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How Sequential Interactive
Processing Within Frontostriatal
Loops Supports a Continuum of
Habitual to Controlled Processing
Randall C. O’Reilly1,2* , Ananta Nair2, Jacob L. Russin1 and Seth A. Herd1,2

1 Computational Cognitive Neuroscience Lab, Department of Psychology, Computer Science, and Center for Neuroscience,
University of California, Davis, Davis, CA, United States, 2 eCortex, Inc., Boulder, CO, United States

We address the distinction between habitual/automatic vs. goal-directed/controlled
behavior, from the perspective of a computational model of the frontostriatal loops.
The model exhibits a continuum of behavior between these poles, as a function of
the interactive dynamics among different functionally-specialized brain areas, operating
iteratively over multiple sequential steps, and having multiple nested loops of similar
decision making circuits. This framework blurs the lines between these traditional
distinctions in many ways. For example, although habitual actions have traditionally
been considered purely automatic, the outer loop must first decide to allow such habitual
actions to proceed. Furthermore, because the part of the brain that generates proposed
action plans is common across habitual and controlled/goal-directed behavior, the
key differences are instead in how many iterations of sequential decision-making
are taken, and to what extent various forms of predictive (model-based) processes
are engaged. At the core of every iterative step in our model, the basal ganglia
provides a “model-free” dopamine-trained Go/NoGo evaluation of the entire distributed
plan/goal/evaluation/prediction state. This evaluation serves as the fulcrum of serializing
otherwise parallel neural processing. Goal-based inputs to the nominally model-free
basal ganglia system are among several ways in which the popular model-based vs.
model-free framework may not capture the most behaviorally and neurally relevant
distinctions in this area.

Keywords: habits, goals, controlled processing, automatic processing, computational modeling, frontal cortex,
basal ganglia

INTRODUCTION

Since its inception, the field of psychology has been fascinated by the distinction between two types
of behavior, one that leads us to act relatively automatically, according to well-worn habits, and
another that allows us to act with intent and deliberation (James, 1890; Thorndike, 1911; Hull, 1943;
Tolman, 1948). These two classes of thought and action have been referred to by several different
sets of terminologies, each with slightly varying definitions, which has sown some confusion in
the literature (Hassin et al., 2009; Kool et al., 2018; Miller et al., 2018, 2019). Historically, the first
terminology applied to this intuitive distinction was stimulus-response vs. cognitive-map guided
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(Thorndike, 1911; Tolman, 1948). This distinction was later
replaced by habitual vs. goal-directed behavior (Tolman, 1948;
Balleine and Dickinson, 1998; Dickinson and Balleine, 2002;
Killcross and Coutureau, 2003; Balleine, 2005; Yin and Knowlton,
2006; Tricomi et al., 2009), which co-existed alongside automatic
vs. controlled processing (Shiffrin and Schneider, 1977; Cohen
et al., 1990; Miller and Cohen, 2001). More recently, a good deal
of work has been directed at the distinction between model-free
and model-based reinforcement learning (Sutton and Barto, 1998;
Doya, 1999; Doya et al., 2002; Daw et al., 2005).

In this paper, we attempt to clarify the relationships
among these terminological distinctions through the lens of
a computational model of the underlying brain mechanisms.
This model builds on detailed neural recording data available
on animal action-selection. One of the major conclusions
from this model is that these apparently distinct types
of behavior may be manifestations of a core underlying
neural system, which evaluates the relative cost/benefit
tradeoffs of engaging in more time-consuming, deliberative
processing using the same basic mechanisms that drive
all the other behavioral decisions that an organism must
make. Furthermore, we argue that the neural pathways that
support the habitual stimulus-response level behavior are
actually an integral part of the same system that supports
deliberative, controlled processing. Thus, this framework
provides a unified view of action selection and decision
making from the most basic habitual level up to the most
complex, difficult decisions that people face. In our theory,
Type 2 (deliberative) decisions are essentially composed
of many Type 1 (automatic) decisions. Thus, it offers a
mechanistic explanation of the proposed continuum between
them (Melnikoff and Bargh, 2018).

