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DISTANCE-BASED TRANSFORMATIONS OF BIPLOTS

JAN DE LEEUW

1. I

In principal component analysis and related techniques we approximate (in
the least squares sense) an n ×m matrix F by an n ×m matrix G which sat-
isfies rank(G) ≤ p, where p < min(n,m). Or, equivalenty, we want to find
an n× p matrix X and an m× p matrix Y such that G = XY ′ approximates F
as closely as possible. The rows of X and Y are then often used in graphical
displays. In particular, biplots [Gower and Hand, 1996] represent X and Y
jointly as n + m points in Euclidean p space.

If formulated in this way, there is an important form of indeterminacy in
this approximation problem. If R of order p is nonsinsular, then we can
define X̃ = XR and Ỹ = YR−T and we have X̃Ỹ ′ = XY ′, where A−T is the
transpose of the inverse (or the inverse of the transpose). Thus X̃ and Ỹ give
exactly the same approximation, but plotting them may give quite different
results, depending on R. To give a simple example, we can choose R scalar,
and make X̃ arbitrarily small and Ỹ arbitrarily big. In particular for biplots,
which are often interpreted in terms of distances between the points, the
indeterminacy is a nuisance and can lead to unattractive representations.

In this note we choose R in such a way that the distances, more specifi-
cally the squared Euclidean distances, between selected rows of X̃ and Ỹ
are small. This takes care of both the relative scaling of the two clouds of
points, as well as rotating them to some form of conformance.
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2. P F

The squared distance between rows i and j of the n + m matrix

Z =

 XR
YR−T


can be written as

d2
i j(R) = (ei − e j)′C(ei − e j) = tr CAi j.

Here the ei are unit vectors (columns of the identity matrix) and we define

C =

XS X′ XY ′

YX′ YS −1Y ′

 ,
as well as S = RR′ and Ai j = (ei − e j)(ei − e j)′.

Thus summing over a selected subset I of squared distances leads to a loss
function of the form

λ(S ) =
∑

(i, j)∈I

d2
i j(S ) = tr S X′A11X + tr S −1Y ′A22Y

where A11 and A22 are the two principal submatrices of

A =
∑

(i, j)∈I

Ai j.

If we minimize the sum of squares of all nm distances between the n points
in X and the m points in Y , for example, we find A11 = mI and A22 = nI. If
n = m and we want to minimize the sum of the n squared distances between
the corresponding points xi and yi then A11 = A22 = I.

3. P S

Let us minimize λ(S ) = tr S P + tr S −1Q, where both P and Q are pos-
itive definite. If P and/or Q are singular, the more general results of De
Leeuw [1982] must be used, but in most applications we have in mind non-
singularity is guaranteed.

The stationary equations for the problem of minimizing λ(S ) are

(1) P = S −1QS −1,
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which we have to solve for a positive definite S . We can use the symmetric
square root to rewrite Equation (1) as

(2) I = P−
1
2 S −1P−

1
2
[
P

1
2 QP

1
2
]

P−
1
2 S −1P−

1
2 ,

from which

(3) P−
1
2 S −1P−

1
2 =
[
P

1
2 QP

1
2
]− 1

2
,

and thus

(4) S −1 = P
1
2
[
P

1
2 QP

1
2
]− 1

2 P
1
2 ,

and

(5) S = P−
1
2
[
P

1
2 QP

1
2
] 1

2 P−
1
2 .

If we want to minimize the sum of squares of all distances between the
points in X and those in Y we have seen that A11 = mI and A22 = nI. In
many forms of principal component analysis X is chosen such that X′X = I,
and thus P = mI. In that case, from (5),

S =
√

n
m

(Y ′Y)
1
2 .

If Y = LΛL′ is an eigen-decomposition of Y , we can choose

R =
[ n
m

] 1
4

LΛ
1
4 ,

R−T =

[m
n

] 1
4

LΛ−
1
4 .

4. E

To illustrate the problem, consider the following output from the scalAs-
soc() program [De Leeuw, 2006]. These are 20 votes of 100 US senators.
Each vote is presented by a plus ("aye") point and a minus ("nay") point, and
the technique jointly scales senators and votes in such a way that senators
are closest to the vote points they endorse. Or, equivalently, senators vot-
ing “aye” must be separated by a straight line from senators voting “nay”.
In Figure 1 all senators are clumped around the origin, and this makes it
impossible to read and interpret the plot.
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Now let us apply the scaling outlines in this paper. Figure 2 gives the results,
which are clearly much more satisfactory.
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