze how people navigate from a start
word to a specific target word via forced choice between pairs
of very associated words. We model this as navigation on a
directed network by assuming that edges exist between words
that are part of the choice set for a specific word. Our hope is
that adapting a network representation to the context and task
will capture human performance on the task. If so, this pro-
vides a novel avenue for investigating how the mind searches
semantic memory in different contexts and for different tasks:
Assume a single process, but adapt the representation in a
manner sensible to the current context and task.

Behavioral Experiment: The Mindpaths Game
Mindpaths is a semantic word game based on the exper-
imental setup of Beckage, Steyvers and Butts 2012. We
derived a network from the USF free association norms
(Nelson et al., 2004) using the method described above,
but trimming the network to include only words with a
minimum in-degree of 3 and a maximum out-degree of
12. In the online version of the game, available at
socientize.eu/pybossa/app/Semantics/, semi-random
start and target words are presented. Individuals are then
asked to navigate from the start word to the target word via
forced choice. The options presented are words that were
directly connected to the current word in the network. An
example of the game is shown in Fig 1.

Figure 1: A screenshot of the Mindpaths game.
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Fig 1 provides an example where the start word is Virus
and the target word is Weather. Players then choose from the
given options, including sick, ill, and disease. After a choice
is made, the chosen word replaces the start word and the cho-
sen word’s associates are listed. The current dataset analyzed
in this paper is publicly available via the game website. To
date, the dataset contains 141 different start and target word
pairs. We call each unique start and target pair a game. Each
play of a game we call a trial.

In total 141 games were played 11,698 times, with an aver-
age of 83 trials per game, with a range of between 2 and 469
trials or plays for each game. The underlying network con-
tained 1,972 different words, and the number of words visited
across all tasks is 1,852. The game automatically terminated
if the player had not found the target word after 25 choices
(these games were not recorded). Players could click the re-
set button to bring them back to the start word (the number
of steps they have taken so far does not reset). Finally, there
was a time limit that refreshes on each move and the response
time is also recorded. If a player takes over a minute to re-
spond, the trial is not recorded and the page refreshes with a
new game.

The players can be identified by their accounts or, if they
do not have accounts, by their IP address. To date, there are
365 registered users with 9,237 trials, and 2,461 trials from
unregistered users. Based on the data collection mechanism,
only successful games are recorded. So, we do not know how
often individuals did not solve different games.

Computational Methods
We test whether random walks can account for human perfor-
mance. Previous work used random walks to capture human
performance when listing all the animals they know (Abbott
et al., 2015). It is unclear if this will explain participant be-
havior in this task, as it is a directed search in which individ-
uals have a specific target they must reach. Via comparison to
search by random walks, we can quantify the extent to which
individuals are making non-random choices (i.e., using addi-
tional information or strategies to help them succeed in this
game). To summarize random walk performance, we explore
different networks derived from the underlying game network
and player performance with the aim of capturing human per-
formance.

Nelson Network The free association network, collected
by Nelson and colleagues 2004, provides the underlying net-
work used in the game. In this network, words are nodes in
the graph. Edges are directed and weighted. The weights
encode the frequency at which a given response was said to
a specific cue in the free association study. For example, if
the cue word dog is said, cat is the free association response
with probability 0.78. Note that MindPaths has trimmed the
network based on in-degree and out-degree to make the game
more playable. In our simulations, we consider random walk-
ers that are walking on both a weighted and unweighted ver-
sion of the trimmed Nelson network representation. In the

weighted version, we normalize the original free association
network such that the total probability transitioning out of any
node sums to 1.

Traffic Network We define here a novel method for adapt-
ing networks to a specific task and context. We call the re-
sulting network a traffic network. Traffic networks have the
same nodes as the free association network above, but we de-
fine the edges based on people’s choices in the game. So, if
any player chose a move from cold to weather, there will be
an edge from cold to weather in the traffic network. We con-
sider both weighted and unweighted versions of this traffic
network. In the case of a weighted traffic network, the fre-
quency at which a game is played will influence how likely it
is that a particular cue word is seen and thus the probability of
transitioning between a particular cue and response. To esti-
mate a weighted traffic network, we normalize by the number
of times a game was played.

