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VI. Abstract 

Predicting novel transcription factor-target gene interactions in the Candida albicans 
biofilm network using machine learning  

Doctor of Philosophy 

in  

Quantitative and Systems Biology 

by 

Akshay Deepak Paropkari 

University of California, Merced 

2021 

Chair of Advisory Committee: Professor Aaron Hernday 

 Transcription is a complex process underlying many cellular functions. DNA 
structure was discovered by Rosalind Franklin over 50 years ago. Since then, we have 
been steadily dissecting our understanding of the biological logic governing all life on 
Earth. Ultimately, Francis Crick discovered the central dogma of molecular biology in 
1970. Early studies on Escherichia coli began formulating the idea of gene regulation as 
the basis of information flow in biological systems. Relatively soon, due to advancements 
in computing power, computer aided analyses of DNA and RNA were introduced to 
understand regulatory sequences. Since then, many improvements in experimental and 
computation protocols have accelerated our understanding of the control of biological 
information flow. 

 My thesis work, which uses the fungal species Candida albicans as a model, 
is the latest advancement in our understanding of gene regulation. In chapter one, I 
present my work on identifying the gene regulatory networks controlling biofilm formation 
in C. albicans across the biofilm life cycle. I explain my novel workflow that utilizes 
sequence-based as well as DNA-shape based features to predict transcription factor 
binding sites (TFBSs) genome-wide in C. albicans. In chapter two, I present CUT&RUN 
sequencing data implemented to assess binding events for specific TFs in C. albicans. I 
also present my novel CUT&RUN computational pipeline to analyze CUT&RUN 
sequencing data. In chapter three, I present a computational workflow to analyze 3’ Tag-
Seq data. In this 3’ Tag-Seq, the 3’ end of the transcript is selected and amplified to yield 
one copy of cDNA from each transcript in a biological sample. 
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Chapter 1 
 

Predicting novel transcription factor-target gene interactions in the Candida 
albicans biofilm network using machine learning 

1.1 Graphical Abstract 

 

 

 

Candida albicans genome

[GC] [GA] G A A T G [CT] [TAC]

Consensus sequence representing
known TF binding motifs

G G G A A T G T T

G G G A A T G C A

G G G A A T G C T
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Known TF binding motifs

  Genome-wide
BLASTn matches

Genome-wide TF binding site search

Model classified TF binding sites

Candida albicans genome

False TF binding sites

True TF binding sites

SVM classification

Figure 1.1: Graphical abstract of computational method. The top box
shows generation of training and testing data. The middle box illustrates 
support vector machine (SVM) classification process. The bottom box 
represents genome-wide output of the model. 
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1.2 Abstract  

Biofilms are surface-adhered communities of microbial cells that can serve as 
reservoirs of infection. Candida albicans is a common human fungal pathogen, capable of 
forming biofilms on biotic and abiotic surfaces. Transcription factors (TFs), defined as 
sequence specific DNA binding proteins, are important players in regulating transcription 
during complex developmental processes, such as biofilm formation. The transcriptional 
network controlling biofilm formation in C. albicans, consisting of six “master” TFs, Bcr1, 
Brg1, Efg1, Ndt80, Rob1 and Tec1, and 1,061 downstream “target” genes, has been 
previously elucidated for mature C. albicans biofilms. However, the roles of these TFs in 
controlling target gene expression at different stages of biofilm development have yet to 
be determined. 

