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The deformation of cellular membranes regulates trafficking processes, such
as exocytosis and endocytosis. Classically, the Helfrich continuum model is
used to characterize the forces and mechanical parameters that cells tune to
accomplish membrane shape changes. While this classical model effectively
captures curvature generation, one of the core challenges in using it to
approximate a biological process is selecting a set of mechanical parameters
(including bending modulus and membrane tension) from a large set of
reasonable values. We used the Helfrich model to generate a large synthetic
dataset from a random sampling of realistic mechanical parameters and
used this dataset to train machine-learning models. These models produced
promising results, accurately classifying model behaviour and predicting
membrane shape from mechanical parameters. We also note emerging
methods in machine learning that can leverage the physical insight of the
Helfrich model to improve performance and draw greater insight into
how cells control membrane shape change.
1. Introduction
Membranes compartmentalize cells while allowing controlled interactions
across their interfaces. One of the membrane’s core functions is facilitating
communication across compartments, which can occur by uptake and release
(endocytosis and exocytosis, respectively, when occurring across the external
cell membrane). In addition to shaping a cell’s microenvironment, these mechan-
isms act as homeostatic regulators [1,2]. Many elegant models of membrane
deformation have been developed (as reviewed in [3]), and, in particular, Hel-
frich’s continuum model based on thin shell elastic theory constrained by
minimizing bending energy [4] is widely applicable. Using the Helfrich model,
the equilibrium shape of themembrane can be predicted from a set of mechanical
parameters (such as the bending rigidity of the membrane, its tension and many
more). Modellers choose mechanical parameters to approximate biological/mol-
ecular mechanisms and to match experimentally measured values. Ultimately,
this model can be used to show how cells may tune their mechanics to achieve
experimentally observed shapes. Furthermore, the Helfrich model can also be
used in reverse to determine the forces needed to maintain an experimentally
observed membrane shape at equilibrium [5,6].

One of the primary challenges in each of these applications is prescribing the
mechanical parameters of the membrane. Some parameters (such as tension,
bending rigidity, pressure and size) have been measured experimentally, so mod-
ellers can reference from a rich body of the literature to determine reasonable
ranges of values. Other parameters, like curvature and the functions used to
describe how these values vary over the surface of the membrane, are heuristics
that describe an amalgamation of factors. Ultimately, understanding the behav-
iour of the Helfrich model over large parameter spaces is an ongoing challenge,
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leading to large amounts of labour in hand-tuning mechanical
parameters to obtain convergent, biologically relevant results.
Previously, sensitivity analysis has been used to determine
how the prescription of the curvature function within the
Helfrich model drives membrane energy and shape [7],
which was a particularly vital advancement since preferred
membrane curvature is not experimentally accessible. How-
ever, to the authors’ knowledge the behaviour of the Helfrich
model over large parameter spaces has not been documented.
To fill this gap, we present several machine-learning models
that enable systematic exploration of mechanical parameter
space to understand membrane shape changes. In particular,
we have used the formation of microparticles (MPs) as a
case study for how different biophysical parameters drive
shape change.

1.1. Microparticle formation is a mechanochemical
process

MPs are a type of exocytic vesicle bounded by (and budding
from) the plasma membrane in a process reminiscent of
blebbing. They provide amechanism for long-range communi-
cation between cells and tissues [8] that is vital in health,
facilitating functions like blood clotting, but are deleterious in
multiple diseases [9,10]. For instance, in cancer, they act as
drivers of niche establishment [11–14]. Increased MP pro-
duction also occurs in SCUBA divers during decompression
[15,16]. In contrast to these examples of MPs in illness, physical
exercise can modulate MP production as a signalling com-
ponent in beneficial vascular adaptations that enhance blood
flow to muscles [17]. Ultimately these are a few examples of
how MPs enable long-range communication within an organ-
ism, using both their internal contents and the membrane itself
as signalling platforms [9,18]. Finally, MP release can be a con-
trolled process; in addition to their functional roles in health
and disease, the regulation of their formation is an area of
active investigation.

The formation of MPs is an inherently mechanochemical
process [10]. We use spatially varying parameters in our conti-
nuum model to approximate the core biological mechanisms
observed in MP formation. One of MP formation’s hallmarks
is the exposure of a negatively charged aminophospholipid,
phosphatidylserine (PS), on the external membrane leaflet
[9]. At high concentrations, PS induces membrane curvature
[19–21]. We use a preferred curvature term to account for this
process. In addition to PS exposure, curvature can be induced
by myriad mechanisms [22], including from lateral heterogen-
eity in membrane composition [11,23], steric interactions
between proteins adjacent to the membrane [24] (notably,
cargo can be localized to the site of MP formation [11]), and
even the glycocalyx can induce a preferred membrane curva-
ture [25]. A high cytosolic calcium level in stimulated cells
triggers PS exposure [9,26–28] and can activate calpain,
which drives cortical cleavage and cytoskeletal remodelling
[29]. Loss of cytoskeletal integrity can cause a decrease inmem-
brane rigidity [28], and, along with cleaving the cytoskeleton,
calpain can disrupt linkages between the membrane and the
cortex [30]. The loss of integration with the cortex could
allow the membrane to be pushed outwards due to internal
hydrostatic force, similar to blebbing. Accordingly, we include
spatially varying bending rigidity and outward pressure as
tunable parameters in our biophysical model. Finally, all of
these parameters coalesce to produce MPs that span a range
of sizes, and so we vary the patch area over which we adjust
these parameters. While these biological events are well docu-
mented, it is unclear how they come together mechanically to
accomplish MP formation.