Goal-Driven/Controlled vs.
Habitual/Automatic
We first establish some common ground by attempting to
define a consensus view about the closely-related distinctions
between goal-driven vs. habitual, and controlled vs. automatic
processing. Of the two, controlled vs. automatic (Shiffrin and
Schneider, 1977) is perhaps more clearly defined, by virtue
of a history of computational models based on the idea that
the prefrontal cortex (PFC) supports controlled processing by
maintaining active working memory representations that drive
top–down biasing of processing elsewhere in the brain (Cohen
et al., 1990; Miller and Cohen, 2001; Herd et al., 2006; O’Reilly,
2006; O’Reilly and Frank, 2006). Cognitive control is needed
to support novel, difficult, complex tasks, e.g., to overcome
prepotent (i.e., habitual) response pathways in the widely-studied
Stroop task. As a task or stimulus-response pathway becomes
more strongly practiced, behavior becomes more automatic and
free from the need for this top–down biasing support. Thus,
automatic and habitual are closely related terms. The connection
between goal-driven and controlled processing is somewhat less
exact, as one could imagine behaving according to goals that
do not require significant cognitive control (Bargh, 1989), and
potentially even exerting cognitive control in the absence of clear

goal-driven motivations. Sustained active neural firing of goal-
like representations, that can exert an ongoing biasing effect
on behavior, is perhaps a more direct mechanistic connection
between the two.

Phenomenologically, habitual behavior is typically
characterized as being relatively insensitive to the current
reward value of actions, and not as strongly under the control
of active, conscious goal engagement (Wood and Rünger,
2016). On the other hand, it remains a challenge to consider
the nature of real-world behaviors that are characterized as
habits, as they often involve extended sequences of actions
coordinated over reasonably long periods of time (e.g., driving
home from work, making coffee, etc.) – these do not seem to be
entirely unconscious activities devoid of any cognitive control
influences, or contextual sensitivity (Cushman and Morris,
2015). Furthermore, how can it be that subtle, unconscious
factors can sometimes strongly shape our overt behavior (Bargh,
2006; Huang and Bargh, 2014)?

Our general answer to these questions, as captured in our
computational modeling framework, is that both habits and
more controlled, goal-driven behaviors emerge from a shared
neural system, and both operate within a common outer-loop of
overall cognitive control that pervasively shapes and modulates
the nature of processing performed in the inner-loops associated
with specific task performance. This is similar to the hierarchical
control framework of Cushman and Morris (2015), except that
we postulate a sequential, temporal organization of decision
making and control, where the same neural systems iteratively
process multiple steps over time, including periodic revisiting
of the broader context and goals that we refer to as the outer-
loop. Thus, habits only drive behavior when permitted by this
outer-loop of cognitive control, and indeed the actual unfolding
of behavior over time is usually at least somewhat coordinated
by the outer-loop. Furthermore, as we’ll elaborate below, a
crucial factor across all behavior in our framework is a so-
called Proposer system that integrates many different factors in a
parallel-constraint-satisfaction system to derive a proposed plan
of action at any point in time – the properties of this system
may explain how unconscious factors can come to influence
overt behavior in the course of solving the reduction problem
of choosing one plan among many alternatives (Bargh, 2006;
Huang and Bargh, 2014).

The Model-Free vs. Model-Based
Dichotomy
Within the above context, how does the model-based vs. model-
free (MBMF) framework fit in? This framework has engaged
new enthusiasm by offering the promise of a more formal,
precise definition of the relevant processes, and by leveraging the
direct connection between reinforcement learning principles and
properties of the midbrain dopamine system (Montague et al.,
1996; Schultz, 2013). Specifically, the model-free component is
typically defined as relying on learned, compiled estimates of
future reward associated with a given current state (or potential
actions to be taken in that state), which have been trained via
phasic dopamine-like temporal difference signals, as in the classic
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TD and Q-learning reinforcement learning frameworks (Sutton
and Barto, 1998). By contrast, the model-based system adds an
internal model that can simulate the evolution of the state of the
world over multiple iterations, so that action selection can be
based on those predicted states. As such, the model-free system
is considered to be relatively inflexible to changes in the reward
function, including changes resulting from internal state (e.g., not
being hungry at the moment), whereas the model-based system
can dynamically adjust its predictions based on goal changes and
other changes, and is thus more flexible.