In this study, we use a supervised support vector machine (SVM) classifier and a 
validated set of TF binding sites (TFBSs), to predict novel TF-target gene interactions for 
each biofilm master TF temporally over the course of C. albicans biofilm formation. First, 
target sequences were created using previously identified transcription factor binding site 
(TFBS) consensus sequences that represent potential binding sites. The number of TFBS 
consensus sequences for each TF depended on both the number of validated sites as 
well as the fidelity of the motifs. Second, a feature matrix was built to capture the DNA 
shape and sequence qualities of each Candidate TFBS motif. Next, a positive/true set of 
potential TFBSs was predicted for each TF using a trained SVM classifier based on the 
feature matrix. The sequence similarity score was the top contributing feature to classify 
novel TFBSs. Finally, active TF-target gene interactions were identified by correlating TF 
binding activity with previously reported time-series gene expression data of target genes. 
Interestingly, Ndt80 and Efg1 are predicted to control the greatest number of target genes 
at any given stage of biofilm development. Overall, by coupling TFBS sequence and DNA 
shape information, we predict novel TFBSs, TF-target gene interactions, and ultimately, 
transcriptional regulatory networks controlling each stage of the C. albicans biofilm life 
cycle. 

1.3 Introduction 

Candida albicans is a diploid polymorphic commensal fungus commonly found in 
the oral cavity, gastrointestinal tract, genitourinary tract, and skin of healthy humans 
(Lohse et al., 2018; Nobile et al., 2012; Nobile and Johnson, 2015). C. albicans is also an 
opportunistic pathogen that predominantly causes severe disease in 
immunocompromised individuals, such as those with HIV/AIDS and patients undergoing 
chemotherapy or organ transplantation (Lohse et al., 2018; Nobile et al., 2012; Nobile and 
Johnson, 2015) but can also cause superficial mucosal and cutaneous infections in 
healthy individuals, such as vulvovaginal candidiasis in women and diaper rash in babies 
(Mayer et al., 2013; Soll and Daniels, 2016). An important virulence trait of C. albicans is 
its ability to form biofilms – complex communities of cells that form on biotic surfaces (e.g., 
mucosal epithelial layers) and abiotic surfaces (e.g., catheters, heart valves, and 
prosthetic devices) (Gulati and Nobile, 2016; Lohse et al., 2018; Mayer et al., 2013; Nobile 
and Johnson, 2015). C. albicans biofilms are often resistant and/or tolerant to antifungal 
drugs, making biofilm infections notoriously difficult to treat (Gulati and Nobile, 2016; 
Lohse et al., 2018; Nobile and Johnson, 2015). The C. albicans biofilm life cycle occurs in 
four stages: adherence, initiation, maturation, and dispersal (Lohse et al., 2018; Nobile 
and Johnson, 2015; Uppuluri et al., 2010). In the adherence stage, planktonic yeast-form 
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cells attach to a surface. In the initiation stage, the yeast-form cells proliferate to form an 
anchoring cell layer and begin to differentiate into hyphal and pseudohyphal cells. In the 
maturation stage, the hyphal cells elongate, and a protective extracellular matrix 
composed of proteins, carbohydrates, nucleic acids, and lipids, encases the biofilm cells. 
Finally, in the dispersal stage, yeast-form cells are released from the biofilm, where they 
repeat the biofilm life cycle by adhering to and forming biofilms at new surfaces or grow 
planktonically. Understanding the genetic and molecular mechanisms regulating the C. 
albicans biofilm life cycle is fundamental to the development of effective therapeutics for 
biofilm infections caused by this important human fungal pathogen.  

Transcription factors (TFs) or transcriptional regulators, defined here as sequence 
specific DNA-binding proteins, are proteins that regulate the expression of downstream 
“target” genes to ultimately control important cellular functions. TFs bind to specific cis-
regulatory DNA sequences in the genome upstream of the transcription start sites of their 
target genes to mediate gene expression. The transcriptional network controlling biofilm 
formation in C. albicans was initially described in 2012 for mature (48-hour) in vitro biofilms 
(Nobile et al., 2012). In this study, using genome-wide binding approaches combined with 
genome-wide transcriptional profiling approaches, six “master” biofilm TFs (Bcr1, Tec1, 
Efg1, Ndt80, Rob1, and Brg1) were identified along with 1,061 downstream “target” genes. 
Generally, the six master biofilm TFs were found to bind to their own upstream intergenic 
regions and to positively regulate the expression of one other, forming a closely knit biofilm 
circuit comprised of many feed-forward loops (Nobile et al., 2012). In 2015, this biofilm 
circuit was expanded to also include Gal4, Rfx2 and Flo8 as additional TFs in the core 
circuit (Fox et al., 2015). Since experimentally determined cis-regulatory sequences, 
which we refer to as TF binding sites (TFBSs), were not established for Gal4, Rfx2 and 
Flo8 under biofilm conditions, we did not consider these three additional TFs in our 
supervised learning model in the present study. 