We are informed by a rich body of membrane modelling
literature [3], and our work builds from a previous model of
clathrin-mediated endocytosis [31], a process that has been
extensively studied from both an experimental and theoreti-
cal lens [6]. To adapt our model to MP formation, we are
inspired by models of blebbing, where the cell membrane
also balloons outward [32–34]. From this model, we derive
energetically favourable membrane shapes for randomly
sampled parameter combinations from a large mechanical
parameter space. Subsequently, we used these data to train
machine-learning models to predict membrane shape from
mechanical parameters. Using this approach, we develop a
predictive toolbox for mapping a wide range of mechanical
parameters accessible in cells to shape outcomes figure 1.
2. Methods
2.1. Synthetic data generation
Ultimately the biophysical model we have used stems from mini-
mizing the energetic cost of deforming a thin two-dimensional
membrane (which is in mechanical equilibrium) embedded in
three-dimensional space. The Helfrich energy functional describes
the energetic cost of bending the membrane [4]. As was done in
[31], we have used the Helfrich energy functional modified to
allow spatially varying preferred curvature as a constitutive
equation for the membrane

W ¼ kðuaÞ½H � CðuaÞ�2 þ kGðuaÞK,
where κ is the bending rigidity of the membrane, which can
vary spatially over the coordinate system, denoted here as θα,
where α∈ {1, 2};H ¼ 1

2 ðk1 þ k2Þ is the mean curvature of the mem-
brane with k1 and k2 denoting the principal curvatures of the
membrane; and C describes the spontaneous curvature of
the membrane, which can vary spatially like the bending rigidity.
Similarly, κG is the Gaussian bending rigidity, while K = k1k2 is
the Gaussian curvature. While elegant ansatz-based models of
buddingmembranes have proven their utility [35,36] andmay pro-
vide a faster, simpler avenue for predicting morphology, we chose,
in this work, to retain the complexity of the Helfrich model to
account for features like variable patch area, heterogeneous curva-
ture and applied pressure. In the future, as more biological
mechanisms are determined, the choice of modelling method
can be revisited to ensure that the models encompass the vital bio-
logical components while reducing the complexity of
computational methods.

We have adapted the model for membrane bending con-
strained by the Helfrich energy as derived by Hassinger et al. in
[31]. This is valid since for both inward and outward budding
the signs of the two principal curvatures match, which means
that the Gaussian curvature, K, is equivalent for inward and out-
ward budding. And since the signs of the principal curvatures
are the same, the absolute magnitude of the mean curvature
does not change, although its sign changes. Hence, in our model,
there is no difference in the energetics of inward versus outward
budding. The mathematical underpinnings of this model, and
more generally, of thin fluid elastic membrane modelling, are
explored in [37]. In brief, we assume that the membrane is in
mechanical equilibrium, so the divergence of the stress vector
field of the membrane summed with the pressure applied
normal to the membrane is balanced by externally applied
forces. This assumption also means that we neglect dynamics.
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Figure 1. In this study, we used the classical Helfrich model to generate synthetic data that we used to train a machine-learning model to predict how the
membrane forms MPs, given a set of mechanical parameters. (a) Membrane shape changes have been documented with microscopy techniques, for instance
during microparticle formation (image from [73], figure reproduced with permission). (b) Biophysical models, like the Helfrich continuum model, can be paired
with best-guess mechanical parameters in order to approximate experimentally observed shapes. (c) We used the Helfrich model to create a large synthetic dataset
of membrane shapes. Here, we show a curve that was classified as a hill and a curve classified as an omega shape (in omega-classed shapes a neck forms which
could dispose the membrane to bud). Classification was based on if the angle of a tangent to the curve exceeded 90�. We also show a scatterplot of classification
results for a parameter combination where omega-classed buds are marked by an ‘x’ and hill-classed curves are marked with a small dot. Due to the dense sampling
of curvature needed to obtain numerically convergent results solving the Helfrich model, the small dots overlap and appear almost as lines. (d ) Using this synthetic
dataset, we trained machine-learning models to classify model behaviour over large parameter spaces, and to predict shapes from mechanical parameters. In (e), we
show samples of machine-learning results for classification and regression.
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We also assume that the bilayer is incompressible, so a Lagrange
multiplier prescribing that the bilayer’s density is constant can
be imposed. These two observations lead to reconstituting the
energy of the membrane in terms of the Helfrich energy
summed with the Lagrange multiplier. Finally, the equations
of motion can be reframed to yield the force balance normal to
the membrane

pþ 2lH ¼ D½kðH � CÞ� þ 2HDkG � ðkGÞ;abbab

þ 2kðH � CÞð2H2 � kÞ � 2kHðH � CÞ2, ð2:1Þ
and the tangential force balance within the membrane

l,a ¼ dk

dua
ðH � CÞ2 þ 2kðH � CÞ dC

dua
� dkG

dua
K: ð2:2Þ

To simplify finding solutions to these force balances, we
constrain ourselves to axisymmetric solutions where s describes
the position along an arc, and θ is used here to describe the
rotation of the arc about the z-axis (instead of describing the
coordinate system as it was used previously), and the r-axis
describes the radial distance from the z-axis. The angle between
the tangent (as) to the arc and the base plane is denoted ψ. As
demonstrated by Hassinger et al. [31], a system of six ordinary
differential equations (ODEs) can be derived from these con-
straints. To solve this system, we used the same six boundary
conditions, namely at s = 0+

