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Dynamic Reciprocity in Cell-Scaffold Interactions

Joshua R. Mauney1,2 and Rosalyn M. Adam1,2,*

1Department of Urology, Boston Children’s Hospital, Boston, MA 02115

2Department of Surgery, Harvard Medical School, Boston, MA 02115

Abstract

Tissue engineering in urology has shown considerable promise. However, there is still much to 

understand, particularly regarding the interactions between scaffolds and their host environment, 

how these interactions regulate regeneration and how they may be enhanced for optimal tissue 

repair. In this review, we discuss the concept of dynamic reciprocity as applied to tissue 

engineering, i.e. how bi-directional signaling between implanted scaffolds and host tissues such as 

the bladder drives the process of constructive remodeling to ensure successful graft integration and 

tissue repair. The impact of scaffold content and configuration, the contribution of endogenous 

and exogenous bioactive factors, the influence of the host immune response and the functional 

interaction with mechanical stimulation are all considered. In addition, the temporal relationships 

of host tissue ingrowth, bioactive factor mobilization, scaffold degradation and immune cell 

infiltration, as well as the reciprocal signaling between discrete cell types and scaffolds are 

discussed. Improved understanding of these aspects of tissue repair will identify opportunities for 

optimization of repair that could be exploited to enhance regenerative medicine strategies for 

urology in future studies.
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1. Introduction

Tissue engineering is defined as the repair or replacement of damaged tissues or organs with 

biodegradable 3-D scaffolds, either alone or seeded with exogenous cells, which are capable 

of promoting the de novo formation of site-specific functional tissues. In the field of 

urology, the feasibility of acellular and cell-seeded tissue engineered constructs to serve as 

therapies for defect reconstruction has been explored in a number of urinary tract organs 

including the bladder [1, 2]. The process by which tissue engineered implants support 
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functional tissue regeneration has been coined ‘constructive remodeling’ wherein ingrowth 

of the graft microenvironment by host cells leads to remodeling events that promote 

biomaterial degradation with subsequent deposition and maturation of functional new tissue 

[3, 4]. In general, these outcomes are inherently different from the default wound healing 

response in mammals that frequently results in scar tissue formation coupled with loss of 

function [4].

Over the course of constructive remodeling events, biomaterials not only act as structural 

support for defect consolidation, but also serve as substrates for host cell adhesion, 

migration, proliferation, differentiation and apoptosis. In turn, invading host cell populations 

play crucial roles in scaffold degradation and production of de novo extracellular matrix 

(ECM) in order to restore native tissue architecture and function. These bi-directional 

interactions between tissue-engineered grafts and the host tissue microenvironment are 

essential components in the constructive remodeling cascade and represent the concept of 

‘dynamic reciprocity’ [4–6]. In this article, we review the need and current state of bladder 

tissue engineering, explore the impact of biomaterial properties on constructive remodeling, 

address the significance of dynamic reciprocity in cell-scaffold interactions and consider 

how these processes may be enhanced and optimized for maximum clinical benefit.

2. Current Limitations in Bladder Tissue Reconstruction

Enterocystoplasty is the “gold standard” surgical procedure utilized to reduce urinary 

storage and voiding pressures and reduce the risk of renal damage and incontinence 

associated with a variety of congenital and acquired bladder pathologies including 

neurogenic bladder, bladder exstrophy, and posterior urethral valves [7, 8]. Transposition of 

gastrointestinal segments into the urinary tract leads to a number of significant 

complications including chronic urinary tract infection, metabolic abnormalities, secondary 

malignancies, as well as donor site morbidity [9, 10], all of which can compromise the 

efficacy of the treatment and adversely affect the patient’s quality of life. Despite extensive 

research into alternatives to conventional enterocystoplasty, only a limited number of 

options have translated into clinical practice. Ureterocystoplasty is capable of circumventing 

complications associated with the absorptive epithelium of gastrointestinal segments; 

however, the possibility of urothelium-lined augmentation is effectively confined to a few 

patients with a combination of gross ureteric dilation and an ipsilateral nonfunctioning 

kidney [11]. Seromuscular enterocystoplasty, where a de-epithelialized colonic segment is 

combined with native urothelium after detrusorectomy and autoaugmentation, has also been 

used in patients [12, 13]. Unfortunately, this procedure has limited efficacy and is not well 

suited to small or trabeculated bladders of the sort commonly encountered in neurogenic 

bladder and bladder exstrophy [14]. Therefore, tissue engineering approaches for bladder 

reconstruction have been driven by the need to identify a suitable replacement for the use of 

autologous gastrointestinal segments for augmentation cystoplasty.
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3. Properties and Performance of Tissue Engineered Constructs for 

Bladder Tissue Repair

Three main classes of biodegradable, biomaterials have been investigated for bladder tissue 

engineering: synthetic polyester-based grafts, matrices composed of decellularized tissues, 

and silk fibroin scaffolds. Recent findings from preclinical animal studies and clinical trials 

will be discussed in order to compare and contrast constructive remodeling outcomes 

achieved by these diverse biomaterial types for bladder reconstruction.

