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LBL-9173 

ANGULAR MOMENTUM AND THE COLLECTIVE MODES EXCITED 
IN DEEP-INELASTIC PROCESSES AND IN FISSION 

L. G. Moretto 
Lawrence Berkel v Laboratory 

University ol alifornia 
Berkeley, Cali. ilia 94720 

ABSTRACT 
The angular momentum effects in deep inelastic processes and fission 

have been studied in the limit of statistical equilibrium. The model 
consists of' two touching liquid drop spheres. Angular momentum fraction­
ation has been found to occur along the mas? asymmetry coordinate. Thermal 
excitation of fragment spin is predicted to cur in the degrees of freedom 
which can bear angular momentum, like wriggl. a, tilting, bending, and 
twisting. / ,, : 

INTRODUCTION ' / 
The importance of angular momentum in recent studies is illustrated by 

the work on gamma-ray multiplicities [1-8J, gamma-ray angular distributions 
[9], and alpha [10] and sequential fission probabilities and angular distri­
butions [11-13]. All of these topics have as a major theme the angular 
momentum and its partitioning among several, though not necessarily yet 
identified, degrees of freedom. 

Transport equations have been advocated for the description of the 
time evolution of the intermediate complex formed in heavy-ion collisions 
and have even been applied with moderate success to the angular momentum 
transfer observed in these reactions [14-16]. A good deal can be learned bv 
considering a very simple model, striving to obtain transparent analytical 
results and by considering the long time limit of statistical equilibrium, 
to which all the transport equations must tend. 

The statistical equilibrium limit is not deprived of interest. On the 
one hand, such a limit applies to all of the compound nucleus processes, 
fission in particular. On the other hand, many of the collective degrees 
of freedom which we consider are quite likely to be in most cases, either 
close, or at the statistical equilibrium limit. There are, of course, most 
interesting and notable exceptions. In what follows, we are going to 
consider explicitly the mass asymmetry coordinates, the wriggling, tilting 
and bending modes. 

ANGULAR MOMENTUM FRACTIONATION ALONG THE MASS ASYMMETRY COORDINATE 
Variations in the total exit channel angular momentum along the mass 

asymmetry coordinate have been observed in non-equilibrium heavy-ion 
reactions [5], In these processes the angular momentum fractionation 
appears to arise mainly from the decreasing rate of spread of the population 
along the mass asymmetry coordinate with increasing angular momentum due 
to the dependence of the interaction time upon angular momentum. 
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Angular momentum fractionation is expected even when statistical 
equilibrium is attained along the mass asymmetry mode, either directly as 
the end product of diffusion, or through population from compound nucleus. 
The reason for this can easily be seen. The potential as a function of 
mass asymmetry (ridge potential) has a minimum at symmetry with the second 
derivative increasing with increasing angular momentum. At equilibrium, the 
mass distributions for large angular momenta are more sharply peaked about 
symmetry than the mass distributions for small angular momenta. It follows 
that, after summation over all partial Sl-waves the angular momentum decreases 
with increasing symmetry. More quantitatively, let us consider the ridge 
line as a function of mass asymmetry and angular momenta. For two touching 
liquid drop spheres, of mass numbers A 1 ; A 2, and for small values of 
y = h (A 1-A 9)/(A 1+A 2), the energy is 

E =\(0. ̂ 5354 + .1.29584 y 2)E + (0.89244 + 0.46664 y z)E 
+ (1.25992 - 0.55996 y 2)E c = aE D + BE_ + YE C 

3 K \J D 
3oalomb, and surface energies of where E K, E„, Eo are the rotational, 

the equivalent sphere. 
Nov; let us assume that a compound nucleus has been formed and that 

neutron decay and fission are the only competing processes. In the constant 
temperature limit, dropping ((.-independent factors and assuming V 
get for the distribution In I and y: V w e 

P(«.,y) («-,y) I e 
•(RER + CE C + SES)/T 

df. dy 

where R = a-1, C = 3-1, S = Y-l> and I is the angular momentum. 
Integrating over angular momentum we obtain 

P(y) a 
(RE" 

exp 
C E C + S E S 

exp ii 

where L is the maximum rotational energy of the equivalent sphere, and 
(R = -R. The first moment of the angular momentum is 

1 "' m'™ 'V 
Hy) 

exp 

<WE_ 
exp 

where E R is the maximum rotational energy of the equivalent sphere, F(x) 
is the Dawson's integral and <R 
is: 

-R. The second moment of the angular momentum 
„mx 

A 2(y) 
l -

«C 

UK' 
exp 

6iF 
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These moments as well as the mass distributions, as a function of the mass 
asymmetry y are. shown in Fig. l(a,b). 