Rð0þÞ ¼ 0, Lð0þÞ ¼ 0, cð0þÞ ¼ 0 ð2:3Þ
and at s = S

ZðSÞ ¼ 0, cðSÞ ¼ 0, lðSÞ ¼ l0: ð2:4Þ

In these clamp boundary conditions, the angle ψ is fixed at 0
at both the beginning and the end of the simulation domain. The
variable λ is interpreted as tension [38,39], and so while tension
can vary along s, the tension at the outer edge of the domain is
fixed at λ0. We used the area parametrization of the system.

2.2. Mechanical parameter choice
2.2.1. Spatial heterogeneity
The composition of the membrane varies laterally, and we pro-
pose that variation in the mechanical features of the membrane
are a core component of MP formation. Hence, we define a
patch of the membrane at the centre of the simulation domain
where the mechanical parameters are altered from their values
over the rest of the membrane. Since cells can produce MPs span-
ning a broad range of sizes, we explored a range of patch sizes.
We aimed to model the formation of MPs ranging from 25 to
500 nm in radius (r), so we set the patch area to be 4πr2, while
the larger simulation domain was chosen as 4π(3r)2.

2.2.2. Tension
The apparent tension at the cell surface that constrains shape
change is the sum of the in-plane tension in the plasma mem-
brane with the adhesion of the membrane to the cortex [40].
Proteins linking the membrane to the cortex impede the flow
of lipids into a tether creating viscous resistance that can be
measured with dynamic tether pulling, characterizing the contri-
bution of the cytoskeleton to apparent membrane tension [41].
Meanwhile, in-plane membrane tension can be characterized
by isolating the membrane from the cortex, along with several
other methods [42]. Since MP formation requires detaching
from the cortex, we are most concerned with these values.

By measuring the tension of the membrane in blebs, the
contribution of cytoskeletal adhesion can be removed, resulting
in values near 0.003 pN nm−1 in rabbit renal proximal tubule
epithelial cells and about 0.012 pN nm−1 in human melanoma
cells [43]. By contrast, the tension in membrane associated with
the cortex can reach about 0.022 and 0.044 pN nm−1 in these cell
types, respectively [43]. These values are similar to the approxi-
mately 0.003 pN nm−1 apparent membrane tension measured
in neuronal growth cones [40], and the approximately 10 times
larger tensions that have been measured in neutrophils [44,45].

While we have chosen a relatively small range of tension
values, experimental measurements of membrane tension vary
broadly with reports ranging from 0.003 to 0.276 pN nm−1,
while the in-plane membrane tension has been reported to take
values from 0.003 to 0.15 pN nm−1 [42]. We have chosen tension
to fall within 0.003–0.15 pN nm−1 since it encompasses both the
reported values for in-plane membrane tension, along with the
apparent tension for several cell types, but we neglect the
upper range of apparent tension values that have been reported.
It is noteworthy that tension varies across cell type, state and
stretching regimes [42,46]; and its role in global and local regu-
lation and the rate of its propagation through the membrane
are an active area of discovery [41,42].

2.2.3. Bending rigidity
The bending rigidity of the cell membrane is often derived from
experimentally measured values in giant unilamellar vesicles
(GUVs) [47], or red blood cells [48], using techniques such as
fluctuation analysis (e.g. [49]), or micropipette aspiration (e.g.
[50]). By using a reduced system, the influence of individual con-
stituents on membrane mechanical properties can be identified.
For instance, the inclusion of sterols can increase the bending
rigidity of some membranes [51], but not all [47]. While these
techniques have provided an extensive literature base to estimate
the rigidity of a lipid bilayer (usually between 10 and 150 kBT
[48,52]), the bending rigidity of the cell membrane in vivo may
be heterogenous and take a range of values. Bending rigidity
can be influenced by a host of factors, ranging from charge
[47], to extensions from the membrane like the glycocalyx,
protein interactions with the membrane [53], or interaction
with the cortex [32], and probably many other complexities. In
light of these challenges, Steinkühler et al. [52] have measured
the bending rigidity of the membrane in giant plasma membrane
vesicles (GPMVs), effectively maintaining a biological membrane
composition while isolating the mechanical properties of a cell
membrane from cytoskeletal interactions. Probably, the bending
rigidities they measure are similar to that of MPs, falling approxi-
mately in the range of 10–35 kBT (which at a temperature of 298 K
corresponds to approximately 40–145 pN nm). The bending
rigidity they measure in isolated membrane-derived vesicles is
similar to that measured in expanding blebs [32,52], but when
blebs begin retraction the rigidity of the membrane increases to
about 215 pN nm, which is attributed to the formation of actin
under the lifted membrane [32]. Further, Charras et al. [32]
found that treatment with wheat germ agglutinin could increase
the membrane rigidity to approximately 360 pN nm. To simplify
our model, we set a fixed bending rigidity of the membrane
surrounding the site of MP formation at 320 pN nm. Given the
breadth of measured values for membrane rigidity, we allow
the rigidity of the region from which the MP forms to fall
within the range of 40–400 pN nm−1. In our model set-up, we
use a multiplier to denote the difference between base membrane
rigidity and the rigidity of the patch where a MP is expected to
form. Based on the range of bending rigidities, we found
reported in the experimental literature we chose this multiplier
to be in the range 0.125–1.25.

