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ABSTRACT OF THE DISSERTATION

A Parallel Development and Testing Framework for Cooperative Driving Automation

by

Xu Han

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2024

Professor Jiaqi Ma, Chair

Automated driving technology has made significant strides, aiming to revolutionize trans-

portation through enhanced safety and efficiency. However, significant gaps still exist in

Cooperative Driving Automation (CDA) development and testing methods. Due to the

scarcity of large-scale real-world deployments, CDA research often combines simulated and

physical environments to achieve the realism that simulations alone cannot provide. Experi-

ments require complex traffic scenarios and emphasize cooperation among multiple agents,

which are challenging to manage with conventional methods. As a result, typical CDA

research stops after initial benchmarking improvements without fully addressing system

completeness, leaving a gap between prototypes and practical implementation.

To bridge this gap, this dissertation introduces a parallel development and testing frame-

work inspired by Transportation 5.0 and the scenario engineering concepts [42,96], designed to

address these unique challenges, accelerating prototyping and validation to ensure prototypes

are robust, reliable, and ready for deployment.

Building upon the proposed framework, three key research projects were conducted to

achieve real-world deployment of CDA systems. First, a cooperative platooning algorithm was

developed and tested, enabling multi-lane platooning functions like cruising, lane changing,

and adjusting platoon members across two lanes. Validated in simulation, it was later

deployed on up to five Level 3-capable vehicles. Second, distributed tests were performed
ii



using the VOICES platform with four participants across the country, each equipped with

various CDA tools such as traffic simulators and Level 3-capable vehicles. This allowed

heterogeneous, real-time interaction to jointly enhance system performance. Lastly, an ADS

regulation-aware path planning algorithm was developed and deployed on Level 3-capable

vehicles. It utilizes a machine-readable regulation database to extract real-world California

vehicle codes and employs a vision-language model to interpret the environment from camera

inputs, integrating regulations into the planning process to select optimal future actions.

In summary, this dissertation introduces a comprehensive, parallel development and

testing framework for CDA, bridging the gap between prototyping and real-world deployment.

By incrementally introducing risk factors and gradually validating systems through simulation

and real-world testing, the framework ensures that CDA systems are robust, reliable, and

ready for implementation. The successful application of this framework across key projects

demonstrates its effectiveness in advancing the field of automated transportation.
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Chapter 1

Introduction

In recent years, Automated Driving Systems (ADS) have achieved significant advancements,

offering numerous benefits such as enhanced road safety, improved traffic efficiency, reduced

fuel consumption, and various environmental and economic advantages. Additionally, Cooper-

ative Driving Automation (CDA), as defined by SAE J3216 [67], utilizes machine-to-machine

and Vehicle-to-Everything (V2X) communications to facilitate collaboration among vehicles,

pedestrians, and infrastructure. This collaboration enhances the perception and decision-

making capabilities of all ADS involved by enabling real-time data sharing and coordinated

responses, leading to more accurate environmental awareness and optimized driving strategies.

These developments have garnered substantial interest and investment due to their immense

potential to fundamentally transform transportation [10,13,85,89,102,103].

Despite significant advancements in ADS and CDA technologies, large-scale deployment

remains challenging, mainly due to the lack of a robust framework to manage the complex

development and testing required for CDA systems. Ma et al. [55] addresses validation and

verification but focus solely on Decision-Making and Planning. Studies on scenario-based

experiments and scene generation for automated vehicles [88, 101] concentrate on automated

scenario generation, with limited emphasis on CDA development. Similarly, real-world CDA

testing has been explored; Fremont et al. [28] propose a novel approach to scenario-based
1



safety testing for autonomous vehicles in industrial settings, and Szalay [90] introduces an

X-in-the-Loop framework leveraging advances in vehicle automation and testing requirements.

However, these works do not address algorithm deployment or operational management

processes. Most importantly, these efforts focus on specific tasks without offering a structured,

systematic approach to CDA technologies. This lack of a structured framework hinders the

integration of diverse components, the consistency of performance, and the validation of

systems in dynamic, real-world conditions.

The lack of standardized methodologies for combining physical and virtual environments,

handling complex traffic scenarios, and coordinating multiple CDA agents impedes the

scalability and reliability necessary for widespread implementation. Consequently, without

a unified framework to streamline development and testing, CDA technologies struggle to

transition from promising prototypes to robust, real-world applications. To tackle these

challenges, we present a comprehensive development and testing framework for Cooperative

Driving Automation (CDA). The proposed development and testing framework can address

the challenges in CDA by providing structured integration of diverse components, standardized

methodologies for complex environments and traffic scenarios, and coordinated management

of multiple agents. This ensures scalability and reliability, enabling CDA technologies to

transition smoothly from promising prototypes to robust, real-world applications. This disser-

tation details this framework and showcases three real-world research projects—focusing on

CDA development and testing in highway scenarios, intersection scenarios, and heterogeneous

agent interactions—all conducted using this framework.

1.1 A Parallel Development and Testing Framework

The motivation for developing this parallel development and testing framework arises from

shortcomings in current CDA methodologies. Limited large-scale real-world deployments of

CDA compel researchers to rely on a combination of simulated and physical environments to
2



achieve necessary realism, as simulations alone cannot address the complexities of modern

research demands. Additionally, CDA experiments often involve intricate traffic scenarios,

specific system objectives, and performance metrics that are challenging to manage with

conventional testing methods. The need for cooperation among multiple CDA agents further

complicates these experiments, making them difficult to execute using traditional approaches.

As a result, many research efforts cease after reaching performance benchmarks without

advancing to comprehensive validation or real-world deployment, creating a critical gap

between prototypes and practical implementation.

Concurrently, inspired by the Internet of Things (IoT) and advancements in AI and large

models, researchers have recognized the need to transform how revolutionary technologies are

implemented in transportation. Wang et al. [96] introduced Transportation 5.0, an integrated,

autonomous, and decentralized framework that uses Distributed Autonomous Organizations

(DAOs) to enhance the safety, security, and sustainability of intelligent transportation systems.

This approach facilitates decentralized control and collaborative decision-making across agents,

promoting system resilience and trust. Similarly, Li et al. [42] highlight the importance

of scenario engineering in AI, emphasizing a shift from traditional feature engineering to

scenario-based frameworks that rigorously test AI behaviors in realistic, complex situations.

Together, these concepts promote a visionary approach to transportation technology, blending

autonomous control with rigorous validation to build safe, trustworthy, and adaptable systems.

Inspired by these visionary approaches, this dissertation introduces a parallel development

and testing framework specifically designed to streamline the prototyping and validation

processes for CDA. Reflecting principles from Transportation 5.0 and scenario-based en-

gineering, this framework combines mixed-reality testing environments with coordinated

parallel operations, creating an adaptable setup that evaluates CDA systems under diverse,

realistic conditions. Through structured scenario engineering and staged parallel validation

processes, the framework ensures that CDA applications are robust, reliable, and ready for

real-world deployment in complex transportation environments. Chapter 2 presents the
3



proposed framework in detail, bridging existing gaps by integrating physical and virtual

environments to enable experiments that blend real-world and simulated elements, enhancing

both realism and validity. The framework supports scenario engineering and parallel valida-

tion at both the traffic level and the vehicle level, providing relevant performance indices

that comprehensively evaluate system goals with experiments that are designed in a safe

and strategic manner. It also manages parallel operations capable of handling multiple CDA

agents, facilitating seamless cooperation among automated systems. By incorporating these

key capabilities, the framework systematically supports the development and testing of CDA

systems, making them robust, reliable, and prepared for real-world deployment. Overall,

the parallel framework provides a thorough and structured approach to CDA development

and validation, enabling efficient prototyping and deployment. Its adaptable design allows

researchers to apply selected components or the entire framework, aligning with specific

project requirements while ensuring a strong foundation for dependable CDA systems.

1.2 CDA Development and Testings in Highway Environ-

ment: Cooperative Multi-lane Platooning

The motivation for developing this project arises from the crucial role that highway scenarios

play in the large-scale deployment of Cooperative Driving Automation (CDA) systems.

Highways are integral to real-world transportation networks, where efficient and safe vehicle

interactions are essential for achieving goals such as improved traffic flow, reduced congestion,

and enhanced safety. While Cooperative Adaptive Cruise Control (CACC) has demonstrated

effectiveness in managing longitudinal vehicle movements, there remains a significant gap in

developing true cooperative methods that extend beyond single-lane or longitudinal control.

Most existing solutions focus narrowly on single-lane or longitudinal dynamics, lacking the

comprehensive coordination and advanced decision-making required for multi-lane highway

environments. Addressing this gap is vital for the successful and widespread adoption of
4



automated driving technologies on highways.

Chapters 3 and 4 of the dissertation focus on multi-lane platooning algorithms, where

Chapter 3 emphasizes algorithm prototype development with simulation testing, and Chapter

4 elaborates on real-world deployment and field tests, both following the proposed parallel

framework. The project aims to develop and validate cooperative strategies that operate

effectively across multiple lanes, enhancing coordination and decision-making among vehicles.

By utilizing the structured approach provided by the framework, the project ensures that the

multi-lane platooning algorithms are extensively tested under realistic and complex highway

conditions, thereby enhancing their reliability and scalability for real-world application. In

particular, during the development phase (i.e., Chapter 3), the simulated testing environment

is utilized to demonstrate the completeness of the multi-lane planning capability with various

scenarios and testing data sources. The operations cover single-lane gap regulation, adjacent

lane platoon joining and departing, and the intelligence controller’s decision-making for a

complex on-ramp merging scenario. For the real-world deployment and testing phase (i.e.,

Chapter 4), a combination of virtual and physical environments is integrated to fully validate

the system’s performance under real-world noises, delays, and disturbances. The corresponding

scenarios, involving multiple L3-capable ADS vehicles, covers both same-lane regulation

and adjacent lane joining, validating the system’s performance on real-vehicle running in

a controlled testing track, with operations covers comprehensively from communication

protocols, wireless signal receive and process, algorithm reasoning and vehicle control.

1.3 CDA Development and Testings in Intersection Envi-

ronment: Regulation-aware Path Planning

The motivation for this project arises from the critical importance of intersection scenarios in

the large-scale deployment of CDA systems. Intersections are inherently complex environments

where multiple vehicles and vulnerable road users interact, making adherence to traffic
5



regulations particularly challenging. One of the most demanding tasks in these settings is

ensuring compliance with multiple traffic laws simultaneously while navigating a dynamic

traffic stream that includes not only vehicles but also pedestrians, cyclists, and other vulnerable

road users (VRUs). Additionally, intersection scenarios often involve overlapping regulations,

further complicating decision-making processes. Conventional methods typically rely on

high-level interpretations or fixed universal principles to manage these complexities, which

are insufficient for the nuanced and real-time demands of modern traffic environments. In

contrast, CDA systems are designed to interpret the environment accurately, process relevant

traffic regulations, and integrate this information into the planning process to make informed

and compliant driving decisions.

Chapter 5 of the dissertation presents the proposed parallel development and testing

framework applied to the development of a regulation-aware path planning system for

CDA. This framework integrates both physical and virtual testing environments, enabling

comprehensive scenario engineering and the effective management of multiple CDA agents

interacting within complex intersection scenarios. The proposed algorithm dynamically

interprets and applies relevant traffic laws based on real-time environmental data. Unlike

traditional methods, this approach allows the CDA system to adaptively relate to applicable

regulations during the planning and execution of driving maneuvers, ensuring legal and safe

driving practices. The framework supports rigorous validation through both simulated and

real-world tests, ensuring that the intersection management system is robust, reliable, and

capable of handling the multifaceted demands of real-world intersections. The details of the

development and testing processes, along with the implementation of the regulation-aware

decision-making algorithm, are thoroughly explored in Chapter 5, demonstrating how the

framework effectively bridges the gap between innovative prototypes and practical, deployable

solutions for automated driving technologies.
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1.4 CDA Distributed Testings with Heterogeneous Agents:

VOICES Distributed Testings

The motivation for developing and conducting the distributed testing framework arises from

the significant challenges posed by heterogeneous agents and the unobservability of other

agents’ internal processes within Cooperative Driving Automation (CDA) systems. Although

there is cooperation among CDA agents through the exchange of standardized messages

such as Signal Phase and Timing (SPaT) and Basic Safety Messages (BSM), the internal

decision-making processes of each agent remain opaque, effectively making them black boxes.

This lack of transparency complicates the accurate prediction and integration of behaviors

across different CDA systems, especially when they originate from diverse manufacturers

with varying algorithms and protocols. Traditional testing methods, which rely on isolated

simulations or physical tests, are inadequate for assessing how these heterogeneous agents

interact and cooperate in real-time environments. Furthermore, the complexity of managing

multiple CDA agents, each with its own proprietary logic, exacerbates integration issues and

hinders the seamless deployment of large-scale CDA solutions. To overcome these obstacles,

a comprehensive distributed testing framework is essential. Such a framework must facilitate

real-time interaction and collaboration among diverse CDA agents, enabling a more accurate

and reliable assessment of their cooperative behaviors and ensuring that CDA systems can

operate cohesively within a complex transportation ecosystem.

Chapter 6 of the dissertation presents the proposed distributed testing framework designed

to enhance the development and validation of CDA systems by focusing on the integration of

heterogeneous agents and addressing the unobservability of their internal processes. This

framework establishes a secure, mixed-reality testing environment where multiple organizations

can simultaneously utilize their existing simulated and physical test assets to interact with

each other’s CDA systems in real-time. By enabling comprehensive scenario engineering and

the effective management of diverse CDA agents, the framework allows for the evaluation
7



of cooperative behaviors and decision-making processes in a controlled yet realistic setting.

The project introduces advanced coordination algorithms that facilitate seamless interaction

among heterogeneous agents, ensuring that each system can interpret and respond to the

actions of others despite the lack of transparency in their internal processes. Additionally, the

framework supports rigorous validation through both simulated and real-world tests, ensuring

that the CDA systems are robust, reliable, and capable of operating cohesively within a

complex transportation ecosystem. Chapter 6 details the implementation of this distributed

testing architecture, demonstrating how it effectively bridges the gap between diverse CDA

prototypes and their practical, deployable solutions, thereby advancing the integration and

scalability of automated driving technologies.

This dissertation presents a development and testing framework for CDA systems, ad-

dressing challenges in transitioning from prototypes to real-world deployment. The proposed

framework integrates physical and virtual environments, supports complex scenario engi-

neering and validation processes, and manages multi-agent interactions to ensure robust,

reliable CDA systems. Note that the proposed framework is a comprehensive structure that

covers from development to real-world validation and deployment, but not all models are

applied when it comes to real-world application. In particular, the proposed framework is

applied across three key projects: cooperative multi-lane platooning in highway settings,

regulation-aware path planning in intersections, and distributed testing of heterogeneous

agents. Each project demonstrates how the framework enables effective development and

validation processes using the modules that are most creative to the project scope and research

goals. On a high level, they all involve a comprehensive testing environment, sophisticated

scenario engineering, extensive validation, and seamless coordination, bridging the gap be-

tween experimental outcomes and real-world application, ultimately enhancing the scalability

and reliability of CDA technologies.
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Chapter 2

A Parallel Development and Testing

Framework for Cooperative Driving

Automation

Cooperative Driving Automation (CDA) has significant potential to improve road safety,

traffic efficiency, and environmental sustainability by fostering collaboration between vehicles,

infrastructure, and road users through machine-to-machine and Vehicle-to-Everything (V2X)

communication. However, scaling CDA deployment presents challenges due to the complex

testing and validation requirements. Current methodologies often lack the integration of

physical and virtual environments, the ability to manage diverse traffic scenarios, and the

coordination of multiple automated agents. To address these gaps, this chapter introduces a

parallel development and testing framework aimed at bridging the divide between prototype

testing and real-world deployment.

The proposed parallel framework includes several guiding modules—physical and virtual

environments, scenario engineering, parallel operations, and a newly added parallel validation

module. Each module provides essential support for testing, but not all are necessary for

every project. The parallel validation module provides a flexible testing framework that
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introduces progressively realistic disturbances, beginning with simulation tests, advancing

through software-in-the-loop and hardware-in-the-loop testing, and extending to field and

distributed testing environments. This comprehensive approach ensures that each phase

effectively evaluates system performance, compatibility, and adaptability under increasingly

realistic conditions. For each specific project or chapter, only the relevant modules will be

selected according to project requirements, with explanations provided for these choices. By

incorporating flexible yet cohesive elements, the framework supports robust CDA validation,

enhancing reliability, scalability, and interoperability and facilitating the transition from

prototype development to large-scale deployment.

2.1 Introduction

Intelligent Transportation Systems (ITS) are transforming the transportation landscape by

utilizing advanced technologies to overcome traditional infrastructure limitations. These

systems have shown significant potential to enhance transportation system goals, such as safety

and traffic efficiency [5, 93]. According to SAE J3216 [67], Cooperative Driving Automation

(CDA) involves vehicle automation that relies on Machine-to-Machine communication to

enable coordinated interactions among multiple entities—such as vehicles, vulnerable road

users (VRUs), and infrastructure components—equipped with communication capabilities.

CDA represents a significant advancement in the field of automated transportation, offering the

potential to revolutionize road safety, traffic flow, and environmental sustainability [5,30,107].

By facilitating collaboration between vehicles, infrastructure, and VRUs through advanced

communication methods like Vehicle-to-Everything (V2X), CDA systems enable coordinated

decision-making and perception across multiple entities. This coordination helps address

complex challenges such as navigating intersections, merging lanes, and managing mixed

traffic environments, which are difficult for single automated vehicles to handle independently

[33, 102, 103]. As such, CDA has attracted substantial interest and investment from both
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industry and academia due to its promise to transform the transportation landscape.

However, despite these advancements, large-scale deployment of CDA technologies remains

limited. Given the high costs of development and deployment, as well as the increased risks and

legal constraints associated with a larger number of devices, a common approach for validation

is to use a simulated virtual testing environment [47,62,74]. Simulated environments allow for

the creation of controlled scenarios without property damage, legal constraints, or safety risks.

However, most simulation platforms suffer from unrealistic environmental conditions and

traffic behaviors. Moreover, they often feature simplified communication systems that rely

on artificial noises that follow certain distributions [48, 80], which is particularly problematic

when evaluating the real-world performance of CDA systems that rely on sophisticated V2X

communication methodologies. Therefore, it is essential to incorporate some level of realistic

environment to better capture the complexities and interactions that occur in real-world

conditions while maintaining a mixture of virtual environments to limit the risk.

Integrating a virtual testing environment with a physical testing environment (i.e., digital

twin) ensures that algorithms, which may perform well in controlled, simulated settings,

are also robust enough to withstand the disturbances, noise, and delays introduced by

real-world conditions. Such integration is essential for validating that CDA systems can

maintain their performance and reliability when tested in a more robust testing scenario and

environment [4,8,79]. The challenge lies in managing and integrating both virtual and physical

testing environments into a coherent system. It is crucial to establish a systematic approach to

handle these complexities and maintain consistency between the two environments. With this

approach, the simulation portion provides valuable insights and knowledge about the CDA

system’s performance across various scenarios, serving as both prior experience for system

improvements and a performance baseline for validation. Meanwhile, the physical system

delivers realistic performance data, which can be used to refine and enhance the quality of

the virtual testing environment, creating a more accurate and comprehensive testing process.

On the other hand, another primary obstacle in large-scale deployment is the complexity
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involved in developing and validating CDA systems with multiple agents. Unlike single-vehicle

automated systems, which focus primarily on the behavior of a single entity [43,103], CDA

requires precise coordination and interaction among multiple agents, each contributing unique

capabilities to the overall system. This involves not just vehicles but also roadside units,

infrastructure elements, and even other VRUs. Scenario engineering plays a crucial role

in this process, as it involves designing detailed, realistic testing environments that can

capture the full spectrum of interactions that CDA systems might encounter in the real world.

These scenarios are usually engineered to include diverse variables such as varying weather

conditions, different types of road users, and unexpected events like emergency stops or lane

changes.

With increasingly complex hybrid testing environments and challenging scenarios, CDA

testing is becoming more involved and demanding. Combining virtual and physical environ-

ments, CDA systems must perform reliably across both simulated and real-world conditions.

In scenarios specifically designed to emphasize cooperation, additional challenges emerge in

managing timing, multi-agent interactions, and adapting to unexpected dynamics. To address

these complexities, it is essential to design a validation protocol that includes a range of tests,

each introducing different levels of real-world complexity—such as randomness, noise, and

disturbances. These tests do not follow a strict sequence but instead represent a collection of

options, each suited to various development stages with distinct focuses. By carefully selecting

appropriate tests based on project emphasis and risk tolerance, the protocol allows developers

to test CDA systems incrementally, minimizing unnecessary risk factors while focusing on

core research objectives. This approach supports flexible and adaptive validation, enabling

CDA systems to be evaluated under increasingly realistic conditions without requiring all

tests to be completed at once.

Lastly, operations among the CDA systems introduce additional complexity to the

development and validation processes by requiring the simultaneous management of processes

that guide agent interactions and system adaptation. These operations involve coordinating
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communication, testing performance across diverse conditions, and continuously refining

decision-making, ensuring that the system can respond effectively to dynamic, real-world

scenarios. Well-managed operations among agents allow seamless collaboration and allow the

system to learn from each interaction and experiment, making it an essential attribute for

developing a robust CDA system that can adapt to the unpredictable nature of real-world

deployment. In addition, effective operational management requires careful oversight of

data flow and process alignment to maintain consistency and ensure that outcomes are both

reliable and scalable.

2.2 Related Work

The development and validation of CDA systems have been extensively studied, and various

frameworks have been proposed to address the challenges of testing or integration.

Many of these frameworks rely heavily on simulation environments due to their ability

to replicate diverse scenarios without the risks associated with real-world testing. Feng [26]

proposed a new framework for safety assessment of highly automated driving systems that

integrates an augmented reality (AR) testing platform and a testing scenario library generation

(TSLG) method. The AR testing platform generates simulated background traffic in test

tracks, which interact with subject ADS under test to create a realistic traffic environment.

Nalic [61] proposed a novel stress testing method (STM) based on traffic flow simulation

software (TFSS) PTV Vissim and the vehicle simulation software IPG CarMaker. With

this method, traffic participants are manipulated in the vicinity of the vehicle under test in

order to provoke SCS derived from statistical accident data on motorways in Austria. ADS

assessment in terms of scenarios is also discussed, where naturalistic driving data are used to

generate test cases for Monte-Carlo simulations of ADS [18]. Because real-life data is used,

the assessment allows conclusions to be drawn on how the ADS would perform in real traffic.

In terms of development, the simulated virtual environment has been extensively used
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as the foundation for cooperative driving automation frameworks, such as full-stack CDA

development framework to test different CDA algorithms at both levels of traffic and individual

autonomy [102], fully customizable and simulation platform that support the research of

generalizable reinforcement learning algorithms for machine autonomy [41].

However, nearly all of these methods failed to utilize any form of real-life system or

environment that captures realistic communication or operation arrangement. A mixture of

virtual and physical environments, also known as the digital-twin environment, has gained

popularity, providing a high-fidelity virtual representation of physical systems to test CDA

algorithms in controlled conditions. Some efforts focused on utilizing a digital environment

that replicated the world to design cooperative driving systems, allowing connected vehicles to

cooperate with each other to cross intersections without any full stops using a slot reservation

algorithm [97] or establish an Advanced Driver Assistance Systems (ADAS) that recommend

vehicle behavior based on a digital replicated roadway segment with simulated live traffic

stream [98]. Young et al., [105] establishes an infrastructure-based cooperative perception

fusion engine based on a complete 3D digital representation of the current traffic state with

measurable accuracy to support a wide range of downstream applications such as intelligent

signal control, safety, and energy applications, and CDA applications.

These platforms enable researchers to simulate complex traffic scenarios, integrate virtual

sensors, and analyze the behavior of multiple automated agents, providing a safe and

controlled environment for testing before real-world deployment. While they offer greater

realism compared to purely simulation-based methods, most existing work primarily uses these

environments without establishing a comprehensive framework for testing. This approach can

address aspects such as sensor noise, environmental variability, and the intricate dynamics of

V2X communication but often lacks the structured methodology needed to integrate these

elements into a cohesive testing and development process.

To address these challenges, we propose a parallel development and testing framework

designed specifically for CDA. This framework integrates virtual and physical testing en-
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vironments, detailed scenario engineering, and coordinated testing operations to provide a

comprehensive approach for validating CDA systems. By leveraging a parallel setup, the

framework ensures that CDA algorithms are thoroughly tested in simulated environments

before being exposed to the complexities of real-world conditions, allowing for a smoother

transition from prototype to deployment. This structured approach not only enhances the

scalability and reliability of CDA technologies but also bridges the critical gap between

innovative research and practical application, paving the way for safer and more efficient

transportation systems.

2.3 Framework Contributions and Key Insights

This section explores the key contributions and insights derived from the implementation

of the proposed parallel development and testing framework across multiple projects. As

mentioned in Chapter 1, this dissertation introduces three projects (in four chapters) that

demonstrate the practical application of the proposed parallel framework. This section will

present the contributions, experiences, and insights gained from the process of applying the

framework to these projects, highlighting its practical value and relevance. It emphasizes

the benefits of adhering to the framework, such as improved system robustness, enhanced

interoperability, and reliable performance validation under diverse conditions. These insights

validate the framework as a comprehensive tool for advancing CDA technologies and provide

valuable guidance for future research and practical applications, ensuring a scalable and

effective pathway to real-world deployment.

2.3.1 Integration of Mixed-Reality Environment for CDA Develop-

ment and Testing

The integration of physical and virtual environments is a critical contribution of the framework,

addressing the limitations of using either environment alone for CDA testing. Virtual
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simulations provide scalability and controlled testing conditions but often lack real-world

complexity, such as communication delays and environmental noise. Physical testing ensures

realism but is resource-intensive and risky for early-stage development. By combining these

environments, the framework allows algorithms to be iteratively refined in simulations and

validated under real-world conditions, creating a balanced, efficient, and comprehensive

testing process.

This integration leverages the strengths of both environments, enabling seamless synchro-

nization. Virtual environments replicate real-world conditions as digital twins, supporting

safe pre-testing and scenario refinement. Physical tests validate system performance under

unpredictable, real-world conditions, and their data feeds back into simulations for further

optimization. This dual-environment approach accelerates development, reduces risks, and

ensures the systems are robust and deployment-ready.

The Multi-Lane Platooning Algorithm project involves both virtual and physical

systems. The framework significantly contributed to the testing of a multi-lane platooning

algorithm detailed in Chapters 3 and 4. In the virtual testing phase, CARLA was used to

simulate scenarios such as on-ramp merging, adjacent-lane coordination, and gap regulation.

The framework’s integration of scenario engineering allowed the team to incrementally test

the algorithm under controlled yet progressively complex conditions. Knowledge gained from

these simulation tests informed improvements and adjustments to decision-making parameters

and communication protocols, such as target platoon gap and V2V communication range.

During physical testing at the SunTrax facility, the same framework enabled the transition by

replicating the virtual scenarios in real-world environments. Level 3-capable vehicles validated

the algorithm’s robustness under real-world disturbances, including communication delays

and road surface variability. This iterative process ensured that virtual testing seamlessly

prepared the system for real-world deployment.

The Regulation-Aware Path Planning project also involves both virtual and physical

systems. The framework facilitated the development and validation of a regulation-aware
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path planning algorithm in Chapter 5. Virtual testing environments were crucial for refining

the vision-language model (VLM) by simulating complex intersection scenarios with dynamic

traffic and overlapping regulations. The VLM relies on text prompts to identify key traffic

elements and make context-aware decisions. Using simulation as a safe and convenient

platform, these text prompts were fine-tuned for various scenarios, enabling the system

to accurately interpret each situation and focus on the most critical traffic elements. The

simulation phase ensured that the prompts were closely aligned with real-world conditions,

creating a solid foundation for deployment.

Following the framework, the fine-tuned text prompts were directly applied in real-world

testing, significantly reducing the time and effort required during field tests. At a real

intersection, the algorithm leveraged these optimized prompts to identify and interpret key

traffic elements, such as signals, road signs, and dynamic obstacles, enhancing its performance

in noisy and dynamic environments. This dual-environment approach ensured the algorithm’s

efficiency and readiness for practical applications by smoothly transitioning from virtual to

real-world testing.

2.3.2 Scenario Engineering for Comprehensive System Evaluation

The framework’s structured scenario engineering process ensures CDA systems are comprehen-

sively evaluated under diverse, realistic conditions. Unlike traditional testing approaches that

rely on ad-hoc or overly simplified scenarios, the framework employs a systematic approach

to create, manage, and validate scenarios aligned with specific research goals. This approach

allows researchers to progressively introduce complexities—such as dynamic traffic conditions,

environmental factors, and communication delays—ensuring systems are tested incrementally

for both functionality and robustness.