Thus, it is this key difference in the relative flexibility
of the two systems that maps onto the existing notions of
goal-driven vs. habitual behavior. However, there are various
other aspects of the MBMF framework which map less well,
creating significant confusion when people intend to characterize
the goal-driven vs. habitual distinction, but using the MBMF
terminology. At a very basic level, there is no principled
reason why a model-free system should not have access, as
inputs, to internal drive and goal states in addition to external
environmental states. If it does, its behavior can also be goal-
directed, and sensitive to internal bodily states such as hunger.
In addition, model-based is not synonymous with goal-directed,
as model-based is defined specifically in terms of models of
the external environment. In our framework, a model-free-
like system indeed receives internal state and goal inputs, and
thus participates in goal-directed behavior. This illustrates an
important mismatch between these two terminologies, which
are often taken to be interchangeable. More generally, standard
reinforcement-learning paradigms tend not to incorporate a
significant goal-driven component, and instead generally assume
a single overriding goal of maximizing a scalar-valued reward,
which is delivered to an entirely externally-motivated agent
(O’Reilly et al., 2014). Thus, aside from a few more recent
examples (Berseth et al., 2018), standard reinforcement-learning
models are not particularly well-suited for describing goal-driven
processing in the first place.

Recent reviews by Miller et al. (2018, 2019) point out
the following additional issues with the MBMF terminology.
First, it is problematic that the model-free system relies on
learned value estimates to drive action selection, whereas most
existing data indicates that habitual behavior is specifically
more insensitive to reward value (Wood and Rünger, 2016).
Second, the neural substrates associated with MBMF mechanisms
are largely overlapping and hard to disentangle, involving the
dopaminergic system, the basal ganglia (BG), and the prefrontal
cortex (PFC). Whereas the BG was traditionally viewed as
being primarily a habit-based motor area (e.g., Miller, 1981;
Mishkin et al., 1984; Squire and Zola-Morgan, 1991; Squire,
1992; Packard and Knowlton, 2002) more recent evidence and
theorizing suggest that, with the exception of the dorsal-lateral
striatum, most of the BG is more clearly involved with non-
habitual behavior and deliberative, controlled cognition in novel
and challenging tasks (Pasupathy and Miller, 2005; Samejima
et al., 2005; Yin et al., 2005; Balleine et al., 2007; Seger and
Spiering, 2011; Pauli et al., 2012). Many authors nevertheless
continue to assume the simple association of model-free with the
BG, in keeping with the traditional habit-based ideas.

Furthermore, while the MBMF distinction is often considered
to be dichotomous, more recent work has explored various
combinations of these aspects to deal with the computational
intractability of full model-based control, further blurring the
lines between them (Pezzulo et al., 2013; Cushman and Morris,
2015). Likewise, there are many ways of approximating aspects
of model-based predictions of future outcomes that may not fit
the formal definition of iterative model-state updating, e.g., using
predictive learning in the successor-representation framework
(Dayan, 1993; Littman and Sutton, 2002; Momennejad et al.,
2017; Russek et al., 2017; Gershman, 2018). This may be
considered acceptable if the distinction is just that the model-free
system has absolutely no model-like element, and the model-
based system has any kind of approximation of a world model
(Daw and Dayan, 2014), but this may end up straining the value
of the distinction. For instance, a successor-representation model
is otherwise quite similar to a standard model-free system, but
it does use information about outcomes (although they do not
usually explicitly predict an outcome).

The above considerations led Miller et al. (2018, 2019)
to conclude that MBMF are both aspects of the goal-
based, controlled-processing system, based on the prefrontal
cortex/basal ganglia/dopamine circuits in the brain, while
habitual, automatic processing is supported by an entirely
separate system governed by a Hebbian, associative form of
learning that strengthens with repetition.

Overview of the Paper
In the remainder of this paper, we present an alternative
framework based on computational models of the basal
ganglia/prefrontal cortex/dopamine system, which is consistent
with the overall critique of MBMF by Miller et al. (2018, 2019),
and provides a specific set of ways in which these brain systems
can support a continuum of goal-directed, model-based forms of
decision making and action selection. The original controlled vs.
automatic distinction has always incorporated this notion that
these are two poles along a continuum. Our framework goes
further in describing how model-based and model-free elements
interact in various ways and to varying degrees to provide a
rich and multi-dimensional continuum of controlled, goal-driven
cognition, which also supports varying degrees and shades of
habitual or automatic elements.