Three genome-wide transcriptional profiling studies compared C. albicans biofilms 
to planktonic cells temporally over the course of biofilm development in vitro (Fox et al., 
2015; García-Sánchez et al., 2004; Yeater et al., 2007) and one genome-wide 
transcriptional profiling study compared C. albicans biofilms to planktonic cells over the 
course of biofilm development in vivo in a rat central venous catheter biofilm model (Nett 
et al., 2009). Together, all four of these transcriptional profiling studies identified many 
genes differentially expressed over time during C. albicans biofilm development, 
highlighting the coordinated changes in gene expression that occur in biofilm formation. 
Based on the fact that the temporal transcriptional profiling datasets from the Fox et al. 
(2015) study (Fox et al., 2015) used the same conditions as the binding datasets for 
mature biofilms in the Nobile et al. (2012) study (Nobile et al., 2012), we used the datasets 
from these comprehensive genome-wide studies to predict the regulatory relationships 
between the six master biofilm TFs and their downstream target genes throughout the four 
major stages (adherence, initiation, maturation, and dispersal) of the C. albicans biofilm 
life cycle.  

Many computational approaches have been proposed to date to predict TFBSs 
based on genome-wide binding experimental datasets, such as those from chromatin 
immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-
accessible chromatin followed by sequencing (ATAC-seq) experiments (Berman et al., 
2002; Rogers and Bulyk, 2018; Sinha et al., 2003). Early methods were based on scanning 
genomes to calculate sequence similarities to known binding site sequences to identify 
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novel binding specificities (Berman et al., 2002). More recent experimental and modeling 
studies have shown that information such as GC content of regions flanking binding sites, 
multiple binding specificities, and 3D DNA structure or DNA shape upstream of binding 
sites, enhance the prediction of transcription factor binding site (TFBS) specificities 
(Cuellar-Partida et al., 2012). Consequently, certain modern methods now incorporate 
such information to more accurately predict TFBSs (Cuellar-Partida et al., 2012; Inukai et 
al., 2017; Stormo, 2013). In addition, with the recent advancements in machine learning, 
scientists are beginning to exploit computational power to study larger and more complex 
TFBS datasets (Chiu et al., 2016; Kantorovitz et al., 2009; Mathelier et al., 2016; Mathelier 
and Wasserman, 2013; Zhou et al., 2015). For example, Mathelier et al. (2016) combined 
DNA sequence information with DNA shape information as additional metrics for 
predicting TFBSs (Mathelier et al., 2016).  

In this study, we use previously characterized sets of TFBS interactions obtained 
for mature C. albicans biofilms to predict new interactions over the course of biofilm 
development using a supervised learning model. More specifically, we develop a support 
vector machine (SVM) that considers the full space of potential binding sites, based on 
known binding motifs, to computationally predict novel TFBSs, TF-target gene 
interactions, and ultimately, entire gene regulatory networks, temporally over the course 
of the four known stages of the C. albicans biofilm life cycle. These novel predictions will 
set the framework for us – and the larger community – to further explore the roles of 
transcriptional regulation in biofilm dynamics. 