2.2.4. Pressure
To model hydrostatic pressure, we have applied an outward
normal force ranging from zero to 0.0003 pN nm−2 to the mem-
brane on the patch region. These values were based on the values
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reported in a number of studies which were reviewed in [54],
although we chose to explore only the lower range of pressure
values they report. As is also reviewed in [54], hydraulic pressure
is a critical driver of cell blebbing, which bears similarity to
MP formation.

2.2.5. Curvature
In order to obtain convergent results from the continuum model,
we initialized a flat membrane with zero mean curvature. Then
we looped over small, increasing steps in curvature where the
initial guess fed to the model was the curvature at step i − 1
and the model was set to find an energetically favourable
solution for the curvature at step i. For many parameter sets,
the model did not converge after a given value of curvature.
So while curvature values could reach 0.07 nm−1 (which corre-
sponds to a radius of about 14 nm), this was rare. Instead, the
model was allowed to slowly increase curvature in step sizes of
0.0007 nm−1 until it no longer converged.

2.3. Data generation
In order to obtain a convergent result from the system of ODEs,
the solver needs an initial guess. Therefore, we start with a cur-
vature of zero over the initial patch and a flat membrane as an
initial guess and iterate over gradually increasing values of cur-
vature, as described in the preceding methods section dedicated
to curvature. Since the Helfrich model produces snapthrough
instabilities for some parameter regimes [31], we used the final
solution that produced a convergent result for increasing
values of curvature as an initial guess for a loop where we
iterated over decreasing values of curvature. We included both
the ascending and descending results without distinction in the
training set. Often, we could not find a convergent solution,
especially in the descending direction. While on a case-by-case
basis factors like the solver, mesh density or initial guess could
be adjusted to search for a solution, this is not practical for a
large parameter space. Hence, the absence of a convergent sol-
ution in our dataset does not preclude the existence of one. We
used scipy.integrate.solve_bvp to solve the system of ODEs with
the default Runge–Kutta method of order 5(4), a tolerance of
1 × 10−2 and the maximum number of nodes set to 1000 times
the number of points on the mesh (2000). We found this solver
to be amenable to our problem since it is relatively robust and
fast, allowing us to rapidly generate a large dataset. However,
other methods may yield convergent solutions where we could
not find them using this solver (for instance, see [55–57]) The
solver performed better when the initial mesh (between 0 and
1) was squared so that the density of points near the centre
(which corresponds to the centre of the patch) was larger. The
mesh was then resized to the total patch area.

2.4. Machine-learning model development
In this work, we aimed to use machine learning to classify mem-
brane shape with the goal of creating phase maps that delineate
regions of parameter space where omega-shaped buds are prob-
able. We also created a regression model to predict equilibrium
membrane shape explicitly from input parameters.

2.4.1. Classification models
We used the criteria that ψ > 90° to label omega-shaped buds. In
all cases, the model was tasked to predict if the membrane shape
was an omega-shaped bud or not (usually a hill-shaped or flat
bud). The features provided to the model were the physical par-
ameters used in the continuum model of membrane shape. These
include: mean curvature, the tension at the membrane’s edge, the
size of an initial patch or membrane, the bending rigidity of the
patch relative to the rest of the membrane, and an outward
normal forced applied to the membrane patch which models
pressure on a region of the membrane severed from the cortex.
Since these parameters alone yield a five-dimensional feature
space, we simplified this problem to two four-dimensional par-
ameter spaces: in the results section, we first address how
curvature, tension, patch size and pressure impact the formation
of omega-shaped buds, then we address how curvature, tension,
patch size and a difference in bending rigidity over the patch
region can give rise to omega-shaped buds.

While there are many machine-learning methods that can be
used for this type of classification problem [58], we restricted
ourselves to xGBoost models and neural net models, creating
one of each for each training set. The hyperparameters of the
models were tuned by hand, and the model’s performance at
this stage was determined on a withheld dataset composed of
3741 points for the dataset varying pressure, and 2201 points
for the dataset varying the difference in bending rigidity of the
MP patch from that of the rest of the membrane.

In addition to these models, we also found that a k-nearest
neighbours (kNN) model using the closest neighbour (k = 1)
had a decent baseline performance. For the pressure dataset, it
correctly classified 2972 hill-shaped deformations and 73
omega-shaped deformations while misclassifying 42 hill-
shaped deformations as omega-shaped deformations and 60
omega-shaped deformations as hill-shaped deformations. For
the dataset where we varied the bending rigidity of the central
patch, the model correctly classified 2511 hill-shaped defor-
mations and 42 omega-shaped deformations while
misclassifying 28 hill-shaped deformations as omega-shaped
deformations and 58 omega-shaped deformations as hill-
shaped deformations. Although this model performed decently,
the notion of a nearest neighbour in our mechanical parameter
space is contrived since parameters are in different units.
Additionally, one of the parameters that can be adjusted in a
kNN is the value of k, which represents the number of nearest
neighbours voting towards the predicted points value. Since
our dataset is imbalanced, we chose only to use k = 1.

