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A

Accurate Iterative Analysis of the K-V Equations

O.A. Anderson

Designers and experimentalists working with alternating-gradient (A-G) systems

look for simple, accurate ways to analyze A-G performance for matched beams.  The

well-known K-V equations [1], based on an artificial beam model, are useful but their

solution is not easy. The smooth approximation [2], [3], [4] is popular because it is

simple and explicit. However, it becomes seriously inaccurate for applications with large

focusing fields and large phase advances. Results of efforts to improve the accuracy [5],

[6] have tended to be indirect or complex.  Our generalizations presented previously [7]

did improve the accuracy while retaining a simple explicit format.  Unfortunately, the

method used to derive our results (expansion in powers of a small parameter) was

complex and hard to follow; furthermore, Ref. [7] only gave low-order correction terms.

The present paper uses a straightforward iteration method and obtains equations of

higher order than those shown in our previous paper.  As before, input quantities are A-G

waveform and field strength; beam emittance; and beam charge or current.  We solve for

average radius, peak radius, and the phase advances.  (Or, one can input the mean radius

and solve for the beam current.)

Summary:  We begin with the coupled K-V equations, then (Section 3) show how

to decouple them.  Section 4 expands the a(z) envelope about its mean value and splits

this envelope equation into its average part A and its periodic part ρ(z).  The differential

equation for ρ(z) is solved (Section 5) by iteration.  These results are combined to obtain

a matching equation for the average radius A  This equation is written in several versions

(Section 6).  The first (lowest) order case is usually called the smooth approximation.  A

second order term significantly improves the accuracy.  The third order results are far

more accurate over a wide range of parameters than any previously published.

Section 7 combines results from Sections 5 and 6 to give the maximum and

minimum radii.  The phase advances σ and σ0 are given in Section 8.   Appendices F, G,

and H discuss how Fourier analysis of the A-G focusing waveform is used to facilitate

the solution.

1.  The K-V Equations and Symmetric Lattice Model

The K-V equations for the envelopes a(z) and b(z) are

a(z)′′  =   –K(z) a  +  ∈
2


a3

    +   
2 Q


 a+ b
  (1)

 b(z)′′  =   +K(z) b  +  ∈
2


b3

    +   
2 Q


 a+ b
   (2)
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with input parameters:  normalized beam current Q; emittance ∈; and A-G focus function

K(z).  The z origin is located at the midpoint of a quadrupole and K(z) is assumed 1to be

symmetric about z= 0, periodic over a cell length 2L, and antisymmetric about L/2.  Thus

K(z – 2L) = K(z),     K(–z)  =  K(z),     K(L /2) = 0,     K(z – L)  =  –K(z).  (3)

We solve for the x and y beam envelopes a(z) and b(z), assumed to be matched to

the lattice, i.e. periodic over 2L.

2.   Operators, Functions, Parameters, and Derived Quantities

To aid the solution of Eqs. (1) and (2), we introduce in Eqs. (4)–(19) the operators on

even periodic functions 〈…〉, { …} , ∫, ∫∫; the even periodic functions h(z), g(z), δ(z), ρ(z);

and the constants k, α, β, q, A, Keff, Φ.  In Eq. (19), h1 is the first Fourier coefficient of

h(z)—cf. App. F.  

〈 f 〉  ≡  (1/2L)∫o

2L
f (z)dz,            (4)

{ f}  ≡  f – 〈f〉 .                            (5)

For even ψ(z) ∋ 〈ψ〉 = 0:       
∫ψ   ≡  ∫0

z
ψ(z')dz'      and           (6)

∫∫ψ  ≡  { ∫0

z
dz'∫0

z'
ψ(z")dz"}.       (7)

k ≡ Kmax,                                   (8)

h(z) ≡ K(z)/k,                             (9)

g  ≡  ∫∫ h,                          (10)

δ(z)  ≡  ∫∫{ hg},                        (11)

A  ≡   〈a(z)〉,                             (12)

ρ(z)  ≡  (a(z)–A)/A,                 (13)

ρb(z)  ≡  (b(z)–A)/A,               (14)

α  ≡   
3∈2

A4

  ,    β  ≡  α  
L2

π2  ,        (15)

q  ≡   Q/A2,                              (16)

Keff ≡ k2〈[∫h]2〉,                        (17)

Φ   ≡   3k2〈g2〉,                          (18)

ρm  ≡   h1kL2/π2.                    (19)

Table 1
Definitions to be used in this paper

Most of these definitions will not be used immediately but are collected here for

convenient reference.  All the functions are even and periodic over 2L.  

The operator 〈…〉 averages over a cell length 2L while the operator {…}  removes

the average part of a periodic function:  e.g.,  2{ cos2x}  = {1+cos2x}  = cos2x.  The

operator ∫∫ operates on periodic functions that have no average.  It gives the repeated

indefinite integral and removes the average part, if any, of the result.  This removal can

be implemented by constructing a suitable lower limit for the outer integral. For example,
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Eq. (10) can be written

g   ≡   ∫L/2

z
dz'∫o

z'
 h (z" )dz",

which subtracts the value at L/2 so that g(L/2)=0.  Alternatively, one can start both

integrals at zero and then apply the operator { …} , as in Eq. (7).  A simple example is

∫∫ cosx =  { ∫sinx}  = {1–cosx}  =  –cosx.

