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Accurate Iterative Analysis of the K-V Equations

O.A. Anderson

Designers and experimentalists working with alternating-gradient (A-G) systems
look for simple, accurate ways to analyze A-G performance for matched beams. The
well-known K-V equations [1], based on an artificial beam model, are useful but their
solution is not easy. The smooth approximation [2], [3], [4] is popular because it is
simple and explicit. However, it becomes seriously inaccurate for applications with large
focusing fields and large phase advances. Results of efforts to improve the accuracy [5],
[6] have tended to be indirect or complex. @aneralizationpresented previously [7]

did improve the accuracy while retaining a simple explicit format. Unfortunately, the
method used to derive our results (expansion in powers of a small parameter) was
complex and hard to follow; furthermore, Ref. [7] only gave low-order correction terms.

The present paper uses a straightforward iteration method and obtains equations of
higher order than those shown in our previous paper. As before, input quantities are A-G
waveform and field strength; beam emittance; and beam charge or current. We solve for
average radius, peak radius, and the phase advances. (Or, one can input the mean radius
and solve for the beam current.)

Summary We begin with the coupled K-V equations, then (Section 3) show how
to decouple them. Section 4 expands the a(z) envelope about its mean value and splits
this envelope equation into its average part A and its periodipf@rt The differential
equation foip(z) is solved (Section 5) by iteration. These results are combined to obtain
a matching equation for the average radius A This equation is written in several versions
(Section 6). The first (lowest) order case is usually called the srapptioximation A
second order term significantly improves the accuracy. The third order results are far
more accurate over a wide range of parameters than any previously published.

Section 7 combines results from Sections 5 and 6 to give the maximum and
minimum radii. The phase advaneeanda, are given in Section 8.Appendices F, G,
and H discuss how Fourier analysis of the A-G focusing waveform is used to facilitate
the solution.

1. The K-V Equations and Symmetric Lattice Model

The K-V equations for the envelopes a(z) and b(z) are

«@a+5 + 4] ®
+K(2)b + gﬂz + ﬁﬁ (2)

a(z)'

b(z)’



with input parametersnormalized beam current Q; emittarideand A-G focus function
K(z). The z origin is located at the midpoint of a quadrupole and K(z) is asdtoneel
symmetric aboutz 0, periodic over a cell length 2L, amadtisymmetric about42. Thus

K@z-2L)=K(2), K(2z) = K@), KL/2)=0, K@z-L) = K@). (3)

We solve for the x and y beam envelopes a(z) and b(z), assumed to be matched to
the lattice, i.e. periodic over 2L.

2. Operators, Functions, Parameters, and Derived Quantities

To aid the solution of Eqgl) and(2), we introduce in Eqgs. (4)—(19) the operators on
even periodic functiongl..0}{ ...}, [, [J; the even periodic functions h(z), g(&}z), p(2);
and theconstantk, a, 3, q, A, Ke o. In Eq. (19),h, is the first Fourier coefficient of

h(z)—cf. App. F.

Tablel
Definitions to beused in this paper
2L

FO= (20 @)z, (4) 8(z) = [f{hg}, (11)
(= t_mo ) A = @G (12

| P(z) = (a(2)-A)A, (13)
For eve:tp(z) (= O: ou(2) = (bZ)-AYA, (14)
fo = [w@)dz and - (§) o = 55 B = “,@; (15)
v = {IOZdZIOZUJ(Z")dZ"}- (7) q= QIA? (16
k = Kmax, (8) Keff = kZEHﬂ-l]ZD (17)
h(z) = K(z2)/k, 9) ® = 3KE (18)
g = [fh, (10) pm = hkL?/T2 (19)

Most of these definitions will not be used immediately but are collected here for
convenient referencéAll the functions are even and periodic over 2L.

The operatorll.. (averages over a cell length 2L while the operfita} removes
the average part of a periodic function: e.g{cd® = {1+cos2} = cox. The
operator[[ operates on periodic functions that have no average. It gives the repeated
indefinite integral and removes the average part, if any, of the result. This removal can
be implemented by constructing a suitable lower limit for the outer integral. For example,



Eq. (10) can be written , ,

g = J’L/Zdz"[O h(z*)dz",

which subtracts the value at L/2 so that g(l=#D) Alternatively, one can start both
integrals at zero and then apply the operfitar}, as in Eqg. (7). A simple example is
[Jcosx = {Jsin} ={1-cosx = —cosx.

