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DISTANCE-BASED TRANSFORMATIONS OF BIPLOTS

JAN DE LEEUW

1. INTRODUCTION

In principal component analysis and related techniques we approximate (in
the least squares sense) an n X m matrix F' by an n X m matrix G which sat-
isfies rank(G) < p, where p < min(n, m). Or, equivalenty, we want to find
an n X p matrix X and an m X p matrix Y such that G = XY’ approximates F
as closely as possible. The rows of X and Y are then often used in graphical
displays. In particular, biplots [Gower and Hand, 1996] represent X and Y
jointly as n + m points in Euclidean p space.

If formulated in this way, there is an important form of indeterminacy in
this approximation problem. If R of order p is nonsinsular, then we can
define X = XR and ¥ = YR™” and we have XY’ = XY’, where A7 is the
transpose of the inverse (or the inverse of the transpose). Thus X and ¥ give
exactly the same approximation, but plotting them may give quite different
results, depending on R. To give a simple example, we can choose R scalar,
and make X arbitrarily small and ¥ arbitrarily big. In particular for biplots,
which are often interpreted in terms of distances between the points, the

indeterminacy is a nuisance and can lead to unattractive representations.

In this note we choose R in such a way that the distances, more specifi-
cally the squared Euclidean distances, between selected rows of X and ¥
are small. This takes care of both the relative scaling of the two clouds of

points, as well as rotating them to some form of conformance.
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2 JAN DE LEEUW

2. ProBLEM FORMULATION

The squared distance between rows i and j of the n + m matrix

XR
YRT

can be written as
d;(R) = (e; — ¢/ Cle; — €)) = tr CA;;.
Here the e; are unit vectors (columns of the identity matrix) and we define

XSX XY
Yx: vs-'y|’
aswellas S = RR" and A;; = (e; —¢j)(e; — ¢;)’.

Thus summing over a selected subset 7 of squared distances leads to a loss
function of the form
AS) = Z B(S) = tr SX'ApX +tr SV ApY
(.)el

where A and A, are the two principal submatrices of

If we minimize the sum of squares of all nm distances between the n points
in X and the m points in Y, for example, we find A;; = ml and Ay, = nl. If
n = m and we want to minimize the sum of the n squared distances between

the corresponding points x; and y; then Ay} = Ay = 1.

3. PrROBLEM SoOLUTION

Let us minimize A(S) = tr SP + tr S~'Q, where both P and Q are pos-
itive definite. If P and/or Q are singular, the more general results of |De
Leeuw| [1982]] must be used, but in most applications we have in mind non-

singularity is guaranteed.

The stationary equations for the problem of minimizing A(S) are

) P=s"0s7,
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which we have to solve for a positive definite S. We can use the symmetric

square root to rewrite Equation (I)) as

2) [=Pi57'p [P%QP%] pislpa,
from which

3) PSPl = [P%QP%]_%,

and thus

@) s~ =pi[p QP%]_% P2,

and

(%) S =P [P%QP%]% P2

If we want to minimize the sum of squares of all distances between the
points in X and those in Y we have seen that A;; = ml and Ay, = nl. In
many forms of principal component analysis X is chosen such that X’X = I,
and thus P = ml. In that case, from (9),

S = \/Z(Y'Y)%.
m

If Y = LAL’ is an eigen-decomposition of ¥, we can choose

1
R= [2]4 LA,
m
R = @]‘EA—i
n
4. EXAMPLE

To illustrate the problem, consider the following output from the scalAs-
soc() program [De Leeuw, [2006]. These are 20 votes of 100 US senators.
Each vote is presented by a plus ("aye") point and a minus ("nay") point, and
the technique jointly scales senators and votes in such a way that senators
are closest to the vote points they endorse. Or, equivalently, senators vot-
ing “aye” must be separated by a straight line from senators voting “nay”.
In Figure 1 all senators are clumped around the origin, and this makes it

impossible to read and interpret the plot.
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Now let us apply the scaling outlines in this paper. Figure 2 gives the results,
which are clearly much more satisfactory.
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