— —5 
The;interpretation of Fig. 1(b), which depicts £ and l _as a function of 

y is fairly straightforward-*. For moderate values of y, both £/£n and SL 19.1. 
are constant and close to unity. This is due to the fact that the high 
£-waves dominate the yield for this range of asymmetries, so that averaging 
over i yields a value of I, i z , which is essentially ^p.^p. However, the 
mass distributions for high Jt-waves arc relatively narrow, and as one moves 
out to greater .asymmetries their contribution to the total yield for a 
given asymmetry becomes less important, resulting in a lower average I. 

At the expense of an analytic answer, a more accurate picture can be 
obtained by including the angular momentum dependence of T and by replacing 
T n with T T = r n + r f . The results are shown in Figs. 2(a ±b). The qualita­
tive interpretation is similar to that described above: l,SL are nearly 
constant as a function of y for small y due to the dominance of the 
high £ waves, and then drop off rather abruptly because of the small 
contribution of the high £-waves to the extreme asymmetries. 

Another case which may be relevant in heavy-ion reactions arises when 
the system equilibrates along the ridge line and decays without passing 
through the compound nucleus stage. In other words, there is no competition 
from neutron emission or from other particle decay modes. 

Calculations without neutron competition are shown in Fig. 3(a,b). 
The mass distributions for the individual Jl-waves shown in Fig. 3(a) are 
identical to those in Fig. 2(a) since the effect of neutron competition only 
changes the normalization. However, the distribution P(y) is now consider­
ably broader than its counterpart in Fig. 2(a) due to the change in the 
weighting of P(5,,y) in the integration over I. 

The most significant effect of the assumption of equilibration along 
the ridge line can be seen in Fig. 3(b). In contrast to the preceding case 
(neutrcn competition), t and % peak at symmetry and fall off substantially 
with increasing y. The dramatic differences in the £-fractionation imply 
that it may be possible to distinguish between the two mechanisms, i.e., 
compound nucleus fission and non-compound nucleus decay, by measuring the 
angular momentum as a function of asymmetry. 

STATISTICAL COUPLING BETWEEN ORBITAL AND INTRINSIC ANGULAR 
MOMENTA AND WRIGGLING MODES 

Let us assume that we can approximate the exit channel configuration 
by two touching, equal, rigid spheres with all the associated rotational 
degrees of freedom. This model leads to simple analytical predictions for 
the relevant statistical distributions. 

First, let us consider the equilibrium between intrinsic rotation 
of the fragment and their orbital rotation, assuming that the relevant 
angular momenta are all parallel to each other. If the total angular 
momentum is I and the sp'n fragment is s, the energy, for an arbitrary 
partition between orbital and intrinsic angular momentum is: 

E ( s ) . iL^ll! + 2s! _ (_2_ + i\ „.- _ JL 8 + _l!_ . 
2ur2 ZJ V 2 "I yr 2 2yr 2 

The first term is the orbital and the second the intrinsic rotational 
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energy.vy being the moment of inertia of one of the two equal spheres. 
The average spin per fragment I is given by 

f -E(s)/T 

yr̂  + 2J" " 7 R 

where Z is the partition function. The second moment s is given by: 

A~2 = 2yr=L/T + 4 l V 2 

(yr2 + 2^) (yr2 + 2 / ) 2 

From this we obtain the standard deviation 

/„ 2 2pr2T 10 -• 
S (yr2 + 2J7) ' 

The quantity 4a s represents the amount of angular momentum trade-off allowed 
by the temperature between orbital and intrinsic rotation. 