According to Eq. (3)K(0) = k is the maximum value of the focusing strength so
that h(O)=1 The defined quantities, 3, and g are not essential but are introduced to
make some equations more compact and readable.

3. Decoupling the K-V Equations—Matched-beam Boundary Conditions

For thematched beam case[ = (b= A, and
a = Al +p), b=A(1+pyp). (20)
The Qtermsin Egs.(1) and(2) can be expanded as

ﬁﬁ = @(1— O+pp)/2+...) = &(1— K23(z) + ..., (21)

since from Appendix A,
(p+Pp )2 = K28(2) +... . (22)

FromEq. (11),8(z) is a known function. Equation (21)3ecouples Eqql) and(2)—but
introduces A, a new unknown. See below.

After the decoupled version of Eg. (1) is solved for a(z), then b(z) may be found
using the properties in EqQ. (3). Therefore &).is unnecessary from here on.

4. Expanding and Decomposing into Average and Periodic Parts

Substitutinga = A(1+p) in the first three terms of E¢l), expanding 1/ dividing
by A, and using (21) and (15), the first K-V equation is equivalent to

p(z)" = —kh(z) - kh(z) + § (1-3p+6p?-10p°+ 150" ...) + q(1-k?5(2)...). (23)

To solve for the ripplep(z) and for the mean radius A (which is incorporated in the
definition of a and q), we decompose Eg. (23) into two equations. Averaging Eq. (23),

0 = «mhpO+ § + 20 p?0- Parp’or 5alp*l.. + g (24)
Subtracting,

p" = —kh(z)-k{hp} —ap+2a{p?} - Pa{p} +5a{p% ... - k?%(2).... (25)



with the {..} operator defined byEq. (5) We now have two equations, each containing
A andp(z). Equations (24) and (25) taken together with (21) have the same essence as
the K-V equationgl) and (2)

5. Iterative Solution of the Envelope Equations

On the right of Eq. (25), the terms involving the unknown functggn) are
dominated by kh(z); it is reasonable to omit them for the initial integrations, which give

p(o). Then we inser[b(o) into (25) and integrate again to g{&lt) The process is repeated
for p(z):
Py~ KO (26a)
_ 2 P
Py = Py * AkIG+ K23 + Fak’g? (26b)
Py = p(l)—azk 11ffg = k3hd —20k3[[gs. (26¢)

This p(z) expansion is to be inserted into Eq. (24) to complete the solution of the K-V
equations. Terms, such aaléjj{gz}, that would make Eq. (24) higher than third order
in the combined parametelé a, q have been discardedsome terms of this type might
appear to form lower-order products, but the averages vanish by orthogonality: h(z), g(z),
g3, etc., possess only odd harmonics WB(IB,{gZ} , {g4} have only even.

A second-order term, E]Ké(z), is also omitted. It involves multiple integrations of
an already small function and would contribute less 8A% to the maximum radius
3max€ven ao,=120°. It would affect A by less than two parts in ten thousand.

Appendix B evaluates to third order the combination of Eqgs. (26) and (24). The
result, in simplified form, is shown in the next section.

6. Matching Equation: First, Second, and Third Order

Third Order Inserting Eq. (26) into Eq. (24) yields seven termsAp, Eq. (B7])
Some terms combine, resulting in

] 2
ke _ o — P = o, (27)
f AIII4 AII|2
where
K,re“‘c = []IjK(z)]Z[ﬁl +£Jl¢(1+§]t7)c3)]; (28)
072 = D2[1+q>(1+%¢+3[3|)]_ (29)



HereCy is of order unity [8]. Roman-numeral subscripts on Aldrsignify the order of
approximation—third order in this case. The subscripfom4 indicates thaf\ [Eq.