3.1 Polyesters

Synthetic polyesters are attractive candidates for tissue engineering applications since their 

structural, mechanical, and degradative properties can be specifically tailored to match the 

target tissue of interest by manipulating processing methods [15, 16]. In particular, polyester 

meshes composed of poly-glycolic acid (PGA), poly–dl–lactide–co– glycolide (PLGA), or 

their co-polymers have been primarily deployed as cell-seeded constructs for urologic tissue 

repair [17–22]. In a model of trigone-sparing cystectomy in canines, Atala and colleagues 

first reported the ability of a PGA mesh coated with poly– dl–lactide–co–glycolide 50:50 

(PLGA), seeded with ex vivo expanded, primary smooth muscle and urothelial cells to 

mediate de novo tissue formation and enhance organ capacity and compliance over 

unseeded controls [17]. This study demonstrated that the ability of polyester grafts to 

mediate constructive remodeling of the bladder defects is significantly dependent on the 

presence of scaffold-seeded cell sources.

Based on these initial results, clinical trials of collagen-coated PGA matrices seeded with 

autologous bladder cell populations were explored for bladder augmentation in children 

afflicted with myelomeningocele [19]. Phase II studies of this technology failed to show 

significant improvements in bladder capacity or compliance and the level of serious adverse 

events was found to surpass an acceptable safety standard [21]. Limitations in the translation 

efficacy of this approach may be attributed to the abnormal physiology of the diseased, 

autologous cell sources utilized for scaffold seeding. Indeed, neurogenic bladder cell 

populations are known to exhibit deficiencies in their proliferative and differentiation 

potentials [23, 24], which may have ultimately hampered their capacity to participate in 

constructive remodeling. Recent studies deploying polyester grafts seeded with 

mesenchymal stem cells (MSC) in animal models of augmentation cystoplasty have shown 

improvements in bladder smooth muscle regeneration and attenuation of fibrosis in 

comparison to unseeded implants [22, 25]. The capacities of MSC to differentiate into 

functional smooth muscle cells [25, 26], undergo urothelial specification [27, 28], as well as 

release trophic factors encouraging de novo innervation [29, 30] and angiogenesis [31, 32] 

implicate them as promising cell sources for increasing regenerative properties of PGA 

implants in diseased settings.

3.2 Decellularized matrices

Scaffolds derived from decellularized tissues such has acellular bladder matrix (ABM) and 

small intestinal submucosa (SIS) provide a complex of functional and structural proteins 

including collagens, elastin, fibronectin, glycosaminoglycans (GAGs), proteoglycans, and 
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growth factors [33] which are capable of mediating urologic tissue repair through retention 

of existing bioactive ligands preserved following tissue processing. These matrices have 

been utilized as both acellular grafts and cell-seeded constructs for bladder reconstruction in 

preclinical studies and clinical trials. In non-diseased animal models of augmentation 

cystoplasty, both unseeded ABM and SIS scaffolds have been demonstrated to promote 

formation of innervated, vascularized bladder tissue as well as improved urodynamic 

outcomes such as increased bladder compliance and capacity following partial cystectomy 

[34–45]. In addition, studies of cell-seeded approaches for bladder augmentation with ABM 

and SIS have shown that the combination of these matrices with primary bladder smooth 

muscle and urothelial cells or MSC is capable of leading to higher degrees of smooth muscle 

regeneration as well as enhanced bladder function in comparison to unseeded counterparts 

[26, 46–48].

The performance of unseeded ABM and SIS in bladder tissue repair has also been 

investigated in a number of diseased animal models. Cayan and colleagues showed that 

ABM grafts were capable of increasing bladder capacity and compliance over non-

augmented controls in rat model of chemical cystitis [49]. In addition, urothelial and smooth 

muscle regeneration was observed throughout the original implantation sites comparable to 

normal bladder architecture; however nerve regeneration was less developed. In a rat model 

of neurogenic bladder induced by spinal cord injury, Obara’s group indicated that ABM 

promoted host integration of smooth muscle and urothelial cells throughout the grafted area 

[50] while studies by Urakami demonstrated that voiding function could be improved 

following ABM implantation [51]. Recent data from our laboratory has also shown that 

acellular SIS matrices undergo remodeling and facilitate ingrowth of vascularized smooth 

muscle as well as urothelial cells throughout implantation sites in the setting of 

neuropathogenic bladder disease [52].