According to Eq. (3), K(0) ≡ k is the maximum value of the focusing strength so

that h(0)=1.  The defined quantities α, β, and q are not essential but are introduced to

make some equations more compact and readable.

3.   Decoupling the K-V Equations—Matched-beam Boundary Conditions

For the matched beam case, 〈a〉 = 〈b〉 ≡ A, and

a  =  A(1 + ρ),    b = A(1 + ρb).                                     (20)

The Q terms in Eqs. (1) and (2) can be expanded as

   
2 Q


 a+ b
    =   

Q
A

 (1 –  (ρ+ρb )/2 +…)  =  Q
A

 (1 – k2δ(z) + …), (21)

since from Appendix A,

(ρ+ρb )/2  =   k2δ(z) +…  . (22)

From Eq. (11), δ(z) is a known function.   Equation (21) decouples Eqs. (1) and (2)—but

introduces A, a new unknown.  See below.

After the decoupled version of Eq. (1) is solved for a(z), then b(z) may be found

using the properties in Eq. (3).  Therefore Eq. (2) is unnecessary from here on.

4.   Expanding and Decomposing into Average and Periodic Parts 

Substituting a = A(1+ρ) in the first three terms of Eq. (1), expanding 1/a3, dividing

by A, and using (21) and (15), the first K-V equation is equivalent to

ρ(z)′′ =  –kh(z) – kh(z)ρ + α
3  (1 – 3ρ + 6ρ2 – 10ρ3 + 15ρ4 …) + q(1 – k2δ(z)…).   (23)

To solve for the ripple ρ(z) and for the mean radius A (which is incorporated in the

definition of α and q), we decompose Eq. (23) into two equations.  Averaging Eq. (23),

0  =  –k〈hρ〉  +  
α
3  + 2α 〈ρ2〉 –  

10
3 α〈ρ3〉 + 5α〈ρ4〉 …  + q.                    (24)

Subtracting,

ρ′′ = –kh(z) – k{hρ}  – αρ + 2α{ρ2} - 
10
3 α{ρ3}  + 5α{ρ4}  …  –  qk2δ(z)… ,     (25)
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with the {..}  operator defined by  Eq. (5).  We now have two equations, each containing

A and ρ(z).  Equations (24) and (25) taken together with (21) have the same essence as

the K-V equations (1) and (2).

5.   Iterative Solution of the Envelope Equations

On the right of Eq. (25), the terms involving the unknown function ρ(z) are

dominated by kh(z); it is reasonable to omit them for the initial integrations, which give

ρ
(0)

.  Then we insert ρ
(0)

 into (25) and integrate again to get ρ
(1)

.  The process is repeated

for ρ
(2)

:
ρ

(0)
 =  –kg,                                                    (26a)

ρ
(1)

 =  ρ
(0)

 + αk ∫∫g+ k2δ +  10
3 αk3∫∫ g3,                              (26b)

ρ
(2)  

=  ρ
(1)

– α2k ∫∫∫∫g   – k3∫∫hδ  – 2αk3∫∫gδ.                            (26c)

This ρ(z) expansion is to be inserted into Eq. (24) to complete the solution of the K-V

equations.  Terms, such as 2αk2∫∫{ g2} , that would make Eq. (24) higher than third order

in the combined parameters k2,  α, q have been discarded.  Some terms of this type might

appear to form lower-order products, but the averages vanish by orthogonality: h(z), g(z),

g3, etc., possess only odd harmonics while δ(z), { g2} , {g4}  have only even.

A second-order term, qk2∫∫δ(z), is also omitted.  It involves multiple integrations of

an already small function and would contribute less than 0.04% to the maximum radius

amax even at σ0 = 120°.  It would affect A by less than two parts in ten thousand.

Appendix B evaluates to third order the combination of Eqs. (26) and (24).  The

result, in simplified form, is shown in the next section.

6.   Matching Equation:  First, Second, and Third Order

Third Order:  Inserting Eq. (26) into Eq. (24) yields seven terms [App. B, Eq. (B7]).

Some terms combine, resulting in

K†
eff   –  

∈I II
2


A III

4  –    
Q


AIII

2   =  0,                                         (27)

where

K†
eff   ≡  〈 [∫K(z)]2〉[1 +   

1
24

 Φ (1 + 
20
27 

c3)] ;              (28)

∈I II
2   ≡  ∈2[1 + Φ(1 + 1–

2
 Φ +3βI )] .                                   (29)
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Here c3 is of order unity [8].  Roman-numeral subscripts on A and ∈ signify the order of

approximation—third order in this case. The subscript on β ~A-4 indicates that A
I
 [Eq.