1.4 Results 

1.4.1 Background TFBS sequences differ from foreground TFBS sequences 

A critical challenge in using experimentally derived genome-wide binding data, 
such as ChIP-seq data, to develop computational models is that there is only a selection 
of known or positive examples of binding. To address this challenge, we developed a 
framework for generating theoretically negative binding data that we utilize as training data 
(see Methods). The input data to our machine learning framework is an equally balanced 
set of positive/true (foreground) and presumptive negative/false (background) binding 
sites characterized by two broad feature categories: (a) sequence similarity (MinHash, 
Poisson additive and product similarity score) and (b) DNA features (TFBS GC proportion 
and DNA shape values, i.e., DNA roll, helix twist (HelT), minor groove width (MGW), 
propeller twist (ProT) and electrostatic potential). 

To evaluate if the simulated background sequences represent a negative dataset, 
we conducted principal component analysis (PCA) on foreground and background 
sequences to assess the performance of machine learning on predicting novel TFBSs, as 
was implemented in Mathelier et al. (2016) (Mathelier et al., 2016). Ideally, the background 
dataset should cluster separately from the foreground sequences. For all six master C. 
albicans biofilm TFs, the true/foreground dataset was separated from the simulated 
background dataset (Figure 1). Some overlap between foreground and background data 
points was observed since the negative data originated from foreground sequences. The 
balance between intersecting and exclusive foreground and background data points that 
we observed in the PCA plots allowed for a better trained model, avoiding the creation of 
overly simplistic background data points as well as background data that was too similar 
to foreground data. The frequency of foreground sequence counts influenced the 
negative/background binding site sequence counts. From the Nobile et. al. (2012) dataset, 
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we started with 94, 137, 482, 612, 43 and 94 unique foreground sequences for Bcr1, Brg1, 
Efg1, Ndt80, Rob1 and Tec1, respectively (Nobile et al., 2012). Using a dual strategy for 
background sequence generation, we obtained 188, 274, 964, 1224, 86 and 188 distinct 
background sequences for Bcr1, Brg1, Efg1, Ndt80, Rob1 and Tec1, respectively. The 
background/negative TFBS sequences were generated using dual strategies (see 
Methods); thus, we have twice as many background/negative TFBS sequences as 
foreground/true TFBS sequences. These differences in data points are reflected in the 
density of the point clouds in the PCA scatter plots in Figure 1.2. 

 

Figure 1.2: The potential for machine learning to predict novel TFBSs for the master C. 
albicans biofilm TFs. Principal component analysis of foreground and background training 
datasets for the six C. albicans master biofilm TFs. Each data point on the plots represents one 
sample. Black colored circles are true foreground sequences obtained from Nobile et al. (2012), 
while blue cross marks represent simulated background data. 
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1.4.2 Sequence similarity and DNA shape significantly contribute to SVM 
classification of the TFBSs of the master C. albicans biofilm TFs 

A support vector machine (SVM) model using a radial basis function (RBF) kernel 
was created for each C. albicans master biofilm TF. A balanced training dataset was 
derived from foreground and background data. The SVM model was trained on 80% of 
the data and its performance was tested on the remaining 20% of the data. A tenfold cross 
validation method was used to evaluate the performance of the model.  

To determine the most important features used by SVM to classify TFBS 
sequences, we measured the influence of each feature by permuting the feature column 
for all samples in the training data and calculating the decrease in the prediction precision 
score compared to the original training data. Contribution scores for each feature are 
shown in Figure 1.3. For each feature, the contribution score represents its influence, and 

therefore importance, in facilitating the SVM model to classify a sample as a TFBS or not. 
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Figure 1.3: Top ten features of TFBSs for each master C. albicans biofilm TF. For 
each of the six master C. albicans biofilm TFs, the contributions of the top ten influential 
features in descending order on the Y-axis and their mean contribution towards model 
decision making on the X-axis are shown. The contribution score was calculated by 
permuting one feature at a time and measuring the reduction in classification accuracy 
scores compared to the baseline (non-permuted input data) accuracy scores. 
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High scores (along the X-axis) represent high influencing power. The sequence similarity 
score feature, MinHash, was the most influential feature in all six models. The second 
most influential feature was the electrostatic potential at position six (EP 06) for four of the 
master C. albicans biofilm TFs (Bcr1, Brg1, Rob1 and Tec1). EP at position five (EP 05) 
was influential for Ndt80, while the electrostatic potential was not present in the top ten 
influential features for Efg1. Interestingly, distinct DNA shape values at positions 5 and 6 
were the most influential features for all six of the master C. albicans biofilm TFs. 