Despite evidence of de novo tissue formation and improved functional outcomes across a 

variety of preclinical animal models, a number of deleterious side-effects have been 

observed with the use of ABM and SIS for bladder augmentation in disease settings. Kropp 

and colleagues reported that implantation of SIS grafts into inflammatory canine bladders 

induced by 90% partial cystectomy for 1 month prior to repair led to incomplete biomaterial 

degradation, organ perforation, matrix contracture, as well as the urinary stone formation 

[53]. The authors concluded that implantation of SIS scaffolds alone or seeded with primary 

bladder cell populations does not promote the same quality or quantity of bladder 

regeneration that is seen in non-inflammatory canine counterparts subjected to 40% partial 

cystectomy. In addition, the use of ABM for bladder augmentation in a neurogenic rat model 

has been associated with complications such as graft atrophy, pyuria, implant contracture, 

urinary tract infections, and urinary calculi [50, 51].

Several recent clinical trials of decellularized matrices for augmentation cystoplasty have 

also produced suboptimal outcomes. Schaefer’s group noted that bladder augmentation with 

SIS cannot be recommended as a substitute for enterocystoplasty due to insufficient 

increases in bladder compliance following implantation in children with neurogenic bladder 

and cloacal exstrophy [54]. In addition, serious adverse events including bladder rupture and 

stone formation were observed in this patient cohort. A report by Caione demonstrated that 
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implantation of acellular SIS matrices failed to establish long-term urinary continence and 

did not support significant increases in bladder capacity and compliance as well as 

regeneration of normal smooth muscle architecture 3 years post-operatively [55]. These 

studies demonstrate that further optimization of decellularized grafts is necessary in diseased 

animal models in order to identify a clinically viable matrix configuration for bladder 

reconstruction.

3.3 Silk fibroin scaffolds

Biomaterials derived from Bombyx mori silk fibroin represent an emerging option for 

bladder tissue engineering due to their unique set of properties including high structural 

strength and elasticity [56], diverse processing plasticity [57], and tailorable 

biodegradability [58]. Similar to polyester matrices, the structural, mechanical, and 

degradative features of silk fibroin scaffolds can be specifically tuned by manipulating 

fabrication parameters in order enhance constructive remodeling outcomes in the bladder 

[59–61]. This processing flexibility is particularly advantageous for optimizing biomaterial 

characteristics for bladder repair in comparison to SIS and ABM grafts wherein the physical 

attributes of these scaffolds are often dependent upon the properties of the source tissue and 

methods required for decellularization [4]. In contrast to the degradation metabolites of 

polyesters which can evoke strong inflammatory responses [62] contributing to long-term 

implant failure [63], enzymatic breakdown of silk fibroin results in the release of nontoxic 

amino acids [64]. Our published data has also demonstrated that surface chemistries of silk 

fibroin biomaterials can be functionalized with fibronectin coatings [65]. This matrix 

modification was shown to enhance cellular processes required for host tissue integration 

such as urothelial and smooth muscle cell attachment and proliferation [65].

Our previous reports in non-diseased rodent models of augmentation cystoplasty have 

demonstrated that acellular silk fibroin scaffolds display particular advantages in 

comparison to conventional PGA and SIS scaffolds including improved functional 

performance, enhanced tissue regeneration, and minimal inflammatory reactions [60, 63]. In 

addition, these studies also provided evidence that a bi-layer silk fibroin scaffold design, 

comprised of a porous foam compartment buttressed by a non-permeable layer, was capable 

of supporting superior functional bladder tissue regeneration in respect to gel spun silk 

fibroin matrix variants [60]. The distinct compartments of this bi-layer matrix architecture 

serve specific purposes: the film layer acts as a fluid-tight barrier that allows for organ 

retention of urine following initial scaffold implantation while the porous compartment 

supports host bladder tissue ingrowth during defect consolidation [60, 61]. Our results have 

shown the feasibility of the bi-layer silk fibroin scaffold to support regeneration of 

innervated, vascularized smooth muscle and urothelial tissues with structural, mechanical, 

and functional properties comparable to non-augmented controls in a non-diseased porcine 

model of bladder repair [61]. Recent work from laboratory has also detailed the ability of bi-

layer silk fibroin scaffolds to promote de novo bladder tissue formation and mitigation of 

high intravesical pressures encountered in rat model of neurogenic bladder [52]. Further 

validation of silk fibroin biomaterials for augmentation cystoplasty in large animal models 

of bladder disease is necessary before clinical translation is considered.
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4. Stages and mechanisms of bladder tissue regeneration