(33)] is used for A. The matching equation (27) is in the standard form of the smooth

approximation, Eq. (33), and can be solved to find the third-order A:

A
III

2  =  (Q/2K†
eff ) + [(Q/2K†

eff )2 + ∈I II
2/K†

eff]1/2.                        (30)

If the input quantity is the mean radius Ainp, then Eq. (27) gives the allowable Q to third

order,
QI II   =   Ainp

2 K†
eff  – ∈I II

2/A inp
2 .

Second Order: Eq. (B7) has two second-order terms.  One yields the correction to

Keff  seen in Eq. (28).  The other term is αk2〈g2〉, or, using definition (18),  α
3 Φ.  We

define
∈ΙΙ

2  ≡  ∈2(1 + Φ) ,                         (31)

with the subscript signifying second order, and get

K†
eff   –  

∈ΙΙ
2


AII

4  –    
Q


A II

2   =   0.                                          (32)

Eq. (32) can be solved for A
II
 or Q

II
 in the same way as for the third order, giving

useful approximations when K(z) and ∈ produce σ0 and σ less than about 80°.

First Order:  In Eq. (B7), the three terms of lowest order in   α, q, k2 produce what is

called the first-order matching equation in this paper (Ref. [7] used another terminology).

This is the classic smooth approximation.  These terms give k2〈[∫h]2〉 = α/3 + q, or, using

the definitions (15), (16), and (17)

Keff   –   
∈2


A I

4  –   
Q

AI

2   =   0.                                           (33)

First, second, and third-order results for A, from (33), (32) and (30), are plotted in

Fig. 1a, next page.  The smooth approximation is somewhat inaccurate except near the

point where its error curve happens to cross the 0 % line.

7.   Explicit Third-Order Result for amax

Knowing the matched mean radius A, one can complete the solution for the beam

envelope a(z) = A[1+ρ(z)] using ρ(z) from Eq. (26); b(z) can be found by changing the

sign of the terms that contain odd powers of k.

Some terms of Eq. (26) can be written in exact form [Appendix J] for models such
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as FODO, but Fourier expansion is more useful in general:

h(z)  =  h1 [   cosπz
L
   +   1–

3
  c3 cos3πz

L
   +   1–

5
 c5cos5πz

L
  + …]  .                    (34)

Values (usually of order unity) of  h1 and  cn for both FODO and smooth profiles are

given in Appendices G and H.  With the definition

βI  ≡  3  
L2

π2   

∈2


A I

4                              (35)

we have

aIII
max  = AIII[1+ρm(1+   1 

27 
c3+   1 

125 
c5) +  1–

8
  ρm

2(1+  
25
54 

c3) + βI  ρm(1+  5–
2
 ρm

2+  βI ) ] (36)

using results from Appendix E.  The accuracy of Eq. (36) is shown in Fig. 1b, along with

that of the truncations

aII
max  = AII[1+ρm(1+   1 

27 
c3+   1 

125 
c5) + βI  ρm ]              (37)

Fig. 1.  Accuracy of:  (a) mean radius A from Eqs. (30), (32), or (33); and (b) maximum radius
amax from Eqs. (36), (37), or (38).  The quadrupole voltage VQ, beam current I, and normalized
emittance ∈ are input quantities.  Other parameters are shown in Table 2.  In this figure, VQ is
fixed at 20 kV, giving exact σ

0
 = 83.37°; ∈ and I are varied so that σ ranges between 0° and

76.5°; these exact σ
0
 and σ values are obtained numerically.

Table 2:  Parameters Used in the Figures
(from the MFE ESQ accelerator [8] with η = 0.5)

Quad cell length 20 cm Quad voltage (Figs. 1, 3a) 20 kV
Occupancy factor (η) 0.5 Quad voltage (Fig. 2) 25 kV
Quad radius (a

Q
) 1.75 cm Beam current (Fig. 2) 0.5 Amp

Beam energy 200 KeV Norm emittance (Fig. 2) 0.3 πmrad-cm

Beam particles H- ions

aI I I
max

aI I
max

aI
max

am
ax

 e
rr

or

0 %

–5%

–     1 0%
0° 20° 60° 80°40°

Depressed tune σ (exact)

σ0 = 83.4°
(Smooth approximation)

(b)

(Smooth approximation)

A I

〈a
〉 e

rr
or

+1 %

0 %

–1 %

–5%

–3%

0° 20° 60° 80°40°
Depressed tune σ  (exact)

σ 0 = 83.4°

A II I

A II

(a)
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and (the smooth approximation)

aI
max  = AI[1+ρm] .                        (38)

The time dependence of Eq. (36), from App. E, is plotted in Fig. 2 above.