2.4.2. Methods for imbalanced classification problem
Both of the datasets are imbalanced, meaning that there are many
more non-omega-shaped (hill-shaped) membrane profiles than
omega-shaped ones. The dataset investigating the impact of
pressure has a total of 24 499 samples with only 1513 (about
6.2%) classified as omega-shaped buds. The dataset investigating
bending rigidity has even fewer omega-shaped buds, with a total
of 18 304 data points and only 453 (about 2.5%) representing
omega-shaped curves. Since imbalanced classification is an
important problem (for instance, in medical diagnostics), many
approaches have been created to optimize classifier performance.
Broadly, these can be viewed as adjusting the ratio of the classes
in the training set (for instance, synthetic minority oversampling
technique and iterations thereof [59–62]) and re-weighting the
minority class within the model framework itself. We used two
of the simplest approaches: in the xGBoost model, we used a
built-in hyperparameter (scale_pos_weight) to give preference
to the minority class [63], while in the neural net model we
re-sampled the training set to have a ratio of 7 : 1 majority to
minority data points.

2.4.3. Neural net
Our neural net model was heavily based on a tutorial from the
tensor flow core for classification on imbalanced data [64].
In brief, we used a sequential model with five dense layers and
one dropout layer. Dropout is a useful tool for preventing
model over-fitting and enhancing a model’s ability to generalize
for an unseen test set [65]. We used the rectified linear activation
function in all layers except for the final output layer, where we



Table 1. The hyperparameters prescribing the xGBoost model were chosen
manually.

xGBoost hyperparameters

objective binary: logistic

learning_rate 0.01

max_depth 100

min_child_weight 10

gamma 1

subsample 0.2

colsample_bytree 0.9

seed 23

n_estimators 700

scale_pos_weight no: non�omegas
no: of omegas in train set
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used a sigmoid activation function for binary classification. The
model was constructed with four hidden layers and a dropout
layer, in addition to a single output layer: 10/100/100/50%
dropout/10/1. The model architecture and weights are available
in the GitHub repository: https://github.com/RangamaniLa
bUCSD/Modeling_membrane_curvature_generation_using_mecha
nics_and_machine_learning. We used a batch size of 32.

We used a callback function (see [66] for a tutorial on callback
functions) for early stopping with a patience of 200 epochs, and a
maximum of 4000 epochs was allowed during model training.
Additionally, we used another callback function to save the
best model developed during model fitting, also with a patience
of 200 epochs. In both cases, these callbacks were set to monitor
the area under the precision-recall curves (AUPRC) (which is
explained in the following section).

2.4.4. xGBoost
xGBoost can be a highly effective machine-learning method for
classification problems [67]. Selecting hyperparameters to pre-
scribe the model requires balancing a model that can both
account for the complexity of the data and mitigate over-fitting.
In table 1 we have recorded the hand-tuned hyperparameters
that we used to define the model. While we chose to hand-
tune hyperparameters in this instance, the performance of an
xGBoost model can be increased through hyperparameter optim-
ization, which is an active area of research (for example, see
publications such as [68–70]).

2.4.5. Measuring classification model performance
Confusion matrices are one way to assess a classification model’s
performance, allowing the reader to determine the number of
times a model correctly predicts each class, and the number of
times it misclassified. In a binary classification problem, each
of the boxes represents either a true negative, false negative,
true positive or false positive. However, our classification
models do not return strictly binary results; instead they return
a probability (between 0 and 1) of an instance belonging to
the 0 or 1 class. The confusion matrices presented for each
model in this paper represent the model’s prediction when a
threshold of 0.5 was chosen for determining class membership.
However, this threshold can be increased or decreased, resulting
in infinitely many possible confusion matrices for a single
trained ML model. To measure performance across all possible
thresholds, the numbers of a confusion matrix can be embedded
in a single metric, and the measure reported along a curve. Then
the model’s performance over all thresholds can be quantified as
the area under the curve. The metric for model performance
needs to meet the needs of the classification problem.

Since there is a large imbalance in the number of omega to non-
omega membrane shapes in our dataset, several commonly used
metrics of classification performance (namely accuracy and the
receiver operating characteristic) are inappropriate since they
count the number of correctly identified majority class instances.
To better quantify the model’s capacity to correctly identify the
minority class we use the precision-recall curve (PRC). Precision
is the proportion of times that the model correctly predicted the
minority class (the true positives divided by the total number of
positive predictions). The recall (or sensitivity) of the model, by
contrast, is the proportion of actual positive cases that the model
correctly identifies (the number of true positives divided by the
number of false negatives plus true positives). Because neither pre-
cision nor recall take into account the number ofmajority cases that
the model correctly identifies, the PRC highlights the model’s abil-
ity to discern the minority class without being influenced by the
model’s ability to accurately predict the majority class. For a help-
ful tutorial on these ideas see [71]. Precision and recall values, then,
are individual values attributed to a model with a given threshold,
so the PRC is parametrized by threshold values in the interval [0,1]
for a given model. Model performance can then be assessed from
the AUPRC.