 

1.4.3 Sequence-based and DNA shape-based features contribute to TFBS 
classification 

For the classification problem of categorizing a TFBS as valid (true) or invalid 
(false), the model hyperparameters controlling its learning and training need to be set. 
SVM creates a decision boundary that separates the inputs into True or False, depending 
on which side of the decision boundary they lie. For SVM, the parameter C controls the 
sensitivity of a decision boundary that separates foreground from background data. This 
parameter was identified using an exhaustive grid search that runs the model through a 
range of values for parameter C and identifies its best value based on model precision 
and recall metrics. Similarly, linear and RBF kernels were supplied to the grid search 
method to identify the best kernel for this dataset. Overall, six separate grid searches, one 
for each master C. albicans biofilm TF, were utilized to identify the optimal model 
parameters. In all six models, the RBF kernel performed better than the linear kernel. 
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To assess the model accuracy, we divided the input background and foreground 

Figure 1.4: High precision and recall rates were observed for the SVM model for all six 
master C. albicans biofilm TFs during model training. Precision-recall curves for the SVM 
model for all six master C. albicans biofilm TFs are shown. The plot title depicts the model 
precision and accuracy scores for the indicated TF. 
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datasets into model training (80%) and model testing (20%) datasets. Figure 1.4 displays 
precision-recall curves for each of the six SVM models – one for each master C. albicans 
biofilm TF. For all TF models, over 84% precision and 88% accuracy were achieved by 
parameter optimization using the grid search method. Efg1 and Ndt80 had the most data 
points relative to the other master biofilm TFs from Nobile et al. (2012) and their precision 
and accuracy scores were the top two among all six master C. albicans biofilm TFs, 
indicating a positive correlation between model performance and the size of the input 
training data. 

 

1.4.4 Signal recovery of the SVM classifier to obtain high confidence novel 
TFBSs 

We tested the performance of our SVM classifier to recover validated TFBS 
datasets obtained from Nobile et al. (2012) (Nobile et al., 2012). We used the distance to 
the decision boundary as the metric to understand how our classifier performs on known 
and unknown TFBS datasets. For each of the six master C. albicans biofilm TFs, we 
categorized all positive predictions as either high confidence or low confidence depending 
on their distance from the separating decision boundary. A low confidence TFBS 
prediction would be found between the separating decision boundary and the closest 
experimentally validated TFBS to the decision boundary. Similarly, a high confidence 
TFBS prediction would be found at a greater distance away from the decision boundary 
when compared to the distance at which the closest validated TFBS would be found. For 
example, if an experimentally validated TFBS is located x units away from the SVM 
separating decision boundary, then a novel TFBS prediction at a distance y away from the 
separating decision boundary is categorized using: 

���� ��	
����� =  � ℎ��ℎ �����
	��	, ���� �� � ≥ ���� �����
	��	,                 0 < � < �.  