(33)] is used for A. The matching equation (27) is in the standard form of the smooth
approximation, Eq. (33), and can be solved to find the third-order A:

A2 = (@2 + [(Qr2k ) + 0 2Kk &2 (30)

If the input quantity is the mean radiu.gh@ then Eq. (27) gives the allowable Q to third

order, X X X
— eff
Q||| - Ainp KT _Eln /Ainp :

Second OrderEq. (B7) has two second-order terms. One yields the correction to
K seen in Eq. (28). The other termodkz@zm or, using definition 18), % ®. We
define

07 = [F(1+9), (31)

with the subscript signifying second order, and get
2
ke _ i, R - o 32
T AR A >

Eq (32) can be solved fok  or Q in the same way as for the third order, giving
useful approximations when K(z) ahtiproduceg, ando less than about 80°

First Order In Eq. (B7), the three terms of lowest ordenir, K2 produce what is
called the first-order matching equation in this paper (Ref. [7] used another terminology).
This is the classic smooth approximation. These termskgiffa]?= a/3+ g, or, using
the definitions (15), (16), and (17)

eff [] —
K= — %Dlﬂr - §|2 = 0. (33)

First, second, and third-order results for A, from (33), (32) and (30), are plotted in
Fig. 1a, next page. The smooth approximation is somewhat inaccurate except near the
point where its error curve happens to cross the 0 % line.

7. Explicit Third-Order Result for g@,,,

Knowing the matched meanadius A, one can complete the solution for the beam
envelope a(z) A[1+p(z)] using p(z) from EQ. (26); b(z) can be found by changing the
sign of the terms that contain odd powers of k.

Someterms of Eq. (26) can be written in exact form [Appendix J] for models such
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Fig. 1. Accuracy of: (amean radius A from Egs. (30), (32), or (33); anyl flaximum radius
amax from Egs. (36), (37), or (38). The quadrupole voltage beam current,land normalized
emittancel] are input quantities. Other parameters are shown in Table 2. In this figuiee, V
fixed at 20 kV, giving exaco, = 83.37°;0 and | are varied so thatranges between 0° and
76.5°; these exacto ando values are obtainegtlmerically.

Table 2: Parameters Used in the Figures
(from the MFE ESQ accelerator [8] with= 0.5)

Quadcell length 20 cm Quad voltage (Figs. 1, 3a 20 kV
Occupancy factor) 0.5 Quad voltage (Fig. 2) 25 kv

Quad radius (3) 1.75cm Beam current (Fig. 2) 0.5 Amp
Beam energy 200 KeV Norm emittance (Fig. 2) 0.3 mrad-cm

Beam patrticles H- ions

as FODO, but Fourier expansion is more useful in general:

h@) = h1[ cos’EEZ ¥ %CSCOS3EEZ ¥ %050055139‘z + ] . (34)

Values (usually of order unityyf h, and C, for both FODO and smooth profiles are

given in Appendices G and H. With the definition
2

20
B, = 3?2 T, (35)
we have !

i = Ay [1+pm(1+ 5%7 Gt 1&25 Co) + %Pn%(l"’ 1?54 Cy) +B, oy (1+ %pn%+[3|) ] (36)

usingresults from Appendix E. The accuracy of Eq. (36) is shown in Fig. 1b, along with
that of the truncations

' = Ay [1+pm(1+ 51'7 Cst %5 Cs) + B, Py ] (37)



Radius /Average Radius

ooo First Ordel
ocoo Third Orde
— Exacl

0.0 ] ] ]
0 0.5L L 15L 2L

Axial Distance

Fig. 2. Matched envelopes a(z) and b(z), normalized to mean radius A, with beam current 0.5 A,
normalized emittance 1.55mrad-cm, and quadrupole voltage 25 kV. Model: see Table 2. With
these parameters, the tunes are 112.2° andos = 86.9°. The exact envelopes (solid curves)
were obtained numerically. The third-order results [Eqs. (E6)-(E10)] give,gpearor of —
2.37%; in the smooth approximation [Eq. (E6) only] the error is —13.0%. Amplitude of half-
period ripple = 5.6% of amplitude of full-period ripple.

and (the smooth approximation)
Q"™ = A [1+pm] : (38)

Thetime dependence of Eq. (36), from App. E, is plotted in Fig. 2 above.
8. Phase Advances

From thewell-known phase-amplitude result [9], the phase advance per quadrupole
cell of length 2L is

o dz _ 2
o _DL? = 2L.0@E7]

We approximate a(z) b, [1+p(z)] with A ~from Eq. (30) an@(z) to third order from
Eq. (26). (We omit subscripts for compactness.) Expand‘%grml taking the average
gives

o= 2|_%%2[1+ 3p20- 4p30k 53— ). (39)
1
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Fig. 3.(a) Accuracy oo from Egs. (40), (41), and (42)/ g is fixed at 20 kV as iffrig. 1.
(b) Accuracy oo, from Egs. (43), (44), and (45Y g ranges from 5 kV to about 22 kV.