2.5. Neural net for regression
Phase-space visualization compresses the shape of the membrane
to a binary indication of behaviour for a given set of mechanical
parameters. While this reduction is useful, we also sought to
create a regression model that used mechanical parameters as
the input features to predict the diverse shapes the membrane
may adopt. The training dataset for this problem was generated
in the same step as the regression problem. In addition to
whether or not the membrane adopted an omega shape, we
recorded the x and y locations of 50 points interpolated along
the curve (downsampling from an initial mesh of 2000 points).
The neural network was tasked to then predict from a point in
mechanical feature space the x and y locations that define the
curve. The dense network was composed of nine layers: two
dropout layers, six dense layers and a dense output layer of
100 nodes, with a structure of 20/20/100/25% dropout/100/
25% dropout/100/20/100. We used a rectified linear unit acti-
vation function, Adam optimizer with a small learning rate of
0.001, batch size of 64 and mean absolute error (MAE) loss func-
tion. Similar to the classification problem, we used callbacks for
early stopping and a checkpoint to record the model that pro-
duced the lowest MAE across all training epochs, both with a
patience of 200 epochs. In total, the model was limited to a
maximum of 4000 epochs.

2.5.1. Measuring regression model performance
The regression model was tasked to minimize the MAE between
individual ‘x’ and ‘y’ coordinates along an objective curve.
In reporting model performance, we again used theMAE and sup-
plemented it with a scaled error metric, since large membrane
patches with relatively similar shapes can receive a higher MAE
than smaller membrane patches with very different shapes. The
scaled error was computed by first dividing both the prediction
and the actual membrane curve by the maxima of the x and y
locations, respectively, of the validation curve. By handling it in
this way, differences in the height and diameter of the membrane
between the prediction and actual data are still apparent, but are
scaled relative to true curve’s dimensions. Then the minimum
Euclidean distance between each point of the predicted curve
was computed across all of the points documented along the true
curve. Ultimately, this value is still greater than or equal to the

https://github.com/RangamaniLabUCSD/Modeling_membrane_curvature_generation_using_mechanics_and_machine_learning
https://github.com/RangamaniLabUCSD/Modeling_membrane_curvature_generation_using_mechanics_and_machine_learning
https://github.com/RangamaniLabUCSD/Modeling_membrane_curvature_generation_using_mechanics_and_machine_learning
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distance between the predicted point and the target curve. This
secondmetric is a truer estimate of themodel’s capacity to correctly
predict membrane shape regardless of size. Using a metric like this
as the loss function for the model itself, however, is not practical,
since we seek to predict a relatively even distribution of points
along the entire curve, while this particular error metric could be
minimized by placing all points near the outer clamp boundary
condition where the ‘y’ coordinate approaches zero and the ‘x’
coordinate could be inferred from initial patch radius.

We inquired if there is a correlation between error and the
distance between the test (or validation) point in mechanical par-
ameter space and the nearest training point. Since these
parameters are measured in different units and cover unrelated
numerical ranges, measuring ‘distance’ in mechanical parameter
space is necessarily contrived. We normalized the range of each
mechanical parameter to fall within [0,1] and, since we used a
four-dimensional parameter space, used the L1 (Manhattan)
norm to compute the distance [72].
terface
19:20220448
3. Results and discussion
Cells deform their membranes in a host of processes, and
here, we used MP formation as a case study. In modelling
MP formation, we apply the elegant Helfrich continuum
model to derive energetically favourable membrane shapes
for a given set of mechanical parameters. Shape transform-
ations depend on a host of mechanical properties of the
membrane, such as the bending rigidity of the bilayer, its ten-
sion, and more; these also constrain biophysical models of
membrane shape change. While some of these parameters
are experimentally accessible, they can vary spatially and
temporally within a cell, making model parametrization
non-trivial. Further, the curvature parameter, in particular,
is used in continuum models to approximate the effect of
an amalgamation of forces (protein-induced spontaneous
curvature, steric repulsions and charge interactions, for
instance) that drive the membrane to bend. Therefore, the
preferred curvature of a membrane is a heuristic that
cannot be measured, even while model outcomes depend
intimately on its prescription [7]. Historically, biophysicists
have achieved relevant model results by manually tuning
the mechanical parameters based on ranges from experimen-
tal work and using techniques like grid search to inform
phase behaviour. However, for high-dimensional parameter
spaces, these techniques are very time-consuming and can
limit the interpretability of results. Therefore, we sought to
use machine learning to represent model behaviour over
two randomly sampled, four-dimensional mechanical par-
ameter spaces. We present the results of this work into two
categories: classification, where we used xGBoost and a
neural network to create phase spaces, and regression,
where we used a neural network to predict membrane
shape from mechanical parameters.

3.1. Classification models predict phase behaviour
We used the Helfrich continuum model to predict curves
representing membrane shape deformations for randomly
sampled points in mechanical parameter space. A curve
was classified as an omega-shaped bud if the angle ψ
(figure 2) exceeded 90°, and as a hill-shaped deformation
otherwise (in figure 1c, we show examples of curves gener-
ated from the Helfrich model where the first was classified
as a hill shape and the second as an omega shape). In figures 3
and 4, we show the results of the Helfrich continuum model
where parameter combinations yielding omega-shaped buds
were marked with an ‘x’, while parameter combinations that
yielded a hill-shaped curve are marked with dots. The first
three rows of these figures show slices of parameter space
for small, medium and large ranges of patch area (which
corresponds to MP size).