Target genes for all high confidence TFBSs were identified based on proximity of 
the open reading frame (ORF) to the binding location. After identifying the target genes, 
we compared novel target genes predicted by our model to previously known target genes 
(true positives) from Nobile et al. (2012) (Nobile et al., 2012) to evaluate the model 
predictions. Based on the distribution observed in the “receiver operating characteristic 
(ROC)-like” plots in Figure 1.5, the distance of previously reported Efg1 and Ndt80 target 
genes are more uniformly distributed away from the SVM decision boundary compared to 
the other four master C. albicans biofilm TFs. 
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Figure 1.5: An “ROC-like” curve comparing known target genes to novel target 
genes. The number of known target genes (true positives) is plotted on the Y-axis, 
while the number of novel target gene predictions is plotted on the X-axis. The black 
filled circle in each plot indicates the threshold for identifying high confidence target 
genes. At this threshold, the ratio of known target genes to novel target genes is 
displayed in the title of each plot. 
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1.4.5 Predicting life cycle stage-specific biofilm transcriptional regulatory 
networks 

To identify stage-specific TF-target gene interactions, we combined our TFBS 
model predictions with existing temporal genome-wide biofilm transcriptional profiling data 
from Fox et al. (2015) (Fox et al., 2015). Specifically, for all positively predicted TFBSs 
within an intergenic region, we extrapolated all TF-target gene interactions based on 
proximity of the positively predicted TFBSs to their target genes. Figure 1.6 portrays the 
comprehensive transcriptional regulatory network controlling biofilm formation in C. 
albicans encompassing all possible (experimentally validated and model predicted) TF-
target gene interactions at every stage of the C. albicans biofilm life cycle. This highly 
interconnected network consists of 5,430 nodes (representing the master biofilm TFs and 
their target genes) and 14,599 edges (model predicted high confidence TFBSs). We next 
identified all high confidence TF-target gene pairs specifically throughout the four stages 
of the biofilm life cycle by incorporating the previously published temporal transcriptional 
profiling datasets from Fox et al. (2015) (Fox et al., 2015). We considered the TF-target 
gene interaction as “active” if the expression of the target gene was differentially regulated 
with a twofold or greater expression change (upregulated or downregulated) in biofilms at 
any of the four biofilm developmental stages compared to planktonic cells (see Dataset 
S1, Dataset S2, Dataset S3, Dataset S4, Dataset S5, and Dataset S6 for all model 
predicted target genes indicating activity at each biofilm life cycle stage for Bcr1, Brg1, 
Efg1, Ndt80, Rob1 and Tec1, respectively). By assigning activity to all high confidence TF-
target gene pairs, we have predicted transcriptional regulatory networks for all four stages 
of the C. albicans biofilm life cycle (Figure 1.7). Each transcriptional regulatory network 
for the four biofilm life cycle stages (adherence, initiation, maturation, and dispersal) 
consisted of distinct numbers of nodes and edges, highlighting the dynamic transcriptional 
changes occurring during biofilm development. We predicted a total of 1,164 nodes with 
4,562 edges during the adherence stage, 400 nodes with 1,585 edges during initiation 
stage, 594 nodes with 2,349 edges during the maturation stage, and 739 nodes with 2,935 
edges during the dispersal stage (Table S1). Of these total nodes and edges, we predicted 
1,096 nodes with 2,974 edges to be active during the adherence stage, 380 nodes with 
1,055 edges to be active during the initiation stage, 543 nodes with 1,479 edges to be 
active during the maturation stage, and 682 nodes with 1,873 edges to be active during 
the dispersal stage (Table S1). 

To evaluate our predicted TF-target gene interaction changes during the C. 
albicans biofilm life cycle, we compared the new TF-target gene interactions gained and 
previous TF-target gene interactions lost by each of the six master biofilm TFs between 
every preceding and succeeding biofilm developmental stage downstream of the 
adherence stage (Table 1.1). Through this analysis, we observed that each biofilm 
developmental stage downstream adherence (initiation, maturation, and dispersal) 
showed evidence of TF-target gene interaction rewiring. The percentages of novel target 
genes predicted to be gained and previous target genes predicted to be lost by all the 
master biofilm TFs combined from the initiation through to the dispersal stages of biofilm 
formation are reported in Table 1.1. During the initiation stage, the six master biofilm TFs 
were predicted to gain 3.79 ± 1.35% of novel target genes and to lose 46.42 ± 20.1% of 
previous target genes compared to the adherence stage. Similarly, during the maturation 
stage, the six master biofilm TFs were predicted to gain 70.67 ± 29.19% of novel target 
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genes and to lose 38.83 ± 16.4% of previous target genes compared to the initiation stage. 
And finally, during the dispersal stage, the six master biofilm TFs were predicted to gain 
29.85 ± 12.57% of novel target genes and to lose 13.13 ± 5.42% of previous target genes 
compared to the maturation stage. Overall, the maturation stage had the highest number 
of predicted gains of novel target genes, while the initiation stage had the highest number 
of predicted losses of previous target genes. 