(The 2p term has zero average by definition.) Appendix D shows that to third-order
accuracy

o, =2 E%z[l"'q)(l"' %‘D +ZB|)]- (40)

Errors with respect to exact valué®m simulations are shown in Fig. 3a. Useful
accuracy is retained after dropping two terms and using lower-rdeom Eq. (32):

0
0, = 2LEZE(1+<D). (41)
I
Figure3a shows large errors for the first-order result (smooth approximation):
U
o, = ZL%I\%. (42)
|

The undepressed, is found by setting Q = 0 in Eq. (27), then eliminatiddrom
Eq. @0). Details aren Appendix D. The result is

112
oo, = 2U(k ) [1+ 2o+ %cpz]. (43)

This equation is used to calculatgas a function of the strength of the quadrupole
field gradient. Figure 3b shows its accuracy and also illustrates the second-order case

_ ef 1’2[ 1 ]
gg, = 2UkH) |1+ Lo (44)
and the smooth approximation,
_ off\ 112
0o, = 2L(KkeM) ™. (45)

In some cases it is more convenient to work with the squagsafdo—see App. D.



Appendix A. Coupling Between a and b in the K-V Equations

This appendix calculates a()fz) for the Q-term denominators in the K-V
equations. Dividingequationg1) and(2) by A and expanding gives

Py’ = —kh(z)—kba+,@fl(l—3pa+---) * gz(l—@fpb)/ 2.) (A
0, = +kh(z) + kmb+/%]j(l—3pb+...) ¥ §2(1— P, tep)/2..). (A2

Subtracting the averages (using definitions from Table 1 except, herg,

Py = —kh—k{hp} —ap,— dp,+p,)/2 ..., (A3)
pp' = +kh +k{hp,} —ap, — Adp,+pL)/2 ... (A4)
Taking sum and difference,
S' = -KhO - (©+0)S ..., (A5)
D" = —-kh-khg - aD ..., (A6)
where
S = (patpp)/2 D= (p;Pp)/2 (A7
have periods L and 2L, respectively. The lowest iteration of (A6) is
Do) = —Hh = —kg. (A8)
Inserting this purely oscillatory D into (A5),
| Sof' = K{hg} . (A9)
Integrating,
So = K[f{hg} . (A10)

Using Eq. (A7) and the definitioof &(z), this is
(Pa+Pp)/2 = k%B(2) + ... (A11)

which yieldsEq. (22). The expansion and iteration could be extended to produce more
terms, but these would give even smaller corrections to our results.

Appendx B. Details of Derivation of Matching Equation

Moving the driving term to the left-hand side, E2¢) is
kthpO= o 2+ 2p?0- Ppdorsp*0] + g K1)

Insertingp from Eq. (26), thdeft sideis

KihpL= ko[ ~hgahyy g0 & k2 g*3-o20hff [fg-k° (hThd -2k’ (gL



where we have dropped the subscriptpon Theorthogonalk?d term is absent. We
simplify by changing the order of integrations, using the h(z) symmetries [Eq. (3)]. For
example, JEE]J’ngD:—@J]gD:+[ﬂjg]ZD Applying this technique throughout gives

kihpD= +K°[ fyh|* O atg’ O+ oyl + K[ mighdh = Harg' 20 a0 ] - (B2)

For theright sideof (B1),
P20= K20 2k2gg2k* mhd0... (B3)
p30= 3KE250.., (B4)
0= Kgro.. . (B5)

The very smallk*B20term was omitted fromip2] Again changingthe order of
integrations, the right side (B1) becomes

rhs= a [ £ +k2(200P 4a Ijg12) +k*(41ghd0-100%53 5G°0)] +q... . (B6)

Fourof the terms of (B6) combine with terms of (B2), so that

QUNRETIT RS
o[ L+¥(w’ 2k Tyg]%) + K (argpha12g2e 20 ..] +a, (B7)

the matching equation from Eg. (B1). Each term (excéptand q) involves averages of
functions of the focusing profile h(z). Given any h(z)—obtained from a model such as
FODO or measured on an actual quadrupole cell—these averages can be calculated once
and for all, being constant coefficients of the terme Bnd k. Appendix C shows how

to write Eq. (B7) in simple form [Eq. (C9)]

Appendix C. Simplification of Matching Equation

It is convenient to write thEourier representatian the form
- 1 1
hz) = hl[cosEEZ + §C3cos3fﬁz + §C5c035E;‘Z +] (C1)

The axial profile of the quadrupole gradient determihgsnd C,. Tables G1 and H1
show thath, remains of the order of unity whilg; andCy can change sign as the profile
is varied. For the hard-edge quadrupole model (FODO) edtupancyn=0.5, Table
G1 shows thatC; = 1. Because of multiple integrations, terms contaigipgre usually
negligible.