Do Traffic networks differ from the Nelson network? One
way to investigate this question is to examine whether the de-
gree of words in each network are comparable. The upper
triangle of Fig 2 presents the correlations of the word degrees
of Traffic and Nelson networks (via a nonparametric mea-
sure, Kendall’s tau (τ)) in the upper triangle. The strongest
τ (0.72) is between the weighted and unweighted traffic net-
works. While the minimal correlation, τ = 0.4, is not un-
substantial, it is quite lower, suggesting the same words have
substantially different degrees in the different networks. The
lower triangle of Fig 2 displays the Person correlation of the
network edge weights. The unweighted Traffic and Nelson
networks have a high correlation. This suggests that the Traf-
fic network captures much of the connectivity pattern of the
Nelson network. However, we find that the correlation be-
tween the weighted Traffic network and the weighted Nel-
son network is small (0.16) suggesting that free association
responses are different than choices in the Mindpath game.
This provides strong support that context- and task- specific
representations are important to completing the game.

Random Walkers

We simulated random walks on four network representations
(weighted/unweighted × Nelson/Traffic) to see which net-
work representations can accurately capture human perfor-
mance on the Mindpath game (specifically, their rate of suc-
cess). The difference in performance of the random walks
over the networks enables us to evaluate the role of context on
human navigation behavior because each network representa-
tion includes a different amount of context and task informa-
tion. Our random walkers are likely not a perfect model of
participants’ semantic search. They provide an interpretable
baseline for evaluating the extent to which human perfor-
mance can be explained as restricted random guessing over
different network representations.

For robustness and to quantify differences between games,
we use two approaches to analyze the performance of our ran-
dom walkers. In all cases we perform k-fold cross validation.
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Table 1: Percent success of solving various word games in the minimum number (geodesic) steps. Standard deviation across
folds in terms of percentage is also reported.

overall geodesic 1 geo. 2 geo. 3 geo. 4 geo. 5
all games 11810 2.93 29.30 45.17 19.59 3.01

human perf 32.6 (0.8) 87.0 (2.8) 25.4 (1.4) 36.5 (1.1) 28.6 (0.6) 19.5 (3.5)
unw. Nelson 10.7 (0.5) 42.0 (5.5) 13.8 (1.4) 10.0 (0.4) 4.24 (0.8) 2.21 (2.1)

w. Nelson 7.87 (0.7) 33.3 (2.8) 9.46 (1.6) 7.09 (1.4) 4.45 (1.3) 2.11 (1.8)
unw. Traffic 10.1 (0.3) 35.0 (5.4) 15.8 (2.8) 12.2 (0.9) 8.08 (2.1) 6.16 (2.6)

w. Traffic 24.1 (0.9) 65.3 (5.8) 25.9 (2.7) 33.1 (1.3) 25.8 (1.7) 15.3 (5.6)

Figure 2: Correlation analysis of the various network repre-
sentations. The upper diagonal captures Kendall’s tau rank
correlation of node degrees across networks. The lower diag-
onal captures the Pearson correlation between edge weights
across the network representations.

In the first approach, we define a fold as 20% of the total trial
data. Thus the model must extend to unseen trials but not nec-
essarily unseen games. We call this the trial variant. In the
second approach, we assign 20% of the total unique games
to each fold (e.g. 20% of 141 games). We call this the game
variant. We predict that these two variants will have minimal
effect in the performance and evaluation of the Nelson net-
work. However, there is potentially a large performance dif-
ference in the case of the Traffic networks if these networks
capture how an individual’s search is influenced by the given
target word. If the target word plays a role in the choices
individuals make, the game variant using the traffic network
should capture human performance with significantly less ac-
curacy as compared to the trial variant.