8.  Phase Advances

From the well-known phase-amplitude result [9], the phase advance per quadrupole

cell of length 2L is

σ   =  ∈ ∫o
2L

  dz—
a2   =   2L∈〈a–2〉 ,

We approximate a(z) by A
III

[1+ρ(z)] with A
III

 from Eq. (30) and ρ(z) to third order from

Eq. (26).  (We omit subscripts for compactness.) Expanding a–2 and taking the average

gives

σ  =  2L  
∈

  
A III

2 [1 + 3〈ρ2〉 – 4〈ρ3〉 + 5〈ρ4〉  – ...]. (39)

1.5

1.0

0.0

0.5

 0 0.5 L L 1.5 L 2 L

R
ad

iu
s 

/A
ve

ra
ge

 R
ad

iu
s

Axial Distance

a(z) /A b(z) /A

Exact

Third Order

First Order

Fig. 2.  Matched envelopes a(z) and b(z), normalized to mean radius A, with beam current 0.5 A,
normalized emittance 1.55π mrad-cm, and quadrupole voltage 25 kV.  Model: see Table 2.  With
these parameters, the tunes are σ

0
 = 112.2° and σ = 86.9°.  The exact envelopes (solid curves)

were obtained numerically. The third-order results [Eqs. (E6)–(E10)] give an amax error of –
2.37%; in the smooth approximation [Eq. (E6) only] the error is –13.0%.   Amplitude of half-
period ripple = 5.6% of amplitude of full-period ripple.



8

A

(The 2ρ term has zero average by definition.)  Appendix D shows that to third-order

accuracy 

σI II  =  2L  
∈

  
A III

2 [1 + Φ(1 +  3–
4

Φ +2βI )] .                                (40)

Errors with respect to exact values from simulations are shown in Fig. 3a.  Useful

accuracy is retained after dropping two terms and using lower-order A
II
 from Eq. (32):

σII  =  2L  
∈

  
A II

2 ( 1 + Φ ).                                           (41)

Figure 3a shows large errors for the first-order result (smooth approximation):

σI   =  2L  
∈

  
A I

2  .                                                   (42)

The undepressed σ0 is found by setting Q = 0 in Eq. (27), then eliminating ∈ from

Eq. (40).  Details are in Appendix D.  The result is

σ0 I II   =  2L(K†
eff)1/2[1 +  1–

2
 Φ  +  7–

8
 Φ2 ] . (43)

This equation is used to calculate σ0 as a function of the strength of the quadrupole

field gradient.  Figure 3b shows its accuracy and also illustrates the second-order case

σ0 I I   =  2L(K†
eff)1/2[1 +  1–

2
 Φ ]                                       (44)

and the smooth approximation,

   σ0 I  =  2L(Keff)1/2
. (45)

In some cases it is more convenient to work with the squares of σ0 and σ—see App. D.

(Smooth
approximation)
(Smooth
approximation)

Fig. 3. (a) Accuracy of σ from Eqs. (40), (41), and (42).  VQ is fixed at 20 kV as in Fig. 1. 
(b) Accuracy of σ0 from Eqs. (43), (44), and (45).  VQ ranges from 5 kV to about 22 kV.

σ 
er

ro
r

0 %

–5%

–10%

–15%

σ0 = 83.4°

0° 20° 60° 80°40°
Depressed tune σ (exact)

(Smooth approximation)

σ II I

(a)
σ I I

σI

σ 0
 e

rr
or

0 %

–3%

–6%

–9%

–12%

Phase advance σ0 (exact)

(b)

(Smooth approximation)

0° 20° 60° 80°40° 100°

σ0 I I I

σ0 I I

σ 0 I
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Appendix A.   Coupling Between a and b in the K-V Equations

This appendix calculates a(z)+b(z) for the Q-term denominators in the K-V

equations.  Dividing equations (1) and (2) by A and expanding gives

ρa′′ =  –kh(z) – khρa +  
∈2

A4

 (1 – 3ρa +…) +  
Q

A2(1 – (ρa+ρb)/2… ),         (A1)

ρb′′ =  +kh(z) + khρb +  
∈2

A4

 (1 – 3ρb +…) +  
Q

A2(1 – (ρa+ρb)/2…).        (A2)

Subtracting the averages (using definitions from Table 1 except ρ→ρa here),

   ρa′′  =  –kh – k{ hρa}  – αρa – q(ρa+ρb)/2 … ,                       (A3)

   ρb′′  =  +kh + k{ hρb}  – αρb – q(ρa+ρb)/2 … .                      (A4)

Taking sum and difference,

 S′′   =   –k{hD}  – (α+q)S … ,                                       (A5)

D′′  =   –kh – k{ hS}  –  αD … ,                                     (A6)
where

S  ≡  (ρa+ρb)/2,             D ≡  (ρa–ρb)/2                        (A7)

have periods L and 2L, respectively.  The lowest iteration of (A6) is 

D(0)  =  –k∫∫h  =  –kg.                                             (A8)

Inserting this purely oscillatory D into (A5),

  S(0)′′  =  k2{ hg}  .                                                (A9)
Integrating,

S(0)   =  k2 ∫∫{ hg}  .                                            (A10)

Using Eq. (A7) and the definition of δ(z), this is

(ρa+ρb)/2 =  k2δ(z)  + …                                    (A11)

which yields Eq. (22).  The expansion and iteration could be extended to produce more

terms, but these would give even smaller corrections to our results.