This framework contrasts with several others that posit
strongly dichotomous and internally homogenous habitual vs.
goal-driven pathways, followed by an arbiter system that decides
between the two (e.g., Daw et al., 2005; Miller et al., 2019).
Instead, we propose that an outer-loop of goal-driven, but model-
free, processing is itself essentially an arbiter of how much time
and effort to invest in any given decision-making process. It
controls the degree of engagement of a broader toolkit of basic
decision-making computations to be deployed, as a function of
their relative tradeoffs (c.f., Pezzulo et al., 2013). In particular,
it controls whether to perform additional steps of predictive
modeling down each given branch of the state-space model.

We also address a critical phenomenon for any model in this
domain, which is the nature of the transition from controlled
to automatic processing (Cohen et al., 1990; Gray et al., 1997;
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Hikosaka and Isoda, 2010). Behaviorally, this transition occurs
gradually over time and appears to reflect something like the
strengthening of habit representations, which offer advantages
in terms of speed, resistance to distraction, and the ability to
do more in parallel, at the cost of flexibility and sensitivity to
current goals – i.e., the fundamental underlying tradeoffs along
this dimension. However, due to the multi-component nature
of our goal-driven model, there are also various ways in which
learning within this system can change these relative tradeoffs,
leading to a richer picture of this process of habit formation.

THE PROPOSER-PREDICTOR-ACTOR-
CRITIC MODEL

Our theoretical framework has been specified as a neural network
model in the Leabra framework (O’Reilly, 1998; O’Reilly and
Munakata, 2000; O’Reilly et al., 2016).

The Proposer-Predictor-Actor-Critic (PPAC) model (Figures 1,
2; Herd et al., 2019) leverages the prototypical loops descending
from all areas of frontal cortex through the basal ganglia and
converging back to modulate the function of matching areas
of frontal cortex (Alexander et al., 1986; Haber, 2010, 2017;
Sallet et al., 2013). Functionally, these BG/PFC loops support the
ability to selectively activate and maintain neural activity (i.e.,
working memory) in the service of supporting top-down control
representations (Miller and Cohen, 2001; Frank and O’Reilly,
2006; Herd et al., 2006; O’Reilly, 2006). As such, this system
is critical for controlled, goal-driven processing. The PPAC
model includes an important distinction among the nature of
the cortical input representations into the BG: proposed actions
vs. predicted outcomes. Critically, complex decision-making
unfolds sequentially across multiple iterations in the model,
each of which involves parallel operations across these circuits
(i.e., a serial-parallel model, in which parallel computations are
iterated serially).

In this theory, complex decision-making consists of a series
of selections of internal “actions,” each of which consists of an
update to working memory and/or episodic memory. Selecting a
move in chess or choosing a plane ticket to purchase may each
require a large number of belief updates (like “too expensive to
fly direct in the afternoon”) and the selection of several new
mid-level plans (like “try to threaten a more valuable piece
instead of defending the knight”). Each of these can be stored
in active memory, which executes controlled processing (by
exerting top-down biasing of processing (Cohen et al., 1990;
Miller and Cohen, 2001; Herd et al., 2006). Maintaining each plan
or belief in working memory can also create an episodic memory
trace for later recall and re-use. Our theory holds that each
such representation is selected for maintenance (and therefore
plan execution) much as motor representations are selected, by
distinct but computationally and structurally analogous circuits.

Our theory expands on existing work on action selection in
the basal ganglia, and addresses the contributions of cortex to
this process. As such, we adopt the terminology of an actor-critic
reinforcement learning architecture (Sutton and Barto, 1998;
O’Reilly and Frank, 2006) to describe the computational roles

FIGURE 1 | Structure of Proposer-Predictor-Actor-Critic architecture (Herd
et al., 2019) across frontal cortex and subcortical areas. We depict two
parallel circuits with a hierarchical relationship. The top is a broad functional
diagram, emphasizing the serially iterative and hierarchical nature of our
proposed decision-making process. The bottom expands those functions,
and identifies the brain areas that perform each function.

of basal ganglia and the dopamine system. The basal ganglia
functions as an Actor that decides which action to take (or in our
extended model, which plan to pursue). The dopamine release
system, including amygdala, ventral striatum, and related areas,
serves as a Critic by gauging the success of each action relative
to expectations. Phasic dopamine release from this critic system
serves as a reward prediction error learning signal for the basal
ganglia actor system.