Scenarios are designed with specific objectives in mind, such as optimizing gap regulation,

ensuring compliance with traffic laws, or improving cooperative decision-making. Each

scenario is parameterized to cover a wide range of conditions, starting with simple setups in
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simulations and advancing to real-world environments. Tailored performance metrics—such

as response time, compliance rate, and coordination efficiency—are used to evaluate systems

objectively across different testing phases. This structured progression ensures systems are

resilient and adaptable to real-world complexities, providing confidence that they can scale

effectively from prototypes to deployment.

The framework’s scenario engineering process was crucial in testing the Multi-Lane

Platooning Algorithm, as detailed in Chapters 3 and 4. Structured scenarios were designed

to evaluate the algorithm’s capabilities, including gap regulation in single-lane platoons,

adjacent-lane merging, and on-ramp coordination. These scenarios were progressively refined,

introducing challenges such as varying traffic densities and unpredictable maneuvers by human-

driven vehicles to test the algorithm under increasingly realistic and complex conditions.

This iterative approach allowed the algorithm’s decision-making logic to be systematically

improved at each stage.

For the Regulation-Aware Path Planning algorithm in Chapter 5, the framework facil-

itated the creation of scenarios specifically designed to include co-existing traffic regulations.

These scenarios incorporated diverse traffic laws and dynamic elements, such as pedestrians

and cyclists, to evaluate the system’s ability to interpret and comply with multiple regulations

under controlled conditions. The algorithm demonstrated the capability to handle complex

legal environments while focusing on critical regulatory requirements. In physical testing, the

scenarios were adapted to reflect real-world conditions, retaining key similarities to ensure

the system could perform effectively. Real-world tests included live traffic signals, variable

road conditions, and environmental disturbances, validating the algorithm’s robustness and

its ability to make legally compliant decisions in dynamic, real-time settings with overlapping

regulations.
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2.3.3 Parallel Validation with Multi-Stage Risk Management

The framework’s multi-stage parallel validation process ensures the robustness and scalability

of CDA systems by progressively increasing testing complexity. It begins with simulation-

based testing, allowing researchers to explore algorithms under controlled and repeatable

conditions. From there, it transitions to software-in-the-loop (SIL) and hardware-in-the-loop

(HIL) phases, where real-time controls and physical hardware are introduced. These stages

prepare systems for real-world conditions while maintaining a safe and cost-effective testing

environment.

This process reduces risk by allowing issues to be identified and resolved early in develop-

ment. The simulation stage focuses on initial functionality, while SIL and HIL tests introduce

real-time elements like delays and sensor noise. Field testing validates system performance in

real-world conditions, and distributed testing assesses multi-agent interactions under diverse

scenarios. By gradually increasing complexity, the framework ensures that systems are

tested comprehensively without unnecessary risks during early phases. The modularity of

the framework allows researchers to tailor the validation process to project-specific needs,

focusing on critical aspects such as communication protocols, decision-making algorithms, or

sensor integration. This ensures efficient use of resources and targeted testing, resulting in

systems that are reliable and ready for deployment.

The VOICES distributed testing framework introduced in Chapter 6 highlights

the framework’s capability to facilitate incremental validation with increasing complexity

and risk. Beginning with simulation tests, the framework validated the distributed system’s

foundational integrity by ensuring reliable cloud-based interactions among multiple entities

in a controlled environment. This established a baseline for performance, providing a

foundation for subsequent phases. SIL testing introduced standardized SAE messages, such

as Basic Safety Messages (BSM) and Signal Phase and Timing (SPaT), alongside additional

encoders and decoders, enabling real-time interactions and increasing the system’s exposure

to operational noise. Finally, distributed testing incorporated heterogeneous interactions with
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mixed-reality assets, simulating realistic and diverse conditions while validating the system’s

scalability and adaptability. The framework ensured a structured progression at each step,

maintaining manageable risk levels and reinforcing system robustness.

The Platooning field test, detailed in Chapters 3 and 4, illustrates the framework’s

role in structuring and enhancing the progression from simulation to real-world application

while managing incremental complexity and risk. In the SIL phase, the framework integrated

simulation with ROS to validate multi-lane platooning behaviors, such as gap regulation

and multi-lane control, in a simulated three-vehicle environment with added communication

costs. The framework’s scenario engineering ensured that test cases reflected realistic traffic

conditions while maintaining safety, allowing for the refinement of control algorithms and

communication protocols in a controlled environment. For the HIL phase, the framework

facilitated the transition to two physical vehicles, incorporating real-world dynamics such as

communication delays and sensor noise. By leveraging insights and validated parameters from

the SIL phase, the framework reduced development time and minimized potential failures. In

the final field test, the framework supported scaling to a three-vehicle, multi-lane platoon,

requiring synchronized coordination across lanes and adaptation to dynamic traffic conditions.

Its structured validation approach ensured that the system was tested incrementally, with

each phase building on the success of the previous, improving the efficiency and reliability of

the overall development process.

2.3.4 Scalability and Flexibility in Framework Design

The framework’s modular design provides scalability and adaptability, enabling researchers to

tailor its components to meet specific project requirements. Rather than adhering to a rigid

structure, researchers can selectively apply or combine elements from scenario engineering

and parallel validation based on project objectives. For instance, the Regulation-Aware Path

Planning framework introduced in Chapter 5 utilized a combination of field testing and HIL.

While the field test was not fully automated, requiring a human driver to operate the vehicle,
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it incorporated hardware components and real-world traffic conditions to enhance realism.

This flexibility ensures efficient use of resources, eliminates redundant testing, and allows the

framework to support a wide range of projects, from small-scale experiments to large-scale,

real-world implementations.

Scalability is further supported by the framework’s ability to expand the testing scope. It

transitions smoothly from individual vehicle tests to complex multi-agent systems involving

roadside infrastructure and connected vehicles. For example, small-scale tests can focus on

single-function validation, while large-scale scenarios can test system-wide interactions and

real-world dynamics. This adaptability ensures that CDA systems are extensively tested

across various levels of complexity, making the framework suitable for academic research and

industrial applications.

2.4 System Overview

The proposed parallel development and testing framework for CDA is designed to address the

complexities of developing and validating systems that require coordination among multiple

agents. As shown in Figure 2.1, it integrates four core components: parallel systems, scenario

engineering, parallel validation, and parallel operations. Each component plays a crucial

role in establishing a comprehensive testing environment that enables CDA systems to be

effectively evaluated across varied conditions. Parallel systems allow simultaneous testing

in both virtual and physical settings, balancing the safety of controlled experimentation

with the realism needed for real-world validation. Scenario engineering provides detailed and

realistic testing conditions, replicating the complexity and variability of real-world traffic

situations. Parallel validation is a comprehensive testing suite structured with increasing

levels of real-world risk and disturbance, ranging from simulation to software-in-the-loop,

hardware-in-the-loop, field, and distributed tests, allowing for adaptable validation pathways

depending on project requirements. Finally, parallel operations manage coordination, test-
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ing, and iterative adaptation, ensuring that the system continuously learns and improves.

Together, these components create a cohesive framework that supports thorough testing

and validation, guiding CDA systems from prototype stages to large-scale deployment with

enhanced reliability, scalability, and real-world readiness.

Figure 2.1: Overview of parallel development and testing framework.

2.4.1 Parallel Systems

The parallel systems component of the framework integrates both virtual and physical

testing environments, creating a mixed-reality setup that allows for a more comprehensive

evaluation of CDA systems, as shown in Figure.2.2. Virtual environments, such as digital-

twin simulations using platforms like CARLA or SUMO, replicate real-world conditions with

high fidelity, enabling researchers to test various scenarios in a controlled and safe digital

space. These simulations can include diverse traffic conditions, complex road geometries, and

different weather patterns, allowing CDA algorithms to be tested against a wide array of

potential challenges without any risk to physical assets.

The physical testing environments include advanced vehicle platforms and roadside

infrastructure that provide crucial real-world data about interactions and environmental

factors. For example, a Level 3-capable C-ADS vehicle equipped with a ride-by-wire system,
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Figure 2.2: Overview of parallel systems module of the development and testing framework.

a complete sensor suite, and integrated C-ADS software such as CARMA or Autoware can

be used to test CDA algorithms in real driving conditions. These vehicles can seamlessly

integrate and test new algorithms, offering valuable insights into their performance outside

of simulation. Additionally, physical systems might include roadside sensor suites combined

with edge computing middleware as a central processing hub. An example of such a setup,

as shown in Figure.2.3 is UCLA’s smart intersection [53], where LiDAR, radar, cameras,

and GPS sensors are installed on traffic signal poles, providing a comprehensive view of the

intersection environment. This setup is complemented by two roadside middleware units

that are connected to the sensors, allowing for real-time perception data sharing with nearby

CDA units. Such physical testing setups enable the study of real-world challenges, such

as coordinating sensor data from infrastructure with vehicle-based data, making them an

essential complement to virtual testing in the overall framework.

The virtual systems component of the framework enables detailed, controlled testing in

simulated environments, offering a safe and flexible way to evaluate CDA algorithms. A

virtual environment can serve as a digital replica of a real-world setting, such as a digital

twin of UCLA’s smart intersection. This digital version replicates the road geometry, nearby
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Figure 2.3: Overview of UCLA Smart Intersection setup.

buildings, and traffic signals based on the actual intersection layout and can be loaded into

simulation platforms like CARLA. Within this virtual space, traffic streams can be spawned

and managed, allowing for precise control over vehicle behaviors, pedestrian movements,

and other dynamic elements, making it ideal for testing specific scenarios that would be

difficult to reproduce consistently in the real world. Virtual environments can also utilize

conventional simulation platforms, generally categorized into two types: traffic-level and

vehicle-level simulators. Traffic-level simulators, such as SUMO [7], focus on modeling larger

traffic flows and interactions within complex networks, making them suitable for assessing

the impact of CDA systems on broader traffic efficiency and safety. Vehicle-level simulators,

such as CARLA [21] or META Drive [41], provide a high-fidelity environment for testing the

behavior and decision-making of individual automated vehicles, focusing on detailed sensor

modeling and vehicle dynamics. Moreover, as an additional virtual environment alternative,

running different simulation platforms in parallel through co-simulation allows each platform

to handle the tasks it is best suited for. For example, SUMO might simulate overall traffic

conditions, while CARLA focuses on the detailed interactions of a specific vehicle within

that traffic. This co-simulation approach enhances the realism and comprehensiveness of
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virtual testing, allowing researchers to analyze both micro- and macro-level behaviors of CDA

systems in a highly configurable environment.

By running these virtual and physical systems simultaneously, researchers can correlate

the results, using insights from virtual tests to refine real-world trials and vice versa. For

example, a virtual model might identify edge cases that are then validated through controlled

physical tests, or real-world data from physical tests might be used to enhance the accuracy

of simulations. This parallel approach ensures that the CDA system’s performance in a

simulated environment aligns closely with its behavior in actual driving conditions, creating a

robust foundation for real-world deployment. Such a method allows the framework to balance

the safety and scalability of virtual testing with the realism and unpredictability of physical

trials, resulting in a well-rounded and reliable validation process.

2.4.2 Scenario Engineering

The concept of scenario engineering, as shown in Figure 2.4, is beyond just generating diverse

driving conditions to challenge CDA systems; it is about creating a systematic framework that

can guide the testing and validation process to ensure that the tested CDA applications are

prepared for real-world deployment and validation. At its core, scenario engineering involves

developing a structured approach to CDA testing that is closely aligned with well-defined

research goals and establishes a scenario base suitable for all phases of testing. This approach

is essential for developing and validating robust algorithms, ensuring that CDA experiments

remain consistent with research objectives and are capable of handling diverse and challenging

situations with reliability and safety.

The first step in scenario engineering is identifying and interpreting the specific research

goals that align with the broader objectives of CDA development. These goals can vary

widely, encompassing tasks such as cooperative perception, decision-making in dynamic traffic

scenarios, regulation-aware driving, and vehicle cooperation during complex maneuvers like

lane merging or platoon formation. At this stage, researchers must consider what capabilities
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Figure 2.4: Detailed overview of scenario engineering.

and behaviors the CDA system needs to demonstrate, such as accurately sharing sensor data

between vehicles, interpreting complex traffic regulations, or managing interactions with

vulnerable road users (VRUs). For example, a goal might be to ensure that CDA vehicles

can safely navigate intersections by interpreting traffic signals and pedestrian crossings, or

to optimize vehicle cooperation in a platoon, where multiple vehicles need to adjust their

speeds and positions smoothly.

Once the research goals are clearly defined, the next step is to generate a scenario base

that covers a range of testing conditions, introducing varying levels of difficulty, noise, and

interruptions. These scenarios are designed to progressively validate CDA algorithms, starting

with basic functionality tests and advancing to more challenging real-world simulations. For

example, initial scenarios might involve straightforward vehicle cooperation tasks, such

as merging onto a highway or forming a basic platoon under ideal conditions. As testing

progresses, more complexity is introduced, such as variable communication delays, unexpected

obstacles such as road debris, or sudden changes in road conditions like icy patches or heavy

rain. Similarly, for tasks like cooperative perception, early scenarios might involve clear

visibility and perfect sensor conditions, while later scenarios introduce factors like fog or

partial sensor failures to test the robustness of the system’s ability to maintain situational
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awareness. These layered scenarios ensure that CDA systems are tested incrementally, with

each level building upon the previous one, thus creating a robust testing environment that

closely mimics the unpredictable nature of real-world traffic.

Lastly, defining performance indices is a critical aspect of scenario engineering, particularly

when the scenario base includes a wide variety of scenarios, each designed with specific research

intentions. Performance indices serve as measurable metrics that align with the objectives of

individual scenarios, ensuring that the evaluation process remains focused and meaningful.

Given the diverse research goals in CDA development—ranging from cooperative perception

and decision-making in dynamic traffic conditions to regulation-aware driving and complex

vehicle coordination—each scenario requires tailored indices that reflect its unique intent.

For example, a scenario testing cooperative perception might prioritize indices like sensor

accuracy and data-sharing efficiency, while a platooning scenario could emphasize metrics

such as inter-vehicle gap consistency and synchronization of speed adjustments. By defining

and applying appropriate performance indices, researchers can ensure that CDA systems

are not only tested comprehensively but also evaluated against the specific capabilities and

behaviors that the scenarios are designed to challenge. This targeted approach enables a

systematic validation process, making it possible to assess the readiness of CDA systems for

real-world deployment while addressing the varied demands of different testing phases.

Scenario engineering serves as a critical component in the framework, rooted in a method-

ical approach that starts with identifying research goals and evolves through the creation of

tailored scenarios that meet those objectives. By systematically introducing challenges and

increasing complexity, scenario engineering allows researchers to comprehensively evaluate

the readiness of CDA systems for real-world conditions. This structured method ensures that

CDA technologies can be validated in a way that not only tests their core functions but also

prepares them for the diverse and often unpredictable situations they will encounter upon

deployment. The result is a more resilient and adaptive CDA system, capable of transitioning

from experimental phases to effective, large-scale application in real-world transportation
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systems.

2.4.3 Parallel Validation

The concept of parallel validation extends beyond merely verifying CDA system functionality;

it provides a structured and layered testing approach to prepare CDA applications for real-

world deployment, introducing progressively increasing complexity, risk, and disturbance.

Parallel validation is integral to the framework, forming a comprehensive suite of testing

methods that systematically introduces varied environments and scenarios to rigorously assess

system readiness. This approach is essential for refining CDA algorithms, ensuring that

each testing phase aligns with the system’s developmental goals and supports reliable, safe

interactions under diverse and challenging conditions.

The parallel validation suite begins with simulation testing, where foundational algo-

rithms are tested in a controlled virtual environment, allowing for early experimentation

without physical risks. This simulation phase establishes a baseline for system performance,

helping identify areas for improvement while keeping testing constraints manageable. By fo-

cusing on core capabilities within a predictable setup, simulation testing enables researchers to

explore initial CDA responses, interactions, and decision-making logic in a safe yet informative

environment.

Following simulation, the validation process advances to SIL and HIL testing, which

incrementally increase testing fidelity by introducing real-time control and physical hardware

components. In SIL, the CDA software interacts with a live virtual environment, bringing real-

time responsiveness and enabling the system to handle dynamic data inputs. SIL serves as an

essential bridge, integrating software performance with more realistic virtual scenarios. HIL

builds on this by incorporating actual hardware components, such as sensors and actuators,

exposing the system to physical disturbances like sensor noise and delays. SIL and HIL

phases also add layers of heterogeneity, as independent agents, functioning as black boxes

to one another, must interact under realistic conditions. This black-box interaction closely
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mirrors real-world CDA environments, where each system is isolated in its internal workings

and capabilities. Testing how these autonomous agents interact is crucial for ensuring reliable

and coordinated CDA performance in complex, multi-agent settings.

As development progresses, field tests allow the CDA system to operate in live environ-

ments, interacting directly with real road conditions, infrastructure, and road users. These

field tests assess how CDA systems handle real-world complexity, such as unexpected events

or environmental constraints, providing critical feedback for final adjustments. Distributed

testing serves as the final stage, validating multi-agent CDA systems’ ability to coordinate

across varied geographic locations and platforms, and assessing how heterogeneous agents

interact within larger networks. In distributed testing, each agent continues to act as a

black box, independently interpreting the environment and responding based on its unique

decision-making framework. This heterogeneity, mirroring real-world CDA conditions, is

critical for ensuring that CDA systems can seamlessly operate alongside other autonomous

systems, creating a cohesive and scalable deployment environment.

The progression from simulation to distributed testing is structured to adapt flexibly

to project requirements, offering a pathway that incorporates increasingly complex testing

environments. By gradually building layers of interaction and disturbance through a mix of

virtual, hybrid, and physical tests, parallel validation enables each CDA system to demonstrate

readiness for real-world scenarios. This approach ensures that CDA applications are not

only robust and adaptable but also capable of managing the complex, heterogeneous agent

interactions essential for real-world CDA functionality.

2.4.4 Parallel Operations

The parallel operations component of the framework is designed to ensure that various

processes critical to the functioning of CDA systems work together seamlessly. It consists

of three interconnected types of operations: Coordination and Control, Experiment and

Evaluation, and Learning and Reasoning. Each of these operations plays a distinct role
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in enhancing the robustness, adaptability, and effectiveness of CDA systems, making them

capable of handling the complex challenges encountered in real-world scenarios. An overview

of this module is presented in Figure.2.5.

Figure 2.5: Overview of parallel operations module of the development and testing framework.

Coordination Control Operations involve managing the interactions and communications

between different agents within the CDA system. This includes Vehicle-to-Everything

(V2X) communication, where data is exchanged between vehicles, infrastructure elements

like roadside units (RSUs), and even pedestrians equipped with communication devices.

For example, a vehicle approaching an intersection can receive real-time updates about

traffic signal phases, nearby pedestrian movements, or the intentions of other vehicles. Such

information enables smoother and safer decision-making, like adjusting speed to allow a

safe passage through an intersection. Coordination and Control also cover decision-making

processes, where the system must process shared information to make cooperative decisions,

such as determining the order of vehicle passage at a four-way stop or coordinating lane

changes in a platoon. Additionally, this operation includes cooperative perception, where

agents share sensor data (e.g., LiDAR or camera feeds) to create a richer, more accurate

understanding of the environment. Localization and prediction help vehicles determine their

precise position relative to other agents and predict their future movements, while vehicle

control ensures that all entities adjust their behavior accordingly to maintain safe distances
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and coordinated maneuvers.

Experiment and Evaluation Operations focus on rigorously testing the performance of

CDA systems across a variety of settings and conditions. This process is multi-faceted,

encompassing several testing methodologies that address different stages of development.

Simulation tests, for example, allow researchers to run thousands of scenarios virtually to

understand how a CDA system might behave in diverse situations, such as heavy rain, foggy

conditions, or sudden lane closures. Software-in-the-loop (SIL) tests extend this by integrating

real software components with virtual models, providing a higher level of interaction with the

simulation environment. These tests are particularly useful for evaluating how real-world code

handles edge cases that may not frequently occur. Hardware-in-the-loop (HIL) tests take this

a step further by incorporating physical hardware elements—like sensors or communication

devices—into the testing loop, allowing a more accurate representation of the real-world

interactions between software and physical components. Finally, field tests are conducted

using actual CDA vehicles on test tracks or in controlled public environments. These tests

verify the system’s ability to handle real-world conditions, such as varying road textures,

dynamic traffic conditions, and the influence of physical obstructions. Throughout all these

testing stages, specific performance metrics, such as reaction time, collision avoidance, and

fuel efficiency, are tracked to ensure that the system meets safety and efficiency standards.

Learning and Reasoning Operations are crucial for enabling the CDA system to adapt

and improve over time based on the data gathered during the testing phases. This involves

the use of AI agents that develop learned intelligence, allowing the system to make strategic

and tactical decisions dynamically. For instance, AI-based reasoning can help a vehicle

determine the best way to merge into high-speed traffic or adjust its speed during cooperative

maneuvers like platooning. The learning process is supported by a continuous feedback

loop from previous simulations and real-world data, allowing the AI agents to refine their

decision-making models. This is particularly useful in situations that require quick adaptation,

such as adjusting to a sudden change in traffic flow or reacting to unpredictable behavior
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from human drivers. The system’s ability to learn from its experiences means that over

time, it becomes better at predicting the actions of other road users and optimizing its

responses. Moreover, the reasoning component allows the system to integrate context-aware

decision-making, such as prioritizing safety over speed when navigating areas with high

pedestrian density. This continuous learning helps ensure that the CDA system not only

meets initial performance benchmarks but also remains effective as conditions evolve and

new challenges emerge.

Together, these parallel operations create a cohesive framework for developing, testing,

and refining CDA systems. By integrating coordination, evaluation, and learning processes,

the framework ensures that the system can adapt to complex scenarios and consistently

achieve high performance. For example, the ability to coordinate and control multiple agents

allows for smoother traffic flow in congested urban environments, while the iterative testing

process ensures that systems are robust enough to handle unexpected real-world conditions.

Simultaneously, the learning and reasoning processes ensure that the system is not static but

continues to improve as it encounters new situations. This comprehensive approach makes

CDA systems more resilient and better suited for practical, real-world applications, ultimately

facilitating the transition from controlled testing environments to large-scale deployment on

public roads.

2.5 Summary

The parallel development and testing framework for CDA provides a comprehensive approach

to overcoming the complexities of developing, validating, and deploying CDA systems. It

integrates four core components—parallel systems, scenario engineering, parallel validation,

and parallel operations—to create a structured, adaptable environment that allows for rigorous

testing and refinement of CDA technologies.

• Parallel Systems module of the framework combines both virtual and physical testing
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environments, enabling researchers to balance the scalability and safety of simulations

with the realism of real-world trials. Importantly, virtual environments provide valuable

knowledge and insights through controlled experimentation and scenario analysis, while

physical environments offer critical real-world data to validate and refine these findings

while enhancing the virtual environment.

• Scenario Engineering module is central to the framework’s ability to test CDA

systems effectively. This process begins with identifying clear research goals and

designing scenarios tailored to meet those objectives. Research objectives could range

from vehicle-oriented tasks to RSU cooperation tasks, while scenarios typically introduce

progressively challenging conditions to ensure that CDA algorithms are validated across

a spectrum of challenges and that the tests are transitioned from prototype validations

to real-world tests.

• Parallel Validation Parallel validation is a comprehensive testing framework that

evaluates CDA systems across multiple environments, progressively increasing in com-

plexity and real-world disturbance. By including simulation, SIL, HIL, field, and

distributed tests, it enables adaptive, multi-stage validation that ensures systems are

robust, scalable, and ready for real-world deployment.

• Parallel Operations module further enhances the framework by organizing processes

into coordination, experimentation, and learning. In particular, Coordination and Con-

trol Operations focus on communication and decision-making among agents, Experiment

and Evaluation Operations involve multi-stage testings, and Learning and Reasoning

Operations use AI-driven analysis to help systems adapt and improve continuously,

refining their strategies based on real-world data and past experiences.

Together, these elements create a cohesive environment that bridges the gap between theo-

retical development and practical deployment, making the framework an essential tool for

advancing CDA technologies. Note that not all components within this framework are neces-
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sary for every phase of development and testing; rather, they serve as recommended guiding

steps that form a complete, adaptable approach. The efficacy of this framework is demon-

strated through three key CDA research projects detailed in the subsequent chapters, which

focus on multi-lane cooperative platooning, regulation-aware path planning in intersections,

and distributed testing with heterogeneous agents. For each project in the later chapters,

specific modules from the parallel framework will be selectively applied based on project

objectives, with rationale provided for each selection. Overall, these projects successfully

utilized the framework for both prototype development and real-world deployment, proving

its value in translating innovative concepts into scalable, deployable solutions for CDA.
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Chapter 3

Strategic and Tactical Decision Making

for Multi-lane Cooperative Platooning -

Phase One: Prototype Development

Driving automation and vehicle-to-vehicle (V2V) communication enable cooperative auto-

mated driving systems (C-ADS) to meet essential transportation goals, such as sustainability,

safety, and efficiency. Vehicle platooning, in particular, shows great promise for achieving

these goals. This study proposes a multi-lane platooning algorithm structured through a hier-

archical framework that leverages a mission-motion structure, enabling it to navigate complex

multi-lane highway environments. The strategic level of the algorithm employs a deterministic

finite state machine (FSM) protocol to guide platooning behavior, ensuring structured and

organized vehicle operations. To address the limitations of heuristic approaches, a genetic

fuzzy system is also incorporated, trained with the FSM as a baseline, to enhance algorithm

performance in scenarios like on-ramp merging. On the tactical motion level, the algorithm

generates trajectories for general ADS maneuvers, such as lane following and lane changing,

while also supporting coordinated platooning through intent-sharing features that take into

account the planned paths of other vehicles.
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Aligned with the parallel development and testing framework, this study employs a parallel

environment that integrates both vehicle-level and traffic-level simulation platforms to thor-

oughly evaluate the multi-lane platooning algorithm’s performance. Scenario engineering is

tailored to create diverse, platoon-specific highway conditions, testing the algorithm’s behavior

across various scenarios. Although only simulation testing from the parallel validation frame-

work is involved at this phase, extensive real-world data are used to ensure that the algorithm

can robustly handle real-world conditions. Parallel operations manage all experimental tasks,

enabling real-time interactions among platoon members and coordinating decision-making

processes across agents, providing a comprehensive assessment within complex, multi-agent

settings. This approach effectively supports system validation, confirming that the proposed

multi-lane platooning algorithm meets safety, efficiency, and system management goals for

C-ADS-equipped vehicles within dynamic, realistic conditions.

3.1 Introduction

Intelligent Transportation Systems (ITS) are reshaping transportation and have demonstrated

a promising potential to elevate transportation system management, operations, safety, and

efficiency. As one of the essential sub-fields in ITS, Cooperative Driving Automation (CDA)

is defined in SAE J3216 [67] and refers to vehicle automation that uses machine-to-machine

communication to enable cooperation among two or more entities (e.g., vehicles, infrastructure

components). Traffic efficiency, energy consumption, and driving safety can be significantly

improved [86] with the potential benefit of significantly enhanced perception performance

(i.e., perception accuracy and perception range) [102].

multiple vehicles that closely follow each other, has been extensively studied [3, 30, 60]

to enhance the longitudinal behavior of advanced driver-assistance system via cooperation.

Several highway traffic simulations conducted by the California Partners for Advanced

Transportation Technology [30,60] showed that autonomous adaptive cruise control (ACC)
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alone had little effect on lane capacity, even at high market penetration rates (MPRs).

On-the-road experiments [60] showed that a stream of autonomous ACC vehicles is string

unstable and more likely to restrain the lane capacity. Therefore, the combination of vehicle-

to-vehicle (V2V) communication and ACC system allows an ADS-equipped vehicle to leverage

the information from the preceding automated driving systems (ADS)-equipped vehicle to

maintain an optimal following distance, leading to a string stable vehicle string. The primary

improvement brought by CACC is reducing traffic congestion by improving highway capacity,

increasing throughput, and attenuating traffic flow disturbances. In particular, the deployment

of V2V communication has the potential to reduce the mean following time gap from about

1.4 s when driving manually to approximately 0.6 s when using CACC [60], significantly

increasing highway lane capacity. Notably, because CACC systems allow much narrower

following distance by establishing a V2V communication hierarchy, the lane capacity could

be increased from 2,200 vehicles per hour (vph) to almost 4,000 vph at 100 percent market

penetration [30,60].

One major drawback of the existing CACC vehicle string is the lack of explicit consideration

of lateral V2V cooperation. The CACC’s capability of handling cut-in HDVs has been

enhanced in a later study [60], but the improvement is limited to handling cut-in human-driven

vehicles (HDVs) where the controller only considers the longitudinal direction. Various studies

have recently focused on CACC applications in multi-lane settings (i.e., considered lateral

control). Firoozi [27] utilized a pre-defined lookup table to optimize platooning behaviors

among multiple lanes. The platoon can switch formation between single or multiple adjacent

lanes to avoid congestion under the leader’s command. This work established a leader–follower

relationship but the lack of intent-sharing limit this algorithm as a passive reformation method

with a fixed number of members. Pizarro [71] proposes a distributed scheme for lane changes

inside a platoon that harnesses graph theoretical formulation for reference generation (during

multi-lane formation) and distributed model predictive control (DMPC) for vehicle commands

to achieve smooth multi-lane platoon maneuvers. The intentions of the peer members are
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shared and considered because each connected and automated vehicle (CAV) tracks relative

state differences with regard to its neighbors. However, both multi-lane platooning methods

assume a fixed platoon length, only managing existing vehicles within the platoon. Meanwhile,

none of the existing work considers complex cooperation scenarios such as on-ramp mergers.