There exists a paucity of information in the literature concerning the exact mechanisms 

governing the formation of de novo urothelial and smooth muscle tissues at sites of acellular 

scaffold implantation. Qualitative observations of time-dependent stages of bladder tissue 

regeneration following SIS and silk fibroin matrix grafting in rodent models of 

augmentation cystoplasty have shown that repopulation of defect sites with a transitional 

urothelium is apparent by 2–3 weeks post-operatively, while reconstitution of the smooth 

muscle layer can occur following 2 months [63, 66]. The adult urothelium is comprised of 3 

cell layers: basal, intermediate, and superficial which are normally quiescent, but can 

regenerate in response to acute damage. Lineage-tracing studies by the Mendelsohn 

laboratory have shown intermediate cells expressing p63 and uroplakin can self-renew and 

generate uroplakin-positive, p63-negative, superficial daughter cells in response to 

cyclophosphamide-induced damage; a process mediated by retinoid pathways [67]. Shh, 

Wnt, and BMP signal transduction mechanisms have also been implicated as significant 

drivers of urothelial regeneration in response to bacterial injury or chemical insults via bi-

directional signaling events with the underlying stroma [68, 69]. However, it remains to be 

determined if these processes play a role in urothelial tissue formation following bladder 

augmentation with acellular biomaterials. In respect to mechanisms governing smooth 

muscle tissue consolidation at scaffold implantation sites, several processes have been 

proposed to play a role including mesenchymal-epithelial interactions, transdifferentiation of 

fibroblasts into phenotypic SMC, as well as dedifferentiation and migration of peripheral 

SMC from the host bladder wall into the defect site [70–72]. It has also been reported that 

circulating bone marrow-derived cells harbor the ability to migrate and differentiate into 

bladder SMC at sites of ABM grafting [73]. Further experimentation is ultimately needed to 

elucidate the contribution of these individual processes to the overall regenerative response.

5. Scaffold degradation and host cell response in constructive remodeling

Scaffold degradation is essential for integration of matrices into host tissue, and the rate at 

which this occurs is a major contributor to successful defect repair. Breakdown of natural 

and synthetic biomaterials is dependent on variety of factors such as configuration, 

crystallinity, molecular weight, pore size, porosity, biomechanical stresses, and grafting site 

[64, 74]. Following scaffold implantation, tissues initially display an acute inflammatory 

response associated with wound healing, which is characterized by infiltration of 

polymorphonuclear neutrophils and mononuclear cells. As defect consolidation progresses, a 

feedback mechanism occurs wherein host inflammatory reactions, originally elicited by 

biomaterial implantation [62, 75, 76], ultimately play a role in scaffold degradation and 

subsequently tissue remodeling outcomes. The nature of the host response is dependent on 

the type and composition of biomaterial configurations. For example, the polyesters, PGA 

and PLGA, undergo random hydrolysis of their ester bonds in vivo which can produce 

acidic degradation metabolites that stimulate complement pathway activation. Fragments of 

polyester matrices are phagocytized by macrophages and multi-nucleated giant cells [77] 

and have the potential to produce foreign body responses culminating in fibrosis [63]. 

Natural matrices derived from decellularized tissues and silk fibroin are proteolytically 

degraded with macrophage-dependent processes playing a dominant role in this process [58, 
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78]. Badylak and colleagues demonstrated the requirement of macrophages in SIS 

degradation by treating rats implanted with SIS in abdominal wall defects with liposomes 

containing bisphosphonate clodronate [78], phagocytic uptake of which leads to macrophage 

apoptosis and depletion from the circulation [79]. Inhibition of macrophage function 

significantly inhibited scaffold degradation at early time points, leading to the conclusion 

that adequate access of biomaterials to circulating phagocytic cells is required for successful 

cell-mediated scaffold degradation.

Alterations in the structural stability of biomaterial structure can also influence the balance 

between constructive remodeling and scar tissue formation, thus demonstrating a link 

between scaffold degradation rate and the extent of tissue repair achieved. A report by the 

Badylak laboratory provided evidence for this concept by showing significant differences in 

the nature of host cell infiltration following implantation of native or slowly-degrading, 

chemically cross-linked SIS into rat abdominal wall defects [80]. Whereas both native and 

cross-linked SIS elicited acute inflammation to a comparable extent within 1–2 weeks 

following implantation, tissue consolidation with cross-linked SIS displayed a long-term 

response typical of chronic inflammation, foreign body response and tissue fibrosis. In 

contrast, host tissue receiving native SIS showed little to no evidence of inflammation at 

time points up to 4 months and was associated with constructive remodeling [80]. In that 

study, variations in macrophage functional phenotype were shown to correlate with the 

downstream remodeling outcomes elicited by the two scaffold variants suggesting a 

potential mechanism by which host tissue response mediates regenerative outcomes. 