To this existing computational/biological theory we add two
new computations, each made by participating regions of cortex.
The first is a Proposer component. This system takes information
about the current situation as input, and produces a single
candidate plan representation. This proposer functional role may
be less important for laboratory tasks, since they usually have
a small set of actions (e.g., levers, yes/no responses), which can
be learned thoroughly enough to process all options in parallel
routes through the basal ganglia (e.g., Collins and Frank, 2014).
However, dealing with unique real-world situations requires
coming up with a potential approach before evaluating outcomes
(e.g., different plausible routes in a trip planning context). This
proposer system could use computations characterized as model-
free, stimulus-response, constraint satisfaction, or model-based,
depending on the complexity of the situation.

The other cortical addition is a Predictor component, which
predicts the likely outcome of each proposed plan. In our model
as currently implemented, this prediction always took place in
two steps: predicting an “Outcome,” and from that outcome,
predicting a “Result” or potential reward. We think that this
type of prediction is actually performed by a variety of brain
systems, using a variable number of steps for different types of
decisions; but for the present purposes, it is adequate to simply
think of this component as producing a prediction of an outcome
by any means. This system’s computation is thus very much
“model-based,” according to that terminology.
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FIGURE 2 | Neural network implementation of the Proposer-Predictor-Actor-Critic theory. The model performs a three-factor task of choosing a Plan that
accomplishes a current Goal in a current Situation. This abstract task can be conceptualized as navigation, social interaction, etc. The network’s Proposer
component selects one Plan, based on pattern completion from inputs representing the current Situation and the current Goal. Each Plan deterministically produces
an Outcome, each of which has one associated Result. The model is rewarded if that Result matches the current Goal. The Predictor component (when it is used)
then predicts the resulting Outcome and Result (based on the proposed Plan and the current Situation), and the Actor component then uses that prediction as input
to accept or reject that plan. If the plan is rejected, this computational cycle begins again with a new plan from the Proposer.

In our system, the Actor uses the predicted outcome (when
available) of the proposed plan to either accept or reject that
plan. Having this specific outcome prediction greatly simplifies
the computational task of the actor component; it need simply
accept plans that are predicted to have rewarding outcomes, and
reject those that do not. If the proposed plan is rejected, the
Proposer component makes a new, different proposal, a new
prediction is made by the Predictor, and the Actor again decides
to accept or reject that newly proposed plan. This operation
proceeds serially until a candidate plan is selected. The serial, one-
at-a-time plan consideration is slow, but computationally helpful
in making an accurate prediction of outcomes in novel, poorly
learned domains. It allows the full power of the cortex to be
directed toward each prediction, and avoids binding problems,
as we address further in the Discussion section.

This computational approach can attack complex problem
spaces by sequentializing a complex decision into many sub-
decisions, and allowing the actor component to accept or
reject each proposed sub-plan or sub-conclusion. We propose

that our ability to sequentialize a problem into sub-steps
and make a binary decision for each is the source of
humans’ remarkable cognitive abilities relative to other animals.
This method of simplification may, however, have particular
inherent weaknesses that explain some of humans’ notable
cognitive biases.

Continuum of Controlled/Goal-Directed
vs. Automatic/Habitual
Due to its sequential, hierarchical and multi-component nature,
the model provides a mechanistic basis for a continuum
of controlled/goal-directed vs. automatic/habitual behavior. At
every sequential step, there is the potential for an outer-loop
decision about what overall strategy to employ, e.g., whether to
engage in further prediction, or iterate to another proposed plan,
etc. Within that outer loop, there are more specific decisions
regarding what factors to focus on, such as which branches to
pursue in prediction, etc.
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In cases of high urgency or low stakes, all of that complexity
could be elided in favor of a quick thumbs-up (Go gating
decision) from the Actor to the Proposer’s initial suggestion.
This optimization for speed could be created by reinforcement
learning in the basal ganglia, with inputs that capture timing
and relevant time pressures. We suggest that this may represent
the majority of habitual or automatic responding – a fast
path through the very same circuits, typically at the lower
levels of the abstraction hierarchy (e.g., involving supplementary
motor areas and the dorsolateral striatum). Thus, consistent
with the continuum perspective, and a surprising difficulty in
finding explicit claims and data about what neural substrates
uniquely support habitual behavior (e.g., Wickens et al., 2007;
Seger and Spiering, 2011), there may be no separate neural
substrate associated with habitual behavior – it is just the simplest
and fastest mode of processing through the entire decision-
making apparatus.