10



Right side of Eq. (B7) By definition, k?[g?00= ®/3. For the factorfg]?0 = [fffn]?0)
the third and higher harmonics make very small contributions because of the multiple
integrations. Comparingading terms fofJfg]2Cand[g?(gives

3K[g)20= ]@223@@25: Ezzq:. (C2)
The threek* terms on the rhs of E(B7) are
4@ﬂh5D = %@Zﬁ(l+ @ C3+...), (C3)
~120g280 = —g@Zﬁ(u 2egt.), (C4)
o= J A1+ oyt ), (C5)

Adding (C3) through (C5) give%@Z@(H Q9/243)C3...), where the smafl; correction
can be neglected since it corrects a term which is already third order. Using all these
results along with definition (15), the right side of (B7) (without the g term) becomes

D2[1+¢+%¢2+§2E:t{2¢] = D2[1+<D+%CDZ+3B|<D] =02 (C6)
I

as in the main text. In the last term,

2 [P
B =3k ac) ()

usesthe lowest-order value f@gk because this term is already of the highest order that we
retain.

Left side of Eq(B7): the{hd]*Cterm is

3
Indi’o= g wr{ie esr e+ ) i (c8)
Dropping theC32 term in (C8) for simplicity, welefine the LHS ofB7) as
K = k2[ﬂ_[h]2E[l +£J}f¢> (1+§f;c3)] (C9)
Altogether, X
K& = %ﬂ f 2 (C10)
! A|||4 Am2

which is Eq. (27).

11



Appendix D. Depressed and undepressed tunes

Herewe evaluate the expansion terms in B§).( From Egs. (B3-B5) in App. B,

3p20= 3P+ 6ak2(g]20 6k haLl..., (D1)
—ap30= —12R@2s00.., (D2)
50p*0= 5Km.. . (D3)
From App. C, Egs. (C2)-(C5),
2
6ak2Ll[g]20= lb[ZGO(kZ@ZD = B o, (D4)
ok rgghol = SkAg?i(1+ 10 c+...), (D5)
~12k4g%00 = SkAgPA(1+ g egr), (D6)
5Kk g0 = kA g2B3(1+  cyt.). (D7)

When he last three are added, ti@g coefficient is only 2%729. Dropping this and
using the definitions gives to third-order accuracy

U
o= 2LE32[1+¢+§&+2B|¢]. (D8)
Il
Undepressed tune
Setting Q =0, (27) is
2 2
[ 1/2
K& = %El_i"l = ?4[1+¢+ lo?+ 3[3,q>] . (D9)
I ]

Thefactor [J%/A % in the last term can be replacedKSjf = K2Jjh]20 according to Eq.
(33) with Q=0. Comparing with the definition ofand Fourier expanding as before, the
last term, to lowest order, isb8 for Q=0. Thus, altogether,

[ 112

ef _ 7 42

Ko = %ﬁﬁ[le + 50 +] : (D10)
Making a similar replacement in Ed0) for the case Q=0,

O
o, = 2LEI]2[1+CD + Y a? +] (D11)
Ayl
Using Eq. (D10Yo eliminatel] /A|“2,

1/2 -1/2
o, = 2L(k ) [1+q> + %jq>2+...] [1+q>+ %q>2+...] . (D12)

12



or, finally, /2
1
o, = 2L(Kk ) [1+ 1o+ g¢2+...]. (D13)
to third order.