Macrophages display functional plasticity across a broad spectrum of activation states and 

are generally classified into two divergent classes, M1 and M2, based upon observations of 

differential cytokine expression profiles and cell surface markers [81, 82]. M1 macrophages 

are generally characterized by expression of specific cell surface markers such as CD68, 

CD80, and CCR7 and are considered to be a pro-inflammatory phenotype via their 

production of reactive oxygen intermediates and inflammatory cytokines such as IL-1β, 

IL-6, and TNF-α [83, 84]. In contrast, M2 macrophages express CD68 and CD163, secrete 

anti-inflammatory cytokines such as IL-10 and TGFβ1, scavenge debris, and promote 

angiogenesis [80, 82]. Badylak and colleagues observed that M1 macrophages were 

dominant in the host response to cross-linked SIS, whereas native SIS was associated with a 

predominant M2 macrophage phenotype [80]. Macrophages subsequently identified as M2 

were evident between individual layers of the native SIS graft, in contrast to cells displaying 

an M1 phenotype that did not enter the cross-linked scaffold [80]. These observations 

suggest that the activation of specific macrophage phenotypes during scaffold remodeling 

may be an important control point for dictating the quality of tissue regeneration produced.

To date there has been limited study of the contribution of specific populations of 

macrophages to urinary tract tissue regeneration and repair. A recent study from the 

Southgate laboratory has begun to shed light on the signaling events underlying the 

contribution of host cells to constructive remodeling of scaffolds [85]. Using an ex vivo 

model comprising porcine ABM interfaced with human urinary tract tissue this study 

revealed infiltration of human macrophages expressing high levels of the M2 marker CD163 

into the ABM. The infiltrating cells also displayed robust nuclear expression of PPARγ, 

activation of which further expanded the population of CD163-positive M2 macrophages. 
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These findings suggest potential mechanisms whereby macrophage phenotype can be 

controlled, potentially through the incorporation of pharmacologic modulators of PPARγ 

signaling within the scaffold matrix. In a related study, Sharma and colleagues demonstrated 

the potential of functionalizing SIS matrices with antiinflammatory peptide amphiphiles 

(AIF-PA) in order to modulate the innate host immune response in a rat model of bladder 

augmentation [86]. In comparison to control matrices, scaffolds impregnated with AIF-PA 

were capable of decreasing levels of M1 macrophages, while stabilizing levels of M2 

macrophages. This scaffold modulation resulted in increased production of anti-

inflammatory cytokines within the target tissue culminating in reductions in fibrosis and 

enhanced constructive remodeling. The authors conclude that AIF-PA can provide a highly 

conducive regenerative milieu for bladder tissue engineering applications.

As discussed in the following section, host cell-mediated scaffold degradation by 

macrophages is also likely to release bioactive factors present in acellular matrices that in 

turn stimulate recruitment of additional host cells, including endothelial cells and 

progenitors that contribute to effective tissue repair.

6. Modulation of Scaffold Properties with Trophic Factors

Endogenous ECM promotes effective morphogenesis during development and wound 

healing through the elaboration of bioactive signaling molecules that mediate 

communication between cell types. Functional repair of urinary tract structures requires 

appropriate regeneration of a diverse array of tissue types including epithelium, smooth 

muscle, nerves and vasculature. Prototypical mitogens and motogens incorporated into 

scaffolds have been shown to enhance the survival, proliferation, migration and 

differentiation of some or all of these cell types in the setting of experimental regeneration. 

For natural scaffolds such as ABM or SIS, tissue processing strategies can be optimized to 

retain existing bioactive ligands within the matrix structure. These substances are believed to 

participate in signaling with constituents in the host tissue to promote tissue regeneration 

and repair. However, tissue repair using unmodified acellular matrices has yielded 

suboptimal results and has often been associated with poor regeneration, scar formation and 

graft shrinkage. As a result, a variety of tissue engineering approaches have incorporated 

bioactive factors into both natural and synthetic scaffolds to enhance tissue remodeling and 

repair, including adhesion-promoting peptides, growth factors and cytokines, matricellular 

proteins and proteolytic enzymes. Results from these studies have not only suggested ways 

in which modifications may improve integration of scaffold biomaterials into host tissue for 

clinical applications, but have also shed light on the biological basis for endogenous 

mechanisms of tissue regeneration. The role of selected factors in key aspects of tissue 

repair will be considered in more detail below.

6.1 Adhesion-promoting peptides and matrices

Among the simplest elements incorporated into biomaterial scaffolds are those that enhance 

adhesion, proliferation and migration either of ingrowing host cells or of exogenously 

seeded cells, thereby enhancing consolidation of grafts. These include the integrin-binding 

peptides such as Arg-Gly-Asp (RGD) or Tyr-Ile-Gly-Ser-Arg (YIGSR) and their 

derivatives. Several studies have explored the contribution of specific ECM coatings to 
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ingrowth, survival and proliferation of progenitor or primary cell populations on different 

scaffold types. Hudson et al., compared collagen types I and IV, laminin and fibronectin for 

their ability to support attachment and proliferation of primary human urothelial cells and 

observed some enhancement of DNA synthesis in cells seeded on collagen type IV, laminin 

or fibronectin, although no significant differences were noted between coatings [87]. A 

similar comparison was performed by Franck and colleagues who found fibronectin to be 

superior to collagens for each endpoint assessed, including attachment, proliferation and 

differentiation of primary urothelial and smooth muscle cells, as well as ESC and iPS cells 

[65].