In this regard, Uno’s team [95] was the first to apply the “virtual vehicle” concept whereby a

“ghost” leading CAV was mapped onto the highway before the merging maneuver happened,

allowing a safer and smoother lane change control. Later, a distributed consensus-based

highway on-ramp merging system [99] was developed, where two connected CACC systems

are formed on the mainline and on-ramp, further enhancing the on-ramp merging bottleneck.

In particular, the merging sequence is determined based on the estimated time-to-arrival

calculated by road side unit, whereby each vehicle’s intention (i.e., merging time and speed)

is estimated. However, the work lacks active member management, which, when combined

with intend-sharing, supports intention-based V2V cooperation such as joining and departing

from a platoon. In addition, most current on-ramp merging studies either follow simple

sequencing logic (i.e., first-in-first-out) or directly assume the existence of a near optimal

sequence, leaving another research gap for an integrated multi-lane platooning algorithm that

can assign near-optimal merging sequence with the objective to improve network capacity.

On the other hand, extensive studies [23,37,82] have been conducted on developing and

deploying comprehensive state-of-the-art (SOTA) ADS platforms (i.e., end-to-end software

stacks including perception, planning, and control modules) on capable vehicles to accomplish

ADS functions and V2V communication. The SOTA ADS platforms have unique frameworks,

in which the planning module includes a mission planning step configuring the semantic goal

and a motion planning step that generates the corresponding trajectories. Such a framework

allows the planning module to interact and cooperate with other cooperative automated

driving systems (C-ADS) modules, such as the perception, control modules, and drive-by-wire

modules, to achieve full ADS functions on a real-world C-ADS-equipped vehicle.

The necessity of developing and utilizing the SOTA ADS platform is prominent. For
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one, microscopic simulators, such as SUMO [49] and VISSIM [25], directly assign the speed

and/or acceleration without explicitly considering vehicle dynamics or any form of ADS

framework. Specifically, Mena-Oreja et al. [59] developed an open-source platooning simulator

(i.e., PERMIT) based on SUMO to verify the effectiveness of platooning in terms of fuel

reduction and congestion improvement. Though simulation data provide convincing results,

the PERMIT platform considered traffic level control but did not consider vehicle dynamics or

a proper ADS planning module. Secondly, most ADS studies that are based on vehicle-level

simulators, such as CARLA [21], over-simplify the perception and planning module, thus

directly loading simulation results and generating waypoints, limiting the software’s scope to

a prototype algorithm. Moreover, due to the computational limitations, though providing

sufficient platoon-related results, studies that adopted CARLA [34,91] do not consider traffic

level performance and introduce no background traffic. Lastly, the scope of conventional

CACC studies [30, 60, 72] is limited to longitudinal control without explicitly considering

any lateral movements among the ADS vehicles. Despite the definition difference, though

the “cut-in” condition (i.e., randomly merged humandriven vehicle) is considered, the scope

of Milan´es [60] work still falls in longitudinal control but with additional consideration to

damped the disturbance.

Accordingly, this study proposes a multi-lane platooning algorithm with a complete

two-step (i.e., strategic mission planning and tactical motion planning) software framework.

In particular, we define platooning as an organized behavior whereby each vehicle in a platoon

has a responsibility towards the rest of the platoon to abide by certain agreed-upon rules.

Regarding ADS structure, the algorithm utilizes perception results and composes a mission

plan and a corresponding high-resolution motion plan that is executable for ADS control

modules.

coordinated by the platoon leader, aim to move through traffic as safely and efficiently as

possible. In contrast, with CACC, independent vehicles only receive front vehicles’ real-time

information, establishing a longitudinal, feed-forward ad hoc string (i.e., a vehicle string where
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each member considers solely its preceding vehicle’s status) that allows reduced following gaps.

Once a platoon has formed, or the members have subsequently joined, they must follow a

certain set of rules and protocols that the leader commonly sets. A platoon leader may set the

rules simply by passing what was received from infrastructure (e.g., the maximum amount of

vehicles allowed in a platoon or speed limit), whereas other rules may be set by the leader of

his own volition (e.g., protocols for allowing vehicles to join a platoon). Additionally, because

platooning is a group activity, cooperation among each member is allowed in situations

when the leader would coordinate the relevant members to accomplish a more involving

task, such as lane-change, on-ramp merge, and a cut-in join. It is important to emphasize

such distinction, as most conventional studies use CACC and platooning interchangeably,

regardless of these fundamental differences. Table 3.1 lists the differences between platooning

and CACC.

The other focus is on adhering to the existing SOTA ADS platform’s framework that

harnesses onboard computation power and sensor suites (i.e., camera, Lidar, GPS, and DSRC)

to establish end-to-end ADS vehicle automation and communication. Existing SOTA ADS

platforms, such as CARMA℠ [82], Autoware™ [37], and Apollo™ [23], share similar ideologies

in which the ADS tasks are accomplished by three sequential modules – perception, planning,

and control. As one of the planning applications, the multi-lane platooning algorithm relies

on the perception module (i.e., localization and V2V communication) to acquire the relative

speed and position of the surrounding ADS vehicles, by selecting proper maneuvers based

on the heuristic finite state machine (FSM) in the mission planning step. Afterward, the

corresponding mission plan containing the start-toend position and speed is fitted into a

high-resolution motion plan (i.e., executable trajectory) that is ready to be executed by the

control module. Notably, the proposed multi-lane platooning algorithm is parallel with other

planning applications (i.e., lane cruising, lane change, etc.) and compatible with upstream

and downstream ADS modules.

In the remainder of this paper, the multi-lane platooning algorithm is introduced in the
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methodology section. The performance of the proposed multi-lane platooning algorithm is

then evaluated by using SUMO [49] and CARLA [21] simulators. The results are analyzed

and further discussed. Finally, conclusions are provided, along with future research directions.

Table 3.1: Differences between platooning and cooperative adaptive cruise control.

Category Platooning Cooperative Adaptive Cruise Control
Control hierar-
chy

Hierarchical control
with special respon-
sibilities for platoon
leader.

Decentralized control with no special respon-
sibilities for the string leader.

Membership Coordinated
platoon/group
membership.

Ad hoc string membership and vehicle behave
independently.

Spatial scope Operates in single
or multiple lanes
for a platoon lane
change.

Operates in a single lane with small following
gaps.

3.2 Methodology

This study develops an SOTA ADS platform compatible multi-lane platooning algorithm

that allows C-ADS-equipped vehicles to seek platooning opportunities in both the current

lane and adjacent lanes. An SOTA ADS platform refers to a software system implemented

in a highly automated C-ADS-equipped vehicle which provides and supports basic highly

automated functions such as lane following and pure pursuit (i.e., pursuing a set target). It

consists of three main levels (i.e., modules): perception level, planning level, and control level.

The SOTA ADS platform also supports additional applications to expand its capabilities,

such as emergency stop, work zone identification and avoidance, and emergency pull-over.

The proposed multi-lane platooning algorithm is developed as one of the applications to

perform in parallel with existing basic applications to provide the host C-ADS vehicle with

multi-lane cooperative platooning capability.
41



The multi-lane platooning algorithm consists of two steps: mission planning and motion

planning. The mission planning regulates the strategic plans for the host vehicle based on an

FSM for organized behaviors. Notably, a genetic fuzzy system (GFS) intelligent controller

is trained as a special treatment to handle the complex on-ramp merging scenario. Motion

planning is the immediate succeeding step of mission planning, which generates a series of

waypoints based on the appropriate strategic plan. We use a basic PID controller in this

study to track the planned trajectory as the lower-level control is not the focus of this paper,

but any other trajectory tracking method can be applied.

In this section, the two-step framework is introduced first. Then, the platooning behavior is

presented. Specifically, a deterministic FSM was developed to guide the platooning operation

in the Formation, Operation, and Dissolve superstates and regulate C-ADS-equipped vehicle

behavior. Notably, the GFS is also included in this section as a secondary intelligent controller

that operates in parallel to the FSM to handle complex scenarios such as the cooperative

merge, which the FSM cannot handle well. Lastly, the trajectory generation algorithm is

described as generating trajectories for C-ADS-equipped vehicles to complete specific types of

behavior planned by the platooning behavior protocol. The proposed multi-lane platooning

algorithm distinguishes itself from the previous ones because:

• The multi-lane platooning algorithm abide by the protocols of the modern ADS software

stacks, interacting with existing perception and control modules and operating in parallel

with other ADS applications to fully deploy ADS functions on C-ADS-equipped vehicles.

• The multi-lane platooning algorithm covers decision-making at different levels. i.e.,

strategic mission level and tactical motion level.

• The algorithm handles platooning under complex driving scenarios on multi-lane

highways by using a combination of rule-based and learning-based methods.

• The algorithm uses trajectory generation and sharing for completing various behavior

types such that planned trajectories of other relevant C-ADS-equipped vehicles can be
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fully considered (i.e., intent sharing, of predictive nature).

3.2.1 Algorithm Framework

As one of the planning applications, the proposed multi-lane platooning algorithm operates

in parallel with all other ADS planning applications, e.g., ACC, inline cruising, intersection,

and work zone. Specifically, each application follows the two-step framework (i.e., strategic

mission and tactical motion planning) in which the mission planning leverages the perception

result to find the optimum strategic plan while the motion planning generates a corresponding

trajectory as a list of waypoints. The arbitration process of electing the proper planning

application is one of the main functionalities of the SOTA ADS platforms. We will use the

terms "mission planning" and "motion planning" for simplicity in Figure.3.1 and in the

remainder of the paper.

Figure 3.1: Logic and data flow of the platooning algorithm.

Figure.3.1 shows the logic flow of the multi-lane platooning algorithm in the two-step

framework. The first step is mission planning, whereby one of the pre-defined semantic

mission plans is selected based on the current scenario. The mission plan corresponds

to the identified scenario and recommends a proper maneuver based on the deterministic

FSM as high-level semantic information (e.g., lane cruise, lane change, on-ramp merge, etc.)
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representing the ADS strategy of the next planning horizon. The maneuver plan is categorized

into multiple pre-defined plan types, whereby each type contains essential information (e.g.,

start/target location, start/target speed, and start/target lane, etc.) for the motion planning

step. Notably, the principles of the deterministic FSM involved in the mission planning

step will be introduced in the next session. Secondly, the motion planning step parses the

information from the maneuver plan, generating a detailed trajectory connecting the current

position to the desired position following the target speed. The trajectory plan is valid

through the current planning window, but it will be updated on a higher frequency to prevent

the false maneuvers caused by obsolete information. The trajectory is in the form of a series

of connected waypoints, whereby each waypoint consists of the target position, target speed

for this specific location, and target angle for this specific location. Such data structure allows

the control module to follow each waypoint with the desired speed and angle by manipulating

the steering, throttle, and brake. The trajectory generation algorithm, which is presented in

detail in the following sections, manages the behavior of the host vehicle by taking as input

the desired ADS maneuvers and the desired intra-platoon gap as input, thus providing an

executable trajectory plan for the downstream control module.

Additional effort was conducted in terms of algorithm deployment. ADS operation

involves transmitting V2V data and processing related modules’ results. To this end, we

implemented a dedicated messaging system to subscribe to the existing module’s result and

publish necessary information (i.e., behavioral decisions and planned trajectories) generated

by the proposed algorithm. To further improve communication efficiency, we regulated the

message as status messages for all platoon members versus request-response messages which

are dedicated to related C-ADS-equipped vehicles. This process significantly simplifies the

communication overhead. On the other hand, interaction with downstream modules requires

accurate and efficient calculation. Most existing vehicle stringing (such as CACC) algorithms

focus purely on traffic performance, whereas computational accuracy and efficiency are usually

overlooked. We addressed this research gap by utilizing the rule-based FSM strategic planner
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and the frenet [17] coordination system for behavioral organizations. The rule-based FSM

operates with linear complexity that allows efficient strategic decision-making. The frenet [17]

coordination system uses the down-track and cross-track distance to express relative position

in regard to the host vehicle. The system is constantly rotating as an observer moves along

the cure. Hence it is always non-inertial (i.e., a frame system that undergoes acceleration with

respect to an inertial frame system) and provides better accuracy than cartesian coordinate

system, especially when calculating relative positions.

3.2.2 Behavior Protocol

A deterministic FSM is designed to manage the platooning process with three superstates,

as shown in Figure.3.2, such that the platooning behavior is organized. Each of the three

superstates—Formation, Operation, and Dissolve and each of these superstates is composed

of several states with their internal logic to guide the platooning process.

Figure 3.2: The Finite State Machine for platooning.

A C-ADS-equipped vehicle can be either controlled by a human driver (during human
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operations) or ADS applications (during automated driving). If the platooning plugin of

the C-ADS-equipped vehicle is enabled, it will engage in the Formation superstate and seek

platooning opportunities by negotiating with surrounding platoon leaders. After joining a

platoon, the ego C-ADS-equipped vehicle will switch to the Operation superstate to regulate

its speed and keep the desired time gap and/or headway. Once a platoon member intends to

leave the platoon, it will request to leave and switch to the Dissolve superstate after getting

permission from the platoon leader. A C-ADS-equipped vehicle can keep seeking platooning

opportunities after leaving the previous platoon, or it can disable the platooning plugin and

switch to manual driving.

In particular, the FSM for the multi-lane platooning algorithm is structured into three

main superstates: Formation, Operation, and Dissolve, each containing specific states to

manage different phases of the platooning process.

• Formation Superstate: This phase manages the process of forming a platoon,

consisting of six states: "Seeking for Platooning," "Formation Negotiation," "Preparing

for Platooning," "In Position," "Opening Gap," and "Join." During the "Seeking for

Platooning" state, a single C-ADS-equipped vehicle communicates its intent to nearby

platoon leaders, initiating the formation process. The vehicle will continue transitioning

through the subsequent states based on specific events or conditions until it successfully

joins the platoon.

• Operation Superstate: Once a vehicle joins a platoon, it transitions to the "Op-

eration" phase, which includes three states: "Leading," "Leading with Operation,"

and "Following." The first vehicle in the platoon assumes the "Leading" state, where

it coordinates maneuvers among members and manages interactions with external

vehicles using a hierarchical control approach. The platoon leader is solely responsible

for the "Leading" state, while other members adopt the "Following" role, maintaining

formation and responding to the leader’s commands.
46



• Dissolve Superstate: This phase handles the process of disbanding the platoon,

consisting of five states: "Request Dissolve," "Preparing for Dissolve," "Dissolving,"

"Maintain Dissolving Gap," and "CDA Disabled." A vehicle intending to leave the

platoon, including the leader, enters the "Dissolve" state and must first send a request

to the platoon leader. Upon approval, the vehicle progresses through the remaining

states to safely separate from the platoon, ensuring that proper gaps are maintained

between vehicles during the dissolution process.

Each superstate is designed to manage a specific aspect of the platooning process, from

formation and operation to safe dissolution, allowing for smooth transitions between different

phases of platooning as vehicles enter or exit the formation.

3.2.3 Intelligent GFS Controller

Due to the excessive number of traffic merging scenarios, with and without platoons, conven-

tional deterministic rule-based systems may suffer from two perspectives: Rule specification

can become extremely difficult and the number of rules will explode. Therefore, a GFS is

adopted to handle the complex cooperative merge scenarios. Generally, in a GFS, a Genetic

Algorithm (GA) trains a set of parameters of a fuzzy logic system, which includes membership

functions of all inputs, outputs, and the rules used to define the input–output relationship [78].

In the proposed algorithm, the inputs information of GFS are the position, speed, and target

lane of the surrounding six vehicles (front and rear vehicles from the same lane, left lane, and

right lane), whereas the outputs are the desired position, desired speed, and target platoon

index for the host vehicle. In V2V on-ramp merging scenarios, the GFS performs as an

off-line trained, intelligent controller alongside the existing rule-based FSM. At the same

time, the entire system relies mainly on the rule-based controller (i.e., FSM) during all other

situations due to its computational efficiency and robustness (i.e., no training is needed and

applicable regardless of network geometry). Two cases are considered with the emphasis on

maintaining robust cooperation among mainline and merge lane C-ADS vehicles, i.e., merging
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with and without pre-formed mainline platoons.

Vehicle-Vehicle Merging

As part of the proposed multi-lane platooning algorithm, each C-ADS-equipped vehicle in

the network is equipped with the same intelligent GFS controller which is capable of making

lane change decisions and controlling its speed, acceleration, and lane change behavior in

a decentralized manner. That is, each C-ADS-equipped vehicle only uses local information

available from its nearby vehicles (obtained via sensor or V2V communications) to make

decisions. This decentralized behavior is trained without the existence of a platoon and serves

as the baseline controller to enable individual ADS behaviors, which lays the foundation for

vehicle-platoon cooperation. The cooperative single-vehicle ADS GFS is referred to as the

GFS-M model, where M stands for “merge” in later sections. Note that during a cooperative

merge operation, both the merging vehicle and the mainline gap vehicle are controlled by the

GFS model due to the vehicle-vehicle cooperative nature of the algorithm.

The GFS controller uses 21 inputs to manage lane change and acceleration. These inputs

include the distance, speed, and signals (blinkers and brake lights) of the closest vehicle ahead

and behind the C-ADS-equipped vehicle moving on the left, current and right lanes of the

ego C-ADS-equipped vehicle. The inputs to the GFS also include ego vehicle positions (i.e.,

x, y coordinates) and speed. The recommended acceleration and lane change are the outputs

from the GFS. The acceleration is a continuous variable, whereas the lane change is a discrete

variable with three classes: (1) move right, (2) stay on the lane, and (3) move left. In terms

of training, since the strategies that cause inefficient merge will reduce the average speed, we

formalize a fitness function that maximizes the average speed of all vehicles in the network

with the constraints of a smooth acceleration and safety distance. Each training episode has

a duration of 5 minutes, with actions that control speed and lane change only taken during

intervals of 0.5 seconds. This interval is used only during training to keep the training time

reasonable and can be reduced during testing. As a result, the GFS was trained to cooperate
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with other single ADS vehicles with the same model on board. The detailed training method

is introduced in the following section.

Training process

The schematic of the training process is shown in Figure.3.3, which correspond to the

"Learning and Reasoning Operations" within the parallel framework. We adopt the Fuzzy

Bolt framework [78] that trains a single GFS model to reduce the search space effectively. A

GA is initialized with random individuals that define the population to train the proposed

GFS. The GFS is set up for training with ten triangular membership functions for each input.

In terms of output, five triangular membership functions are used to calculate the continuous

acceleration output. Three membership functions are adopted to define the three classes of

the lane change maneuvers, i.e., lane change to left, lane change to the right, and stay in the

current lane. Each GA individual is a vector consisting of the parameters related to the GFS

controller, which includes the boundaries of the membership functions and the rules in the

rule-base. Thus, each individual in the GA can be converted to a GFS controller, which can

then be used to simulate an episode (e.g., in SUMO). An episodic fitness can be evaluated for

each such individual in the GA. The fitness would represent the system’s ability to achieve

the objective of smooth merging. GA individuals with higher fitness values are more likely

to be selected for crossover and mutation, thus getting selected for the next generation. In

contrast, individuals with lower fitness scores have a higher chance of elimination from the

population. This process of evolution continues for a pre-defined number of generations or

until convergence, where the fitness score has little to no improvement (i.e., lower than 0.01)

for 20 iterations. Each episode is a scenario simulated for a timeframe of 5 minutes with

actions taken at intervals of 0.5 seconds. The episode starts at t = 120 seconds and ends at t

= 420 seconds, where the initial 120 seconds warm-up period populates the traffic density

before training. The GFSs evolve with each generation during training to improve the fitness

function. At the end of each generation, the best model of the generation is applied to a
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Figure 3.3: Training Process of GFS.

validation episode to check its effectiveness on an unseen scenario.

The training maximizes the fitness function, which captures the average speed of all

vehicles across the 5-minute episode. For efficiency, a particular stopping criterion is designed

to stop episodes that result in undesired cases, such as stopped vehicles in the network. This

function allows early truncation of undesirable episodes, avoiding meaningless episodes in

an early stage, thus improving the training time. The GFS controllers that result in such

situations are penalized heavily. Thus, the fitness function that is to be maximized by GA

algorithm is defined as follows.

F =


0.001 tend if tend < 420 s

mean(v) if tend = 420 s

(3.1)

The top portion of equation 3.1 relates to early stoppage scenarios in an episode before

the final time t = 420 seconds. These individuals in GA are heavily penalized. Ideally, the

simulations should run for the entire time till t = 420 seconds, in which case, the average

speed of all the vehicles should be maximized, as shown in the bottom portion of equation

3.1.
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Vehicle-Platoon Merge

The GFS also considers cases where C-ADS-equipped vehicles merge onto a mainline containing

vehicle platoons. The platoons follow the deterministic FSM mentioned in the previous section.

Similar to the single-vehicle case, the GFS for vehicle-platoon cooperation is trained separately

in combination with the FSM protocols. Because the platoon establishes hierarchical control

architecture, the leaders are trained to allow cooperative merge when a merging ADS vehicle

occurs. The behavior of the follower vehicles in a platoon is always coordinated by the

platoon leader, as noted in the hierarchical platoon protocol. Other C-ADS-equipped vehicles

that engage with platoon leaders to join platoons will also follow platoon protocol. The

individual C-ADS-equipped vehicles that are not part of a platoon or have not engaged with

any platoons are controlled by the previously trained GFS-M model.

The vehicle-platoon scenario poses some additional challenges to the cooperative merge

behavior. The merging vehicle has to work cooperatively with the platoon leader to merge

into the platoon in the mainline for different situations, as shown in Figure.3.4. The platoon

leader needs to make decisions on speeding up, slowing down, or allowing the merging vehicle

to perform a cut-in join at a position as defined in the previous section, platooning protocol.

Similarly, the FuzzyBolt framework [78] is used to train the GFS model that controls

the platoon leaders. The GFS model that controls platoon leaders is named GFS-PL. The

training schematic is shown in Figure.3.5. The GFS-M model from the previous training

controls the individual vehicles that have not engaged with any platoons. We used the same

fitness function defined in the previous sections because the objective of a cooperative merge

with platoons includes maintaining the smooth flow of traffic.

In this case, only the GFS-PL module is trained. This GFS-PL module contains two GFS

sub-models: (1) the GFS-PL-speed submodel for controlling the speed of the platoon leader

(GFS-PL-speed) and (2) the GFS-PL-score submodel that predicts a performance score (i.

e., considering comfort, safety, and network congestion) for all available merging positions.

The two submodels are trained simultaneously. Once the merge position is determined,
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Figure 3.4: Cooperative Merge to join at the back of the platoon.

Figure 3.5: Training Process of GFS-PL.
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the rear vehicle relative to the merge switches to OpeningGap, and the GFS-M starts to

control its speed. Simultaneously, the speed of the merging vehicle is controlled to align it

horizontally with the merge position in the platoon. Once the merging vehicle is between the

two relative platoon members corresponding to the merge position, the GFS-M controls the

speed to allow the host vehicle to merge into the platoon. For instances where an individual

C-ADS-equipped vehicle on the mainline encounters a merging vehicle, the GFS-PL will

control the mainline vehicle to decide the behavior of the vehicles to allow them to form a

two-vehicle platoon.

Single-Vehicle Trajectory Generation

The multi-lane platooning algorithm generates behaviors through the deterministic FSM (i.e.,

mission planning step), and then trajectories are generated to complete each of the behaviors

(i.e., motion planning step). Trajectory generation is a core module connecting high-level

decision-making on behavior and lower-level control that outputs throttle and brake levels.

Trajectories are usually regenerated based on a real-time dynamic world model and need to

be smooth to avoid system disutility, such as excessive jerks to ensure driving comfort. Many

types of trajectories (e.g., polynomials, splines, etc. ) have been used in real SOTA ADS

platforms. In this study, we adopt a widely used method, i.e., the cubic spline interpolation,

to generate the trajectories for different maneuvers. Other methods can be used to flexibly

replace the spline-based approach.

In a general ADS implementation, when a global route is generated by the global route

planner using the A-star algorithm [63] a series of waypoints can be generated to lead the

vehicle to the destination, and a pre-specified distance separates each nearby pair of points

(e.g., 6 m), as shown in Figure 3.6 where the generated waypoints along the route are

highlighted as square blue dots. However, a fixed separation distance between two consecutive

waypoints leads to unstable controls due to the various radius of the road curvature. To

this end, according to the ego vehicle’s location, the proposed algorithm generates a smooth
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Figure 3.6: Illustration of splines (square red dot), route history (curved green line), waypoints,
and sampled points. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

curve among the following N waypoints (e.g., N= 8) by using cubic spline interpolation. As

shown in Figure 3.6, the highlighted green line represent the generated smooth curve which

forms an interim continuous trajectory in-between waypoints, resulting in a smooth trajectory

that minimizes the unstable movements and, in contrast to other forms such as polynomials,

connects all of the waypoints within the calculation range (i.e., the pre-defined N points).

Note that the vehicle will travel along the green line (i.e., cubic spline) as long as the current

cubic spline remains valid.

Once the interim continuous cubic spline is generated, it is discretized as a series of

candidate sample points with a specific spline resolution (i.e., splres). In particular, this study

assigns the resolution to maintain a 0.1 s time gap between candidate sample points. The

ego vehicle then samples discrete trajectory points from the candidate sample points based

on the current location, speed, and target speed (i.e., target speed at the next waypoint).

The related derivation is shown in equation 3.2 – 3.7, and red dots represent the sampled

trajectory points in Figure 3.6. Specifically, equation 3.2 calculates the spline resolution

based on the current and target speed; equation 3.3 finds the number of candidate points that
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satisfies the target spline resolution; equation 3.4 finds the index of the candidate sample

points while equation 3.5 finds the x-coordinates of each candidate sample point; equation

3.6 finds the y coordinate of the candidate sampled points; and equation 3.7 defines the cubic

spline where A, B, C, and D, are cubic spline parameters to be determined.

splres = avg(spd, spdtar)× tres (3.2)

nspl =

⌈
dis

splres

⌉
(3.3)

idxi =

⌊
i× splres
disres

⌋
, i = 1, 2, . . . , nspl (3.4)

xi = X(idxi) (3.5)

yi = Y (idxi) (3.6)

Y = AX3 +BX2 + CX +D (3.7)

Where:

splres = sample resolution (distance).

spd = current speed of the ego vehicle (distance/time).

spdtar = target speed at the next waypoint (distance/time).

avg(spd, spdtar) = average of current speed and target speed at the next waypoint (dis-

tance/time).

tres = time resolution (0.1 s in this study).

nspl = number of candidate sample points along the continuous cubic spline.

dis = distance to the next waypoint or to a specified location (which is usually represented

by a waypoint).

i = the sequence of the sampled point.

idxi = index of the sampled point i.

disres = the distance between two consecutive candidate sample points, i.e., candidate sample
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point resolution (0.1 m in this study).

X = the x-coordinates of the interpolation points between waypoints, and each of them has

a unit distance of 0.1 meters.

Y = y-coordinates of candidate sample points, and A, B, C, and D are determined by cubic

spline interpolation method.

xi = x-coordinate of the sampled point i.

yi = y-coordinate of the sampled point i.

Specifically, the discretized trajectory only covers the two nearest waypoints (i.e., the

current waypoint and the consecutive waypoint). Once the ego vehicle reaches the later

waypoint (i.e., distance smaller than 0.5 meters), its interim planned continuous trajectory

are updated to cover the upcoming N waypoints (e.g., N= 8) on the route, and the discretized

trajectory between the next two consecutive waypoints is re-sampled and updated by repeating

the same process. This process guarantees that the vehicle’s yaw angle is aligned with the

upcoming route, as the discretized trajectory is always a segment of a continuous spline.

Note that the number of waypoints used for cubic spline calculation is configurable, while the

current setting for the study (i.e., N = 8) follows the default value in CARLA, the simulator

used in the case study.

Platoon-Member Trajectory Regulation

The above-mentioned trajectory generation process is the general process that applies to

any isolated ADS-equipped vehicles as well as platoon leaders when the leaders are in lane-

following mode. The speed and acceleration of the platoon members (i.e., all followers) usually

need to be regulated against the immediately preceding vehicles (i.e., gap regulation) and/or

the platoon leader (i.e., headway regulation). The gap and regulation processes are usually

combined to ensure platooning performance, such as stability. During a gap regulation, a

platoon follower needs to consider its desired time gap and the preceding vehicle’s position

during the trajectory generation, as shown in equation 3.8.
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posgj (t) =
posj−1(t)− Lj−1 + posj(t− dt)× gapd

dt

1 + gapd
dt

(3.8)

Where:

posi(t) = the position of the vehicle j at time t.

posj−1(t) = the position of the preceding vehicle j − 1 at time t.