If this is the case, then it would seem to challenge the various
attempts to establish strong dichotomies between e.g., model-free
vs. model-based, or even value-based vs. value-free or belief-
based vs. belief-free (Miller et al., 2018, 2019). In short, even
habitual behavior depends on a (usually implicit) decision to
not engage in a more controlled form of behavior, and that
decision likely depends on assessments of the relevant “stakes”
(values or utilities) in the current context, and the estimated
cost/benefit tradeoffs in engaging in more effortful levels of
control (Pezzulo et al., 2013).

Thus, estimated value is always in play, even in the context
of habitual behavior. To reconcile this idea with the finding that
habitual behaviors are relatively insensitive to changes in reward,
we would need to determine the relative cost/benefit tradeoff
estimates associated with the alternative options that might
have been taken instead of performing the habitual response.
Certainly, if the habitual response would lead to imminent severe
harm, and this was obvious to the individual, then we would
expect them not to engage in it. Typically when clearly erroneous
habitual responding occurs in the real world, it can be traced to a
lack of attention being paid to the relevant factors, likely resulting
from prior decisions to allocate that attention elsewhere. In
other words, taken literally, a purely habitual response presumes
that the person is otherwise somewhat of a zombie. Instead, we
suggest, consistent with others (e.g., Cushman and Morris, 2015)
that habitual responses occur within a broader context (i.e., the
outer-loop) of at least some level of cognitive control.

The Model-Free Actor in the Loop
A central feature of our model is that the basal ganglia Actor
system provides a value-based final Go/NoGo decision, even (and
perhaps especially) under controlled, deliberative situations. The
Actor fits the classic description of a model-free reinforcement
learning system, and thus our framework says that there is
an important model-free component to even high-level goal-
driven and controlled behavior. This is consistent with a similar
claim in the hierarchical model of Cushman and Morris (2015)
and with their more recent experimental results (Cushman
et al., this issue). Thus, whether one wants to call this Actor
“model-free” or not, even when it receives all manner of

highly-processed goal, internal state, and prediction inputs from
the cortex, further challenges the utility of this terminology.
Furthermore, as we noted above, the availability of predicted
outcome representations from the Predictor component can
make the Actor’s job very simple, and yet likely much more
effective than a typical model-free system.

The Central Role of the Proposer
The function of the Proposer is particularly central to our
overall framework, as it serves as the starting point for any
action/plan initiation process. As noted, we think it functions
through parallel, constraint-satisfaction processing to integrate a
large number of different constraints, cues, and other contextual
information to arrive at a plausible plan of action in a given
situation (O’Reilly et al., 2014). It is precisely through this
dynamic integration process that otherwise subtle, unconscious
factors may be able to have measurable influences over our
behavior (Bargh, 2006; Huang and Bargh, 2014). In addition, this
property of the proposer enables even habit-based behavior to be
somewhat flexible and capable of incorporating novel constraints
from the current environmental state – even habitual actions are
not purely ballistic and “robotic” in nature (Cushman and Morris,
2015; Hardwick et al., 2019).

Furthermore, as we’ll see next, the incremental shaping of
these Proposer representations over the course of learning
plays a critical role in the automatization and habitization of
behavior. Indeed, as the Proposer gets better and better at
generating effective plans for increasingly well-known contexts,
the Actor learns to essentially rubber-stamp these plans, thus
resulting in fast, efficient habitual behavior. This happens through
reinforcement learning shaping the weights from cortex to the
basal ganglia Actor system; as the Actor sees more positive,
rewarding examples, it becomes more biased toward a Go
response. Along with its importance in habitual behavior, the
Proposer component is also essential for coming up with plans
in novel, challenging situations requiring controlled processing.
Thus we argue that these functional distinctions may not have
clear corresponding anatomical distinctions: the basal ganglia,
Actor component is involved in all types of decisions, and
that different areas of cortex may be recruited to play roles
as Proposer, Predictor, and even to add more highly-processed
inputs to model-free value predictions (Herd et al., 2019).