Tissues undergoing remodeling are believed to expose non-canonical ‘cryptic’ ECM-binding 

epitopes that contribute to altered cell behavior. To test this idea, Herz and colleagues 

compared the impact of native or denatured collagen on DNA and protein synthesis in 

primary bladder smooth muscle cells in culture [88] and observed profound increases in 

SMC proliferation and hypertrophy upon exposure to damaged (denatured) collagen. 

Furthermore, these alterations were only partially attenuated following re-exposure to native 

collagen. These findings demonstrate that the specific ECM conformation is a powerful 

determinant of cell phenotype and are particularly relevant to cases where tissue engineered 

constructs are introduced into diseased tissues with altered ECM such as the neuropathic 

bladder or strictured urethra.

6.2 Peptide growth factors

In view of their ability to control discrete aspects of cell behavior relevant to regeneration, a 

variety of growth factors have been employed in scaffolds, both singly and in ‘cocktails’ to 

promote diverse biological endpoints in engineered tissues including proliferation, 

differentiation, migration of host and donor cells, as well as angiogenesis from the host 

microenvironment.

The detrusor smooth muscle comprises the bulk of the bladder wall. As a result, many tissue 

regeneration strategies have relied on incorporation of canonical smooth muscle mitogens 

such as bFGF/FGF-2, PDGF and IGF-1, in scaffolds to stimulate smooth muscle 

regeneration. Kanematsu and colleagues provided one of the first demonstrations for 

enhanced bladder repair following implantation of bladder acellular matrix containing 

FGF-2 in a rat model of bladder augmentation [89]. In that study, FGF-2 was released from 

the scaffold matrix in a sustained fashion, and in turn led to elevation of endogenous VEGF 

levels and a corresponding enhancement of vascularization in the graft. In subsequent 

studies other investigators have used acellular matrix incorporating a modified exogenous 

human FGF-2 with a collagen-binding domain from collagenase to enhance release kinetics 

and bioavailability. This variant was found to be superior to matrix containing native FGF-2 

in a bladder repair model, leading to improved performance of the regenerated organ [90]. 

Similar improvements in graft integration in vivo were observed with use of a fibrin matrix 

containing a modified IGF-1 fusion protein that enabled retention of the growth factor at the 

site of injury/wound repair [91]. By comparison with wild type IGF-1, the α2-plasmin 

inhibitor-modified IGF-1 (α2-PI1–8-IGF-1) promoted greater proliferation of SMC in a rat 

model of bladder repair.
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Since the totality of signals required for complete regeneration is unlikely to be 

accomplished through the use of a single stimulus, many groups have explored the use of 

growth factor ‘cocktails’ comprising multiple mitogens, motogens and differentiation factors 

that elicit the range of cell behaviors required for tissue repair. This is particularly important 

in cases where scaffolds are seeded with pluripotent or multipotent cells such as 

mesenchymal stem cells that undergo differentiation to desired target cell types. Rigorous 

control over expansion and tissue-appropriate differentiation of MSCs is essential to 

minimize adverse effects from uncontrolled proliferation or differentiation into undesired 

tissue types. Thus, several groups have employed growth factor ‘cocktails’ that comprise 

both mitogens and differentiation factors such as TGFβ1, HGF [92, 93] or NGF [94]. Zhou 

et al., reported significant improvements in regeneration of the rabbit bladder using bladder 

acellular matrix containing a PDGF-BB/VEGF cocktail [95]. In that study, the histological 

appearance and contractile activity of bladder tissue from rats receiving the PDGF/VEGF-

impregnated scaffold was significantly improved compared to that in rats receiving control 

scaffold lacking added growth factors [95]. However, since neither growth factor was tested 

alone the relative contributions of each to subsequent repair could not be assessed in that 

study. Similar improvements in bladder function were observed in a rat model of spinal cord 

injury coupled with partial bladder replacement using ABM co-administered with either 

NGF or VEGF or both growth factors together [94]. Inclusion of NGF, VEGF or the NGF/

VEGF cocktail yielded greater improvement in bladder capacity and compliance compared 

to scaffold alone, although the difference in these parameters between the cocktail and 

individual growth factors was not statistically significant [94]. Although the mechanistic 

basis for these observations was not addressed, the findings suggest that administration of 

either NGF or VEGF may up-regulate endogenous levels of the other trophic factor resulting 

in the observed regeneration and repair. To date, growth factors incorporated into scaffolds 

have been selected based on known activities in a variety of organ systems. Ongoing studies 

by a number of groups are characterizing the molecular events that occur both in 

regenerating tissue following injury [67, 69, 96] and during development [67] to better 

understand how this knowledge could be exploited for tissue engineering.