Lj−1 = the length of preceding vehicle j − 1.

dt = time resolution, i.e., simulation step (0.1s in this study).

posj(t− dt) = the position of the vehicle j at last time step t− dt.

gapd = desired time gap of the vehicle j.

During a headway regulation, we can also replace the desired time gap with the time

headway by following equation 3.9, but the target vehicle is the platoon leader.

poshj (t) =
posj(t) + posj(t− dt)× hd

dt

1 + hd

dt

(3.9)

Where:

hd = desired time headway of the ego vehicle j to the platoon leader.

In this study, the ego follower vehicle is regulated by a leader-predecessor scheme by

following equation 3.10.

posj(t) = µ · posgj (t) + λ · poshj (t) (3.10)

µ+ λ = 1, µ > 0, λ > 0 (3.11)

Where:

posj(t) : the planned position of the Leader-Predecessor regulation.

µ : the gain on the gap regulation value.

λ : the gain on the headway regulation value.

Note that equation 3.10 will be applied to each member/follower of the platoon, starting
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from the second vehicle, the predecessor of which is the platoon leader. Since the leader’s

trajectory has been planned through the trajectory generation process by considering the

surrounding traffic environment, the trajectory of each of the followers can be calculated

subsequently. This process distinguishes this regulation method from other reactive ones (i.e.,

it is a trajectory-based regulation of a predictive nature) but also seamlessly integrates well

with SOTA ADS platforms that require planned trajectories.

3.3 Results

The simulation evaluation in the study requires perspectives from both vehicle/automated

driving and traffic management. Regular traffic or automated driving simulators cannot

meet this requirement. Therefore, a novel co-simulation tool, OpenCDA, which the authors

developed for CDA research, is adopted [103]. OpenCDA is a simulation tool integrated with

a prototype cooperative driving automation (CDA; see SAE J3216) [67] pipeline as well as

regular automated driving components (e.g., perception, localization, planning, control). The

tool integrates automated driving simulation CARLA [21], traffic simulation SUMO [49], and

Co-simulation (CARLA + SUMO). Although SUMO can well test the behavior protocol by

using simple ADS behavior (i.e., car-following and lane change behavior models), CARLA

is needed to test detailed ADS and C-ADS vehicle behavior that is controlled by ADS and

C-ADS software stack. One critical aspect of this study is the trajectory generation and

control components of C-ADS vehicles and the possibility of using vehicle dynamics models

to understand CADS vehicle behavior as controlled by the software pipeline. Therefore, the

simulation evaluation is formularized as follows. (See OpenCDA [103] for a detailed discussion

of simulator selection and applications):

• SUMO simulation evaluation: SUMO was used to tune the proposed multi-lane pla-

tooning algorithm, observe the platooning behaviors in various MPRs, and train the

GFS controller in multiple use cases (i.e., vehicle-vehicle merging and vehicle-platoon
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merging).

• The focus here is to fully consider platooning effects on large-scale traffic. Therefore,

a traffic-levels simulator such as SUMO is necessary. The simulator ensures that the

algorithmic parameter, particularly those parameters at the mission planning level, is

optimized or trained to improve traffic system performance, which exceeds the scope of

the conventional platooning studies that only focus on platooned vehicle performance.

• CARLA simulation evaluation: CARLA was used to test detailed vehicle behavior

controlled by the proposed platooning protocol becasue CARLA can simulate the full

pipeline of an SOTA ADS software platform and some level of vehicle dynamics.

• CARLA + SUMO co-simulation: The co-simulation was adopted to test the algorithm

performance comprehensively in a complex multi-lane highway scenario with large-

scale background traffic. Specifically, SUMO was adopted to spawn and control the

background traffic with realistic behaviors (i.e., NGSIM [73] trajectory or calibrated

IDM [38]), while the C-ADS vehicles run the proposed multi-lane platooning algorithm

in the CARLA simulator. The two simulators operate in synchronous mode, so vehicles

in both simulators can achieve two-way interaction in each step. In this way, we can

observe the detailed platooning and merging vehicle behavior (via CARLA) and create

realistic traffic scenarios to test the platooning operations (via SUMO).

3.3.1 Platooning Simulation in SUMO

Though the proposed multi-lane platooning algorithm is based on organized behavior, several

parameters for both mission planning and motion planning were introduced throughout the

pipeline to adjust the algorithmic performance. In addition, the GFS controller needs to be

trained before deployment. In this section, we tune and evaluate the multi-lane platooning

algorithm in SUMO, demonstrating its effectiveness while the GFS controller is trained in

various scenarios in SUMO. The section is divided into four sections: parameter tuning with
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synthetic trajectory, single-lane platooning simulation in SUMO, capacity analysis at different

MPRs, and GFS training.

Parameter Tuning

Before simulating and evaluating the performance of the multi-lane platooning algorithm,

several parameters need to be determined. The inter-platoon and intra-platoon were deter-

mined based on sensitivity analyses in previous studies [37,82]. Therefore, the other three

parameters, including negotiation distance, time-gap for join, and time-gap for Dissolve are

tuned by the GA. Based on the nature of those three parameters, value encoding is used

where each gene of the the GA algorithm is represented by a real number with two decimal

places. The population size is 50, and the generation is 100 for seeking the globally optimal

combination of the three parameters. To prevent any premature convergence, the two-point

crossover is applied with a crossover rate of 0.9, and the mutation rate is set to 0.1. The

Roulette Wheel selection is utilized to select potential optimal solutions in the parental

generation. The total delay is utilized as the fitness value. The searching range of each

parameter is as follows:

• Negotiation distance: 0 to 60 meters

• Time-gap for Join: 0.6 to 1.5 seconds

• Time-gap for Dissolve: 0.6 to 1.5 seconds

Convergence of the GA Tunning Process (Figure 3.7) shows the convergence of the GA tuning

process. The solid blue line indicates the average fitness of all chromosomes, whereas the solid

orange line represents the best fitness of each generation. It can be found that the tuning

process is terminated after 72 generations as the fitness score converges. The optimized

parameters are listed below:

• Negotiation distance: 53.20 meters
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Figure 3.7: Convergence of the GA Tuning Process.

• Time-gap for Join: 1.14 seconds

• Time-gap for Dissolve: 0.96 seconds

Since the simulation resolution in this study is not less than 0.1 s, the value of the two

time-gaps are rounded to one decimal, i.e., the time gap for Join is set to 1.1 s, and the time

gap for Dissovle is set to 1 s. The control gains of the gap regulation and headway regulation

in equation 3.10 are pre-specified in this study and tuned to find a better combination of the

µ and λ. Because the µ is defined as µ = 1− λ, the adjustment range of µ is set to 0.6 to 1

using increments of 0.1 to investigate the performance. Other values less than 0.6 will not be

investigated based on the initial simulations and evaluations because the platoon followers

cannot maintain the desired time gap during the entire trip.

Freeway Capacity at Different MPRs

A synthetic trajectory is generated to simulate stop-and-go traffic. The leading vehicle is an

HDV (id: 0), and it follows the given trajectory. A platoon is regulated by the multi-lane

platooning algorithm with different values of µ. When µ <= 0.8, it is difficult for the platoon

followers to maintain the desired intra-platoon time gap during the operation; when µ = 1.0,
61



Figure 3.8: Convergence of the GA Tuning Process.

some platoon members cannot maintain the standstill with the stop-and-go traffic. Therefore,

the µ = 0.9 (as shown in Figure 3.8) is utilized in this study by considering the performances

under different traffic environments.

The pipeline capacities (i.e., the capacity of basic freeway segments) of different C-

ADS-equipped vehicle market penetration rates (MPRs) were investigated with the tuned

parameters. The MPR varies from 0% to 100% with a 20% increment. The freeway segment

is 2800-meters long with two lanes. The first 200 m at the beginning of the freeway only

allows the same-lane formation to form stable platoons. The speed limit of this freeway

segment is 113 kilometers/hour (70 mph), and the acceleration of C-ADS-equipped vehicles

is limited to 1m/s2 for comfortable driving behavior. Based on previous studies, the sensor

detection range is set to 120 meters.

Both CACC [45,60] and the proposed multi-lane platooning algorithm are investigated,

as shown in Table 2. Generally, the capacity increases with the growing MPR, from 1972

vehicles per hour per lane (vphpl) to 3296 vphpl, by implementing either CACC or the

multi-lane platooning algorithm.

As shown in Table 3.2, at 20% and 40% MPRs, the pipeline capacity of CACC is close

to (slightly higher than) the platooning. For one, with low MPR, the C-ADS-equipped
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vehicles are sparsely located in mixed traffic, leading to fewer cooperation opportunities and

formation agreements. Therefore, the stop-and-go oscillation is hardly reduced with limited

formed platoons under the HDV-dominant traffic flow. In addition, the main reason for the

low reduction in oscillation is that the multi-lane platoon formation behavior can slightly

impact the upstream traffic at low market penetrations rate due to the lack of cooperation

between HDV and C-ADS-equipped vehicles. For example, suppose a single C-ADS-equipped

vehicle reaches an agreement with the target platoon leader and implements a cut-in join.

In this case, the rear platoon members will slow down to create a safe gap for the single

ego C-ADS-equipped vehicle; therefore, the upstream traffic, especially the HDVs, will slow

down. Once the single ego C-ADS-equipped vehicle completes the lane change, the rear

platoon member will lead all upstream platoon members to accelerate to maintain the desired

intra-platoon gap. Though there is no significant delay for C-ADS-equipped vehicles in this

process, HDV traffic from upstream may be negatively impacted due to the platoon formation

speed changes. Since the HDVs are predominant in the traffic stream at low MPRs, this

impact is significant, and therefore the pipeline capacity is negatively affected to a small

extent. Note that under the low MPRs (up to 40%), the capacity difference between CACC

and the multi-lane platooning algorithm increases with the growing MPR. This increase

occurs because more multi-lane formation opportunities will present with the growing MPR,

and therefore more oscillations can be generated associated with the multi-lane formations.

Table 3.2: The capacity of CACC and the multi-lane platooning algorithm.
MPR (%) CACC (vphpl) Platooning (vphpl) Difference (%)

0 1972 1972 0.0
20 2030 2063 -0.8
40 2256 2212 -2.0
60 2558 2644 2.2
80 2808 2896 3.1
100 3296 3296 0.0

Under moderate and high MPRs, i.e., when the C-ADS-equipped vehicles are predominant

in the traffic stream, the multi-lane platooning algorithm can improve the pipeline capacity
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by up to 3.1%. As previously mentioned in this section, the C-ADS-equipped vehicle can

be well controlled to recover soon from multi-lane join, and the impact will diminish with

the increasing MPR. Also, the multi-lane formation provides the opportunity for the single

C-ADS-equipped vehicle to utilize the reduced time gap and regulate its speed with the more

stable regulation algorithm instead of using ACC [60]. It is worth noting that under 100%

MPR, there are no lane changes with high traffic volume inputs because C-ADS-equipped

vehicles can form platoons with others in the same lane. Therefore, the capacities of CACC

and Platooning are the same under 100% MPR.

Note that even though the capacity enhancements of platooning over CACC are only

limited, the multi-lane platooning algorithm can benefit platoon members and the traffic

from other aspects. For example, when negotiating with the platoon leader, the single CADS-

equipped vehicle will choose the platoon with the same or similar destination. This choice will

limit unnecessary formations and dissolves on longer freeway segments with on-ramps and

off-ramps, thus reducing traffic disturbances. Reducing this type of human-made disturbance

can help to improve capacity and reduce potential safety risks [30]. Notably, the comparison

listed in Table 3.2 is conducted only in conventional highway segments that are identical

to the CACC experiment environments. In non-basic segments where lane changes are a

necessity, the proposed multi-lane platooning algorithm is the superior solution because of its

complex cooperation capability and trajectory-sharing (i.e., intent-sharing) nature.

GFS training for cooperative-merge

As aforementioned, a GFS controller was adopted to handle the on-ramp merge situation due to

the excessive number of scenarios and significant speed difference between mainline and merge

lane vehicles. As merge lane C-ADS vehicles approach the merging point, the cooperation

may be established as vehicle-vehicle merging or vehicle-platoon merging. Accordingly, we

formulate the training in two steps. A GFS-M vehicle-vehicle merging controller was trained

during the first step, whereas the vehicle-platoon merging controller, in which the controller
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from the first step was used during the training, was trained in the second step.

The training involves two scenarios for both steps. To be exact, scenario one contains

2000 vphpl mainline volume and 800 vphpl merge ramp volume, reaching 4800 vph total

volume combined for two lanes and one merge lane. In contrast, scenario two populates 1500

vphpl mainline volume, 1500 vphpl merge ramp volume, and the total volume adds up to

4500 vph. Considering the random arrival of vehicles and the usage of different random seeds,

the simulation can realize many different combinations of traffic density. As a result, the

trained GFS-M model handles traffic scenarios around medium to high densities, allowing

efficient vehicle-vehicle cooperative merging that minimizes the total system delay.

The membership functions of the trained GFS-M model for one of its inputs, distance to

the front vehicle on the left lane, is shown in Figure 3.9(a). Note that only the membership

functions that were picked in the trained model are shown in the figure. At the start of

the training, each variable was assigned 10 random membership functions, while the trained

model used only 7 membership functions for this input variable. Similarly, Figure 3.9(b) shows

three membership functions that define the acceleration. Since acceleration is a continuous

value, centroid defuzzification is used where all the rules are evaluated and aggregated using

a weighted average to obtain the final acceleration value. Meanwhile, the discrete lane change

output is obtained via mean-of-max defuzzification, from which an output class is obtained

based on the output membership function defined for the most significant rule.

The trained GFS-M was evaluated on both scenarios. The improved throughput and

delay under different MPRs are shown in Figure 3.10. As more trained C-ADS vehicles are

added to the network, the flow of traffic becomes smoother, improving the throughput and

reducing the average delay.

Next, the second step of training in which each C-ADS vehicle is simulated using the trained

GFS-M model as a baseline was conducted. The GFS-PL model was trained to optimize the

speed of the platoon leader and the merge position for vehicle-platoon cooperation. Figure

3.11 shows the validation result of the trained GFS-PL model in both scenarios, where the
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Figure 3.9: Input and Output Membership functions of the GFS-M model.
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Figure 3.10: GFS-M validation results (throughput and average delay) for different MPRs.

Figure 3.11: GFS-PL validation results (throughput and average delay) for different MPRs.

throughput increases and the average delay decreases with the increase in MPR. Overall, this

trend is similar to the cooperative vehicle-vehicle merge (as shown in Figure 3.10). However,

the throughput for scenario one reaches the maximum network capacity of 4800 vph much

earlier than vehicle-vehicle merging, at an MPR of 40%, because the merge lane volume is

low and the disruption to the main traffic can be handled more easily with vehicle-platoon

cooperation.

In contrast, the merge density in scenario two was considerably higher (1500 vph).

Therefore, for lower MPR, where cooperation by HDVs is not assured, like in the C-ADS
67



vehicles, the throughput is lower, and the time delay is higher. The network throughput with

MPR and reaches a maximum when the MPR reaches 80%. The increase in MPR of C-ADS

vehicles will coordinate merge volume better with the mainline traffic and gradually increase

the capacity.

3.3.2 Platooning simulation in CARLA

Due to its microscopic nature, SUMO cannot simulate vehicular dynamics, including acceler-

ation, deceleration, and jerk. However, as an ADS planning application, it is essential for the

proposed algorithm to integrate with downstream control modules. In particular, the proposed

algorithm incorporates dynamic vehicle models, physics models, and a trajectory generation

model to interact with the downstream control models by providing an executable trajectory

for the next planning horizon. Therefore, to demonstrate such integration with downstream

control modules, we implemented CARLA as the simulator to conduct vehicle-level simulation

evaluations, as described in this subsection. The evaluation is divided into three sections:

platooning with synthetic trajectory, platooning with NGSIM trajectory, and cooperative

merging.

Platooning simulation in CARLA with synthetic trajectory

This scenario tests the platoon’s stability, which is indicated by the degree of amplified

oscillations when the leading vehicle changes speed dramatically. In detail, a five-vehicle

platoon keeps driving in the same lane while the platoon leader follows a design speed profile

to accelerate and decelerate frequently. This scenario was designed because we aimed to

evaluate the algorithm’s capability to maintain the desired intra-platoon time gap in CARLA.

The target intra-platoon time gap was set as 0.6 s in the synthetic cycle testing. As one

example in Figure 3.12 demonstrates, the platoon followers were able to keep the designed time

gap of 0.6 s during the whole process, even with the leading vehicle dramatically increasing

and decreasing speeds. When the platoon leader started to accelerate suddenly, the platoon
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Figure 3.12: Synthetic trajectory results for simulation in CARLA.

members were able to follow it tightly without any speed-overshooting. When the platoon

leader rapidly stepped on the brakes, the followers were able to smoothly decelerate at a

comfortable rate and stay within constant time gaps between each other, which indicates the

stability of the platooning.

Platooning simulation in CARLA with NGSIM trajectories

In the real trajectory testing, we select many challenging trajectories from NGSIM datasets

to understand the platoon following behavior. In the examples in Figure 3.13, as vehicles in

CARLA are launching from a standstill, it takes about 5 s until the leader is close enough to

the HDV in front of it to start using its car following algorithm. Once the leader is engaged

in following the HDV, despite the HDV’s frequent speed changes, the platoon leader is able

to follow it securely and smoothly. In particular, for both NGSIM trajectories, a 1.5 second

time gap was successfully maintained throughout the platoon, with damped acceleration

disturbances originating from the real-world trajectory. At the same time, the platoon

members can keep a constant time gap of 0.6 s even when the front HDV rapidly accelerates
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or decelerates, indicating the robustness of the proposed algorithm in a real-world setting.

3.3.3 Cooperative merge in CARLA-SUMO co-simulation

As one of the ADS applications, the proposed algorithm provides seamless integration with

upstream perception modules and the downstream control modules. The existence of HDV

background traffic is crucial to demonstrate such integration. Specifically, the platoon

establishes different behaviors when the detected HDV is in front, on the side, or in a different

lane. During operation, the platoon leader is expected to maintain a steady gap between the

preceding HDV while monitoring the HDVs on the side to avoid crashes. During merging, the

C-ADS vehicles should detect mainline vehicle types and select the target platoon accordingly.

These organized behaviors constitute crucial testing scenarios for integration validation with

upstream perception modules, as they are not only part of the proposed multi-lane platooning

algorithm and they depend heavily on the perception results.

CARLA provides vehicle dynamics simulation and roadway environment. However, it

falls short when offering large-scale HDV background traffic with realistic (i.e., calibrated

IDM [38]) driving profiles, which are essential to test the algorithm’s behavior with the

existence of the HDV traffic stream. SUMO, on the other hand, supports more realistic

and larger-scale background traffic simulations with significantly less computational cost.

Therefore, a CARLA-SUMO co-simulation was conducted with maximum C-ADS vehicle

dynamics and realistic background traffic behavior for cooperative merge scenarios. Figure

3.14 is a snippet of a platooning test that was performed under the co-simulation setting.

CARLA and SUMO operate in a server-client mechanism where the simulation operates

on a local Internet Protocol (IP) address with a dedicated Transmission Control Protocol

(TCP) host address. Running both simulators at the same IP address while setting the

corresponding port address in both simulators is required to establish communication between

the two. Once the connection is established, CARLA-SUMO co-simulation requires an

identical simulation map on both simulators. Though CARLA runs in a much more realistic
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Figure 3.13: NGSIM trajectory results for simulation in CARLA.
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Figure 3.14: view in CARLA where the green lines and red dots represent planned trajectory
path and points, and the blue dots and pink dots represent on-route waypoints and historical
trajectories, respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

environment, the basic traffic network between the two simulators has the same opendrive

format [22]. Therefore, it is important to edit the basic traffic network in opendrive format

and share this file between the two simulators. With the opendrive file, the CARLA simulator

can populate the detailed road surface and environment, whereas SUMO simply interprets

the network as a node-edge structure. During testing, the co-simulation requires using

synchronous mode for both simulators. This setting limits the simulation clock speed, which

is based on the slowest port at each step to ensure the simulation on both simulators is

synced. As a result, each vehicle’s stepwise information is shared across simulators, though

the calculation was performed on different simulation simulators.

We also developed a heuristic joining method (HJM), which serves as the baseline merge

algorithm to be compared to the GFS controller. The HJM is a sorting-based method that

chooses one platoon member with the shortest Euclidean distance for the merging ends.

Unlike a heuristic-based method, GFS considers platoon members’ position, speeds, and

surrounding human-driven vehicles’ information, aiming to accomplish joining maneuvers

while maintaining a globally optimized traffic delay. Therefore, the network level performance

of GFS is expected to be superior, though the merging sequence may differ from the HJM’s
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Figure 3.15: Different decision makings between HJM and GFS.

suggested result. Figure 3.15 shows the merging position from both HJM and GFS. HJM

chooses the position between the original second and third platoon members as the best

merging point, while GFS selects the position between the fifth and sixth platoon members as

the merging point. Such difference is generated by the optimization goal of these two methods:

HJM tries to reduce the joining time and thus selects the closest position, whereas GFS aims

to minimize the traffic delay caused by the joining process and does not seek an immediate

completion to the merge operation at the cost of overall traffic performance. Additionally,

GFS’s strategy reduces the abruptness of lane changes, which may cause upstream oscillations

and leaves the vehicle enough space to speed up.

The results produced by these two different algorithms are shown in Figure 3.16. As

Figure 3.16(a) demonstrates, after the joining request is approved, HJM only takes 7 s to

finish both the gap opening and the merging vehicle change lane. In contrast, it takes about13

s for GFS to finish the lane change since the merging vehicle needs to slow down to wait

to join the gap behind it, as Figure 3.16(b) shows. Although HJM takes less time to finish
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the maneuver, potentially, it may affect safety, traffic delay, and energy assumption more

negatively because the three platoon members (ID5, ID6, ID7) are required to reduce the

speed dramatically. As Figure 3.16(b) demonstrates, compared withHJM, the cooperative

merge influences only one platoon member (ID 8) under GFS’s strategy. Notably, joining

vehicle’s following gap decreased in the 30 seconds after the joining started but before lane

change occurred. This trend reflects the GFS’s preference to speed up the joining vehicle

before the lane change and then slow it down afterward to gradually increase the gap (i.e.,

slow down speed) to the pre-defined steady value. This preference reduces the merging gap

created by the mainline platoon members. In comparison, the HJM method handles the lane

change with a bigger merging gap but requires all downstream members to accelerate and

close the gap after changing lanes, which causes more disturbance (i.e., stop-and-go behaviors,

abrupt speed changes, etc.) and fuel use. As a result, the mainline platoon experienced

minimal speed change and disturbance, yielding an improved throughput.

Overall, our results indicate that the GFS successfully learned, during the traffic envi-

ronments via SUMO, to optimize the traffic impact through a complex nonlinear mapping

between the inputs (such as the speed differences between the mainline and merging vehicles)

and strategy outputs, in a process that is hard to capture by arbitrarily defined heuristic

rules. Regarding large-scale traffic, such a joining preference will significantly reduce the cost

in terms of traffic delay, safety and energy consumption.

3.4 Conclusion

CDA technologies have the potential to improve roadway capacity, travel reliability, and

traffic performance. In the previous studies, a single-lane vehicle stringing algorithm, or

CACC, was developed, whereas our study proposes a multi-lane platooning algorithm with

organized behavior via a hierarchical control structure for more complicated and practical

situations. Based on the simulation results, multiple key observations and implications are
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Figure 3.16: Cooperative merging results utilizing different algorithms.
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summarized as follows:

• The proposed multi-lane platooning algorithm can efficiently guide the behavior of

platoon members and external C-ADS-equipped vehicles aiming to join or leave a

platoon in adjacent lanes under each superstate and precisely switch between the

superstates and states under different complicated scenarios.

• The combination of gains in gap regulation and headway regulation can significantly

impact the capability of maintaining the desired time gap. The results indicate the

importance of considering both the immediately preceding vehicle and the platooning

leader’s trajectories to maintain the desired time gap and standstill distance.

• With intent/trajectory-sharing for CDA, C-ADS-equipped vehicles can be proactive

about others’ intentions, and the platooning Formation, Operation, and Dissolve

superstates are more efficient and effective under increasing MPRs. Therefore, the

proposed multi-lane platooning algorithm can improve traffic level performance further.

• The proposed algorithm adopts a GFS algorithm as a secondary controller to handle the

more complex and hard-to-define cooperative merge scenarios. This unique structure

compromises efficiency in pre-defined scenarios and accuracy in rare corner cases,

demonstrating the capability of both rule-based and learning-based solutions.

Moreover, the proposed algorithm adheres to the existing SOTA ADS platforms, sub-

scribing to the perception module as input and publishing the desired trajectory in a data

structure compatible with the downstream control module. Within the multi-lane platooning

algorithm, the mission planning step leverages the deterministic FSM to propose a suitable

strategy for the current situation. The subsequent motion planning step transforms the

desired mission plan into a series of waypoints using cubic spline interpolation that calculates

a smooth trajectory to maintain vehicle stability. Overall, the proposed algorithm is a

planning application that can be deployed in parallel with other planning applications on

SOTA ADS platforms.
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However, due to the natural construction of the leader–follower structure, accurate,

efficient, and secure V2V communication is crucial to such applications. The experiments

were conducted assuming that the V2V communication had no noise or delay, and the CADS

vehicle has sufficient computation power to handle the communication and reasoning. In

more realistic scenarios, algorithm performance under compromised communication capability

and computational power are future research topics that need further discussion. Moreover,

a stochastic version or real-time optimization and artificial intelligence/machine learning

methods can be utilized in the future to improve the performance further by considering the

local performance and the corridor traffic performance. On the other hand, the gains in gap

regulation and headway regulation are fixed, leaving additional research gaps for dynamic and

adaptive control under different scenarios. Lastly, the contribution of this study focuses on

the innovations in the planning stack (at both mission and motion planning levels). Future

studies can consider integrating the sensing and perception module with planning and control

to explore end-to-end or semi-end-to-end solutions for cooperative platooning and merging.
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Chapter 4

Strategic and Tactical Decision Making

for Multi-lane Cooperative Platooning -

Phase Two: Real-world Testings

With advancements in driving automation and vehicle-to-vehicle (V2V) communication,

cooperative automated driving systems (C-ADS) have become a key area of research for

achieving high standards in transportation safety, efficiency, and sustainability. In a prior

study, we proposed and validated a cooperative multi-lane platooning algorithm on a state-of-

the-art (SOTA) C-ADS platform within an idealized simulation environment. However, a gap

remains between simulated and real-world performance due to system imperfections, such as

perception errors, communication lags, and variations in vehicle models. This study extends

the evaluation of the multi-lane platooning algorithm in real-world conditions, aiming to

bridge this gap by developing a digital twin of the Suntrax testing track in CARLA, based on

high-definition sensor data collected on-site in Auburndale, Florida. The digital twin includes

a multi-lane highway stretch with an on-ramp merging lane, enabling us to conduct simulated

tests and compare them with software-in-the-loop (SIL) and real-world experiments involving

up to five C-ADS vehicles. Building on insights gained from simulation tests, real-world
78



experiments were performed at the Suntrax testing facility using the cooperative platooning

algorithm integrated with the FHWA CARMA platform, validating its compatibility with

C-ADS systems and its ability to establish and maintain multi-lane platoons safely and

efficiently.

In alignment with the parallel development and testing framework, the IHP field test

in this chapter combines physical (i.e., ADS vehicle platform) and virtual (i.e., test track

digital twin) environments to evaluate the cooperative multi-lane platooning algorithm at an

advanced stage. Since simulation testing was completed in a previous phase, the focus here

shifts to SIL, HIL, and field testing within the parallel validation module, aligning with the

primary goal of real-world deployment and multi-vehicle field testing. Scenario engineering

within the digital twin enables diverse, platoon-specific highway scenarios that closely replicate

real-world conditions, providing a testing environment that mirrors practical challenges. This

progression from digital twin simulations to SIL, HIL, and field tests facilitates a robust,

scalable assessment of C-ADS capabilities. Parallel operations coordinate all experimental

activities, real-time interactions among platoon members, and decision-making processes,

enhancing system adaptability and performance. This comprehensive framework demonstrates

the algorithm’s effectiveness and compatibility across platforms, offering a solid foundation

for the technical community and policy-makers in advancing C-ADS-based platooning to

improve transportation system performance.