Transition From Slow and Controlled to
Fast and Automatic Processing
One of the main results from our computational model (Herd
et al., 2019) is shown in Figure 3, where the Proposer component
gradually learned to choose a Plan appropriate for the current
situation and goal. Initially, without relevant domain knowledge,
the Proposer generates plans essentially at random, and a larger
number of iterations are required to arrive at a Plan that
the Actor approves of. Over the course of learning, the more
appropriate initial plans generated by the Proposer reduces
the number of iterations required, and thus the overall model
gradually transitions from a more serial, iterative mode of
processing to a more parallel mode of processing dominated
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by the parallel constraint-satisfaction dynamic in generating
plans in the Proposer system. This illustrates a continuum of
habitization occurring over learning within the same overall
system. Furthermore, the Proposer was able to learn only
when the remaining systems chose to pursue a given plan; its
learning was thus guided by the other systems, including the
Predictor component.

Our initial model does not include the outer-loop ability to
select which decision-making processes to engage in, so it did
not have the ability to further optimize decision making by not
engaging the Predictor at all, which would have resulted in even
greater speedup, and corresponds with a more purely habitual
response mode. We are currently working on a version of the
model with this functionality.

Goal-Directed Behavior From a
Model-Free System
In our model, the input to the Proposer system includes
information about goals, so the behavior produced by this
system qualifies as goal-directed, despite the relatively simple
computations. Most computational work on model-free
reinforcement learning systems addresses systems that do not
include current goals as inputs. Those systems can only produce
habitual behavior. However, there does not appear to be any
strong justification for this assumption, and it seems more
reasonable (as well as empirically justified) to assume that the
relevant systems in the mammalian brain have access to a variety
of useful information, including current goals. Indeed, there has
been some discussion of goal-directed habits in other literature
(Verplanken and Aarts, 1999; Aarts and Dijksterhuis, 2000).

When we assessed the accuracy with which the Proposer
component produced a Plan which accomplished the current
Goal (with Situation and Goal chosen at random from ten and
four possibilities, respectively), we observed that this component
displayed goal-directed behavior by matching Plans to Goals at an

above-chance level, but learned slowly (Figure 3). This matches
the slow transition from controlled to automatic processing (Gray
et al., 1997) (note that we did not optimize parameters for
Proposer learning in this task; some other parameterizations did
produce better and faster learning).

Thus, our model illustrates one case in which goal-directed
behavior results from thoroughly model-free computations.

Serial Processing Enables Coherent
Predictions
A key advantage of the serial evaluation of different proposed
plans in our model is that it allows many different brain areas to
contribute to the evaluation process, without suffering from the
binding problem that would otherwise arise from an attempt to
evaluate multiple options in parallel. For example, if two options
are considered together, and another brain area generates an
activation associated with a prediction of difficulty, while another
activates a prediction of relative ease, how do we know which
prediction goes with which option?

This is analogous to the binding problem in visual search,
where serial processing has also been implicated as a solution
(Treisman and Gelade, 1980; Wolfe, 2003). For example, people
cannot identify in parallel whether a display contains a particular
conjunction of features (e.g., a red X among green Xs and red Os),
whereas they can identify separable features in parallel (just Xs
among Os, or just red among green). Likewise, the conjunction
of options and their predicted consequences at many different
levels in the brain, which likely depends on the current internal
and external state, can be much more coherently evaluated by
considering options one at a time. Furthermore, this serialization
of the processing enables the same predictive and evaluative
neural representations to be re-used across different situations
and contexts, thus facilitating the transfer of knowledge to novel
situations. In short, more complex model-based, predictive forms
of control must involve serial processing mechanisms.

FIGURE 3 | Model’s simulation of habitization (from Herd et al., 2019). Performance grows faster with more training, but generalization is sacrificed. (A) Performance
(% correct). The model with the Proposer component (Full model) performs worse at generalization (test – dashed lines). (B) The Proposer component learns correct
behavior over time, with increasing probability of producing optimal plans for first consideration. (C) The Proposer’s learning reduces the total number of plans
considered, by providing good options for first consideration, and thus also reduces total performance time. This may capture one factor in habitization in humans
and animals.
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However, there are costs associated with serial processing, not
only in terms of time, but also in terms of the coordination
and control required to organize the serial processing itself. In
addition, evaluating any one option relative to the predicted
properties of other options requires some form of maintenance
and comparison operations across these predictions, placing
demands on working memory and other limited cognitive
resources. Nevertheless, there are strong serial-order effects on
decision-making, which such a serial model can naturally account
for, so future modeling work will need to address these challenges
in order to better address the complexities of these phenomena.