Appendix B.  Details of Derivation of Matching Equation

Moving the driving term to the left-hand side, Eq. (24) is

 k〈hρ〉  =    α[  1–
3

  + 2〈ρ2〉 –  
10
3 〈ρ3〉 + 5〈ρ4〉 …] + q.                      (B1)

Inserting ρ from Eq. (26), the left side is

k〈hρ〉 =  k2[–〈hg〉 + α〈h∫∫ g〉 + 
10
3 αk2〈h∫∫ g3〉 – α2〈h∫∫ ∫∫g〉 – k2〈h∫∫hδ〉 – 2αk2〈h∫∫gδ〉 …] 



10

A

where we have dropped the subscript on ρ.   The orthogonal k2δ term is absent.  We

simplify by changing the order of integrations, using the h(z) symmetries [Eq. (3)].  For

example, –〈h∫∫ ∫∫g〉 =–〈g∫∫g〉 =+〈[∫g]2〉.  Applying this technique throughout gives

k〈hρ〉 =  +k2[〈[∫h]2〉 + α〈g2〉  + α2〈 [∫g]2〉]  + k4[〈[∫{hg}]2〉+ 
10
3 α〈g4〉 + 2α〈g2δ〉…] . (B2)

For the right side of (B1),

〈ρ2〉  =  k2〈g2〉 – 2αk2〈g∫∫g〉 + 2k4〈g∫∫hδ〉…,                       (B3)

〈ρ3〉  =  3k4〈g2δ〉…,                                        (B4)

〈ρ4〉  =  k4〈g4〉… .                                        (B5)

The very small k4〈δ2〉 term was omitted from 〈ρ2〉.  Again changing the order of

integrations, the right side of (B1) becomes

rhs =   α [  1–
3

  + k2(2〈g2〉+ 4α〈[∫g]2〉) + k4(4〈g∫∫hδ〉 –10〈g2δ〉+ 5〈g4〉)]  + q… .   (B6)

Four of the terms of (B6) combine with terms of (B2), so that

k2〈[∫h]2〉 + k4〈[∫{hg}]2〉 =
   α [ 1–

3
  + k2(〈g2〉 + 3αk

2
〈[∫g]2〉) + k4(4〈g∫∫hδ〉–12〈g2δ〉 + 5–

3
  〈g4〉) ...]  + q,             (B7)

the matching equation from Eq. (B1).  Each term (except α/3 and q) involves averages of

functions of the focusing profile h(z).  Given any h(z)—obtained from a model such as

FODO or measured on an actual quadrupole cell—these averages can be calculated once

and for all, being constant coefficients of the terms in α and k.  Appendix C shows how

to write Eq. (B7) in simple form [Eq. (C9)].

Appendix C.  Simplification of Matching Equation

It is convenient to write the Fourier representation in the form

h(z)  =  h1 [  cosπz
L
   +   1–

3
  c3 cos3πz

L
  +  1–

5
 c5cos5πz

L
  +…]                          (C1)

The axial profile of the quadrupole gradient determines h1 and  cn.  Tables G1 and H1

show that h1 remains of the order of unity while c3 and c5 can change sign as the profile

is varied.  For the hard-edge quadrupole model (FODO) with occupancy η = 0.5, Table

G1 shows that  c3 = 1.  Because of multiple integrations, terms containing c5 are usually

negligible.
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Right side of Eq. (B7).  By definition,  k2〈g2〉 = Φ/3.  For the factor 〈 [∫g]2〉  = 〈 [∫∫∫h]2〉,
the third and higher harmonics make very small contributions because of the multiple

integrations.  Comparing leading terms for 〈 [∫g]2〉 and 〈g2〉 gives

3k2〈 [∫g]2〉  ~~   L
2


π2 

3k2〈g2〉  =   L
2


π2 Φ.                 (C2)

The three k4 terms on the rhs of Eq. (B7) are:

  4〈g∫∫hδ〉   =    1–
2
 〈g2〉2(1+ 

19
27 

c3+…),                                 (C3)

 –12〈g2δ〉   =   – 3–
2
 〈g2〉2(1+ 4–

9
  c3+…),                                (C4)

5
3 〈g4〉  =  5

2
 〈g2〉2(1 + 

4
81

 c3+…),                 (C5)

Adding (C3) through (C5) gives  3–
2

〈g2〉2(1+ (29/243)c3…), where the small c3  correction

can be neglected since it corrects a term which is already third order.  Using all these

results along with definition (15), the right side of (B7) (without the q term) becomes

∈2[1 + Φ  + 1–
2

 Φ2
 +  9

π2 

∈2
L

2


AI

4 Φ]    =   ∈2[1 + Φ + 1–
2

 Φ2
 + 3βI Φ]   ≡  ∈I II

2,      (C6)

as in the main text.  In the last term,

βI  ≡  3  
L2

π2   

∈2


A I

4                                              (C7)

uses the lowest-order value for A because this term is already of the highest order that we

retain.