4.1 Introduction

4.1.1 Background

Intelligent transportation systems (ITS) are reshaping transportation technologies by elevating

transportation systems management goals such as sustainability, safety, and efficiency. By

leveraging cooperative driving automation (CDA) technologies, traffic efficiency, energy

consumption, and driving safety can be significantly improved [86] with the potential benefit
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of significantly enhanced cooperation between vehicles such as platooning (i.e., perception

accuracy and perception range) [102]. As one of the most promising CDA technologies, the

concept of cooperative adaptive cruise control (CACC) [30,60] was introduced and extensively

studied to overcome the lack of peer awareness. Previous researchers [30, 60] reviewed the

application of CACC in various scenarios with multiple MPRs, [30] indicating that CACC

can significantly enhance the longitudinal behavior of advanced driver-assistance systems

(ADAS) and reduce the average following gap by up-to 57%.

4.1.2 Previous efforts in multi-lane platooning and intent-sharing

Though tremendous benefit has been demonstrated, CACC still has a major drawback of

lacking lateral consideration. To this end, significant advancements in developing multi-lane

platooning have been recently made. A lookup table was utilized to optimize platooning

formation across multiple lanes [27]. Simultaneously, the effectiveness of two distinct ad-hoc

platoon formation strategies (greedy formation and ordered formation) was evaluated in a

multi-lane freeway environment, using comprehensive simulation tests [56]. These studies

demonstrated traffic level improvements when using multi-lane platooning strategies compared

to the conventional single-lane CACC algorithm. However, a common limitation in these

studies is the lack of intent-sharing cooperation and the consequent inability to handle complex

maneuvers, such as cooperative merging or adding new members. Therefore, an intent-sharing

mechanism, along with longitudinal and lateral planning through V2V communication, are

the critical factors for handling complex maneuvers across multiple lanes. Building upon this

premise, our preceding research [31] delivered a multi-lane cooperative platooning algorithm,

formulating a methodology characterized by organized platooning behaviors. When contrasted

against traditional CACC-based methods [30,34,45,60], this algorithm harnesses a hierarchical

control structure, assigning specific roles to the platoon leader, which in turn allows each

member to share their comprehensive trajectory plan. Both leaders and followers abide by a

common set of rules and protocols shared among all members, effectively guiding intricate
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multi-lane cooperation. Moreover, the multi-lane cooperative platooning algorithm is designed

to sync with the real-world ADS vehicle framework, facilitating ease of on-vehicle deployment

and promoting excellent compatibility across various vehicle types.

4.1.3 Previous integration and evaluation methods

While our proposed multi-lane platooning algorithm [31] has demonstrated its superiority,

the necessity for real-world testing is critical to validate its effectiveness in a real-world

setting. The paucity of real-world testing presents a major bottleneck in the advancement of

stringing algorithms, given the individual vehicle and traffic-level challenges that must be

overcome. These include perception errors, processing delays, vehicle model uncertainties,

hardware differences, and the scarcity of physical vehicles and testing resources. Despite these

obstacles, real-world experiments are essential for confirming the effectiveness of platooning

algorithms. These experiments necessitate dedicated facilities that mirror real-world highway

conditions. Despite the significant challenges, [60] conducted on-the-road experiments to test

the CACC algorithm on a string of vehicles to compare three longitudinal controllers. This

field test proved the string stability of the CACC algorithm and provided valuable data for

numerous research aspects. However, because the CACC is a longitudinal-only algorithm,

lateral behaviors such as lane change, multi-lane cooperation, and intent-sharing are out of

scope. To the best of the authors’ knowledge, there is no research in the literature reporting

a proper multi-lane platooning field test with C-ADS vehicles. Based on the multi-lane

platooning algorithm in our previous study [31], this paper will fill the gap by providing our

main findings on the first multi-lane platooning field test.

4.1.4 Key contributions

This study conducts real-world testing of a multi-lane platooning algorithm using the CARMA

platform. Our algorithm is implemented as a strategic plug-in on multiple fully automated

C-ADS vehicles, enabling cooperative lateral and longitudinal control through a customized
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V2V communication protocol. A comprehensive testing process is devised using a digital

twin of the Suntrax track, created from high-definition sensor data. This iterative approach

progressively introduces more realistic environments, allowing systematic verification of the

algorithm’s performance while minimizing risk. The testing begins with simulations, followed

by software-in-the-loop testing using the Robot Operating System (ROS) [75], and concludes

with single and multi-lane testing on the actual track with three to five C-ADS vehicles,

demonstrating the algorithm’s potential. Reflecting on the test results, the observations and

contributions of the field experiment are summarized below:

• To bridge the gap between the simulation and real-world tests, we propose leveraging

the digital twin and software in the loop testing pipeline for the multi-lane platooning

algorithm. Specifically, we create a digital twin of the real-world testing track in Carla

and establish the software-in-the-loop platform with the multi-lane platooning algorithm

via the Robot Operating System (ROS). Based on this platform, simulated tests that are

similar to the real-world experiment with up to five participated C-ADS vehicles have

been conducted. The simulation testing results from the digital twin serve as a baseline

for on-the-track tests of C-ADS vehicles. The adaptability of the multi-lane platooning

algorithm by seamlessly integrating it with the software-in-the-loop platform has been

confirmed. In addition, results confirmed the similar performance of simulation and

real-world environments and showed that creating a digital environment for real-world

tests provides a general development paradigm for cooperative driving automation

algorithm verification.

• After the confirmation of the implementation in the software in the loop tests, based

on the CARMA platform, our multi-lane platooning algorithm (Han et al., 2022) was

successfully programmed as a strategic plug-in that is compatible with other guidance

plug-ins in the CARMA platform. In addition, the multi-lane platooning strategic

plug-in has been open-sourced to the community.
82



• Comprehensive test cases and diverse scenarios with up to five fully automated C-ADS

equipped vehicles in the multi-lane platooning have been carried out, and extensive

results have been presented and discussed. Real test results have proved that the

multi-lane platooning algorithm can work with different numbers of C-ADS vehicles

in multiple vehicles with different brands and body types, regardless of the vehicle’s

physical model uncertainties. Results manifest that the field test experiences are

valuable as they validate the applicability of multi-lane platooning, provide field test

data for ongoing and future research, and prove that the proposed algorithm can handle

multi-lane highway platooning scenarios.

4.2 Multi-lane platooning algorithm and its integration

with the CARMA platform

To gain a clearer insight into the experimental outcomes of the first SOTA ADS platform-

compatible multi-lane platooning algorithm [31], this section briefly introduces the exposition

of the algorithm and its integration into the CARMA platform. The multi-lane platooning

algorithm enables vehicles equipped with C-ADS to explore platooning prospects not only in

their present lane but also in neighboring lanes. Furthermore, the CARMA platform supplies

a C-ADS structure to accommodate the integration of this multi-lane platooning algorithm.

4.2.1 Multi-lane platooning algorithm

As one of the C-ADS applications in the planning module, the multi-lane platooning algorithm

follows the two-step framework (i.e., strategic mission and tactical motion planning) in which

the mission planning leverages the perception results to find the optimum strategic plan. The

consecutive motion planning generates a corresponding trajectory as a list of waypoints. An

arbitration process selects the proper planning application on the SOTA C-ADS platform

level (i.e., the CARMA platform). For simplicity, in Fig.4.1 and the remainder of the paper,
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we use the terms "mission planning" and "motion planning."

Figure 4.1: Logic and data flow of the platooning algorithm (Han et al., 2022).

Fig.4.1 shows the logic flow of the platooning algorithm in the two-step framework. The

first step is mission planning (i.e., strategic planning in the CARMA platform), where one of

the pre-defined semantic mission plans is selected based on the current scenario. The mission

(i.e., strategic) planning identifies scenarios and recommends proper behavior based on the

deterministic finite state machine (FSM). Then, a corresponding maneuver plan generates

essential information (e.g., start/target location, start/target speed, start/target lane, etc.)

for the motion (i.e., tactical) planning. Secondly, the motion (i.e., tactical) planning step

parses the information from the maneuver plan, generating a detailed trajectory connecting

the current position to the desired position with planned speed and steering. As this paper

focuses on integrating the multi-lane platooning algorithm with the CARMA platform, the

principle of the multi-lane platooning algorithm [31] will not be discussed.

4.2.2 Integration with the CARMA platform

The CARMA platform, an open-source C-ADS solution for cooperative driving automation,

was used for integrating our multi-lane platooning algorithm due to its extensibility and

external software integration capabilities. The CARMA system structures vehicle motion
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management into three main steps, as shown in Fig.4.2: localization ("SENSE STACK"),

planning ("PLAN STACK"), and motion control ("ACT STACK"), providing a comprehensive

autonomy framework. This cycle continually refreshes the vehicle’s state to ensure precise

and smooth operations. Deployed on each testing vehicle, the CARMA platform facilitates

Level 3 vehicle automation and V2V communication.

The multi-lane platooning algorithm was integrated as a strategic level plug-in within the

"PLAN STACK" of the CARMA platform, which facilitates ROS communication among all

modules. In particular, the ROS communication interface, i.e., ROS topic, ROS parameters,

and ROS services, will be composed to be compatible with the upstream (sense stack) and

downstream (act stack) modules. Adapting to all necessary information from upstream and

downstream modules, the algorithm, unlike conventional CACC methods, transcends vehicle

brand or body type limitations due to CARMA’s compatibility with multiple ADS platforms.

This generality emphasizes the algorithm’s distinct applicability in diverse real-world testing

scenarios.

Figure 4.2: The software structure of the CARMA platform.
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4.2.3 V2V communication protocol

For real-world deployment of C-ADS software prototypes like platooning, a comprehensive V2V

messaging protocol is vital. Our proposed algorithm, based on real-time V2V communication,

employs this protocol to enable key functions such as FSM behavior management, gap

regulation, cooperative merging, and the APF algorithm [9], making it an integral part of

software development compatible with state-of-the-art C-ADS platforms like CARMA.

The CARMA platform supports two types of V2V messaging: directional request-response

and broadcast operational messages, which include crucial platooning information like size and

ID. This allows all C-ADS vehicles within communication range to understand live platoon

status and make decisions. Cooperation messages are structured as mobility requests and

responses between any two vehicles within range. These are paired with state transitions in the

FSM-based platooning behaviors according to specific circumstances. Table 4.1 summarizes

the customized platooning messages.

4.3 Algorithm implementation and testing

Our previous work validated the multi-lane platooning algorithm in the OpenCDA simulation

platform [103]. This paper focuses on real-world testing after integrating the algorithm

into a pre-existing C-ADS platform. We employed a four-step testing pipeline: simulation,

software-in-the-loop (SIL), hardware-in-the-loop (HIL), and close-track testing. This pipeline

progressively incorporated increasingly realistic components to ensure algorithm integrity

and consistent performance despite different levels of errors and uncertainties. The following

sections detail the experiment preparations, testing scenarios, and each step in the testing

pipeline.
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Table 4.1: The customized platooning message for FSM-based V2V cooperation.

Initial
state

Final state Message Send Cooperation Type

Mobility Requests

Single
C-ADS

Follower
Mobility join request
to the target platoon
leader

Rear join ( same-lane
and cutin)

Single
C-ADS

Leader
Mobility join request
to the target platoon
leader

Frontal join (same-
lane and cutin)

Single
C-ADS

Prepare to
join

Mobility lane change
request to the target
platoon leader

Cutin join (front and
rear)

Mobility Response

Leader Leader Mobility response to
accept rear join

Rear join (same-lane
and cutin)

Leader Leader Mobility response to
deny rear join

Rear join (same-lane
and cutin)

Leader Follower Mobility response to
accept frontal join

Frontal join (same-
lane and cutin)

Leader Leader Mobility response to
deny front join

Frontal join (same-
lane and cutin)

Leader Lead with
operation

Mobility response to
accept lane change

Cutin join (front and
rear)

Leader Leader Mobility response to
deny lane change

Cutin join (front and
rear)

Mobility Operation

Single
C-ADS

Single C-ADS Publish current vehicle
status Constantly publishing

Leader Leader Publish current
platoon status Constantly publishing

Follower Follower Publish current vehicle
status Constantly publishing

4.3.1 Real-world experimental settings

Various C-ADS vehicles from different manufacturers were chosen for field experiments

to validate the multi-lane platooning algorithm, emphasizing its brand and body type

independence. The test track and platooning route were also carefully selected to suit each
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scenario.

Hardware: Sensor Suite, C-ADS vehicles, and test track

Experiments were carried out using multiple C-ADS vehicle platforms (as shown in Fig.4.3)

equipped with the lasted version of the CARMA platform [82], where the multi-lane platooning

algorithm has been integrated. All vehicles are equipped with an array of sensors, including

a 5.9 GHz Cohda DSRC system, a NovAtel SPAN-G320 GNSS/INS integration system, a

Velodyne VLP-32C LiDAR, two Mako-G319C front cameras, and a Delphi ESR radar to

operate the entire system running on an on-aborad Spectra server to maintain full C-ADS

capability. The experiments involved three C-ADS vehicles, two from Chrysler and one from

Lexus, all modified by AutonomouStuff.

Figure 4.3: C-ADS vehicles and their specifications for the field experiment.

The Suntrax facility’s oval track, the venue for our field experiment, consists of a two-lane

mainline and a single-lane on-ramp. The selected test route, covering 971 meters and each

lane measuring 3.5 meters in width, starts at the straight segment’s beginning and ends right

before the curve starts, as indicated in Fig.4.4. The merging area, parallel to the starting

point, tapers into the mainline midway as detailed in Fig.4.5.
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Figure 4.4: The overall layout of the Suntrax testing facility and the selected route for testing.
The rounded green point is the starting position, and the rounded red point is the ending.

Figure 4.5: The overall layout of the Suntrax testing facility and the selected route for testing.
The rounded green point is the starting position, and the rounded red point is the ending.

Software: the Suntrax digital twin

In this work, the multi-lane platooning algorithm was verified using the OpenCDA platform

[102] and integrated into the CARMA platform. While there may be variations in sensor

noise, communication delay, and vehicle physical model uncertainties between the OpenCDA

and CARMA platforms, testing the algorithm in a digital twin of the real-world test track

allows for a baseline evaluation of various parameters introduced throughout the pipeline, and

can aid in adjusting the algorithm’s performance. Additionally, simulation results can serve

as a reference for verifying the functionality and proper implementation of the algorithm.

The Suntrax testing track makes the digital twin of such a map valuable for future algorithm

validation and development.
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The digital twin environment was built based on the point cloud map of the test track,

generated using LiDAR data and GPS data. The simulated route was identical to the

designed route, with the GPS coordinates of the starting point serving as the reference point

for the 3D scene reconstruction. A vector map is then fitted to the 3D scene, highlighting

the road geometry, network topology relations, and lane information. Further details of the

map generation can be found in [100]. The digital twin was subsequently generated based on

the vector map with manual adjustments to match the condition of the test track. It should

be noted that the term digital twin is used here for three reasons:

• The simulation environment, in terms of road material, lane structure, and traffic

regulation such as speed limit, is identical to the real-world environment;

• CAVs configuration, the number and type of testing CAVs are the same as the real-world

tests;

• To differentiate the simulation test in this work from that in our previous research.

4.3.2 Simulation Testing

The first stage of the comprehensive ADS testing process, simulation testing, confirms the

functionality and behavior of the multi-lane platooning algorithm in a controlled environment.

Two scenarios were tested: a merging vehicle joining at the front or rear of the platoon

(Fig.4.6)). This stage sets a critical performance baseline but doesn’t include factors like

communication noise, system delay, and vehicle control differences. For a comprehensive

understanding of these factors, larger-scale tests with four and five C-ADS vehicles were

performed using real vehicles (section 4.3). The trajectory results from several simulated

tests, following procedures from previous work [31], provide crucial insights for actual field

tests. The scenarios used here, unlike in the previous work, were designed to mirror real-world

conditions and utilize the digital twin’s test track.
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Figure 4.6: Simulation test scenario schematic.

4.3.3 Software-in-the-loop testing

The second stage of ADS testing, software-in-the-loop, evaluates the multi-lane platooning

algorithm within a ROS environment that reflects the real-world software structure of the

experimental vehicle, hence offering a realistic simulation of communication delays. The

algorithm, originally developed within the OpenCDA framework [102], was adjusted to

manage the simulation via ROS streams. The ROS-integrated simulation framework, outlined

in Fig.4.7, uses ROS topics for environmental perception and vehicle localization. Once

the route and control command are determined, they are broadcasted to the vehicle for

implementation. This process uses the CARLA ROS bridge [21] and two custom ROS nodes

to manage all simulation communication flows, allowing for a thorough validation of the
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algorithm’s performance under software constraints.

Figure 4.7: Framework of the ROS-integrated simulation test.

4.3.4 Hardware-in-the-loop testing

Hardware-in-the-loop testing replicates the final close-track testing setup using actual hard-

ware, introducing additional complexities like communication and computational costs, sensor

noise, and system delays. This phase requires a fully integrated C-ADS platform, including

sensor suites, an onboard computer, and the ride-by-wire system. Here, the CARMA plat-

form [82] is implemented as a C-ADS software framework, and the multi-lane platooning

algorithm serves as a strategic and tactical plug-in. To simulate real-world operating con-

ditions, the entire system is implemented on C-ADS vehicles that can support all system

hardware requirements.

The HIL test is essential for validating both system integrity and the fundamental functions

of the platooning algorithm. This testing sequence includes a single-vehicle functionality check
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followed by a two-vehicle platooning test. Initially, a single vehicle is deployed with a fully

operational CARMA system to execute basic autonomous functions via CDA capabilities,

ensuring that core autonomy features are functioning as intended. During this phase,

the vehicle also continuously sends a joining request, preparing for potential platooning

interactions. However, to fully validate the platooning functions, a two-vehicle test is required.

The platooning features rely on V2V communication and coordinated vehicle behavior,

which cannot be assessed with a single vehicle alone. In the two-vehicle test phase, two

C-ADS vehicles form a platoon, establishing V2V communication to exchange real-time

vehicle information. During operation, the gap regulation algorithm uses this shared data to

continuously adjust the target speed, maintaining a safe and stable distance between vehicles.

This coordinated testing setup is essential to confirm that the platooning algorithm’s dynamic

adjustments and collaborative behaviors perform reliably under real-world conditions.

Figure 4.8: Hardware-in-the-loop experiment scenario schematic.

Conducted at the Suntrax testing facility, the hardware-in-the-loop testing, outlined in

Fig.4.8, aims to validate the integration of the multi-lane platooning algorithm within C-ADS

vehicle platforms and confirm the basic functionalities. By restricting the test to same-lane

operation and minimizing the platoon size, the risk is significantly mitigated, paving the way

for subsequent close-track tests.
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4.3.5 Close-track Testing

The close-track field experiment marks the final phase of the ADS testing pipeline, designed

to evaluate the proposed multi-lane platooning algorithm in a real-world environment. This

stage scrutinizes multi-lane functionality, organized platooning behavior facilitated by V2V

communication, and steady gap regulation dependent on shared vehicle data. Two scenarios

are conducted as shown in Fig.4.9: a vehicle joining at the front of the platoon, and a vehicle

joining at the rear. Despite the high degree of exposure and risk, these tests occur within a

secluded test track to ensure safety and comply with legal limitations.

Figure 4.9: Field close-track experiment scenario schematic.

Both tested scenarios involve a C-ADS vehicle merging into a mainline platoon, assessing

the algorithm’s multi-lane capabilities. These scenarios also test the algorithm’s capacity
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for cooperative maneuvers, necessitating effective cooperation between the merging vehicle

and the platoon leader [31]. The leader determines the optimal point for incorporating the

merging vehicle based on its relative position and speed and adjusts its speed to aid the

merge while the joining vehicle integrates into the designated position concurrently.

To further validate the algorithm’s ability to manage gaps within larger platoons, four-

vehicle, and five-vehicle platoon tests are conducted. The stability of the algorithm in handling

larger platoons can thus be verified, while the joining C-ADS vehicle performs identical cut-in

maneuvers regardless of the platoon size.

4.4 Experiment results

This section presents the experiment results for each phase in the comprehensive ADS testing

pipeline, signifying the achievement of set goals. The testing begins with the simulation

test, using OpenCDA as the ADS platform to centrally control all platoon members. Next,

the software-in-the-loop testing phase involves the vehicle status and control communication

stream managed within ROS, further challenging the algorithm’s stability, efficiency, and

integrity.

The third step, hardware-in-the-loop testing, involves two real C-ADS vehicles forming

a platoon in a single-lane scenario. With the involvement of hardware (sensors, onboard

computer, ride-by-wire system), this phase focuses on a simplified same-lane platoon, validates

the integration and functionality of the system, and establishes a strong foundation for the

close-track test. The final phase, the close-track test, incorporates multi-lane scenarios,

varying platoon sizes, and different C-ADS vehicles. This stage showcases the platooning

algorithm’s full potential in facilitating cooperation via V2V communication and organized

behavior to guide vehicles in complex multi-lane situations.
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4.4.1 Simulation evaluation in digital twin

In this subsection, the multi-lane platooning algorithm is performed in the digital twin

environment. The simulation test that is identical to the real-world testing is of significant

value as it serves as a performance baseline, diminishing tunning and validation effort by

providing a contrast dataset under an ideal environment (i.e., no GPS error and delay, no

system error and delay) during the on-site testing process.

Join to the front evaluation in digital twin

In this scenario, the joining vehicle starts at the on-ramp merging lane, merging into the

mainline, and joins the target two-vehicle platoon to the front as the new leader.

Figure 4.10: Distance gap comparison for joining to the front in simulation testings. The top
figure describes the desired gap versus the actual gap for the middle vehicle, and the bottom
figure describes the last member of the platoon.

The distance gap data for the two following vehicles in a platoon are illustrated in Fig.4.10.

The top figure presents the data for the second vehicle, originally the leader of the platoon,

which becomes a follower after the merge. The dotted blue line represents the desired gap,

while the solid orange line displays the actual gap. Although the initial actual gap was larger
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than desired, the vehicle managed to reduce this gap and maintain a consistent distance from

the leader.

The lower graph provides data for the third vehicle. As this vehicle was part of the initial

platoon formation, its initial gap was close to the desired value. A distinct drop in both

the desired and actual gap is observable due to a dynamic leader switch initiated by the

APF algorithm. Initially, the third vehicle was following the platoon leader. However, due

to proximity to the second vehicle, a "too close" safety disturbance was triggered, which

reassigned the third vehicle’s dynamic leader to the second vehicle. It’s important to note

that the second vehicle maintained its dynamic leader (the platoon leader) throughout, as it

had only one potential vehicle to follow.

Join to the rear evaluation in digital twin

In this scenario, the joining vehicle starts at the on-ramp merging lane, merging into the

mainline, and joins the target two-vehicle platoon to the rear as the new member at the end

of the target platoon.

Figure 4.11: Distance gap comparison for joining to the front in simulation testings. The top
figure describes the desired gap versus the actual gap for the middle vehicle, and the bottom
figure describes the last member of the platoon.
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Fig.4.11 illustrates the gap data for the second and third vehicles in the platoon. The

upper chart denotes the second vehicle’s desired and actual distance gaps, marked by blue

dotted lines and solid orange lines, respectively. Even though the initial distance gap exceeded

the desired one, the second vehicle was able to adjust and maintain the intended distance.

Likewise, the lower chart outlines the third vehicle’s progression, which also starts with a

larger gap and successfully reduces it to match the desired value. Overall, joining at the rear

is a less complicated process with minimum disturbance that doesn’t involve APF leadership

transition.

Results demonstrate the successful application of the multi-lane platooning algorithm

using three C-ADS vehicles in a digital twin environment. This simulation test verifies lane

platooning behaviors, gap regulation algorithm, and the V2V cooperation protocol in a

setting mirroring real-world conditions. It also serves as a performance baseline, easing the

tuning and validation process by offering a comparison data set under ideal (i.e., error-free)

circumstances.

4.4.2 Software-in-the-loop experimental results

The software-in-the-loop testing replicates the scenarios of the simulation test. As previously

discussed, the aim of this phase is to integrate ROS as the medium for exchanging simulation

status. By doing so, the experiments can better emulate real-world conditions.

Join to the front in the software-in-the-loop evaluation

The software-in-the-loop test emulates the scenarios from the simulation test, with a vehicle

merging as the new leader into an existing two-vehicle platoon. Fig.4.12 illustrates the

distance gap data of the two following vehicles. Results closely mirror the simulation test.

The top graph displays the second vehicle’s desired and actual distance gaps. Initially,

the platoon leader transitions into a middle-member role following the new leader’s entry.

Despite a larger initial gap, the second vehicle adjusts to maintain a consistent distance. The
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Figure 4.12: Distance gap comparison for joining to the front in the software-in-the-loop
testings.

bottom graph presents the distance gap data for the third vehicle. Because it’s already a

platoon member, its data closely aligns with the desired value. Similar to the simulation test,

the APF algorithm reassigned the third vehicle’s dynamic leader to the second vehicle after

deeming it too close.

Join to the rear in the software-in-the-loop evaluation

In this scenario, the joining vehicle merges into the mainline, becoming the third member.

Fig.4.13 displays the distance gap data for the two following members of the platoon. For

both the second and third vehicles, the plots show a minor discrepancy between the desired

and actual gaps at the start, but they swiftly manage to adjust and adhere to the intended

distances.

Overall, the results obtained from the software-in-the-loop test closely match those from

the simulation test, indicating that the multi-lane platooning algorithm performs consistently

and reliably across various scenarios and platforms. An important observation is the increased

variability and instability in the actual gap values, highlighting the differences between direct
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Figure 4.13: Distance gap comparison for joining to the rear in the software-in-the-loop
testing.

server data streams and ROS subscriptions. However, despite the additional challenges of

communication noises and delays, the algorithm continues to deliver stable and consistent

performance. This successful outcome affirms the algorithm’s effectiveness, thereby providing

valuable insights for subsequent integration and experiments.

4.4.3 Hardware-in-the-loop experimental results

The single-vehicle portion of the HIL test was successful, confirming the system’s basic

autonomy and stability. During this phase, the C-ADS vehicle, equipped with a fully

operational CARMA system, effectively executed core functions like lane-keeping and adaptive

speed regulation, demonstrating stable, consistent performance. Additionally, the vehicle’s

platooning algorithm operated in an idle state, actively broadcasting joining requests to seek

potential platooning opportunities, validating its readiness to initiate cooperative driving

interactions. These results confirm that the vehicle is both stable in its basic functions and

proactively prepared for future multi-vehicle coordination, meeting the objectives of the

single-vehicle HIL test.
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The platooning algorithm’s performance was further validated. The two C-ADS vehicles

successfully established V2V communication, sharing real-time vehicle information necessary

for cooperative movement. During the platooning operation, the gap regulation algorithm

continuously adjusted each vehicle’s target speed based on the exchanged data, ensuring

stable spacing and synchronized speed adjustments within the platoon. This coordinated

behavior confirmed the algorithm’s ability to maintain safe inter-vehicle distances and adapt

dynamically to changing conditions, validating the core functionality and stability of the

platooning system in a multi-vehicle setting. As displayed in Fig.4.14, results validate same-

lane platooning and the gap regulation algorithm in a real-world setting. Two C-ADS vehicles

were utilized, forming a two-vehicle platoon upon engagement of the CARMA platform and

maintaining a consistent intra-platoon gap throughout the test route.

Figure 4.14: Same-lane platooning trajectory results where the detailed trajectory data of
both members of the platoon is presented.

The desired time gap was 0.8 seconds, and the gap regulation algorithm took this as input.

The desired gap varied as it was based on speed data read from the vehicle odometer, and
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the initial velocity difference was due to the follower catching up with the leader. While this

test focuses on same-lane application, it serves as a foundation for multi-lane scenarios by

demonstrating successful platoon formation and leader-follower structure. Fig.4.14 shows

that the platooning algorithm can consistently uphold a steady platoon.

Crucially, the hardware-in-the-loop test provides a realistic environment that incorporates

real-world communication costs and system delays. It confirms the algorithm’s efficacy on

actual vehicle platforms, paving the way for multi-lane experiments and field tests.

4.4.4 Real-world experimental results

Closed track tests under the described scenarios were carried out in the aforementioned

environment, where the multi-lane platooning algorithm [31] was tested multiple times. The

trajectory figure presented for each scenario is randomly selected among all testing results,

and a statistical comparison with all testing data is presented.

Cutin join to the front

Fig.4.15 depicts the trajectory of a cut-in join to the front, aimed at validating multi-lane

platooning functions. Here, a joining vehicle merges into the mainline becoming the new

leader of the mainline platoon. To enable this, the joining vehicle starts moving before the

platoon reaches the merging area’s end.

The joining vehicle integrates into the platoon at the 50-second mark, as the other two

vehicles hit top speed to close the enlarged gap with their new leader - a gap deliberately

created for lane changes. The three-vehicle platoon stabilizes after 10 seconds, maintaining

their desired gaps hereafter. Notably, vehicle acceleration fluctuates, within a safe range, at

this stage due to the complexities of the cut-in-join process.