In figure 3, where pressure was varied, we show that for
small and medium patch areas there is a clear trend that as
tension increases an increased preferred curvature is needed
to drive the formation of omega-shaped buds. By contrast,
for large patches, only a few parameter combinations resulted
in omega-shaped buds, and these usually required relatively
high pressures. The final panel of figure 3 shows a visual sep-
aration in the regions of parameter space where omega-
shaped buds are more likely to occur from regions where
they are unlikely to occur. However, the relationship of four
mechanical parameters is not readily visualized.

The results shown in figure 4, where the bending rigidity
of the patch relative to the rest of the membrane was varied
(and applied pressure was set to zero), do not show as
clear a pattern as those in figure 3 where the pressure applied
to the patch area was varied. Generally, omega-shaped buds
did not occur when the bending rigidity of the patch was
much smaller than that of the rest of the membrane.
Occasionally, for the largest patch sizes an omega-shaped
bud could be formed; these tended to occur when the bend-
ing rigidity of the patch was larger. Additionally, the same
general trend of increasing curvature necessitated with
increasing membrane tension was seen, but there was not a
clear visual separation of regions of parameter space where
MPs may form from where they do not.

These results gave us a visualization for how phase maps
should look. Launching from this point, we built two
machine-learning models to predict whether the membrane
would adopt an omega shape from the mechanical par-
ameters constraining the Helfrich model. In essence, the
models were tasked to interpolate how the membrane
would behave based on nearby training points. Both the
xGBoost model (figure 5) and neural network model
(figure 6) performed well for the dataset where pressure
was varied, with the AUPRC being 0.84 and 0.93, respect-
ively. For the dataset varying bending rigidity, the neural
network performed well, with an AUPRC of 0.82 (figure 7)
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while the xGBoost model had a poorer performance with an
AUPRC of 0.39 (figure 8). We chose to measure model per-
formance using the PRC due to the large class imbalance
(with omega-shaped buds in the minority class). These
models were notably different in two regards. The first is
that in the region of parameter space where we were not
able to obtain convergent results from the Helfrich model,
the machine-learning models were forced to extrapolate.
Interestingly, the neural network guessed in these uncharted
regions that the membrane would not adopt an omega shape;
meanwhile, the xGBoost model guessed that the membrane
would adopt an omega shape. Given the limitations of our
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datasets, it is not reasonable to expect either model’s predic-
tions to capture actual membrane shape. Further, the absence
of data in these regions hints at the possibility that energy-
minimizing shapes for these parameter combinations may
not exist or different computational schemes may be
needed to solve these equations [7,56,57]. A second more
subtle difference between the predictions of the models is
the edges in the phase maps which do not precisely align.
It is possible that either model could perform better in
these regions under different training conditions such as
increasing the sampling of parameter space, particularly
around phase transitions.
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Figure 5. An xGBoost model captures a phase map of mechanical parameter space. (a) Model predictions for patches with a normalized radius of 0.15 where dark
grey dots represent an omega class prediction and light grey represent a hill class prediction. (b) Model predictions for patches with a normalized radius of 0.4.
(c) Model predictions for patches with a normalized radius of 0.7. (d ) The confusion matrix for this model demonstrates that the model has a relatively high false
positive rate. The model overall had high performance with an AUPRC of 0.84.
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These classification models may enable researchers to
more rapidly tune mechanical parameters by providing a com-
putationally light-weight classification. Additionally, they may
allow us to bridge the gap between experimental observations
of membrane deformation through electron microscopy and
computational modelling of membrane mechanics.

3.2. A regression model predicts membrane shape
Compressing the membrane shape to a binary categorization
of omega- or non-omega-shaped buds allowed us to create
phase diagrams that succinctly convey trends. However,
while this compression provides an excellent overview of
how a thin elastic membrane behaves, it limits our ability to
understand the diversity of shapes the membrane may
adopt. Further, obtaining a convergent result from the
Helfrich model for a given set of parameters can be quite
time consuming, requiring a user to tune the mesh size and
step sizes. Therefore, we sought to train a regression model
to explicitly predict membrane shape for a given set of mech-
anical parameters. One of the challenges of this problem, in
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particular, is that conceptually we are not seeking to find the
location of individual points but instead to trace a curve. In
contrast to this conceptual goal, the regression framework
we used is tasked to predict 50 ‘x’ and ‘y’ locations along
the curve, minimizing the distance between the predicted
‘x’ location and the actual ‘x’ location, and likewise for the
‘y’ location. While a custom loss function minimizing the dis-
tance to the curve itself could be defined, that would
probably result in a model that accurately predicts the most
stable portion of the membrane at the outermost edge while
neglecting points along the region of the curve that varies
the most (the bud region).

Embedded in the goal of predicting a two-dimensional
curve is the need for a suitable metric of the similarity of
the two curves to measure error. We used the MAE (averaged
over all of the ‘x’ and ‘y’ coordinates) to create a loss function
and to measure the model’s performance. As we previously
noted, this is an overestimate since the predicted point
could be closer to the curve than it is to the target point.
Additionally, we used the L1 norm, which yields an error
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Figure 7. A neural network model is able to create a phase map of mechanical parameter space. (a) Model predictions for patches with a normalized radius of 0.15
where dark grey dots represent an omega class prediction and light grey represent a hill class prediction. (b) Model predictions for patches with a normalized radius
of 0.4. (c) Model predictions for normalized radius of 0.7. (d ) The confusion matrix for this model demonstrates that, while overall the model was able to correctly
classify the small number of positive results, it had a small bias to identify false positives. The AUPRC was still relatively high at 0.82.
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estimate greater than (or equal to) the L2 norm. Since the
MAE takes size into account, it is possible that large MPs
with a close shape match could have a greater error than
small MPs where the shapes have a large discrepancy. There-
fore, we supplemented our measurements of model
performance with a second metric that first normalizes size
based on the maximum ‘x’ and ‘y’ values of the data from
the Helfrich model and then uses the L2 norm to calculate
the distance to the target point. In designing the ML model,
we maintained variation in the size of the membrane patch
rather than normalizing and tasking the model to predict
shape alone since the mechanics of forming large MPs are
different than small ones, as demonstrated in figures 3 and 4.