Sometimest is convenient to work with the squares @f anda, which are for third
order
ol = 4L2K$ff[1+ > + 2cp2] (D14)

and 5

0% = 412 ED]4 [1+ 2q>(1 +20% +28, )] (D15)
1

Appendix E. Calculation of a(z) and b(z).
Using Fourier expansion, written as in Appendix C,

khz) = khl[ cos’%Z + %CscossEl[J_z + %0500551};\Z ] ,

and recallingp,, = hlkL2/T[2, the terms of Eq. (26) are
—kg =—Kh = pm[ cos’%Z + 1;17030033@2 + %25C50055Ef ] (E1)
akffg = Bpm[ cos@Z + §13C3C053EF_Z + ] (E2)
k23(z) = K [f{ hg} = %pn%[(u ?55; c>3,...)coszlﬁZ ¥ 5é4c3cos415j_Z ] (E3)

%OO(keﬂg"3 = %Bpn?[(1+ 5%7(:3...)005%2+ L§I7(1+ %Cs) 0033?...] (E4)
—02k[fffg = [32pmcosﬁZ + o (E5)

The small final two termBom Eqg. (26) have been omitted here for simplicity.
The Significant Terms

We drop small quantities in the above equations. The criterion is that they contribute less
than 2 parts per thousand to the final result for a bad-case scenario: large focusing voltage
(giving phase advance of 112°) and lgBgeThis leaves

—kg =pm(cos@z+ §‘I7C30053Ef+ %25 C cosSE;\Z ) (E6)
akfg= Bpmcos’ﬁéz (E7)
k23(z) = £p,( cos2lf + i3 %cos4Ef...) (E8)

13



Efakgﬂg?’ = %Bprﬁ cosEEZ (E9)
—2k[ffflg = szmcosfﬁz (E10)

Adding all these terms giveg(z) to third-order accuracy. A few small terms were
omitted as mentioned earlier. Settinglzgivesp,, 5, and a,,,.= A(1+p5,) as presented
in Section 7. Setting=L changes the sign of all terms, except the even t&¥m)kand
yields a;.

Results from Egs. (E6) — (E10) are shown in Fig. 2 in the main text.

Appendix F. Fourier Representation for Arbitrary Symmetric Cases

Fourier Coefficients
Recall from Section 2 that the focusing force K(z) in the K-V equations is written as

K(z) = kh(z) (F1)

with h(0)= 1. Because of the assumed symmetries [Eqg. (3)], there are only odd
harmonics:

h@ = 2 hycosl¥ (F2)
1,35... L
with the condition
h, = 1. (F3)
1,35...
The Fourier coefficients are
2L
h, = [ﬁ [ h@costF dz. (Fa)
0 L

It is often convenient to define

C, = nh,/h, (F5)
whereC; = 1 by definition and wher¢c;| usually turns out to be of order unity—see
Tables G1 and H1. Then Eq. (F2) is written as

h@ =h 2 Lc, cosnf? ()

1,35.N L~

Solution of Envelope Equation

In the solution fop(z), Eq. (26), the largest term is

P2 =—ka(2) = -kfuz dZL h(z")dz",

14
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Fig. G1. Normalized quadrupole strength h(z) vs z for a FODO lattice having occupancy factor
n =05. The unit cell length is 2L.

which with Eqs(F2) and (F5) is

2
—kg(2) = g hy 1; %“ cosH’Eiz. (F7)
The next largest term is o
4
akffg= a % hy lé@? cosﬂ’EiF. (F8)

To achieve1% accuracy, the first three series elements of (F7) are usually required,
whereas for Eq. (F8), only the fundamental is needed [cf. Eq. (E2)].
The additional terms of Eq. (26), shown in Egs. (E3) and (E4) are found with the
help of trigonometric identies.
The mean square of the integral of EfR) gives the effective force
2,2 c2
Koe = ROh20= h2 1§ M, F9
eff n] "t 211[lg 1325 n* (F9)
which is used in the matching equation and for calculating undepressed phase advance.

The correctionterm @ (used in evaluating phase advances, average radius or
transportable current, etc.) is

2|4 c.2 2,4
= 2 = o2 Y,
o = 3RO = AN d;g 1;) 96 3h; ﬁé,g (F10)

sincethe harmonics contribute practically nothing. Dividing this into Eq. (F8), we find
D = 3Kg (L2/T[2)(1+ 032/81 ) which could be useful in certain calculations.