Fig.4.16 presents the gap comparison of trailing two members. The last vehicle’s desired gap

experiences several spikes due to the APF dynamic leader assignment to enlarge abnormally

small gaps. This reassignment is crucial when the joining vehicle becomes the new leader.
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Figure 4.15: Cut-in join to the front scenario trajectory results. The velocity of all three
platoon members is presented in the top figure, and the acceleration of all three members is
presented in the bottom figure.

As this process creates a large cut-in gap between the first two members and a small gap

between the last two members.

The cut-in join to the front scenario is the first multi-lane test. Despite some fluctuations

in the intra-platoon gap and differences between the simulation and the real world, the

algorithm successfully manages C-ADS integration, V2V communication, gap regulation, and

platooning behaviors. Considering the challenges of the field tests, the experiment is deemed

successful, with the vehicles behaving similarly to the simulation tests.

Cut-in join to the rear

Fig.4.17 illustrates the results of the cut-in join to the rear scenario. This scenario tests the

multi-lane platooning capabilities by having the joining vehicle merge into the platoon from

behind. The CARMA platform is engaged by the joining vehicle as the mainline platoon

passes by, simulating a realistic rear-joining situation. Compared to the cut-in-front scenario,

this situation is less complex as the platoon leader remains unchanged, which eliminates the
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Figure 4.16: Cutin join to the front scenario gap comparison where the gap data of the second
and third members of the platoon is presented.

leadership exchange process. The primary challenge here lies with the joining vehicle’s ability

to close the intra-platoon gap. Compare to the cut-in front, this joining sequence commences

earlier and unfolds more smoothly. As shown in Fig.4.17 where the merge is completed within

6 seconds with minimal disturbance.

The time gap comparison plot, presented in Fig.4.18, provides additional insights. The last

two members successfully achieve and maintain the desired gap, causing minimal disturbance

to the platoon’s operation. Importantly, because there is no occurrence of abnormal gaps,

there is no APF leader adjustments. This further highlights the relative simplicity and

efficiency of the rear-join scenario compared to its front-join counterpart.

In the third scenario, the cut-in join to the rear proves to be smoother and faster than the
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Figure 4.17: Cut-in join to the rear scenario trajectory results. The velocity of all three
platoon members is presented in the top figure, and the acceleration of all three members is
presented in the bottom figure.

cut-in join to the front, in line with the results from the digital twin simulation tests. Despite

minor delays in the front-join scenario due to the leadership exchange process, the overall

experiments were deemed successful. There is, however, a need for careful management of the

computational resources for optimal performance during parallel tasks such as updating the

platoon leader and regulating the intra-platoon gaps. The disparity in system performance

under certain conditions, especially when compared with the simulation results, opens up

avenues for future research, with a more detailed system-level analysis presented in section

4.3.

Scaled platooning tests

Drawing upon the prior study [31], which stated that the efficacy of the multi-lane platooning

algorithm corresponds with the Market Penetration Rate (MPR). It is safe to conclude

that a higher MPR often corresponds to larger platoon sizes and more efficient traffic flows.

Therefore, the significance of larger platoon tests, specifically those involving four and five
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Figure 4.18: Cut-in join to the rear scenario gap comparison where the detailed trajectory
data of the second and third members of the platoon is presented.

vehicles, is underlined by the complex practical conditions they simulate. These tests offer

crucial insights into the algorithm’s capacity to handle high MPR scenarios and facilitate

smoother traffic flows. The selected scenarios for the four-vehicle and five-vehicle tests

presented in Fig.4.19 and Fig.4.20, respectively, involve a cut-in join to the front, recognized

as one of the most complex scenarios due to the leadership transition it necessitates.

The conclusions drawn from these tests are encouraging. Although the desired distance

gap was purposely increased to account for potential oscillations and to grant a longer

reaction time, the larger platoons successfully maintained consistent intra-platoon gaps. The

vehicles displayed a capacity to adjust to these increased gaps, indicating a level of control
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Figure 4.19: Cut-in join to the front scenario with four vehicles gap comparison where the
gap data of all three platoon members (i.e., following vehicles) is presented.

Figure 4.20: Cut-in join to the front scenario with five vehicles gap comparison where the
gap data of all four platoon members (i.e., following vehicles) is presented.

over their individual drive-by-wire systems and an ability to navigate mechanical differences.

Despite the augmented complexity and size of these larger platoons, the platooning field tests

show performance comparable to previous tests with smaller platoons. In all scenarios, the

cooperative behavior in Vehicle-to-Vehicle (V2V) intent sharing adhered to the algorithm’s
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design, signaling the successful execution of the field experiment.

Repeated test results

Statistical analysis was performed to validate the algorithm’s performance in repeated field

tests, encompassing various leading and following vehicles across all scenarios. Safety aspects

were closely examined, including merge time, maximum and minimum accelerations, and

distance gap range. Additionally, the algorithm’s compatibility with different vehicle brands

was evaluated through tests with diverse lead and follow vehicles in the same scenarios. The

summarized outcomes of the comprehensive statistical analysis are presented in Table 4.2.

Stability analysis

The algorithm’s performance stability is a critical performance measure. It directly relates to

the safety and usability of the multi-lane platooning algorithm. Though the FSM faced with

state various switching challenges, results show no instance of failure. Meanwhile, statistical

results can also capture the motion planning module’s effectiveness. As shown in Table 4.2,

the two-vehicle platooning scenario yields a constant average gap error of around +2 m (i.e.,

maintaining larger gaps), indicating a consistent gap regulation performance. Notably, the

gap error value for two-vehicle tests is higher compared to the three-vehicle scenarios. This

is due to the same parameter that was used for regulating gaps with different desired gaps.

However, this tuning imperfection doesn’t affect gap regulation’s stability, as the behavior

remains consistent throughout the tests.

For both three-vehicle tests (i.e., cut-in front and rear), the middle vehicle can follow

the desired gap better than the trailing vehicle, as indicated by the max (min) gap error.

As it is the direct follower of the leader with the most instant communication and the least

amount of error. In addition, the time taken to merge is comparable for the middle vehicles

in all three-vehicle tests, as they always start as platoon members. Besides, the third vehicle

also performs similarly in terms of time gap error. These observations indicate that the gap
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Table 4.2: Statistical Analysis Results
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regulation is operating as expected in all three-vehicle tests.

Safety analysis

Acceleration directly reflects harshness, safety, and riding comfort. Among all the test data,

the maximum acceleration is 0.6 m/s2, which only happens several times. Most acceleration

and deceleration values are within 0.45 m/s2, which is significantly below the uncomfortable

value by most studies [6, 51]. Meanwhile, though the CARMA platform allows emergency

braking, the maximum deceleration is below -0.6 m/s2, far from invoking safety concerns.

In terms of distance gap, statistical data indicates that the mean error is under +1 meter

in all three-vehicle scenarios. The one-meter average error between the desired gap and

the actual gap is considerably smaller than the desired distance gap of 15 meters. The

maximum gap error is mostly within +2 meters. Therefore, results indicate the algorithm can

maintain an accurate and consistent gap during platooning. The major contributing factor

is sharing planning trajectory information with other members, which is a key advantage

of the multi-lane platooning algorithm. Therefore, it is safe to conclude that sharing the

intend-embedded trajectory is crucial and effective when regulating a gap repeatedly within

a platoon.

4.4.5 Closed-track test overview

Overall, the algorithm is accountable across all vehicles. In particular, two different vehicles

were used as the leader during the cut-in-front and the cut-in-rear experiments. For all

three-vehicle tests, we swapped follower sequences and vehicles. Notably, no data shows

abnormal behavior even with repeated vehicle role exchange. Therefore, it is safe to conclude

that the functionality of the platooning algorithm and the testing vehicles are stable. In

addition, results show the multi-lane platooning algorithm can operate across two vehicle

brands (i.e., Chrysler and Lexus) and two vehicle types (i.e., Minivan and SUV), validating

its compatibility and versatility.
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In terms of the experiment, the success of comprehensive close-track and scaled platooning

tests not only marks the successful integration of the multi-lane platooning algorithm but

also showcases the algorithm’s robustness, adaptability, and consistent performance in real-

world scenarios. Additionally, the achievement under moderate speed with four and five

participating vehicles underscores the algorithm’s promising potential for scalable usage,

demonstrating a promising advancement in the realm of automated driving systems.

On the other hand, the comprehensive testing pipeline utilized here, encompassing digital

twin simulation testing, software-in-the-loop testing, hardware-in-the-loop testing, and close-

track field experiments, offers a rigorous and robust evaluation of the multi-lane platooning

algorithm. This multistage approach ensures the algorithm’s performance and stability are

thoroughly scrutinized under varying conditions, systematically progressing from controlled

virtual environments to real-world settings. By tackling the challenges at each stage, the

algorithm’s performance, efficiency, and reliability are validated. This comprehensive testing

pipeline showcases the commitment to ensuring safety, dependability, and excellence in the

field of automated driving systems.

4.5 Conclusion and future research

Cooperative Driving Automation (CDA) technologies hold the promise of enhancing road

capacity, consistency in travel times, and overall traffic performance. In contrast to the

existing ad hoc CACC algorithms, this study presents a comprehensive testing pipeline

including the digital twin simulation testing, software-in-the-loop testing, hardware-in-the-

loop testing, and close-track field testing as well as real-world experimental outcomes of a

multi-lane platooning algorithm [31] that employs organized behavior through a hierarchical

control structure designed for complex scenarios. The experiments were carried out via

a comprehensive testing approach, where each stage incrementally presents more realistic

challenges and risk factors. Numerous repeated tests across each stage ultimately verify
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the algorithm’s functionality and stability in a controlled setting that simulates real-life

highway infrastructures. Based on the experiment outcomes, several vital observations and

implications can be distilled as follows:

• The multi-lane platooning algorithm has been integrated with an existing C-ADS

successfully and verified by the simulation results under digital twin settings and the

extensive real-world experimental tests.

• Throughout the comprehensive testing pipeline, the previously proposed multi-lane

platooning algorithm can efficiently guide the behavior of platoon members and external

C-ADS vehicles (to join a platoon) under each superstate and precisely switch between

the FSM under different scenarios.

• The gap regulation algorithm can effectively maintain the desired time gap. Moreover,

the results of all tests among the producer indicate that it is necessary to consider both

the immediately preceding vehicle and the platoon leader’s (i.e., APF algorithm) during

the platooning process.

• With intent/trajectory-sharing for cooperative driving automation, C-ADS-equipped

vehicles can be proactive about others’ intentions, conducting safe and efficient multi-

lane operations at a moderate speed (i.e., up to 35 mph).

• The proposed algorithm adopts the C-ADS software platform and successfully operates

in parallel with other planning applications. Deployment experiences indicate that the

tested algorithm consistently performs across multiple C-ADS-ready vehicle platforms

from different manufacturers.

• The proposed algorithm successfully operates with various platoon sizes. Scaled test

results indicate that the proposed algorithm is effective and efficient even when the

platoon size reaches four or five vehicles. This further demonstrates the algorithm’s

capability to improve the traffic system’s performance under higher MPRs.
112



• The comprehensive testing pipeline, marked by its thoroughness and adaptability, has

proven its value in assessing the functionality and integration of the proposed multi-lane

platooning algorithm, establishing its potential as a robust framework for verifying and

validating future ADS vehicle technologies.
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Chapter 5

Traffic Regulation-aware Path Planning

with Regulation Databases and

Vision-Language Models

This chapter presents a parallel development and testing framework that integrates traffic

regulation compliance into automated driving systems (ADS), enabling these systems to

interpret and follow traffic laws within a real-time decision-making context. The framework

combines physical and virtual environments, scenario engineering, and coordinated operations

to provide comprehensive validation of ADS under diverse conditions. A key feature is

the regulation-aware path planning framework, which uses RGB camera inputs alongside a

vision-language model (VLM) to generate descriptive text about the driving environment.

This information, paired with a machine-readable regulation database, guides ADS in making

lawful and contextually appropriate decisions, thus enhancing driving safety and compliance.

This ADS regulation project involves simulation testing and SIL within the parallel

validation process. Note that while experiments were conducted using the ADS vehicle, due to

safety and legal constraints, the vehicle was fully controlled by a human driver, and regulation-

related outcomes were displayed on a webUI. As such, this phase qualifies as SIL rather
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than HIL, since automation functions were not engaged during testing. Validation of this

regulation-aware framework occurs across both simulated and controlled real-world settings.

Simulated scenarios, carefully engineered to reflect complex, multi-agent traffic conditions,

test the ADS’s compliance with various legal challenges, such as speed limits, pedestrian

zones, and yielding requirements. Real-world tests further evaluate the framework’s practical

effectiveness, demonstrating how vision-language models (VLMs) support integrated detection,

reasoning, and planning within a legal context. Through a combination of regulation-aware

path planning, scenario engineering, and SIL testing, this approach illustrates the framework’s

scalability and adaptability, marking a significant step toward reliable, socially responsible

autonomous driving systems that enhance public trust and safety.

5.1 INTRODUCTION

With the continuous advancements in Automated Driving Systems (ADS) technology, the

goal of achieving fully automated mobility is becoming increasingly attainable. Recent

developments in ADS research and testing have showcased substantial improvements in

sensor-based perception, vehicle control, and decision-making algorithms [32]. As these

technologies evolve, it is important to ensure that autonomous vehicles (AVs) comply with

laws and regulations for their safe and efficient operation. Many developers recognize that

legal compliance plays a key role in the public acceptance and operational success of AVs.

However, despite the growing focus on accountability, there has been a noticeable gap in

current regulatory efforts, particularly in the absence of a machine-readable database designed

specifically for ADS software and the lack of comprehensive ADS-related regulations within

different jurisdictions.

In response to this gap, the US Federal Highway Administration (FHWA) initiated

the development of a prototype data framework for traffic regulations in 2021 [24]. This

framework aimed to bring together various stakeholders involved in traffic regulation to
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start discussions on developing voluntary specifications. These voluntary specifications are

vital for ensuring that infrastructure owners and operators, ADS developers, and technology

providers operate on a standardized foundation. On the research front, recent efforts have

been made to integrate legal constraints into the ADS decision-making and path-planning

process. Building on these efforts, our proposed regulation-aware path-planning framework

integrates a comprehensive ADS traffic law database with a novel planning process that uses

a finite state machine and cost functions to evaluate multiple plans based on safety, comfort,

and legal compliance. Moreover, a Vision-Language Model (VLM) is integrated to directly

interpret driving conditions, eliminating the need for specialized models like object detection

or trajectory prediction, which commonly rely on domain-specific knowledge and may struggle

in certain conditions. This enhances the framework’s robustness and adaptability to complex

traffic situations.

This paper’s contribution is two-fold: (1) proposing a practical path planning framework

that feasibly integrates with VLMs for traffic regulation-aware planning (as compared to

direct VLM- or LLM-based driving which has been proved as unreliable); and (2) perform

simulation and real-world vehicle experiments to assess the framework’s performance and

understand the potential and challenges of VLM in this critical use case for future reference.

5.2 RELATED WORKS

Recent research highlights the need for ADS systems to comply with traffic laws, recognizing

the critical role of regulations in ensuring the safe and effective operation of autonomous

vehicles. Ilková et al. [35] provide an overview of AV legal frameworks in Europe and the

United States, emphasizing the importance of understanding how legal provisions apply to

ADS and the need for harmonizing regulations across jurisdictions. Bakar et al. [2] similarly

stress the necessity of unified global guidelines to enhance roadway safety, as inconsistent traffic

laws pose challenges for AV developers. While these studies emphasize legal accountability in
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ADS operations, current regulatory efforts have yet to develop machine-readable databases to

support ADS decision-making fully. LEE and Hess [40] also highlight progress in addressing

national regulations but note the complexities in adapting AV software to comply with

varying legal requirements across regions.

Efforts to integrate legal constraints into ADS decision-making and path planning are

gaining momentum. Zhang et al. [106] introduced a framework using formal methods to

detect violations of scenario-based driving rules, providing a rigorous approach for ADS to

comply with traffic regulations. Cho et al. [15] proposed a deep learning model that predicts

vehicle paths while assessing regulatory compliance. De Vries et al. [19] incorporated traffic

regulations into a cost function within a local model predictive contouring control (LMPCC)

system for real-time motion planning. Despite these advances, many methods are limited by

focusing on a narrow set of regulations and lacking jurisdictional awareness. Additionally,

frameworks like AVChecker and LMPCC often depend on specialized detection models and

act on pre-selected sets of traffic regulation, reducing their real-world applicability. It is

necessary to utilize the comprehension and reasoning capabilities for such complex tasks.

5.3 METHODOLOGY

5.3.1 Framework Overview

The proposed framework, illustrated in Fig.5.1 follows a structured approach to integrating

traffic laws into real-time ADS decision-making through both mission (strategic) and motion

(tactical) planning stages. In the mission planning phase, the Finite State Machine(FSM) [57]

evaluates potential driving plans based on real-time perception data. To enhance regulation

compliance, a VLM named LLaVA [46], is integrated to work interactively with the FSM,

interpreting the driving scene and advising on relevant traffic regulations based on FSM

status, the interactive process between the FSM and VLM, highlighted in orange in Fig.5.1.

After available plans are generated in the mission planning stage, the process moves to
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Figure 5.1: The overview of the path planning framework where the path planning modules
are highlighted in blue, the interaction between VLM and mission planning is highlighted in
orange, and the ADS regulation database is highlighted in green.

motion planning, where a detailed trajectory is created from key waypoints using cubic spline

interpolation [58]. A cost function is then applied, taking into account factors such as comfort,

economy, safety, and legality. This ensures that the selected plan not only complies with

traffic laws but also optimizes overall driving performance, providing a scalable solution for

real-time ADS planning.

5.3.2 ADS Regulation Database

Traffic regulations in the U.S. vary by state and locality, posing challenges for Automated

Driving Systems (ADS). In the initial phase of this study, common elements from the Uniform

Vehicle Code (UVC) [68], California Vehicle Code (CVC) [84], Los Angeles County Vehicle

Code (LACVC) [50], and City of Los Angeles Vehicle Code (CLAVC) [16] were analyzed

to create a foundational ADS database. This database transitions traffic legislation into

a machine-readable format, facilitating the accommodation of diverse regulations across

different jurisdictions.
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To further this effort, the study develops a state-level ADS regulation database adaptable

to local entities. Vehicle codes are analyzed to extract relevant metadata, including effective

dates, legislative locations, reference numbers, and descriptions. Each code is assigned an

ID and categorized as “Condition” or “Result,” with exceptions where necessary, converting

them into machine-readable commands. During the database generation, traffic codes are

broken down into attributes, as shown in Table 5.1, allowing the perception module to assess

the legality of current driving conditions based on these attributes. Table 5.1 illustrates the

workflow, highlighting how attributes are derived from the raw regulation text.

Table 5.1: An example regulation of the traffic regulation database

Code Text Condition Result Legality Attribute:
Road
Type

Attribute:
Max
Speed

“A person who
drives a vehicle
upon a high-
way at a speed
greater than
100 miles per
hour is guilty
of an infraction
punishable, as
follows:. . . ”

“A person who
drives a vehicle
upon a high-
way at a speed
greater than 100
miles per hour.”

“is guilty
of an
infrac-
tion.”

FALSE Highway 100 mph

5.3.3 VLM Integration

Planning is a critical component of ADS software architecture, particularly regarding legal

regulations and safety. Most conventional ADS frameworks [21, 94, 104] use a two-stage

planning strategy: strategic or mission planning, followed by tactical or motion planning. A

key limitation of these frameworks is their reliance on multiple specialized models to analyze

regulation-related traffic conditions, requiring various detection models to interpret the traffic

scene. The proposed work addresses this by introducing a VLM to provide a high-level
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description of the traffic environment, including key elements like intersections and traffic

lights, offering a generalized, one-step solution for regulation-oriented environment assessment

and subsequent planning decisions.

Figure 5.2: Framework structure of the VLM integrated path planning framework.

To integrate the VLM into the perception system, it is crucial to identify its upstream

and downstream modules. As shown in Fig.5.2, the VLM is incorporated into the ADS

perception process, receiving camera frames to assess the driving environment. The resulting

text summaries of regulation-related traffic conditions are sent to the FSM, the ADS planning

module responsible for decision-making. This process, commonly named “instruction running”,

uses instruction-tuned large language models (LLMs) like LLaVA, a multimodal model

combining a vision encoder and LLM for enhanced visual and language understanding [46].

LLaVA leverages GPT-4 [69] to generate multimodal instruction-following data and has shown

strong conversational abilities, particularly in synthetic multimodal tasks. An input-output

example of the LLaVA is summarized in Table 5.2.

The integration of LLaVA into the ADS framework aims to enhance the system’s under-

standing of the driving environment by using LLaVA’s text responses, based on front-facing

camera input, to select relevant traffic regulations from the ADS regulation database. This
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Table 5.2: An example of LLaVA Inferring an Image with Text Prompt
Visual input example: Sample Frame from Front-facing Camera on the ADS Vehicle

Text Prompt LLaVA Response
what traffic situ-
ation do you ob-
serve from this im-
age?

The image depicts a vehicle approaching an urban intersection where the traffic light is green,
indicating it can proceed. Several vehicles ahead are detected and outlined in blue boxes.
The scene includes a pedestrian crosswalk with no pedestrians present, a bicycle lane on the
left, and a sidewalk with a scooter on the right. The surrounding environment suggests a
typical city street setting.

database classifies regulations by attributes, with values representing specific regulation

content. When LLaVA generates keywords such as “intersection” or “incoming vehicles,”

these are compared against the regulation “condition” keys in the database, ensuring the

appropriate regulations are selected.

As illustrated in Fig.5.2 and Table 5.2, LLaVA requires both a front-facing camera frame

and a text prompt to focus on the most relevant features of the scene. The prompt is crucial

for directing LLaVA’s attention to the key aspects of the current driving scenario, and it

must be contextually related to the situation. To achieve this, the FSM, the core of the

strategic planning phase, is coupled with LLaVA prompts. The FSM defines various states and

prescribes actions based on the environment, guiding LLaVA’s inference. For instance, in the

“Lane-Following” superstate, prompts differentiate between states like “Intersection Handling”

or “Overtaking,” with instructions such as “Examine the current driving scenario, look out

for intersections or obstacle vehicles” guiding LLaVA’s focus. Table 5.3 lists text prompts

for each superstate and their transitions. Additionally, an “Emergency Handling” superstate,

triggered by safety-critical situations, overrides other states but operates independently from
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LLaVA, relying on distance measurements rather than visual inference.

In summary, integrating LLaVA with the regulation database enables ADS to process

front-facing camera frames and use the FSM to guide LLaVA’s inference based on driving

scenarios. This approach ensures accurate identification of relevant traffic regulations for

path planning. By using FSM-driven prompts at each state, LLaVA helps the ADS maintain

awareness of the current driving environment, effectively summarizing complex real-world

scenarios for regulation compliance.

Table 5.3: Superstate Corresponding Text Prompts and Transitions

SuperStates LLaVA Text Prompt Possible Next Super-
states

Lane Following “Examine the current driv-
ing scenario, look out for in-
tersections or obstacle vehi-
cles.”

Lane Following; Intersection
Handling; Overtaking

Intersection Han-
dling

“Examine the current driving
scenario, check of the ego ve-
hicle is still facing an inter-
section.”

Intersection Handling; Lane
Following

Overtaking “Examine the current driving
scenario, check nearby lane
occupation conditions, and
look out for intersection.”

Overtaking; Lane Following;
Intersection Handling

5.3.4 Cost Function

The cost function consists of mathematical formulas used to measure the attractiveness of

various potential travel plans, considering the vehicle’s current state and planned trajectory.

Utilized in decision-making procedures, this function evaluates different plans according to a

uniform standard, selecting the most suitable plans with the lowest cost for the next step.

The cost function takes into account factors including the plan’s legality, safety and comfort,

and the distance to the global navigation goal following the execution of the plan, where

each cost is calculated based on the current vehicle driving status, such as location, speed,
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acceleration, jerk, and legality. The final cost score is the sum of the scores across all these

factors. It is worth noting that each plan has a final cost score once the detailed trajectory

is generated, but legal constraints are also considered during the mission planning process,

assigning a legal cost to mission plans.

5.4 EXPERIMENTS

The experiments in this study consist of two phases: simulation and real-world tests. In

the simulation phase, the goal is to validate the framework’s functionality with LLaVA as a

perception tool to ensure regulation compliance in ADS vehicles. These tests assess the entire

ADS cycle, from perception to actuation, focusing on the legality and safety of the system’s

trajectories. The real-world tests, on the other hand, evaluate system performance under real

driving conditions, where LLaVA’s inference efficiency is crucial for real-time decision-making.

5.4.1 Simulation Test

The simulation tests in this study use UCLA’s OpenCDA platform [102], an open-source and

full-stack simulation framework integrating key ADS components like perception, localization,

planning, control, and V2X communication. The scenario tests multiple traffic regulations

at once, reflecting real-world complexity. The ego vehicle starts in the rightmost lane of an

intersection with a 35 mph speed limit, encounters a cyclist, makes a right turn, and continues

through a school zone with a reduced 25 mph limit, requiring it to navigate various challenges

and comply with traffic regulations. In the simulated scenario, three traffic regulations

co-exist:

• Cyclist avoidance: A driver of a motor vehicle shall not overtake or pass a bicycle

proceeding in the same direction on a highway at a distance of less than three feet

between any part of the motor vehicle and any part of the bicycle or its operator.

California Vehicle Code Section 21760 [65].
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• Right turn on red: Except when a sign is in place prohibiting a turn, a driver, after

stopping as required by subdivision (a), facing a steady circular red signal, may turn

right. California Vehicle Code Section 21453 [64].

• School Zone: A 25 miles per hour prima facie limit in a residence district, on a

highway with a posted speed limit of 30 miles per hour or slower, when approaching, at

a distance of 500 to 1,000 feet from, a school building. California Vehicle Code Section

22358 [66].

5.4.2 Real-World (HIL) Test

Real-world testing evaluated the regulatory data framework’s performance, focusing on its

adaptability and compliance with traffic regulations in dynamic conditions. The test scenario

occurred at a UCLA campus intersection, where the ego vehicle, approaching from the

eastbound direction, made a right turn when conditions allowed. Along the route, the ADS

system identified key traffic elements, including signs, vehicles, and vulnerable road users,

all tied to regulations. The VLM’s ability to recognize lanes and speed limits was tested

to ensure compliance and contribute to a legal driving plan. Due to regulation and safety

constraints, a human driver was operating the vehicle while the perception and planning

modules remained fully functional. The ADS vehicle processed input from a front-facing

camera and GNSS unit, with the VLM providing real-time text-based inferences to guide

planning. A WebUI displayed FSM information, detection outputs, and VLM responses, with

static planning not visualized due to the human driver. The ADS vehicle and the WebUI

interface are presented in Figure 5.3.

5.5 RESULTS

This section presents results from simulation and real-world testing of the proposed framework

for ADS regulation compliance. Simulation tests validate overall functionality, while real-world
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Figure 5.3: ADS vehicle and the real-time WebUI interface for VLM and FSM visualization.

tests focus on the system’s ability to handle complex traffic scenarios and make real-time,

regulation-based decisions. The framework’s efficiency is also assessed, confirming its ability

to manage real-world driving tasks while ensuring legal and safe operation.

5.5.1 Simulation Testing

The simulation results demonstrate the robustness of the proposed path planning framework.

In a complex use case involving three traffic regulation scenarios, the ego vehicle successfully

overtakes a cyclist, stops at a red light before turning, and adjusts speed in a school zone.

The VLM’s inference and the framework’s path planning were also tested against simulated

human-driven traffic, showing effective performance.

Overtaking Cyclist

Two key events occur in this scenario: the ego vehicle detects the cyclist ahead and initiates

overtaking, marked by the first moment, and completes the maneuver by returning to its

original lane. This scenario presents a dual-layered challenge in planning. The corresponding

simulation snap is presented here in Figure 5.4.

In this scenario, the ego vehicle decides to overtake a cyclist ahead, taking into account

traffic regulations and the speed of surrounding vehicles. It verifies the legality of overtaking

based on dashed road markings and ensures the lane is wide enough to maintain the required
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Figure 5.4: Trajectory plot and the simulation screenshot when ego ADS vehicle overtaking
a cyclist.

3-foot clearance. Once these conditions are met, the framework transitions from the lane-

following state to the overtaking state. During the maneuver, the vehicle adheres to speed

limits and maintains a safe distance. After completing the overtaking, the vehicle returns

to the lane-following state. This complex maneuver demonstrates that the VLM accurately

recognizes the cyclist, and the FSM effectively guides the VLM to assess the target lane

conditions, showcasing the framework’s coherent functionality across the VLM and FSM.

Right Turn on Red

Making a right turn on red poses a complex challenge for automated driving. The ego

vehicle must detect the red light, stop at the line, and then proceed with the turn. This

stop-and-check process is marked by two red dashed lines, as shown in Figure 5.5.