Left side of Eq. (B7):  the 〈[∫{hg}]2〉 term is

〈[∫{hg}]2〉  =   
1
8
 〈g2〉(1 + 

20
27 

c3 + 5
3

—
36 c3

2 + …) 〈[ ∫h]2〉.           (C8)

Dropping the c3
2 term in (C8) for simplicity, we define the LHS of (B7) as

K†
eff   =  k2 〈[∫h]2〉[1 +   

1
24

 Φ (1 + 
20
27 

c3)] .                            (C9)

Altogether,

K†
eff   =  

∈III
2


A III

4  +    
Q


AIII

2                                               (C10)

which is Eq. (27).
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Appendix D.  Depressed and undepressed tunes

Here we evaluate the expansion terms in Eq. (39).  From Eqs. (B3-B5) in App. B,

3〈ρ2〉  =  3k2〈g2〉 + 6αk2〈 [∫g]2〉 + 6k4〈g∫∫hδ〉…,            (D1)

–4〈ρ3〉  =  –12k4〈g2δ〉…,                                           (D2)

5〈ρ4〉  =  5k4〈g4〉… .                                            (D3)

From App. C, Eqs. (C2)-(C5), 

6αk2〈 [∫g]2〉  ~~   L
2


π2 

6αk2〈g2〉   =  2βIΦ,                 (D4)

  6k4〈g∫∫hδ〉   =  3–
4
 k4〈g2〉2(1+ 

19
27 

c3+…),                                 (D5)

–12k4〈g2δ〉   =   – 3–
2
k4〈g2〉2(1+ 4–

9
  c3+…),                                (D6)

5k4 〈g4〉  =  15
2
 k4 〈g2〉2(1 + 

4
81

 c3+…).                (D7)

When the last three are added, the  c3 coefficient is only 25/729.  Dropping this and

using the definitions gives to third-order accuracy

σ  =  2L  
∈

  
A III

2 [1 + Φ  +  3–
4
Φ2

 + 2βIΦ  ] .                                 (D8)

Undepressed tune:

Setting Q = 0, (27) is

K†
eff    =    

∈II
2
I

AIII
4    =     

∈2


A III

4 [1 + Φ +  1–
2

 Φ2 + 3βIΦ  ]
1/2

.                      (D9)

The factor  ∈2/AI
4 in the last term can be replaced by Keff  ≡  k2〈[∫h]2〉, according to Eq.

(33) with Q=0.  Comparing with the definition of Φ and Fourier expanding as before,  the

last term, to lowest order, is 3Φ2 for Q=0.  Thus, altogether,

K†
eff   =   

∈2


AIII

4 [1 + Φ  +  7–
2

 Φ2 +… ]1/2
. (D10)

Making a similar replacement in Eq. (40) for the case Q=0,

σ0  =  2L  
∈

  
A III

2 [1 + Φ  +  11
2 

 Φ2 +…] .                                 (D11)

Using Eq. (D10) to eliminate ∈ /A III
2, 

σ0  =  2L(K†
eff)1/2[1 + Φ  +  11

2 
 Φ2 +…][1 + Φ  +  7–

2
 Φ2 +… ]–1/2

, (D12)
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or, finally,

σ0  =  2L(K†
eff)1/2[1 +  1–

2
 Φ  +  7–

8
 Φ2 +… ] . (D13)

to third order.

Sometimes it is convenient to work with the squares of σ0 and σ, which are for third

order

σ0
2  =  4L2K†

eff[1 + Φ  + 2Φ2]  (D14)

and

σ2  =  4L2  
∈2


A III

4    [1 + 2Φ(1 +  5–
4

 Φ2 + 2βI )] . (D15)

Appendix E.  Calculation of a(z) and b(z).

Using Fourier expansion, written as in Appendix C, 

kh(z)  =  kh1 [   cosπz
L
   +   1–

3
  c3 cos3πz

L
  +   1–

5
 c5cos5πz

L
   …] , 

and recalling ρm  ≡   h1kL2/π2, the terms of Eq. (26) are

–kg  = –k∫∫h  =  ρm[   cosπz
L
   +   1 

27 
c3 cos3πz

L
  +    1 

125
c5cos5πz

L
  …]             (E1)

αk ∫∫g =  β ρm[   cosπz
L
   +    1

243 
c3 cos3πz

L
  + …]                            (E2)

k2δ(z) = k2 ∫∫{ hg}  =  1–
8

  ρm
2[(1+ 

10
27 

c3…)cos2πz
L
   +   5 

54 
c3 cos4πz

L
  …]          (E3)

 
10
3 αk3∫∫g3  =  5–

2
 β  ρm

3[(1+   1 
27 

c3…)cosπz
L
  +   1 

27
(1+  2–

9
 c3…) cos3πz

L
 …]          (E4)

–α2k ∫∫∫∫g   =   β2ρm cosπz
L
   +  …                                   (E5)

The small final two terms from Eq. (26) have been omitted here for simplicity.