For cross-validation, we build unweighted and weighted
Traffic networks based on the training set (e.g. all folds ex-
cept the testing fold). The maximum path length for our ran-
dom walk simulation is 25 (as it was for human participants).
We run simulations until we have as many successes as we
see in our human game play data. In the game variant traffic

network, we found 3 games with no path between start and
end words. We take this as evidence that there are some game
specific contextual information that individuals are using to
navigate.

Results & Discussions
Our goal is to build a random walk model that captures human
performance, defined as the distribution of choices made by
participants for each game. Optimal performance solves the
task using the fewest number of transitions in the game net-
work. For example, virus to weather can be solved optimally,
or geodesically, by transitioning from virus to cold to weather.
An example of a suboptimal path is moving from virus to ill to
cold. Because the players are navigating a network, we can
compute the optimal, or geodesic, path distance. Note that
this geodesic distance can only be computed if the whole un-
derlying graph is known, an unlikely situation for our human
players. Because participants probably cannot directly access
the full graph structure, performance that is close to optimal
suggests participants are using information other than their
original semantic network (e.g., adapting the network based
on previously played games).

To analyze human performance, we consider games that
can be optimally completed in between 3 and 8 steps. Out
of 11,698 trials, 35% of trials were solved with the minimum
number of steps, and 71% of the trials were solved within
two steps of optimal. This shows that human are quite good
at navigating the semantic space, despite not having global
knowledge of the semantic space. Table 1 summarizes esti-
mated geodesic performance based on 5-fold cross validation.

Table 1 shows that humans outperform random walks at
finding the geodesic path, regardless of the underlying net-
work representation. Note that the data set is subject to se-
lection bias: We cannot tell how many individuals started the
game and did not finish. We attempted to match this bias by
conditioning on a successful path being found within 25 steps
for both human and random walks. Though humans are still
more accurate, when we exclude games where the target word
is in the first option set (i.e., games whose optimal solution
distance is one), we see comparable performance between the
weighted Traffic network and human performance. This sug-
gests that the weighted Traffic network may have captured
aspects of the task and context in a manner such that a ran-
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dom walk process can succeed on the task. In future analyses,
we plan to examine whether the actual solutions found by the
random walks are comparable to those made by participants
(and not just being of comparable length). Regardless, this
result suggests that the context- and task-specific semantic
representation use by people may be similar to our weighted
Traffic networks. The failure of the Nelson network suggests
that semantic networks need to be adapted to task and context,
or a different search process needs to be used.

Figure 3: Performance of human players (grey bars) and ran-
dom walk models in the trial variant, conditioned on success-
ful paths and excluding games with geodesic one. The x-axis
is the number of steps taken beyond the geodesic distance.

We now consider whether random walks on our various
network representations can reproduce the rate of successful
games completed in a specific number of steps. This includes
not only geodesic path lengths but the exact number of steps
it took individuals to find the target word. Because our results
above suggest that games with a geodesic of one (e.g. the tar-
get is in the first option set) are unique from the other games,
we consider only games with geodesic distances greater than
one. Fig 3 depicts human performance (bar chart) as com-
pared to the Nelson networks and Traffic networks (colored
lines). Along the x-axis are the number of steps taken beyond
the geodesic distance.

Fig 3 shows that the distribution of successful path lengths
on the weighted Traffic network is similar to the frequency
of successful path lengths made by human players. This sug-
gests that the frequency by which a previous player traversed
a particular edge contains enough information so that the suc-
cess rates of search by random transitions is qualitatively sim-
ilar to human success rates.It is important to note that this is
not simply overfitting – the evaluation is on different trials
in a test set. The ability of the weighted Traffic network to
model participant behavior is significant especially given the
fact that the traffic network aggregates across all games, thus

the resulting representation is specific to the context of Mind-
Paths, but not a specific game (target and source word). This
suggests that individual differences may be minimal in this
task and an aggregate contextual network contains much of
the needed information for a random walk process to com-
plete this task successfully.