Figure 5.5: Trajectory plot and the simulation screenshot when ego ADS vehicle making a
right turn during red light.
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The ego vehicle must first confirm the legality of a right turn on red, as regulations vary

by region. This requires the automated driving system to reference a comprehensive traffic

rule database for the jurisdiction. Once legality is established, the vehicle ensures safety by

adhering to the California Vehicle Code (CVC) and coming to a complete stop before turning.

Using its sensors, the vehicle assesses the environment for oncoming traffic and proceeds

only when safe. The process transitions from lane-following to intersection-handling, with

the path planning framework checking for prohibitive signs before authorizing the turn if

conditions allow. Compared to previous regulations, this scenario involves recognizing multiple

traffic signs, further validating the VLM’s capability in understanding complex environments,

generalizing its ability to comprehend widely different objects, and demonstrating its seamless

integration with the FSM.

Variable Speed Limit

In this scenario, managing variable speed limits in school zones poses a significant challenge

for automated driving systems, as they must anticipate upcoming zones. The ego vehicle,

operating in the lane-following superstate, detects the school zone and begins decelerating

early, marked by a red vertical line. The accurate detection of such zones—either through

visual recognition or HD-map annotation—is crucial to ensure pedestrian safety, particularly

for children. School zones require a controlled reduction in speed, and the vehicle must reach

the correct speed limit by the time it enters the zone, ensuring smooth driving without abrupt

changes. The yellow dashed vertical line shows the vehicle maintaining reduced speed through

the zone, with the framework calculating proximity and speed limits accurately despite the

regulation having a vagueness score of one. The system effectively adjusts the vehicle’s speed

and continues the route while complying with the regulation.
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Figure 5.6: Trajectory plot and the simulation screenshot when ego ADS vehicle adjusting
speed for areas with different speed limit regulations.

5.5.2 Real-World Testing

Real-world testing introduces greater complexity by incorporating actual traffic signs and

dynamic traffic, including vulnerable road users (VRUs). Unlike simulated scenarios, this

environment is more unpredictable, requiring the VLM to identify and interpret key traffic

elements accurately. The VLM must process real-time data and provide precise inferences for

the ADS to generate lawful and feasible driving plans. The system’s ability to safely and legally

navigate real-world conditions depends on the VLM’s capacity to capture and understand

the relevant traffic environment. To demonstrate LLaVA’s effectiveness in identifying critical

traffic scenarios, Table 5.4 lists the key elements detected and their corresponding inference

responses.

As shown above, Table 5.4 summarizes the VLM’s performance in identifying key traffic

scenarios, which is crucial for the framework’s compliance with traffic regulations. Results

show the VLM successfully detected most scenarios except for the “end road work” and “stop

here on red” signs. Overall, it correctly identified 7 out of 9 key scenarios, demonstrating

promising performance for most driving conditions. In addition, the tested VLM excels

in recognizing dynamic elements like vehicles, pedestrians, cyclists, and intersections but

struggles with less common or text-heavy signs, especially in zero-shot inference. Despite

these limitations, results indicate strong potential for real-time traffic scene comprehension

through VLM.
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Table 5.4: VLM Detection and Response in Key Traffic Scenarios
Meaningful Traffic
Scenario

VLM Detection
Result

VLM Response

Nearby intersection Detected “Ego vehicle is approaching an in-
tersection. . . ”

Yield for pedestrian Detected “The intersection appears to have
pedestrian crossing, the ego vehi-
cle should stay alert and yield to
pedestrians.”

Road work warning
sign

Detected “There is a visible warning sign:
Road Work Ahead.”

Speed limit sign Detected “The speed limit sign indicates 20
mph maximum speed.”

Traffic light - red Detected “There is a visible red traffic light
in sight.”

Traffic light - green Detected “There is a visible green traffic
light in sight.”

Bicycle lane Detected “There is a visible bicycle lane.”
End road work warn-
ing sign

Miss Detected as
road work sign.

“There is a visible warning sign:
Road Work Ahead.”

Stop here on red sign Miss Detected as
stop sign.

“There is a visible stop sign.”

VLM Efficiency

The inference speed of the tested VLM is crucial for real-time ADS planning, as it directly

affects the system’s responsiveness and overall performance. As part of the perception module,

the VLM’s speed dictates the frequency at which the path planning framework operates,

with other ADS modules running at a minimum of 5Hz. Ensuring the VLM processes data

quickly enough is essential for maintaining system reliability and safety. Image resolution

impacts VLM performance, with higher resolutions offering more detail but requiring more

processing time. Additionally, different model backbones present trade-offs between accuracy

and computational efficiency. A comparison of these models, balancing inference capability

and speed, is shown in Table 5.5, highlighting the key factors for real-time ADS applications.

The above Table 5.5 indicates inference frequencies for different LLaVA [46] model

quantizations using 1080p frames from both simulation and real-world tests. The LLaVA-
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Table 5.5: LLaVA [46] inference frequency with different models and different quantization
Model Quantization Inference Frequency
LLaVA-1.5-7B 4 bit 2 Hz
LLaVA-1.5-7B 8 bit 0.5 1 Hz
LLaVA-1.5-13B 4 bit lower than 2 Hz
LLaVA-1.5-13B 8 bit lower than 0.5 Hz

1.5-7B model with 4-bit quantization consistently performs best at 2 Hz, while the 8-bit

version ranges between 0.5 and 1 Hz. The LLaVA-1.5-13B model with 4-bit quantization

occasionally reaches 2 Hz but typically runs slower, with its 8-bit version falling below 0.5 Hz.

Based on these results, the LLaVA-1.5-7B with 4-bit quantization is preferred for its reliable

speed. Although lowering image resolution could increase speed, it sacrifices critical details

like traffic light recognition, making high-resolution input with efficient quantization essential

for real-time ADS planning. Overall, the VLM’s inference speed meets the 2 Hz requirement

for strategic planning tasks using the onboard computer with NVIDIA RTX 4070 GPU.

5.6 CONCLUSION

In conclusion, this study demonstrates the effectiveness of a novel, generalized ADS planning

framework designed for traffic regulation compliance. Key advancements, tested in both

simulated and real-world environments, include the integration of a VLM, customized prompt

texts structured with the FSM, and a comprehensive regulation database. These elements

work together to ensure the system accurately interprets and adheres to traffic regulations,

enhancing the overall reliability and safety of ADS planning. Overall, the proposed framework

addresses existing limitations in ADS traffic law and regulation awareness. Testing results

confirm the effectiveness of the proposed framework and indicate the VLM has promising

potential in real-time strategic planning tasks. In terms of future work, efforts will focus on

fine-tuning VLMs to achieve more accurate scene interoperability and specialized domain

expertise, ensuring the capability of handling a more comprehensive range of traffic scenarios
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with greater precision. Additionally, refining the zero-shot mechanism to a multi-shot

prompting method will help the model better utilize situational prior knowledge and previous

prompts, thereby enhancing its understanding of specific scenes and overall performance.
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Chapter 6

CDA Distributed Testings with

Heterogeneous Agents: Distributed

Testings using VOICES System

Distributed testing is a comprehensive evaluation method for Cooperative Driving Automation

(CDA) that enables multiple, independently operated agents—vehicles, roadside units, and

infrastructure elements—to interact and coordinate in real-time across both physical and

virtual environments. This testing approach is essential for accurately assessing CDA systems,

as it mirrors the complex, multi-agent ecosystem in which CDA applications must operate.

Distributed testing involves simultaneous testing across different locations and setups, allowing

for interaction between diverse CDA agents, each with unique control systems and capabilities,

which closely reflect the real-world CDA environment. To support this testing need, a full-

stack CDA framework, OpenCDA, was utilized to establish a local testing environment,

enabling participation in a joint distributed effort through the VOICES system. This setup

incorporates heterogeneity—where each CDA agent operates independently—ensuring that

the CDA system’s performance, interoperability, and scalability can be assessed in conditions

that resemble real-world complexity.
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Aligned with the parallel framework, distributed testing integrates several key sections to

provide a robust evaluation environment. Both virtual and physical parallel environments

are leveraged, combining assets like real vehicles, roadside sensors, and infrastructure with

virtual elements such as digital twins, SUMO, and CARLA. Scenario engineering is applied

to create diverse and challenging testing conditions that mirror real-world situations. In

the parallel validation component, testing progresses through multiple stages, including SIL,

HIL, and distributed testing, each introducing higher levels of real-world complexity and

disturbance. Finally, parallel operations incorporate coordination and control operations as

well as experiment and evaluation operations, ensuring that all agents interact dynamically

and that data is systematically collected and analyzed. Through this comprehensive setup,

partners such as Mcity, Argonne National Laboratory (ANL), Oak Ridge National Laboratory

(ORNL), and the Federal Highway Administration (FHWA) conduct coordinated, nationwide

tests, validating CDA systems’ readiness for complex real-world deployments.

6.1 Introduction

The surface transportation ecosystem is highly complex, with a wide range of independent

organizations developing and optimizing their systems according to unique objectives and

priorities. Since these systems are typically operated in isolation, the surrounding systems

with which they interact effectively become "black boxes," leading each organization to

make assumptions—often imprecise—about the behaviors of other systems. To support

the research and development of a cohesive, distributed transportation system, the U.S.

Department of Transportation (USDOT) funded two projects under the Virtual Open

Innovation Collaborative Environment for Safety (VOICES) initiative, led by the Federal

Highway Administration’s (FHWA) Saxton Transportation Operations Laboratory and

the MITRE Corporation. The goal of these projects is to create and validate a secure,

mixed-reality test environment where multiple organizations can integrate their existing
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simulated and physical test assets and engage with other research platforms in real-time.

This type of environment allows for early detection and resolution of integration issues

across systems, providing a safe testing space before physical trials. Moreover, this approach

enables developers to utilize their own models without needing to re-code for a single, unified

simulation platform, making collaborative testing more efficient and accessible. This type

of testing is highly suited for the integration of heterogeneous advanced intelligent systems

such as CDA and smart infrastructure in which development is happening across multiple

sectors. These systems are potentially transformative but necessitate careful integration with

the existing transportation ecosystem, as well as emerging technologies.

As CDA technologies evolve, extensive testing is required to ensure their reliability, safety,

and performance. Waymo has driven more than 20 billion miles in simulation to identify the

most challenging situations and run approximately 40,000 unique scenarios in closed-course

environments to evaluate their technologies [92]. California reported that approximately 5.7

million test miles were driven cumulatively by CDAs produced by a variety of companies

from December 1, 2021 to November 30, 2022 [29]. Kalra and Paddock mentioned that it

may require 5 billion miles to be driven to demonstrate autonomous vehicles’ failure rate is

statistically significantly lower than the human driver failure rate [36]. Further, even for a

small change in a single line of code of an autonomous driving system, the counter of miles

driven resets back to zero and the entire test must be repeated. Another limitation is that

there is a substantial difference between miles driven on an empty stretch of road versus

miles driven in heavy traffic.

A simulation platform provides a promising approach for evaluating CDA systems by

enabling various driving scenarios without real-world risks [81]. Commonly, simulation testing

involves virtual CDA systems interacting within a modeled traffic network using platforms

like CARLA [21], LGSVL [77], CarMaker [83], and CarSim [12], which validate autonomous

systems on simulated or real-world maps with vehicle dynamics and sensors such as cameras,

LIDAR, and RADAR. However, simulations alone require extensive calibration and may miss
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edge scenarios that real environments may occasionally present. Therefore, mixed traffic

testing is essential as unique behaviors of different manufacturers’ algorithms and intelligence

levels across systems impact CDA system performance. Advanced testing approaches like

hardware-in-the-loop (HIL) integrate real vehicle hardware in virtual setups to identify issues

early and reduce on-road testing risks, with research by Cantas et al. [11] and Jiaqi et al. [54]

utilizing HIL setups combining traffic signal controllers and DSRC devices with simulated

networks for V2X testing. Vehicle-in-the-loop (VIL) testing, bridging HIL and real-world

environments, allows real vehicles in virtual spaces for precise energy consumption data and

accurate vehicle dynamics representation [12]. Rengarajan et al. [76] and Miriam et al. [20]

utilized VIL with chassis dynamometers for CDA energy analysis, and Shao et al. [81] used a

hydrostatic dynamometer to test CDA robustness and real-time capabilities.

However, none of the SOTA validation methods have been able to deliver a method

that integrates multiple heterogeneous agents to interact in the same environment. The

integration of heterogeneous platforms, such as simulation, on-road, and on-dynamometer

testing platforms in a distributed testing environment has potential to address all these

research questions. Therefore, distributive testing has emerged as a pivotal approach in this

context, leveraging the strengths of multiple stakeholders, including automotive manufacturers,

technology developers, regulatory bodies, and research institutions. Distributive testing

enables all participants to communicate among themselves through a common network and

exchange simple and complex data among themselves. Distributive testing is widely used

in many industries, such as healthcare, for collaborative learning to train interprofessional

teams [1, 44] military for training teams in emergency situations [39,70]. In the automotive

industry, distributed testing offers numerous benefits, such as enabling large-scale testing of

new driving features across a wide range of complex scenarios. It also supports early-stage

testing of critical hardware components, including ECUs (Electronic Control Units), batteries,

and other vehicle subsystems, under various conditions. To the best of our knowledge, there is

no established distributed testing architecture that has been used in the automotive industry
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to understand the behavior of different entities when they operate collaboratively.

This paper presents a distributed test for CDA applications that involve multiple heteroge-

neous agents operating in individual and mixed-reality environments. This distributed testing

addressed multiple crucial CDA challenges, such as identifying if multiple geographically

distributed sites simultaneously co-simulate and interact with micro traffic across a cloud-

based network, understanding the impact of surrounding traffic when vehicles demonstrate

cooperative driving while interacting with smart infrastructure systems, etc. The distributed

test is conducted as a collaborative effort among multiple entities, including UCLA, and is

officially designated as the Pilot 2 test.

6.2 Methdology

In order to validate OpenCDA’s ability to interact with heterogeneous agents within a

distributed testing framework, UCLA participated as a major entity in the Pilot 2 distributed

test. The test has two primary objectives: ensuring system functionality and connectivity

through SAE standard messages for interoperability and evaluating interactions among diverse

heterogeneous agents within a shared environment. During the test, UCLA utilizes OpenCDA

within a local environment that engages seamlessly with other agents in the distributed

network, with the VOICES system facilitating data exchange via SAE messages to ensure

real-time interoperability and data synchronization across test sites. This section elaborates

on the UCLA-OpenCDA testing environment, provides an overview of the distributed systems

for other entities, and introduces the detailed distributed test plan.

6.2.1 UCLA-OpenCDA Testing Environments

UCLA is a key participant in the distributed experiments within the VOICES framework,

focusing on testing OpenCDA’s ability to interact effectively with heterogeneous agents

and contribute to broader traffic system objectives. In the co-simulation experiments,
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the UCLA vehicle, controlled by OpenCDA, will operate under human input, providing

human-in-the-loop testing to assess adaptive responses in a mixed-reality environment. For

application deployment, OpenCDA will decode SAE J2735 messages in real-time and apply

an eco-approach algorithm designed to optimize vehicle trajectory as it approaches signalized

intersections. This approach aims to improve traffic flow efficiency and reduce emissions by

smoothing vehicle movements. Through these experiments, UCLA is testing OpenCDA’s

interoperability and scalability in diverse scenarios, supporting cooperative driving automation

advancements and demonstrating the framework’s potential in real-world-like applications.

Local System Overview

As shown in Figure 6.3, the VOICES system integrates four potential testing environments,

with UCLA participating as one of the simulated testing environments in the distributed

test. In UCLA’s local setup, a virtual testing environment projects the data and status of all

other agents in real time, allowing interaction within the shared simulation. The simulated

world is established and managed by VOICES, while UCLA’s ego vehicle is locally controlled

by OpenCDA—a CDA system equipped with perception and control capabilities to interact

dynamically with other agents. Heterogeneity is a central aspect of the distributed test, as

each entity operates independently and maintains individual control over its systems. Within

this setup, UCLA’s OpenCDA directs the ego vehicle to respond to and interact with other

individually controlled agents, creating a realistic simulation of diverse agent behaviors and

interactions in the shared testing framework.

The simulation is powered by the CARLA platform, where multiple entities interact

in real-time. Within this environment, the UCLA vehicle is fully controlled by OpenCDA

and operates under dynamic conditions. As shown in Figure 6.1, OpenCDA is an open

co-simulation-based research/engineering framework integrated with prototype cooperative

driving automation (CDA) pipelines as well as regular automated driving components (e.g.,

perception, localization, planning, control). Unlike traditional simulations where OpenCDA
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Figure 6.1: OpenCDA System Diagram.

initiates the simulation by spawning vehicles from a static configuration file, the VOICES

system manages the entire simulation environment, including receiving test data from all

participating entities and managing the local CARLA environment configurations. OpenCDA

adapts by spawning the UCLA vehicle at a location specified by VOICES, which ensures

flexibility and integration across the distributed system. Importantly, each entity runs

CARLA locally to accommodate the high computational demands and to interface with its

unique systems and hardware, which differ in communication methods. This setup allows

each entity to utilize the CARLA server within its local network, ensuring efficient integration

with its specific hardware and software configurations. The VOICES system also manages

the data streams between entities. It controls the overall simulation environment, enabling

flexible distributed testing where each entity operates independently while interacting within

the shared simulation data stream.

Simulated (Virtual) Testing Environment

A fundamental building block for a distributed test is a mutual testing environment accessible

across all platforms. By establishing this mutual environment, each agent can locate itself,
138



Figure 6.2: High definition map structure.

perceive the shared surroundings consistently, and identify the locations and conditions

of other agents. This mutual understanding is essential for any meaningful interaction

and potential cooperation, as it guarantees geometric consistency and provides a common

foundation for all traffic movements. In the distributed test, the testing environment spans

both a virtual and a physical test track, also known as the digital twin, centered around the

Mcity testing facility.

Mcity’s digital twin is a multi-layered virtual representation of the real-world Mcity test

facility, built using a range of digital assets within the open-source CARLA simulator. As

shown in Figure 6.2, three primary layers define the environment: the 3D geometry layer, the

road structure layer, and the dynamic layer. The 3D geometry layer provides a detailed model

of road surfaces and surrounding areas, with realistic textures and high-precision positioning

data accurate to within 1-3 centimeters. The road structure layer represents the layout of

roads, lanes, intersections, traffic signals, and signs across Mcity, formatted in OpenDRIVE

for seamless integration with CARLA. The dynamic layer includes active traffic movements

during the simulation, such as traffic signals, nearby vehicles, and evolving environmental

conditions, capturing the dynamics of the testing environment in both virtual and physical

aspects.
139



In the road structure layer, the road network map, formatted in OpenDRIVE, provides

essential functionality for all participating agents. With the topology map in OpenDRIVE

and the digital twin integrated within CARLA, a comprehensive set of APIs enables the

determination of road connectivity, lane markings, and access to critical regulatory data.

This information is crucial for automated driving systems, including OpenCDA, to support

route planning (using topology maps like lanelet2) and trajectory regulation. For example,

OpenCDA identifies the current and target lanelets based on Cartesian coordinates and

calculates a global route from the starting point to the destination. Along this route,

OpenCDA updates a detailed path every 5 seconds, adjusting to the current speed limit

obtained from the network map. For maneuvers such as stopping at traffic lights and lane

following, precise lane marking data—including lane lines and stop bars—is extracted directly

from the map, guiding accurate vehicle movements within the simulation.

In the 3D geometry layer, the digital twin captures precise elevation and surface details that

extend beyond standard GPS accuracy. Additional methods, such as fixed-wing flyover LiDAR,

photogrammetry, and terrestrial-based LiDAR, supplement GPS data, allowing the digital

twin to accurately reflect natural terrain features like grass-covered hills and dirt patches,

as well as constructed elements like curbs and sidewalks. This detailed elevation mapping

ensures that Mcity’s topography is faithfully represented in the simulation, supporting realistic

interactions with diverse surfaces, from gravel to pavement to sidewalks. Additionally, the

3D geometry layer incorporates accurately aligned and complex road geometries calculated

with RoadRunner, including transitions such as highway segments leading into traffic circles

and roundabouts adjacent to city blocks. This precise alignment creates a comprehensive

and lifelike testing environment for a variety of driving scenarios.

Deployed CDA Application

The CDA application deployed for the distributed test is the eco-approach algorithm, an

advanced method designed to optimize fuel consumption and driving efficiency by dynamically
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adjusting speed and energy use in real time [52]. Based on the Relaxed Pontryagin’s Minimum

Principle (RPMP), this algorithm addresses the computational challenges of traditional

optimal control by simplifying certain constraints, making it feasible for real-time application

in dynamic environments. Through RPMP, the eco-approach algorithm calculates near-

optimal speed trajectories, balancing kinetic energy with throttle and braking inputs to

minimize fuel consumption as vehicles approach intersections. By continuously monitoring the

vehicle’s speed, intersection distance, and current signal phase, the algorithm adjusts the speed

profile to align with green lights, aiming to reduce unnecessary stops and sudden decelerations.

This smooth trajectory minimizes the energy lost during braking and acceleration, allowing the

vehicle to "glide" through intersections whenever possible. Unlike fixed-parameter models, the

eco-approach algorithm adapts to real-time inputs, adjusting its decisions based on real-time

signal data and the vehicle’s immediate environment. This adaptability allows it to optimize

fuel efficiency dynamically, promoting smoother, more energy-efficient driving patterns in

response to changing conditions. The eco-approach algorithm not only improves the lead

vehicle’s efficiency but also sets a smoother traffic flow that aligns well with cooperative

driving applications, showcasing its effectiveness in real-world traffic scenarios.

In the context of OpenCDA, the eco-approach algorithm leverages the full perception

stack, which includes localization and perception modules to determine the precise location

of the next signal and its distance from the vehicle’s current position. OpenCDA also receives

J2735 data to assess the current signal phase, the timing of upcoming phases, and the duration

of each phase. Using this information, OpenCDA’s trajectory optimization and downstream

planning and actuation modules work in unison to implement a smooth, continuous trajectory

that allows the vehicle to pass through intersections without unnecessary stops. This planned

trajectory aligns the vehicle’s speed with the timing of the green light, thus maintaining the

flow and achieving the eco-approach objective.

Testing heterogeneous interactions based on the eco-approach algorithm involves observing

how OpenCDA, leading a stream of vehicles on a single-lane road, influences the entire traffic
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Figure 6.3: VOICES system architecture. BSM = basic safety message; TENA = test and
training enabling architecture; ROS = robot operating system; TL = traffic light; V2X =
vehicle to everything; TTS = traffic technology services Inc

flow at an intersection. OpenCDA can regulate the stream’s pace by slowing down slightly to

align all vehicles with the intersection’s green phase, allowing each vehicle to pass through

without stopping. This interaction becomes more complex as different participants in the

stream are controlled by separate agents, each potentially using different driving algorithms.

Some may lack eco-approach capabilities and follow basic car-following models, while others

may recognize OpenCDA’s approach and adjust their speed accordingly. For instance, a

conventional vehicle would maintain a fixed following distance, while an eco-approach-equipped

agent would observe OpenCDA’s behavior and further adjust its speed to match. Since each

agent is autonomous and varies in behavior, OpenCDA relies on real-time observations to

adjust its own trajectory, while other agents do the same. If the eco-approach strategy succeeds

and different behaviors are observed among agents, it demonstrates effective interaction and

validates OpenCDA’s eco-approach algorithm, even without shared planning principles or

intentions, thereby validating the distributed test.
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6.2.2 Distributed Testing Environments

The VOICES system is a comprehensive, distributed testing network specifically designed to

evaluate Cooperative Driving Automation (CDA) across heterogeneous agents using a variety

of testing assets, including both physical devices and systems as well as virtual systems. This

system integrates simulations, real-time communications, and various physical and virtual

test assets, enabling coordinated testing across multiple types of CDA entities within a shared

framework. VOICES is structured into distinct testing environments, each representing a

unique component of the transportation ecosystem and accommodating various CDA assets

such as simulators, dynamometers, physical vehicles, and roadside units.

These testing environments are interconnected through a central test network that syn-

chronizes all activities and manages data flow, ensuring cohesive operation across distributed

test sites. This setup allows VOICES to comprehensively assess CDA functionality with

heterogeneous agents, as each environment can host a customized combination of assets to

simulate complex, real-world interactions. As shown in Figure 6.3, the VOICES system

includes four potential testing environments linked by a unified test network, providing a

robust platform for analyzing CDA performance in distributed, mixed-reality settings:

• The Test Network is the communication backbone of the VOICES system, enabling

real-time, synchronized interactions across simulations, cloud services, and hardware.

Standardized protocols like J2735 UDP, V2X, and TENA ensure compatibility across

heterogeneous agents, creating a unified framework crucial for testing CDA in complex

scenarios.

• The dyno simulation integrates a physical dynamometer vehicle into the virtual environ-

ment via a V2X Hub, transmitting vehicle state data using J2735 BSM. Controlled by

an ADS agent, the dyno interacts dynamically with other virtual entities, supporting

hardware-in-the-loop testing. This setup enables realistic interactions between physical

and simulated systems, facilitating comprehensive CDA functionality assessment in a
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distributed testing environment.

• The simulated vehicle environment uses CARLA and OpenCDA to replicate automated

driving, with CARLA creating digital replicas in real-time and sharing live data through

a CARLA Adapter. OpenCDA, compatible with CARLA and SUMO, enables vehicles

to interpret and respond to dynamic conditions. Supported by ROS Bridge and a

J2735 Adapter, this setup ensures interoperability for engaging with virtual signals and

interacting across simulated and real-world environments.

• The manual simulation section enables human-in-the-loop control of virtual vehicles

within CARLA, connected to the main test network via the CARLA Adapter. This

setup adds real-time human input to interactions with automated systems, supporting

co-simulation by linking multiple test sites and integrating mixed-reality ADS platforms.

This framework enables distributed testing to evaluate coordinated CDA performance

across diverse scenarios.

• The VOICES system uses remote traffic signals and cloud-based services to enhance

CDA testing flexibility and realism. Key components include a traffic light generator

and virtual controller, integrated via J2735 Adapters and TENA Console for real-time

synchronization. The cloud-based TTS PSA Tool provides dynamic, centralized control,

allowing flexible traffic signal management and comprehensive CDA evaluation across

varied scenarios.

Overall, the VOICES system also aligns with the parallel development and testing framework

to create a distributed test that is part of the parallel validation module. Within the

distributed environment, heterogeneous agents—both virtual and physical—operate and

interact within a synchronized network. This setup coordinates various parallel systems, such

as dyno simulations, simulated vehicles, human-in-the-loop simulations, and remote traffic

signals, to support diverse traffic and environmental scenarios. By facilitating coordinated

operations like experimentation and iterative learning, VOICES enables realistic multi-agent
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interactions, advancing the interoperability, reliability, and scalability of CDA systems in a

controlled yet dynamic testbed. Meanwhile, the distributed test places a strong emphasis

on cooperation and agent interaction, enabling testing scenarios that would not be feasible

without multiple participants. The rest of this section will provide a brief overview of each

participant’s local testing environment.

Argonne: VIL Dynamometer Set-Up

Argonne National Laboratory supported the VOICES Pilot 2 program with a research vehicle,

a 2020 Chevrolet Bolt, equipped with advanced sensors and hardware, installed at the

four-wheel-drive (4WD) chassis dynamometer facility of the Advanced Mobility Technology

Laboratory (AMTL) at Argonne [87]. The 4WD test cell accommodates light-to-medium

duty vehicles with up to 373 kW of power per axle and can adjust ambient temperatures

from -20°C to +35°C, with simulated solar loading of 850 W/m² and a vehicle speed-match

fan reaching 100 km/h. An in-house adaptive cruise control (ACC) system was used to

operate the research vehicle, which lacks factory-installed ACC, by translating acceleration

requests from the controller into pedal actions via a robot driver (Figure 6.4). The setup’s

flexible architecture allows seamless replacement with advanced control systems. To integrate

Argonne’s vehicle-in-loop (VIL) workflow into the VOICES system, researchers developed a

software component (BSM-Generator) to update the vehicle’s location on a CARLA map

based on its speed signal and predefined waypoints.

Argonne researchers leveraged VOICES data collection system and Argonne’s existing

custom-built modular data acquisition (DAQ) capability to capture high fidelity data during

the Event 2 test to evaluate the performance of the system and vehicle’s energy consumption.

During the VOICE Pilot 2 Event 2, an Intrepid Control System logger (NeoVi Fire3) was

also installed in the vehicle to capture the vehicle’s speed signal from CAN interface and a

dSPACE MABX II collected controller data in real time. Argonne’s DAQ system enabled

integrating all these CAN, analog, digital and facility data into a single time-aligned output
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Figure 6.4: ANL VIL workflow with VOICES system.

data file for analysis. In addition, one in-house data-collection system is developed to capture

ego vehicle (ANL dyno vehicle) and lead vehicle (UCLA Open-CDA) BSMs and speed data

in real-time.