The Significant Terms

We drop small quantities in the above equations. The criterion is that they contribute less

than 2 parts per thousand to the final result for a bad-case scenario: large focusing voltage

(giving phase advance of 112°) and large β.  This leaves

–kg  = ρm(cosπz
L
 +   1 

27 
c3cos3πz

L
+   1 

125 
c5cos5πz

L
  …)                       (E6)

αk ∫∫g =  β ρm cosπz
L

   …                                             (E7)

k2δ(z) =  1–
8

  ρm
2( cos2πz

L
+  

25
54 

c3cos4πz
L

…)                                 (E8)
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10
3 αk3∫∫g3  =  5–

2
 βρm

3 cosπz
L
                                            (E9)

–α2k ∫∫∫∫g   =   β2ρm cosπz
L
   …                                      (E10)

Adding all these terms gives ρ(z) to third-order accuracy.  A few small terms were

omitted as mentioned earlier.  Setting z=0 gives ρmax and amax= A(1+ρmax) as presented

in Section 7.  Setting z=L changes the sign of all terms, except the even term k2δ(z), and

yields amin.

Results from Eqs. (E6) – (E10) are shown in Fig. 2 in the main text.

Appendix F.  Fourier Representation for Arbitrary Symmetric Cases

Fourier Coefficients

Recall from Section 2 that the focusing force K(z) in the K-V equations is written as

K(z) = kh(z)                                                       (F1)

with h(0) = 1.   Because of the assumed symmetries [Eq. (3)], there are only odd

harmonics:

h(z)   =    Σ
1,3,5…

hncos nπz
L

  (F2)

with the condition

 Σ
1,3,5…

hn   =   1 . (F3)

The Fourier coefficients are

hn   =     
1
L

  ∫o
2L

 h(z)cos nπz
L

  dz. (F4)

It is often convenient to define 

cn ≡  nhn /h1,                                                    (F5)

where c1  = 1 by definition and where |c3| usually turns out to be of order unity—see

Tables G1 and H1.  Then Eq. (F2) is written as

h(z)   =  h1   Σ
1,3,5…

1–
n

  cn cosnπz
L
  .                                      (F6)

Solution of Envelope Equation 

In the solution for ρ(z), Eq. (26), the largest term is

 ρ
(0)

(z)  = –kg(z) =  – k ∫
L/2

z
dz'∫o

z'
h(z" )dz",
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which with Eqs. (F2) and (F5) is

 –kg(z)  =   
kL2
π2

  h1   Σ
1,3,5…  

cn
n3

  cos nπz
L

  .    (F7)

The next largest term is

 αk ∫∫g =  α  
kL4
π4    

h1 
  Σ
1,3,5…  

cn
n5

   cos nπz
L

  .                                  (F8)

To achieve 1% accuracy, the first three series elements of (F7) are usually required,

whereas for Eq. (F8), only the fundamental is needed [cf. Eq. (E2)].

The additional terms of Eq. (26), shown in Eqs. (E3) and (E4) are found with the

help of trigonometric identies.

The mean square of the integral of Eq. (F2) gives the effective force

Keff   =   k2〈[∫ h]2〉  =   h1
2   

k2L2

2π2

   Σ
1,3,5…  

cn
2

 
n4

  , (F9)

which is used in the matching equation and for calculating undepressed phase advance.

The correction term Φ (used in evaluating phase advances, average radius or

transportable current, etc.) is

Φ   ≡   3k2〈g2〉   =   3h1
2  

k2L4

2π4

   Σ
1,3,5…  

cn
2

 
n6

    →   3h1
2  

k2L4

2π4

   (F10)

since the harmonics contribute practically nothing.  Dividing this into Eq. (F8), we find 

Φ  =  3Keff (L
2/π2)(1+ c3

2 /81 …), which could be useful in certain calculations.

Appendix G.   Fourier Solution for Case of FODO 

Our first example is the FODO lattice (Fig. G1) where exact expressions are

available for comparison (App. J).  Given the occupancy factor η, the Fourier coefficients

hn are readily calculated from Eq. (F4):

-1

0

1

0 L 2L 3L
Axial distance

Q
ua

d 
st

re
ng

th

Fig. G1.  Normalized quadrupole strength h(z) vs z for a FODO lattice having occupancy factor
η =0.5.  The unit cell length is 2L.
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  hn   =    
4

nπ  sin nπη
2
   , (G1)

which satisfies Eq. (F3) for  0 < η ≤ 1.  From Eq. (F5),

cn  =   n 
sin(nπη/2)

sin(πη/2)

                                                 (G2)

for FODO.  All the results from App. F can be used for FODO by putting h1 
 =  sin πη

2
   .

Values of h1 (normalized with π/2) and cn are shown in Table G1 for various η.

________________________________________________________________________

Table G1:  h1 and  cn ≡  nhn /h1 for FODO case

η πh1/2 c1 c3 c5 c7 c9 c11

1/3 1 1 2 1 –1 -2 -1

1/2 √2 1 1 –1 –1 1 1

2/3 √3 1 0 –1 1 0 --1

1 2 1 -1 1 -1 1 1
_______________________________________________________________________

Appendix H.  Solution for Some Cases  of Soft-Edge Profiles

Actual quadrupole fields are quite different from those in the so-called hard edge

FODO model of Fig. G1.  A few simple smooth models will be discussed.