Appendix G. Fourier Solution for Case of FODO

Our first example is the FODO lattice (Fig. G1) where exact expressions are
available for comparison (App. J). Given the occupancy fagcttire Fourier coefficients
h, are readily calculated from Eq. (F4):
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h, = (4 sinf, (G1)

nm

which satisfies Eq(F3) for 0 <n < 1. From Eq. (F5),

__sin(omm/2)
= ©

for FODO. All the results from App. F can be used for FODO by puthing sinﬂza )
Values ofh; (normalized withr/2) andc, are shown in Table G1 for variogs

Table G1:h; and ¢, = nh,/h; for FODO case

n m/2 ¢ G G G G C;

1/3 1 1 2 1 -1 -2 -1
12 V2 1 1 -1 -1 1 1
213 V3 1 0o -1 1 0o -1

1 2 1 -1 1 -1 1 1

Appendix H. Solution for Some Cases of Soft-Edge Profiles

Actual quadrupole fields are quite different from those in the so-called hard edge
FODO model of Fig. G1. A few simple smooth models will be discussed.

Field Mokl 1: K"(0) = 0.
hlz[g, c3:—@, (H1)

with all the other coefficients zerdlhis choice gives a flat field at the midpoint of the
quadrupoles, without the discontinuities of the hard edge model. From Eqs(RKA1),
(F9) and(F10) we get

o = o= § G- B). a
Keft = 8%2 d;%z(l’f é&) (H3)
® = 38%2 @%4(1+ 94) (H4)

The third-harmonic correction fap can be neglected in most cases.. There are no higher
terms.
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Fig. H1. Axial profile of normalized quadrupole strength h(z) for Field Model 3, which uses only
the 3rd and 5th harmonicd.he unit cell length is 2L.

Field Mocel 22 K'(L/2) = 0.
hlzg, c, = 1. (H5)

This model is narrow, peaked at the quadrupole midpoints, with zero slope at the gap
centers. It gives focusing strength equivalent to FODO having about 40% occupancy.
The third-harmonic corrections t8'& K& and® are 1/27, 1/81, and 1/243 respectively.

Field Mocel 3: K”(0) = 0 andK'(L/2) = 0.

hlzjg'é, cgzé, csz—é, (H6)

which gives a fairly realistic profile (Fig. H1) and corresponds to FODO with53%.
The third- and fifth-harmonic corrections are all less than 1% for this case.
TableH-1 summarizes the above results.

Table H1
hy and ¢, = nh, /hy and Negy;,for smooth profiles

Model hq c1 C3 Cg Cy C9 Nequiv
#1 9/8 1 -1/3 - - - 0.69
#2 3/4 1 1 - - — 040
#3 15/16 1 12 -1/2 - — 053

Appendix J. Some Exact Formulas for Case of FODO

Truncated Fourier representations tbe hard-edge FODO may be compared with
exact results of integration. (The FODO model is illustrated in Fig. G1.) Because of the

17



symmetries expressed in Eg. (3), the calculation of averages is simplified, requiring only
integration over one-fourth of a cell. One finds for occupancy

Kett = RIMIPO= 13, n%(3-2n)k2L2 v
® = 3RNI2C= fn(1-n?+ 2n®) K24 (92)

One can do the integrals in the first two term@), Eqg. (26). For thantegra-
tions we divide the cell into five zones:

Zone 0: 0O< z<nlL/2

Zonel: nL/2< z< L-nL/2
Zone2: L—nL/2 <z<L+nL/2
Zone 3. L+nL/2 < z< 2L-nL/2
Zone 4: 2l-nL/2 < z< 2L.

For even-numbered zones, the first integral is
2 2
- g [ o= (s .
g = {33 [ne-m(y) - (-] ; (13a)
for odd-numbered zones it is

~h = F(Egl)%Ln(Z—n%), (33b)

with n the zone number and
P(m)=+1 for even m
P(m)= -1 for odd m.

As required bythe definition offf, the average has been subtracted. The maximum value
of p(o) (atz=0,wheren=0)is

1
P = —Hghly = gn@-n)kL? (24)

The next term in Eqg. (26) includes the integfgl For even-numbered zones
2 .3 4 2 2
go =F(H) [0(1-% +8)(5) -2n@-n (%) (z-nk) +%(z—n%)4], (J5a)

and for odd-numbered zones

g =P(E;1)[(§—&22)(%)3(z—n52)—%(z—nbz)g’]. (I5b)

The maximum value ofg is
4

2 3
(5)n(-% +%). (36)
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Theseresults, for any value af, may be compared with those from Appendices G and H
to determine the number of Fourier terms needed for a given accuracy in each case.
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