FHWA: CARMA Platform Setup

The CARMA CDA simulation environment facilitates controlled testing of cooperative driving

automation by integrating a vehicle simulator within the CARLA platform. In this setup,

CARMA controls a single simulated vehicle locally within CARLA, while other ego vehicles

from entities such as ANL, Mcity, and FHWA are continuously updated through the VOICES

platform. This setup allows real-time coordination, as VOICES shares data on the CARMA

vehicle’s conditions with these entities, ensuring synchronized interaction across multiple

simulation and physical test sites.

The CARMA simulation framework rigorously tests CDA capabilities under realistic

conditions by integrating tools like CARMA Platform, CARMA Streets, SUMO, and NS-3.

CARMA Platform handles vehicle control and cooperative maneuvers, while CARMA Streets

manages infrastructure interactions, such as traffic signals. SUMO simulates larger traffic

flows, and NS-3 provides realistic V2X communication modeling by simulating network

interactions between vehicles and infrastructure [14]. Together, these components enable
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Figure 6.5: Mcity mixed reality architecture.

CARMA to evaluate CDA applications like V2X communication, cooperative perception, and

shared decision-making, within a virtual environment that mirrors real-world conditions. The

simulation’s integration with live traffic data and hardware inputs allows CARMA-equipped

vehicles to interact with other CDA agents, creating a multi-agent environment where CDA

systems can be tested, refined, and validated for real-world application.

Mcity: Mixed-Reality Set-Up

Mcity utilized a mixed-reality setup, with their contribution being a real vehicle controlled

by an Autoware AV stack hosted on an edge computer located near the physical test facility.

The detailed system architecture is presented in FIgure 6.5. The vehicle, a Hybrid Lincoln

MKZ, was equipped with an onboard computer, an onboard localization system (featuring an

Oxford RT3000 RTK GPS and inertial navigation system), and a Dataspeed drive-by-wire

system. Localization data from the vehicle’s RTK (Real-Time Kinematic) system was shared

and transmitted to the Autoware stack at the edge. Additionally, Autoware received the

positions of other test vehicles from the VOICES system. The Autoware stack then handled

navigation and generated control commands, which were sent back to the real vehicle, where

they were executed by the drive-by-wire system.
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Mcity was also responsible for controlling the background vehicles (shown above with

green paths) remotely through TeraSim, Mcity’s cloud-based traffic behavior simulator built

on SUMO. TeraSim is trained using thousands of hours of real-world driving data, including

scenarios involving conflicts (near misses and crashes). This training allows users of TeraSim

to adjust how much adversarial behavior the background vehicles exhibit. However, because

this test focused on demonstrating distributed testing capability and gathering econometric

data, TeraSim’s adversarial behavior was set to zero, ensuring that the background vehicles

did not interfere with the AV string.

6.2.3 Experiment Design

The experiment design is structured to validate OpenCDA’s ability to interact seamlessly

with heterogeneous agents in a shared testing environment, a core objective for advancing

Cooperative Driving Automation (CDA). Following the parallel validation approach, three

key tests are organized: a simulation test to verify connectivity, a software-in-the-loop (SIL)

test to assess OpenCDA’s capability to handle SAE-standard messages, and a full distributed

test that integrates mixed-reality elements, combining virtual and physical agents in real-time

interactions. The corresponding experiments are named Pilot 2 Event 0, Pilot 2 Event 1, and

Pilot 2 Event 2, respectively.

Adhering to scenario engineering principles within the parallel framework, tailored testing

scenarios are developed for each of these experiments, crafted to mirror complex, real-

world conditions. A central focus of the scenarios is to test agent cooperation under diverse

configurations by implementing the eco-approach algorithm. The objective is for all vehicles to

pass through a signalized intersection without stopping, requiring smooth speed adjustments

and coordination. However, each agent functions independently, without shared knowledge

of other agents’ specific decision-making strategies, meaning that some agents may employ

eco-approach while others may not. This setup provides a realistic assessment of OpenCDA’s

interoperability and adaptability, testing its ability to coordinate with diverse agents in a
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mixed environment and evaluate its real-world readiness within a distributed multi-agent

CDA system. This section will introduce all experiments in detail.

Pilot 2 Event 0: System Connectivity Test (Simulation Test)

Event 0 was designed to integrate multiple entities into a single, distributed testing system

and to validate the VOICES platform and its wireless (internet) connectivity across diverse

sites. The primary goal was to assess whether multiple sites could simultaneously co-

simulate and interact with micro-traffic across a cloud-based network. By using only human-

controlled vehicles and removing CDA algorithms and specialized messaging protocols from

the equation, Event 0 minimized complexity, creating an ideal setup for VOICES to establish

a true distributed test across geographically separated entities with varied equipment types.

Following the parallel development and testing framework, Event 0 incorporated both virtual

and physical environments, including simulations, dyno setups, and actual vehicles. The

scenario involved straightforward vehicle interactions within an urban setting modeled as

the Mcity digital twin, providing a simple yet effective environment for evaluating VOICES

system coordination.

The event consisted of two parts: Part 1 involved two vehicles controlled by SUMO

and one UCLA OpenCDA vehicle navigating a signalized intersection. The SUMO vehicles

entered the intersection from opposite directions on a green light, while the OpenCDA vehicle

approached on red and proceeded once the light turned green (see Figure 6.6 for starting

positions and paths). Part 2 expanded the setup to eight participants—Mcity, TTS, ANL,

ORNL, UCLA, Econolite, FHWA, and VW—each controlling a manually operated vehicle.

All vehicles gathered at a central location before completing a lap around the Mcity test

track, with Figure 6.7 depicting each site’s starting positions.

Despite the simplified CDA objectives, Event 0 achieved major milestones in distributed

testing. It marked the first use of the Mcity digital twin, the first simultaneous integration of

multiple simulation platforms (CARLA and SUMO), and the highest number of participants
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Figure 6.6: © 2024 Mcity. Modified by FHWA. Pilot2 Event0 Part 1 Scenario Diagram

Figure 6.7: © 2024 Mcity. Modified by FHWA. Pilot2 Event0 Part 2 Scenario Diagram.
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to date (previously capped at four). The preparation and execution process helped develop

platform enhancements and validated the VOICES system’s ability to manage more complex

scenarios, setting a strong foundation for the Pilot2 test campaign.

Pilot 2 Event 1: Interoperability Compatibility Test (SIL Test)

Event 1 of Pilot 2 focused on testing interoperability across multiple entities by utilizing

SAE standard messages, aiming to ensure compatibility in communication and message

processing between different systems. This test introduced an additional layer of complexity

by incorporating SAE-standard message encoding and decoding, with VOICES coordinating

encoded messages across sites. Each participating entity implemented encoding and decoding

processes, allowing VOICES to assess the system’s resilience to communication noise and

delays, as well as the efficiency of message handling within the distributed network. In terms

of parallel systems, the environment setup remained the same, including simulations, dynamo

setups, and real vehicles; however, the scenario expanded to include the transmission of

safety-critical messages for VRUs using SAE standards.

A key focus in Event 1 was the successful exchange of the SAE J3224 Standard Dynamic

Safety Message (SDSM), which required new TENA J3224 messages, J2735 adapters, and

encoding methods to support the communication framework. Additionally, other standardized

messages such as SAE J2735 MAP (providing roadway and ITS device location information)

and SAE J2735 SPaT (Signal Phase and Timing, detailing traffic signal states) were incor-

porated into the test. Participants in Event 1 included FHWA, Mcity, Traffic Technology

Services (TTS), and Volkswagen (VW). In this setup, Mcity generated SDSM, SPaT, and

MAP messages and distributed them to all sites. FHWA received SDSM data and displayed

pedestrian locations in the CARLA environment; TTS integrated SPaT data into its Personal

Signal Assistant (PSA) Tool, allowing users to access current and predicted traffic signal

states; VW collected SDSM messages to compare against the European Telecommunications

Standards Institute (ETSI) Collective Perception Message (CPM), which serves a similar
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Figure 6.8: Event 1 PSA Tool (left) and SDSM Visualization (right).

function for sensor-based perception data. A sample experiment scene of the PSA tool and

the SDSM visualization is presented in Figure 6.8.

Through Event 1, the test demonstrated that distributed testing is an effective approach

for exchanging standardized messages, providing a valuable framework for organizations

to test applications against real-world data without the need to co-locate hardware. This

structure facilitates the adoption of standardized messages and enables entities to validate their

applications against real-world interoperability requirements, ensuring message compatibility

and correct usage during development.

Pilot 2 Event 2: Comprehensive Distributed Test

Event 2 marked the final and most complex test in the Pilot 2 distributed testing series,

aiming to conduct a fully distributed test with heterogeneous agents. Each agent operated

independently from unique locations, employing specialized CDA assets and independently

developed CDA algorithms. Within a shared virtual environment, each ego vehicle could

observe other agents in real-time and interact with them, allowing each agent’s behavior

to influence the overall traffic stream. The event focused on assessing how surrounding AV

traffic impacts the eco-driving assumptions made by each vehicle, measuring system-level
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Figure 6.9: Pilot2 Event2 Scenario Diagram.

improvements in metrics such as energy consumption, traffic efficiency, and roadway safety.

Following the parallel framework, the environmental setup remained the same, encompassing

simulations, dyno setups, and live vehicles. The scenario base was structured as an eco-

approach scenario, where all entities participated in a vehicle stream led by UCLA’s OpenCDA

vehicle.

A comparison study on energy consumption was a central aspect of Event 2, evaluating

five distinct automated driving platforms when operating in a vehicle string versus driving

independently. For each run, vehicles completed a clockwise loop around the Mcity test

track, stopping at a traffic signal midway. Participating vehicles included FHWA’s CARMA

Platform, UCLA’s OpenCDA, a driving model developed by ORNL, a live dynamometer

vehicle at ANL, and a teleoperated vehicle at Mcity using Autoware. Additionally, Mcity

contributed two background vehicles from their TeraSim naturalistic driving platform, and

Econolite provided a virtual traffic signal controller. Starting positions and routes can be

found in Figure 6.9. Energy consumption data was obtained through two methods: for the

ANL dynamometer vehicle, data was collected directly using onboard sensors, while all other

vehicles’ energy data was calculated using ANL’s Autonomie tool, based on vehicle type,

speed, location, and road grade. The ENERGY ANALYSIS section contains further details

on the Autonomie algorithm and results.
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Beyond energy analysis, Event 2 underscored the advancements made in distributed

testing. It marked the first FHWA-sponsored event to feature five unique automated driving

platforms collaborating within a cooperative driving setup. This milestone demonstrated that

distributed testing could significantly streamline CDA development by enabling academia,

industry, and government entities to connect and test applications digitally, allowing earlier

and easier integration with their existing development platforms. By coordinating complex

multi-agent interactions through the VOICES platform, Event 2 illustrated the feasibility

and benefits of a distributed framework in advancing CDA research and deployment.

6.3 Experiment Results

The experiment results section presents an in-depth analysis of outcomes and insights from

the three Pilot 2 events: Event 0, Event 1, and Event 2. Each event focuses on specific

aspects of the distributed testing framework, progressively increasing in complexity to evaluate

the VOICES platform’s capabilities. Event 0 assesses the foundational functionality of the

distributed system, confirming that it can support simultaneous operations across multiple

entities, validating network stability and core communication channels. Event 1 evaluates

system interoperability using SAE standard messages, specifically J2735 and J3224, to ensure

seamless communication between entities, establish cooperative interactions, and validate

message exchange through the VOICES platform. Lastly, Event 2 represents the most

advanced test, with fully independent entities—each at a unique location and running its own

CDA system—interacting to achieve a shared objective, such as an eco-approach strategy,

while impacting traffic stream dynamics collaboratively. This event demonstrates the system’s

ability to handle complex, multi-agent interactions across diverse platforms and locations,

showcasing VOICES’ capacity to manage large-scale, distributed environments effectively.
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Pilot 2 Event 0: System Connectivity Test (Simulation Test) Result

The network latency and jitter results from Event 0, as presented in Table 6.1, provide a

detailed understanding of the distributed test’s performance across multiple sites, highlighting

both the strengths of the VOICES system and areas for potential enhancement. First, the

results underscore the variability in network delay between sites, largely driven by local

network conditions. For instance, transmissions from FHWA to other sites, such as ANL

and Mcity, exhibit higher latency values, whereas transmissions involving ANL and ORNL

demonstrate relatively lower latency. This variability points to the influence of factors

like geographic distance, local internet infrastructure, and network congestion at each site,

underscoring the importance of localized conditions in distributed testing scenarios.

Sender Receiver
FHWA ORNL ANL UCLA Mcity

FHWA - 305.9
(+/− 52.4)

381.4
(+/− 85.4)

189.3
(+/− 7.6)

242.5
(+/− 23)

ORNL 165.5
(+/− 4.4)

- 65.8
(+/− 5.3)

115.7
(+/− 8)

80.93
(+/− 6.7)

ANL 151.1
(+/ −
12.72)

66.0
(+/− 6.1)

- 94.8
(+/− 5.9)

61.6
(+/− 5.1)

UCLA 187.2
(+/− 4.1)

116.4
(+/− 7.1)

95.7
(+/− 2.8)

- 112.7
(+/− 9.3)

Mcity 164.7
(+/− 6.3)

78.5
(+/− 6.2)

62.48
(+/− 5.8)

120.6
(+/− 11.7)

-

Table 6.1: Network Latency and Jitter Results (ms).

In terms of system stability, the relatively low jitter values across all site interactions reveal

that, while network delays fluctuate, the VOICES system itself is capable of maintaining

steady communication without introducing additional disturbances. Low jitter means that

packet transmission remains consistent and predictable, which is crucial for time-sensitive

applications in CDA testing, where actions between agents are required to be broadcast in

real time. This stability demonstrates that the VOICES platform is robust enough to support

complex, real-time coordination among multiple entities, thereby affirming the system’s
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capability to support distributed testing at scale. The consistent jitter performance, even

in the presence of variable network latency, indicates that the VOICES system’s internal

processing and data handling efficiently manages diverse network conditions without impacting

real-time testing fidelity.

An interesting observation is that certain entities, such as ORNL and ANL, maintain

relatively low latency and jitter in most scenarios, regardless of whether they are sending

or receiving data. This consistency could be attributed to the quality of their network

setup, possibly indicating the use of advanced internet services or lower latency connectivity.

Future research could benefit from standardizing network quality across sites or utilizing

high-performance network services (such as dedicated fiber lines or low-latency connections)

to minimize latency discrepancies. Doing so would not only streamline communication across

entities but also enable smoother interactions in distributed testing, which is essential for

real-time CDA experiments. In this context, enhancing network stability across sites could

make distributed testing even more reliable and further optimize the VOICES system for

complex, multi-agent experiments.

Pilot 2 Event 1: Interoperability Compatibility Test (SIL Test) Result

Event 1 in the distributed test series was designed to integrate the SAE Basic Safety Message

(BSM) protocol across multiple sites, aiming to assess the system’s capability to handle

standardized communication in a distributed environment. As shown in Table , the results

reveal that while the inclusion of BSM messages introduced a slight increase in jitter, this did

not translate into significant transmission delays. This minimal impact on latency suggests

that the local decoding processes at each participating site were sufficiently efficient, managing

the added workload from BSM processing effectively. The ability to integrate BSMs without

disrupting real-time performance demonstrates the robustness of the VOICES system in

managing complex data exchanges across geographically separated entities.

Despite the efficient handling of the added encoding and decoding processes at each
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Site Mean (ms) Min (ms) Max (ms) Jitter (ms)

FHWA 155.952 138.610 169.784 44.963

ORNL 114.615 37.091 314.512 20.971

ANL 52.595 35.917 88.875 10.740

UCLA 121.824 48.637 326.353 19.373

Mcity 151.234 67.892 361.859 17.032

Table 6.2: Data Transmission Time (ms) with Basic Safety Messages (BSM).

site, network conditions emerged as a key determinant of overall system performance. The

additional transmission load generated by the BSMs, combined with the frequent data

exchange through the VOICES system, highlighted the variability in network conditions

across sites. Sites with stable network connections experienced less delay, while those with

less reliable connections saw higher variability. This observation suggests that network

stability could be a limiting factor in distributed testing and emphasizes the importance

of high-quality network infrastructure. The VOICES system proved capable of handling

real-time communication loads effectively, yet it remains partially dependent on the local

network conditions at each site.

Lastly, while the VOICES system effectively supported SAE BSM messaging under

the current test’s controlled traffic conditions, scaling to higher traffic volumes presents

additional challenges. As traffic volume and complexity increase, so will the number and

size of messages, potentially adding strain to both the VOICES platform and the network

infrastructure. This test validated the feasibility of distributed testing in a low-traffic setting,

but it also underscores the importance of optimizing message selection and prioritizing

relevant data exchanges to manage network and computational loads in high-traffic scenarios.

Future research should focus on strategies for selective communication, ensuring the most

impactful messages are shared among entities to maintain system efficiency as the network

scales up.
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Pilot 2 Event 2: Comprehensive Distributed Test Result

The distributed test data section presents the performance data of all participating vehicles

during the distributed test, including metrics such as distance, speed, acceleration, and

energy consumption. These tests aim to validate that all agents can effectively interact with

each other, even when operating on different systems and running different algorithms. The

primary focus of validation lies in comparing the performance of vehicle strings operating

with and without the eco-approach algorithm. A positive impact from the eco-approach

algorithm, despite system noises and delays, would indicate that the agents are successfully

interacting and that the individually operating algorithms are contributing to overall system

performance. This validation would confirm that the VOICES platform can establish a

distributed environment where different systems and algorithms can effectively cooperate

and enhance overall performance.

Downtrack Distance The downtrack distances over time for all vehicles are shown in

Figure 6.10. These plots display the distance progression for five vehicles—’FHWA-CARMA,’

’ANL-DYNO,’ ’ORNL-Auto,’ ’Mcity-CAV-01,’ and ’UCLA-OpenCDA’—comparing their

performance without the eco-approach algorithm (left) and with the eco-approach algorithm

(right). In the plot without the eco-approach, the vehicles demonstrate less consistent

progressions, with abrupt changes and pauses, particularly visible in ’ORNL-Auto’ and

’Mcity-CAV-01,’ which show noticeable slowdowns around the 600-time mark. This indicates

inefficiencies in maintaining coordinated distances and potential delays in response.

In contrast, the plot with the eco-approach algorithm shows smoother and more consistent

distance profiles for all vehicles. There is better spacing between vehicles, especially towards

the later stages of the test, indicating improved coordination and efficiency. The more gradual

and balanced changes in distance over time suggest that the eco-approach algorithm facilitates

better cooperation among vehicles, optimizing their movement and likely reducing energy

consumption and unnecessary acceleration or deceleration. This highlights the positive impact
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Figure 6.10: Downtrack distance over time plot for all vehicles. The left figure presents the
result without the eco-approach algorithm, and the right figure presents the result with the
eco-approach algorithm.

of the eco-approach algorithm on system performance.

Speed over Time Profiles The speed plots in Figure 6.11 compare the performance of

five vehicles—’FHWA-CARMA,’ ’ANL-DYNO,’ ’ORNL-Auto,’ ’Mcity-CAV-01,’ and ’UCLA-

OpenCDA’—without the eco-approach algorithm (left) and with the eco-approach algorithm

(right). In the plot without the eco-approach algorithm, the vehicles display erratic speed

patterns, with frequent spikes and fluctuations, particularly between time 200 and 600.

Vehicles like ’ANL-DYNO’ and ’ORNL-Auto’ exhibit sharp increases and decreases in speed,

indicating inconsistent driving behavior, which likely results in inefficient energy usage and

less coordinated vehicle movement. In contrast, the plot with the eco-approach algorithm

shows a more stable and controlled speed pattern, especially after time 200. While there are

still some variations, they are noticeably less pronounced, and the vehicles generally maintain

more consistent speeds. This smoother driving behavior indicates improved coordination and

interaction between the vehicles, leading to more efficient overall system performance. The

reduced volatility in speed changes highlights the effectiveness of the eco-approach algorithm

in promoting steady, cooperative driving, contributing to reduced energy consumption and

enhanced stability across the distributed test environment.
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Figure 6.11: Velocity (magnitude, mph) over time plot for all vehicles. The left figure presents
the result without the eco-approach algorithm, and the right figure presents the result with
the eco-approach algorithm.

Acceleration over Time Profiles The acceleration plots, as shown in Figure 6.12,

compare the performance of five vehicles—’FHWA-CARMA,’ ’ANL-DYNO,’ ’ORNL-Auto,’

’Mcity-CAV-01,’ and ’UCLA-OpenCDA’—without the eco-approach algorithm (left) and

with the eco-approach algorithm (right). In the plot without the eco-approach algorithm,

the vehicles exhibit more erratic acceleration and deceleration patterns, with frequent spikes

and fluctuations across all vehicles, particularly between 200 and 600 seconds. These sharp

changes in acceleration indicate higher energy consumption due to constant speed adjustments,

leading to reduced system efficiency and increased wear on vehicle components. In contrast,

the plot with the eco-approach algorithm displays smoother and more stable acceleration

profiles. The reduced fluctuations suggest that vehicles are operating in a more energy-efficient

manner, with fewer drastic speed changes required. This stability reflects enhanced system

performance as vehicles interact more harmoniously, reducing unnecessary energy expenditure.

The eco-approach algorithm significantly improves energy efficiency by promoting smoother

acceleration patterns, thus enhancing both vehicle and system performance within the

distributed test environment.
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Figure 6.12: Acceleration over time plot for all vehicles. The left figure presents the result
without the eco-approach algorithm, and the right figure presents the result with the eco-
approach algorithm.

Energy Consumption In Pilot 2 Event 2, energy consumption was measured to evaluate

the impact of the eco-approach strategy on various automated driving systems. This event

included multiple runs to analyze how surrounding traffic influences different vehicle control

algorithms under eco-driving conditions. To ensure accuracy, the data shown in the Table 6.3

reflects averaged values across five runs, providing reliable insights into the energy efficiency of

each system. The results, recorded in watt-hours per mile (Wh/mi), highlight the effectiveness

of the eco-approach (left column) compared to driving without it (right column). Across

all test sites, the vehicles displayed a notable increase in energy consumption during Run 2,

where the eco-approach was disabled. For instance, the energy usage for ANL’s vehicle rose

from 359.5 Wh/mi in Run 1 to 393.8 Wh/mi in Run 2. Similarly, Mcity’s vehicle increased

from 432.8 Wh/mi to 467.7 Wh/mi, while UCLA’s went from 381.1 Wh/mi to 400 Wh/mi.

ORNL’s vehicle saw an increase from 335.3 Wh/mi to 348.4 Wh/mi, indicating that the

eco-approach strategy provided energy savings across different automated driving algorithms.

For more accurate energy estimates, the powertrain and component specifications of the

ANL research vehicle (a 2020 Chevrolet Bolt) were modeled in detail using the Autonomie

tool, which allowed for specific drive cycles to be assigned to each vehicle configuration. This

approach ensured that the recorded energy consumption accurately reflected each vehicle’s
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Site Energy Consumption
with Eco-Approach
(Wh/mi)

Energy Consumption
without Eco-Approach
(Wh/mi)

ANL 359.5 393.8
Mcity 432.8 467.7
UCLA 381.1 400.0
ORNL 335.3 348.4
FHWA 377.2 400.7

Table 6.3: Averaged Energy Consumption (Wh/mi) for Pilot 2 Event 2 with and without
Eco-Approach.

performance under diverse traffic scenarios, isolating the benefits of eco-driving strategies in

a distributed, multi-vehicle testing environment. The results underscore the potential of the

eco-approach strategy to promote energy efficiency in cooperative driving applications, with

implications for future CDA deployments in mixed-traffic environments.

Insights and Potential Improvement of the VOICES System

Integrating real-world agents with simulations introduces inherent synchronization challenges,

making it difficult to achieve the precise alignment seen in purely simulation-based tests. In a

simulation-only environment, entities pause until the slowest one completes its computations,

maintaining timing alignment across the board. However, with real-world assets like L3-

capable ADS vehicles and dynamometer machines, pausing physical systems to wait for

simulations is not feasible. This real-time dependency makes the system vulnerable to

internet delays and network latency fluctuations, as even a slight delay from one site can

disrupt overall timing and potentially compromise the experiment’s integrity. To mitigate

these challenges, the VOICES system uses a multi-threaded message-handling mechanism

to process simulation data from all entities in parallel. This approach maximizes efficiency

by handling each data stream independently, allowing simulations to advance quickly while

minimizing idle time for physical assets. While this solution partially addresses network

delay issues in the current tests, further advancements are needed to scale up. As more sites

participate, the risk of synchronization issues grows, highlighting the importance of advanced
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strategies to manage network-induced disruptions in larger, distributed setups.

Another important consideration is the limited traffic volume involved in the current test.

This phase of testing primarily aimed to validate the concept of distributed testing and to

demonstrate the functionality and reliability of the VOICES system under relatively controlled

conditions. As such, handling high traffic volumes was not within the scope of this trial.

However, for large-scale deployment, the ability to support increased traffic density becomes

critical. With a higher volume of vehicles, both the number of messages exchanged and the

data size transmitted across the network would likely grow exponentially. This surge could

potentially strain the system’s communication capacity and impact performance. Accordingly,

the next phase should focus on optimizing communication by identifying and transmitting

only the most meaningful messages necessary for maintaining cooperative behaviors, such as

collision avoidance or energy-efficient driving. Additionally, careful selection of communication

participants, or determining which vehicles or infrastructure elements need to share data

in real time, will be essential. This approach could prevent message overload and ensure

efficient network usage, paving the way for scalable and resilient CDA implementations.

6.4 Conclusion

The distributed test conducted under Pilot 2 was a success, effectively validating the concept

of hosting a joint experiment with heterogeneous CDA agents interacting within a mutual

environment. This test demonstrated that diverse systems, operating independently yet

collaboratively, could successfully exchange information and influence one another’s actions

in real time. The proposed parallel development and testing framework effectively realized

this distributed test. The parallel environment enabled the integration of a mixture of CDA

systems, combining real-world assets like L3-capable ADS vehicles and dynamometers with

simulation-based entities, ensuring that both physical and virtual agents could coexist within

the same testbed. Scenario engineering played a crucial role in designing three progressively
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challenging events, each targeting specific testing goals—from basic network functionality

to interoperability with SAE standard messaging and, finally, to a fully distributed test

of eco-approach strategies. The use of parallel operations facilitated the coordination and

control of each heterogeneous agent, allowing them to manage ego-vehicle behaviors and

make informed decisions. Altogether, the framework provided a robust foundation that not

only validated the viability of distributed testing with multiple CDA systems but also set a

precedent for future deployments.
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Chapter 7

Conclusion and Future Works

Automated driving and Cooperative Driving Automation (CDA) are transforming trans-

portation by enabling vehicles to communicate, coordinate, and operate with unprecedented

levels of safety and efficiency. This dissertation presents a comprehensive framework for

advancing CDA through a parallel development and testing approach designed to bridge the

gap between prototype testing and real-world deployment. The parallel framework forms

the foundation for scalable and reliable CDA applications by integrating parallel systems,

scenario engineering, and coordinated operations. Detailed within this dissertation, the

framework’s structured approach has proven essential for simulating, testing, and deploying

advanced CDA systems across varied environments and with diverse agents, addressing both

the technical and logistical complexities of large-scale CDA implementation.

The work first demonstrates the framework’s application in developing a multi-lane

platooning algorithm. Through simulation testing and field experiments, the platooning

algorithm proved its potential for enhancing traffic flow and vehicle coordination across

multi-lane highway environments, highlighting the framework’s ability to facilitate complex

cooperative maneuvers in controlled and real-world settings. This work then extends into the

VOICES distributed testing initiative, where the framework was instrumental in coordinating

multiple entities from different sites, each running unique CDA systems. The distributed
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testing environment validated the capacity of CDA agents to interact across a shared virtual

and physical landscape, establishing the framework’s effectiveness for multi-agent, multi-site

CDA validation.

Finally, the dissertation explores a regulation-aware path planning algorithm for intersec-

tion scenarios, addressing one of the most challenging aspects of CDA deployment—adherence

to dynamic traffic regulations. This application underscores the framework’s flexibility, demon-

strating how CDA systems can be designed to interpret and respond to complex regulatory

scenarios reliably. Overall, the parallel development and testing framework presented in

this dissertation sets a new standard for scalable CDA testing, ensuring that prototypes

can be rigorously evaluated and confidently deployed in real-world conditions. This work

contributes both foundational knowledge and practical insights, positioning the field for

further innovation and paving the way for safer, more efficient automated transportation

systems. Future research should focus on broadening CDA validation and deployment, em-

phasizing advanced digital twin environments to enhance testing fidelity and integrate virtual

and physical settings seamlessly. Key areas include cooperative perception for real-time

sensor data sharing, algorithms for work zone detection and safe navigation, and emergency

vehicle detection and response systems to prioritize safety and compliance. Additionally,

validating CDA applications under complex, dynamic traffic scenarios will ensure scalability

and reliability. These advancements will pave the way for efficient, robust autonomous

transportation systems and their integration into multi-modal mobility solutions.
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