Field Model 1:  K ′′(0) = 0.

            h1   =    
9

8
   ,        c3   =  –  

1

3
  ,                                        (H1)

with all the other coefficients zero.  This choice gives a flat field at the midpoint of the

quadrupoles, without the discontinuities of the hard edge model.  From Eqs. (H1), (F7),

(F9) and (F10) we get

ρ
(0)

max   =  –kg(0)  =   
9
8
   

kL2
π2

  (1 –   
1

92) ,    (H2)

Keff    =    
92

82

    
k2L2


2π2

  (1 +   
1

93) , (H3)

 Φ    =  3  
92

82

    
k2L4


2π4

  (1 +   
1

94) , (H4)

The third-harmonic correction for Φ can be neglected in most cases.. There are no higher

terms.



17

A

Field Model 2:  K ′(L/2) = 0.

            h1   =    
3

4
   ,        c3   =   1 .                                        (H5)

This model is narrow, peaked at the quadrupole midpoints, with zero slope at the gap

centers.  It gives focusing strength  equivalent to FODO having about 40% occupancy. 

The third-harmonic corrections to amax, Keff and Φ are 1/27, 1/81, and 1/243 respectively.

Field Model 3:  K ′′(0) = 0 and K ′(L/2) = 0.

            h1  =  15
16 

,      c3  =   
1

2
  ,     c5  =  –  

1

2
  ,                             (H6)

which gives a fairly realistic profile (Fig. H1) and corresponds to FODO with η ~ 53%. 

The third- and fifth-harmonic corrections are all less than 1% for this case.

Table H-1 summarizes the above results.

________________________________________________________________________

Table H1

h1 and  cn ≡  nhn /h1 and  ηequiv for smooth profiles 

Model h1 c1 c3 c5 c7 c9 ηequiv

#1 9/8  1 -1/3 – – – 0.69

#2 3/4  1 1 – – – 0.40

#3 15/16 1 1/2 -1/2 – – 0.53

________________________________________________________________________

Appendix J.   Some Exact Formulas for Case of FODO 

Truncated Fourier representations for the hard-edge FODO may be compared with

exact results of integration.  (The FODO model is illustrated in Fig. G1.)  Because of the

Fig. H1.  Axial profile of normalized quadrupole strength h(z) for Field Model 3, which uses only
the 3rd and 5th harmonics.  The unit cell length is 2L.

0 L 2L 3L
Axial distance
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symmetries expressed in Eq. (3), the calculation of averages is simplified, requiring only

integration over one-fourth of a cell.  One finds for occupancy η

Keff  =  k2〈[∫h]2〉  =  1
12

 η2(3–2η)k2L2,                                (J1)

 Φ  =  3k2〈[ ∫∫h]2〉 =  1
16

η2(1 –η2 +  
2–
5

η3) k2L4.                            (J2)

One can do the integrals in the first two terms of ρ(z), Eq. (26).  For the integra-

tions, we divide the cell into five zones:

Zone 0:    0  ≤  z  ≤  ηL/2

Zone 1:    ηL /2  <  z  ≤  L – ηL/2

Zone 2:    L – ηL/2  <  z  ≤  L + ηL /2

Zone 3:    L + ηL/2  <  z  ≤  2L – ηL /2

Zone 4:    2L – ηL/2  <  z  ≤  2L.

For even-numbered zones, the first integral is

 –∫∫h  =  P(n
2) 

1
2 [η(2–η)( 

L
2 )

2
 − (z – n 

L
2 )

2]  ;                        (J3a)

for odd-numbered zones it is

–∫∫h   =  P(n+12  ) 
1
2 Lη(z – n 

L
2 ) ,                 (J3b)

with n the zone number and

P(m) ≡ +1  for even m

P(m) ≡ –1  for odd m.

As required by the definition of ∫∫, the average has been subtracted.  The maximum value

of ρ
(0)

 (at z = o, where n = 0) is

ρ
(0)
max   =   –k∫∫ h|0  =   

1
–
8
 η(2 – η)kL2.                                (J4)

The next term in Eq. (26) includes the integral ∫∫g.  For even-numbered zones

∫∫g = P(n–
2) [η(1–

η2

2  +

η3

8  )( 

L
2 )

4
 – 3–

4
η (2–η)( 

L
2 )

2
(z – n 

L
2 )

2
+ 1–

8(z – n 
L
2 )

4
],    (J5a)

and for odd-numbered zones

 ∫∫g = P(n+12  ) [( 3–
2
 –

η2

2  )( 

L
2 )

3
(z – n 

L
2 ) –  

L
4 (z – n 

L
2 )

3] .      (J5b)

The maximum value of ∫∫g is

 ( 
L
2 )

4
η(1–

η2

2  +

η3

8  ) .                                               (J6)
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These results, for any value of η, may be compared with those from Appendices G and H

to determine the number of Fourier terms needed for a given accuracy in each case.
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