In summary, our sequential, integrated, systems-based
approach provides some potentially novel perspectives on
central questions about the nature of controlled/goal-driven vs.
automatic/habitual behavior.

DISCUSSION

We have presented a computational systems-neuroscience
approach to understanding the dynamics of decision making
and action selection, which suggests that the classical dichotomy
between habitual/automatic vs. goal-directed/controlled
processing can be understood as different modes of functioning
within a unitary system, operating fundamentally in a serial
manner. The serial nature of the processing affords a natural
incrementality to the continuum between these modes of
processing – as the system iterates longer and engages more
elaborated predictive and evaluative forms of processing, it
shades more toward the goal-driven, controlled-processing
end of the spectrum. By contrast, there is a fast track through
the system where a proposed plan of action is derived rapidly
through parallel constraint-satisfaction processing, which is then
quickly approved by the basal ganglia Go/NoGo system – this
corresponds to the habitual end of the spectrum. However, even
this habitual level of behavior is contingent on an outer-loop
of decision making that has established relevant thresholds and
control parameters to enable the fast-track to be taken in the first
place. Thus, habitual behavior still operates within an at-least
minimally controlled context, in situations where the overall
benefits of so behaving make sense compared to investing greater
levels of control.

This framework contrasts with the dual-pathway model
proposed by Miller et al. (2019) and similar models which
suggest that habitual and controlled, goal-driven processing are
subserved by parallel pathways that compete via an Arbiter
system for control over behavior. It also contrasts with other
models having a similar overall structure, but which use model-
free and model-based components that likewise require an
Arbiter system (e.g., Daw and Dayan, 2014). The framing of the
interrelationship of habitual and controlled processing provided
by Cushman and Morris (2015) is much more consistent with
our framework, but further work is required to establish more
detailed comparisons between their implemented models and our
model. Likewise, the Pezzulo et al. (2013) model shares the central
idea that model-based predictive mechanisms are only engaged
when they yield additional value, and we will be working to relate

their computational-level mechanisms to the more biologically
based framework we have developed.

Behaviorally, there are several important predictions that our
model makes, which can be tested empirically. For example,
consistent with a great deal of theory as well as folk psychology,
we argue that habitual control is only enabled in either low-
stakes or highly urgent situations. How does this outer loop of
control interact with the various behavioral paradigms that have
established the relative value-insensitivity of habitual behavior
(Wood and Rünger, 2016)? Can our model account for both
this value-insensitivity but also the cases where relevant expected
reward values shift the system to more controlled, goal-driven
behavior? What behavioral paradigms can effectively test such
dynamics? One recent result provides a nice confirmation of one
of our model’s core predictions: that habitization is primarily
about rapid activation of a good proposed plan of action (i.e., the
Proposer in our model), but there remains a final “goal-directed”
process (the Actor in our model) responsible for actual action
initiation (Hardwick et al., 2019).

Another fertile ground for testing the model is in the domain
of serial order effects on decision-making. For example, the
balloon analog risk task (Lejuez et al., 2003; White et al., 2008; Van
Ravenzwaaij et al., 2011; Fukunaga et al., 2012; Fairley et al., 2019)
involves making a long sequence of decisions about whether to
keep pumping a simulated balloon, or cash out with a potentially
sub-optimal level of reward, and it seems uniquely capable of
capturing real-world individual differences in propensity toward
risky behaviors (Lejuez et al., 2003; White et al., 2008). Various
sources of evidence suggest that there is something about the
sequential nature of this task that is critical for its real-world
validity. Thus, we are actively exploring this question in terms
of the serial processing present in our model. In addition, there
are other well-established serial-order effects in decision making,
including framing effects (Tversky and Kahneman, 1981; De
Martino et al., 2006), and the widely-studied foot-in-the-door
and door-in-the-face strategies (Pascual and Guéguen, 2005),
which our serial model is particularly well-suited to explain.
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