In some instances, such as gamma-multiplicity measurements, one is 
interested in the average sum of the moduli of the fragment spins. This 
can be obtained as 

- / ' 

-E(s)/T 2|s| = / |s| e -f-
which yields, in dimensionless form: 

2ii = 2 exp(-x ) + xerf(x) 
1- JH J 

where x = IR/V$7*T~ and &* = y r
2^/(yr 2 + iSf). Also I R = 1/7 is the 

spin per fragment-arising from rigid rotation. The above expression is 
plotted in Fig. 4. In the limit of large I, one obtains 

9l~l 2^1 2 T 

2 s = : = — I y r 2 + 2^7" 7 

For small I, 
2 s 

\IHH %/¥" 
to order x , so for 1=0 one obtains 

2 s 

(1 + x 2) 

i 5fl 
yr2 + 2/7 7 7 r 

- this case the fragment angular momentum at zero angular momentum arises 
"o- the excitation of a collective mode (wriggling [17]) in which the two 
:%i;r.erits ,3pin in the same direction while the system as a whole rotates 
'. the opposite direction in order to maintain 1=0. 
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Contrary to what has been assumed thus far, the wriggling mode is 
actually doubly degenerate, as illustrated in Fig. 5. Let us now couple 
this doubly degenerate mode to the spin arising from rigid rotation. If the 
aligned component of the angular momentum arising from rigid rotation is I_ 
and that due to wriggling is R. the total angular momentura for each fragment 
is* 

s 2 = I 2 + R 2 + 2IDR cose 

and the total energy is 
351* + 1AR2 

E = R 

10,7 
The angular momentum of either fragment is 

V i! + R 2 + 2I„R cos6 R R 
so the average sum of the moduli of the fragment spins is 

21 si = f- / V l * + R Z + 2I„R cos9 R exo(-E/T)dRd8 z J R 

A rather accurate approximation to 2|s| is given in dimensionless form by: 
i — l 2 

2i Sl . = 2x + TT- " T < x + -) exp(-x2) + /T (1 + ~- ) erfc(x) . 
s0*Y 2x 2 x 2 

This function, which is plotted in Fig. 4, has the following limiting values: 

2 s 
\/jT*T 

/— I , , x 2 
2 j , small I R 

2|s| _ 2 x + J_ , large I R 

2x 

Also in the limir of ]arge I„, one obtains 

4o 2 = 41^ + 4R 2 - 4I2, - 2R2 = 2R2 = 2C7*T K K 

It is interesting to note that the wriggling mode generates a random 
angular momentum in a plane perpendicular to the line of centers of the 
fragments. 

THERMAL FLUCTUATION OF THE ANGULAR MOMENTUM PROJECTION ON THE 
DISINTEGRATION AXIS: TILTING 

Above we have assumed that the two touching fragments are aligned 
with their common axis perpendicular to the total angular momentum. Because 
of the thermal fluctuations, this condition can be relaxed (see Fig. 5). 
Assuming now that the two fragments are rigidly attached one to the other, 
the energy is given by 
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2 2 5 2 2 

E = I - K + _KL = _ll_ + _K 
2^1 M l 2<^ 2^eff 

a - <.« .-ur 2; .Jjj' = 2 ^ ; and jr"^ = CTj"1 - J ^ 1 ; K is the 
projection of the angular momentum I along the line of centers. One can 
easily obtain 

14 <ff T = f^ T 

The averaged square spin is 

i = 2 = K 2 + A. T 2 -A- K 2 = -^ K 2 + — 
4 s K + 49 * 49 K 49 K + 49 

The average spin, on the other hand, is: 

2. , , 45 K 2 _ 2 2|i| * 4 - I + . £ V = I l + T \ " 7 I + l r + 2 ^ 
) 1 + 2 8 l = 7 X \ X T 8 x

2 / 7 ^ 2 I 

where we have dropped terms of order higher than K /I . 
Due to the excitation of this mode the reaction plane is not perpen­

dicular to the total angular momentum of the system I, but is "tilted" by 
an angle 9 t given by: sin8 t = V K 2/! 2 . The angle more relevant to 
sequential fission angular distributions is the angle between the total 
spin of one fragment and the normal to the line of centers (in the same 
plane as I), which is given by: sinQ = V K /4s . Since I is consider­
ably larger than s, this angle can be considerably larger than 9 t. The 
combined effect of wriggling and tilting will produce spin components along 
all the coordinate axes. If the separation axis is the z-axis, tilting will 
lead to an rms z-component of V K z/4 = 0.84\/(j7'T for each fragment. 
On the other hand, the average x- and y-components will be v R 2/2 = 0.60 Vc/T ; 
hence, tilting w.T>d wriggling together generate an angular momentum which 
is almost random. 