In the examples described above, growth factors were provided in scaffolds in their 

recombinant form. However, actively remodeling tissues are known to release bioactive 

factors into the microenvironment through the coordinated actions of matrix 

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases, TIMPs [97]. MMPs 

are released by cells within the host tissue and by cells seeded on grafts, and are thought to 

be essential for constructive remodeling. Levels of several MMPs, including MMP-1, −2, 

and −9, were found to be increased following implantation of bladder acellular matrix grafts 

seeded without or with cells in vivo [95, 98–100]. The importance of MMP activity for 

appropriate regeneration, albeit in vascular structures, was demonstrated in an elegant study 

by Sung and colleagues, who showed that genetic deficiency of MMP-9 impaired collagen 

degradation and also attenuated angiogenesis in scaffolds implanted in vivo [101]. Results 

from this study also demonstrated the importance of MMP-9 activity in cells seeded on the 

scaffold as well as those in host tissue for appropriate integration of tissue-engineered 

constructs.
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In addition to classical peptide growth factors, additional substances have been tested for 

their ability to enhance tissue repair in association with acellular matrices. The 

glycosaminoglycan hyaluronic acid (HA) has been incorporated into acellular matrices 

including BAM and SIS, based on its known roles in development and wound repair 

(reviewed in [102]). In vitro, HA cross-linked to ABM was shown to increase contraction of 

grafts seeded with bladder SMC and urothelial cells, as well as MMP-2/MMP-9 (gelatinase) 

activity [103]. These observations are consistent with the ability of HA provided in scaffolds 

to mediate reciprocal signaling with the microenvironment. Incorporation of HA into SIS 

enhanced neovascularization in regenerated bladder tissue in a canine model of partial 

cystectomy [104]. A subsequent study by the same group, in which HA was provided in the 

form of nanoparticles, failed to show significant differences in graft size or cystometric 

endpoints between unmodified and HA-modified SIS, despite some evidence of enhanced 

smooth muscle regeneration in the latter group [105]. HA-coated matrices have been further 

modified by rehydration in solutions containing VEGF. HA-VEGF-modified scaffolds were 

associated with improved smooth muscle and urothelial regeneration, decreased fibrosis and 

increased vascularity in a porcine model of bladder augmentation, compared to unmodified 

or HA-matrices [106], although the difference between HA- and HA-VEGF scaffolds was 

not statistically significant. HA is known to exert immune modulatory effects during wound 

healing in a variety of systems [102]. Consistent with this possibility, preliminary evidence 

suggests HA-VEGF-modified scaffolds were able to modify the immune response elicited 

by scaffold implantation during bladder regeneration [107]. Transcript levels for a number 

of pro-inflammatory cytokines and receptors were significantly different between scaffolds 

without or with HA and VEGF. Expression of TLR4 protein appeared to decline in tissue 

regenerated with HA-VEGF scaffold compared to that with acellular matrix alone, although 

no quantitative data were provided.

An essential aspect of effective tissue regeneration is the development and maintenance of 

an adequate blood supply. As noted above, a number of studies have explored strategies to 

ensure appropriate neovascularization, either by optimization of processing strategies to 

retain bioactive factors in acellular scaffolds or by addition of recombinant angiogenic 

factors such as FGF-2 or VEGF [95, 106, 108]. In addition to covalent linkage of VEGF 

recombinant proteins, some investigators have incorporated VEGF plasmid into cells by 

viral transduction prior to seeding on scaffolds [109, 110] to ensure sustained production of 

protein following engraftment. These types of experiments exemplify dynamic reciprocity in 

that the scaffold ECM signals to endothelial cells in the host tissue, which in turn responds 

by undergoing angiogenesis to vascularize the graft and promote integration into the host 

organ.

6.3 Interaction of growth factors and mechanical factors

Tissues comprising the urinary tract such as the bladder, ureters and urethra are 

mechanically active, enabling them to fulfill both storage and expulsion functions. In the 

context of tissue engineering, it has been demonstrated that mechanical conditioning of 

scaffolds, in particular cell-seeded grafts, can enhance integration into host tissue and 

subsequent performance (reviewed in [111]). A substantial literature now exists describing 

transcriptional responses to mechanical stimulation in bladder smooth muscle cells, 
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fibroblasts and other cell types [112–119], and these reports have begun to delineate the 

signaling networks that underlie physiologic and pathologic bladder wall remodeling. It is 

anticipated this knowledge could be exploited in the development of ‘smart’ scaffolds to 

improve the process of constructive remodeling.