In the game variant simulations, we examine how the per-
formance of past players affects the models’ success rates on
unseen games. We first find that some of the games were
not solvable using the Traffic networks. When selecting ran-
dom games, we find that the resulting traffic network is a dis-
connected graph with some start and target words in differ-
ent components making it impossible for the Traffic random
walker to find a path between nodes. On average (from the 5
folds), 3 of 28 unseen games in each test set were unsolvable.

Fig 4 compares participant success rate to our random
walks across unseen games, conditioning on those games that
are solvable by a random walk over a Traffic network. Now
the weighted traffic network has successful paths that are sim-
ilar in frequency to the random walks on the various network
representations. Human players are much more successful
at solving the task efficiently than any of our random walker
models. Thus, further work is needed to capture human per-
formance in this case. Random walks over the Nelson and
Traffic semantic networks are insufficient.

Figure 4: Performance of human players compared to game
variant random walk models, conditioned on successful paths
and excluding games with geodesic one.

We next consider if the structure of a word in the network
influences the probability of success for our random walkers.
We correlate the betweenness centrality of a word with the
success probabilities. We examined betweenness centrality
in particular because it captures the amount of information
flowing through a node. If this type of information flow is
useful for succeeding in this task, we expect high correlations
of betweenness centrality and success probability by our ran-
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Table 2: Correlation between success probability and betweenness centrality; geodesic probability and betweenness centrality
for each network and each simulation variant.

Success x Start Success x End Geodesic x Start Geodesic x End
Trial Game Trial Game Trial Game Trial Game

unw. Nelson 0.077 0.112 0.818 0.799 -0.018 0.131 -0.025 0.128
w. Nelson -0.012 0.0982 0.604 0.693 0.027 0.04 0.026 0.211

unw. Traffic 0.002 0.0996 0.784 0.798 0.033 0.215 0.015 0.314
w. Traffic 0.215 0.0627 0.370 0.608 0.262 0.125 0.185 0.217

dom walkers. We correlate betweenness centrality of start and
end words with a) the success probability and b) the proba-
bility of navigating successfully in geodesic length. Table 2
shows these correlations for trial variant and game variant.
The first and second columns in each block shows the corre-
lation between the success probability and the betweenness
centrality of the start word and the end word, respectively.
Table 2 suggests that there is small to no correlation between
a start words’ betweenness centrality and success probability
in both the trial variant and game variant cases. This sug-
gests that betweenness centrality of the start word may not be
all that important for solving the task. However, the correla-
tions with end words are particularly high on these networks,
except for the weighted Traffic network. This suggests that
the more central the target words are, the greater the chance
for the random walk to succeed on these networks.

The pattern of target word correlations with the weighted
Traffic network is interestingly different. The correlation is
low for the trial variant test, but high for the game variant
test. This suggests that the centrality of the target word is not
as important as the random walk gets closer in qualitative fit
to human players. This may be because in trial variant tests,
the weighted Traffic network captures contextual information
(arising from the edge weights and the network structure) in
MindPaths game that the other random walkers cannot. Thus,
the weighted Traffic network random walker may not need to
rely on the centrality of the target words to navigate success-
fully in trial variant tests. But, it still relies on centrality for
game variant tests.

Conclusion and future work
We described a technique for constructing a context-specific
semantic network, which we call a weighted Traffic network.
We showed that random walkers on a weighted Traffic net-
work are able to capture much of the relevant contextual in-
formation in the trial variant with performance that qualita-
tively mimics human success rates. We also found that a set
of games produces a unique context that is specific to each
game and does not necessarily allow the model to succeed at
unseen games with performance matching human players.

Our results provide promise for examining constrained se-
mantic search within a semantic network framework. We plan
to adapt random walks to include structural information of the
network (e.g., betweenness centrality). Further, the data set is

extremely rich, containing both human choices and their de-
cision times. While we evaluated the ability of the random
walks to successfully navigate to the target word conditioned
on the number of steps, we did not attempt to compare the
paths taken by the walkers and by people. Through these
analyses, we hope to understand how the current context af-
fects human semantic search across different tasks.
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