In figure 9b, we show the curves in the test set for which
the model yielded the highest normalized error and MAE
error for both omega-shaped and hill-shaped curves. We
also display in figure 9c examples of mean error predictions.
These curves yield several instructive insights. First, the
ML model predicts results that may be unphysical, crossing
over into negative ‘x’ values. The loss function could be
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further customized to penalize unphysical predictions like
this. Next, we see that using a normalized error metric
(blue) allowed a discrepancy in the prediction of a small
deformation hill curve to be identified, but the loss function
of the model does not penalize this highly since the absolute
amplitude of the curve is relatively small. Finally, the highest
MAE error omega prediction had an especially difficult
task—the result of the Helfrich model for this parameter
combination appears to be on the way towards a pearling
morphology, which we observed very rarely. Probably,
there were very few (or no) curves in the training set that
resembled this one, and so an ML model with no physical
laws governing it could not predict that the membrane
would adopt this shape. In figure 9c, we display the mean
error ML predictions for both omega and hill-type curves
measured with both MAE and normalized error. Hill-
shaped curves were predicted with lower error than omega-
shaped curves. Probably, this is due to the imbalance between
hill-type and omega-type curves in the training set. These
case studies are borne out across the test set, as shown by
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the wide spread of the omega-shaped curves’ error distri-
bution compared with the hill-shaped curves (figure 9a).
Finally, we asked if the error in the ML model’s predictions
depended on the distance between the test point in mechan-
ical parameter space to the nearest train point. Performing a
regression showed that distance did not explain much of
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We hope for a future where machine-learning models may not only perform forward-predictive tasks, but may also use shapes to infer not only the forces needed to
sustain them [5,6], but also the sets of mechanical parameters that may give rise to them.
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the variation in error (MAE error had an R2 of 0.043 and the
normalized error had an R2 of 0.022).

Although we must express the limitations of this regression
framework, the model generally returned reasonable predic-
tions and is a first step in this arena. Alternative modelling
frameworks are being created that will probably lead to
improved predictions. For instance, physics-informed neural
nets (PINNs) use a custom loss function designed from
known governing physics to inform if the model’s predictions
conform to governing physics and to adjust model weights in
accordance with decreasing the model’s loss [74], and are
increasingly a tool applied to biological problems [75]. Another
method merging machine learning with mathematical models
is differentiable physics (for instance, see [76]). In the future,
these avenuesmay create a rapid, robustmodel that linksmech-
anical parameter space to shape changes of the membrane in
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the forward direction. These methods could take better advan-
tage of modern computing resources and the robust body of
existing physical models and numerical methods. Additionally,
the large volume of realistic geometries coming online from
electronmicroscopydatamayprovide training and test datasets
(for instance, the Cell Image Library (http://www.cellimageli
brary.org/pages/about) and Janelia (https://www.janelia.
org/)). Further, developments in physics-informed machine
learning increasingly may allow inverse problems and par-
ameter estimation tasks to be tackled. Eventually, these
developments may allow the integration of small experimental
datasets to infer sets of mechanical parameters that could give
rise to observed shapes (figure 10).
J.R.Soc.Interface
19:20220448
4. Conclusion and future directions
In this paper, we developed two machine-learning models
that demonstrate the feasibility of classifying membrane be-
haviour across mechanical parameter space and predicting
membrane shape given mechanical parameters. The par-
ameter spaces we explored are still relatively small (four
dimensions). Going forward, if larger parameter spaces are
to be explored, care must be taken due to the Curse of Dimen-
sionality (for instance, see [72,77]), which means that as the
number of dimensions grows, random sampling will prefer-
entially explore the edges, rather than the core, of
parameter space. A future avenue in need of exploration is
to determine which parameters are the most important dri-
vers of shape change in order to guide the selection of a
reasonably sized space. Parametric sensitivity analysis is a
tool that may help with narrowing down the subset of par-
ameters. We also demonstrate optimistic performance of a
deep neural net trained to predict membrane shape from
mechanical parameters. ML models like this one could even-
tually drastically reduce the time needed to visualize the
results of the Helfrich model for a choice of parameters
within the bounds described by the training dataset. This
may benefit researchers since manual parameter tuning to
match model results to biological phenomena can be very
time-consuming. However, before this goal can be realized,
lower error predictions would be desirable (particularly for
shapes like omega buds that are only sparsely represented
in parameter space). Methods such as PINNs and the mer-
ging of differentiable physics with neural nets may enable
lower error predictions and harness the robust physical
models available for membrane deformation. And, perhaps
one of the most exciting open challenges in this field will
be to use shapes drawn from experimental data to infer the
sets of mechanical parameters that might give rise to
observed forms.
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