Application of mechanical stimuli, in the form of static or dynamic stretch paradigms has 

been shown to modulate the phenotype of tissue constructs in vitro. Early studies 

demonstrated improvements in the contractile phenotype of SMC seeded on scaffolds when 

exposed to cyclic mechanical strain [120, 121], although subsequent reports yielded 

conflicting results regarding the impact of physiologic strain parameters on expression of 

differentiation markers in SMC [122, 123], possibly due to the use of different scaffolds or 

stimulation parameters. Heise and colleagues showed that mechanical stimuli interact 

functionally with soluble factors to alter bladder SMC phenotype on SIS grafts [100]. In 

particular, treatment of SMC-seeded SIS with FGF-2 increased matrix metalloproteinase 

activity and enhanced penetration of SMC into the matrix. Subsequent exposure to defined 

mechanical stimulation led to the production of elastin fibers. Additional studies from this 

group have suggested that increased elastin content in bladder wall ECM is associated with 

higher tissue compliance [124].

The contribution of mechanical stimulation to tissue regeneration in vivo has also been 

explored. Integration of SIS and ABM scaffold matrices into the bladder wall in a canine 

partial cystectomy model under conditions of physiologic filling and emptying was found to 

be enhanced, compared to scaffolds exposed to minimal mechanical stimulation [125]. In 

that study, exposure to mechanical stimulation was controlled by either short-term (1 d) or 

long-term (28 d) catheterization. Early restoration of cyclic filling and emptying, in the 

short-term catheterization group, was associated with improved tissue remodeling, 

differentiation into both urothelium and smooth muscle, and robust vascularization. In 

contrast, tissues in the long-term catheterization group displayed reduced repair and 

evidence of pathologic remodeling, as a consequence of minimal cycling [125]. Together, 

these studies imply that mechanical stimulation is an essential component of constructive 

remodeling, and acts to alter production of growth and differentiation factors, and increase 

protease production and/or activity.

7. Conclusions

In summary, we have reviewed the current understanding of constructive remodeling in 

urologic tissue engineering. Dynamic reciprocity between implanted biomaterials and host 

tissues has emerged as a central regulator of tissue remodeling events which dictate the 

extent of functional tissue repair achieved. Key factors such as scaffold composition and 

architecture, ex vivo seeded cell sources, the presence of endogenous and exogenous growth 

factors, the host immune response as well as mechanical stimuli have all been implicated in 

bi-directional signaling events which govern successful graft integration and de novo tissue 

formation at implantation sites. Improved understanding of these processes will identify 

opportunities for optimization of repair that could be exploited to enhance regenerative 

medicine strategies for urology in future studies.
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Abbreviations

ABM acellular bladder matrix

ECM extracellular matrix

ESC embryonic stem cells

FGF2 fibroblast growth factor-2

HA hyaluronic acid

HGF hepatocyte growth factor

IGF-1 insulin-like growth factor-1

iPSC induced pluripotent stem cells

MMP matrix metalloproteinase

MSC mesenchymal stem cells

NGF nerve growth factor

PDGF-BB platelet-derived growth factor-BB

PGA poly-glycolic acid

PLGA poly–dl–lactide–co–glycolide

PMNL polymorphonuclear leukocyte

SIS small intestine submucosa

SMC smooth muscle cell

TGFβ1 transforming growth factor-beta 1

TIMP tissue inhibitor of metalloproteinase

TLR toll-like receptor

UC urothelial cell

VEGF vascular endothelial growth factor
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Table 1

Trophic factors in tissue regeneration

Trophic factor Intrinsic Extrinsic Biological activity Citation

FGF-2/bFGF Y Y Smooth muscle cell proliferation, angiogenesis [89][90][100] [106][108]

PDGF-BB Y Y Smooth muscle cell proliferation and differentiation [95][115][117]

VEGF Y Y Angiogenesis [89][94][95][100] [106][108]

EGF Y Urothelial and endothelial cell proliferation [93]

IGF-1 Y Smooth muscle cell proliferation [91]

TGFβ1 Y Growth inhibition; Smooth muscle cell differentiation [93]

HA Y Immune modulation [103][104][105] [106][107]

HGF Y Smooth muscle cell proliferation and differentiation [93]

NGF Y Neuronal growth and differentiation [94]

Shh Y Induction of Wnt2, Wnt4 [69]

Wnt2, Wnt4 Y Induction of stromal and epithelial proliferation [69]

BMPs Y Induction of urothelial proliferation and differentiation [68]

Retinoids Y Induction of urothelial specification and regeneration [67]

Matrix-derived peptides Y Y Smooth muscle cell proliferation; immune modulation [86][88]
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