TWISTING AND BENDING MODES [17] EXCITED IN A ZERO ANGULAR MOMENTUM SYSTEM 
These three degrees of freedom are illustrated in Fig. 6. They are 

degenerate in our two-equal-sphere model [12]. If R is the angular momentum 
of each fragment, we obtain 

(^T) % 

y/W 

= j^T 
and 

O. v = (I " ? ) ^ T S 0.227 ̂ T 



COUPLING DF TWISTING AND BENDING MODES TO RIGID ROTATION 
We want to generalize the previous calculation to the case of non-zero 

total angular momentum. Let us assume that each fragment has an aligned 
angular momentum component I R arising from rigid rotation and a random 
component R due to the bending and twisting modes. The overall rotational 
energy arising from the fragment spins is: 

E = T 7 - ^ + R 2 > 

The average total angular momentum of the fragments, in dimensionless form, 
is: 

2 s| 
V^T 

(2x + - ] erf(x) + — — exp(-x2) 

where x =. IR/"\£7'T . This function is plotted in Fig. 7. For small x 
one obtains 

2 Is| ^ _ '- "TIT (1 + \ > 
v(7f V F 

In the limit of 1 = 0, one obtains 

2151 = -4 
Vir 

A A 7 T = 2R 

in agreement with the results of the last section. For large x, 
2 i = 2x + -

= 21 + ^ R h = 2 I + l r 
R 3 I n 

| x ( 1 + f * 
Similarly the average square angular momentum to order R /I yields 

4a z 4(1* + R 2) 

= 2^/T 

CONCLUSION 
Using a simple model we have investigated the angular momenta associated 

with a number of collective degrees of freedom. For the mass asymmetry mode 
we have found that there is an appreciable ^-fractionation along Lhe mass 
asymmetry coordinate, even in the equilibrium limit. Furthermore, the 
distinctly different patterns observed for the case of compound nucleus 
decay and for non-compound nucleus decay (i.e., equilibration along the 
ridge line) imply that it may be possible to experimentally distinguish 
between these two mechanisms, perhaps via gamma-ray multiplicity measurements. 
Six other collective modes have been considered: two wriggling, one tilting, 
two bending, and one twisting. Excitation of these modes causes a modest 
increase in the average fragment spins over the rigid rotational value but 
lead to a sizeable spread in the fragment's angular momenta about the average 
value. 
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FIGURE CAPTIONS 
Fig. 1. (a) Mass distributions for the indicated reaction obtained by 

integrating over all £-waves leading to fission (squares) and for 
selected individual A-waves (solid curves). The il-values are Jl=0, & m x/2, 
and n̂ix- All curves have been normalized to unity at symmetry. 
(b) Mean (crosses) and mean squared (squares) angular momentum divided 
by the corresponding quantities obtained by averaging over the Jl-distri-
bution which leads to fission vs. asymmetry. 

Fig. 2. (a) Same as Fig. 1(a) except that the angular momentum dependence 
of the temperature and total reaction width have been incorporated 
into the calculations (see text). (b) Same as Fig. 1(b) but including 
the same refinements as the calculation shown in Fig. 2(a). 

Fig. 3. (a) Same as Fig. 2(a) but in the absence of neutron competition. 
Note that only the total mass distribution (squares) is different from 
Fig. 2(a). (b) Same as Fig. 2(b) but without neutron competition. 



Fig. 4. :Total spin of the fragments arising from wriggling as a function of 
the spin arising from rigid rotation alone plotted in dimensionless form. 
The ;upper solid curve shows the result for both of the wriggling modes 
while the lower solid curve corresponds to the excitation of a single 
wriggling mode (see text). The limiting behavior for both small and 
large x are indicated in both cases. 

Fig. 5. Schematic illustration of the tilting mode and the doubly degenerate 
wriggling modes for the two equal sphere model. The long arrows origi­
nating at the point of tangency for the two spheres is.the orbital 
angular momentum while the shorter arrows represent the individual 
fragment'spins. 

Fig. 6. Schematic illustration of the twisting and bending -modes for the 
two iequal sphere model. Note the pairwise cancellation of the fragment 
spins. 

Fig. 7. Total fragment spin as a function of the spin arising from rigid 
rotation for the twisting and bending modes. .Dimensionless forms are 
utilized. The limiting behavior for large and small x are indicated. 

This work was supported by the U. S. Department of Knergy under Contract 
W-7405-ENG-48. 
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Bending and twisting modes 
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