Table 1.1: Predicted target gene changes observed in each biofilm developmental stage for 
the six master biofilm TFs. Frequency of new target genes gained, and previous target genes 
lost, was measured by comparing target genes of each biofilm stage downstream of adherence 
(stage 1) to the preceding and succeeding developmental stages (for novel targets). 

Number 
of novel 
target 
genes 
gained 
during 
initiation 
(stage 2) 

Number of 
novel 
target 
genes 
gained 
during 
maturation 
(stage 3) 

Number 
of novel 
target 
gene 
gained 
during 
dispersal 
(stage 4) 

Number 
of 
previous 
target 
genes 
lost 
during 
initiation 
(stage 2) 

Number of 
previous 
target 
genes lost 
during 
maturation 
(stage 3) 

Number 
of 
previous 
target 
genes 
lost 
during 
dispersal 
(stage 4) 

Bcr1 37 224 151 420 130 59 

Brg1 45 266 177 531 160 73 

Efg1 60 411 257 798 226 112 

Ndt80 60 424 263 819 231 117 

Rob1 45 253 152 464 126 75 

Tec1 18 118 64 210 59 32 

 

To prioritize our model predicted target genes into those that could be of highest 
functional (biological) relevance across the different stages of the biofilm life cycle, we 
used the available temporal gene expression data from Fox et al. (2015) (Fox et al., 2015), 
to identify a discreet set of three target genes that were bound by five of the master biofilm 
TFs and that had significant expression changes across the four biofilm stages. 
Significance was calculated for all target genes of a TF separately to obtain active TF-
target gene interactions. For all target genes of a master regulator, we measured the Z-
test derived p-value adjusted to a 5% false discovery rate, which compared the mean log2 
fold change expression values of each target gene across all four biofilm growth stages to 
mean log2 fold change expression values of all target genes for all four biofilm growth 
stages. We note that there were no target genes that fit these criteria for all six of the 
master biofilm TFs (see Dataset S7 for the twenty target genes that were bound by all six 
of the master biofilm TFs and their corresponding expression changes across the four 
biofilm life cycle stages). Three model predicted target genes stood out from our temporal 
analysis: ORF19.2870/LDG11 (bound by Bcr1, Brg1, Efg1, Ndt80, and Rob1; Z-test p-
value < 0.05), ORF19.2762/AHP1 (bound by Bcr1, Brg1, Efg1, Ndt80, and Rob1; Z-test < 
0.05), and ORF19.2020/HGT6 (bound by Brg1, Efg1, Ndt80, Rob1, and Tec1; Z-test p-
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value < 0.05) (see Dataset S8 for the complete set of prioritized target genes that were 
bound by five, four, three, two, and one of the biofilm master TFs, and that had significant 
expression changes (Z-test p-value < 0.05) averaged across the four biofilm life cycle 
stages). 
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Figure 1.6: Comprehensive transcriptional regulatory network controlling C. albicans
biofilm development. Transcriptional regulatory network controlling biofilm formation in C. 
albicans encompassing all stages of the biofilm life cycle. The six master biofilm TFs are 
represented by magenta circles (nodes). Smaller blue (upregulated in biofilms) and yellow 
(downregulated in biofilms) nodes are target genes. The grey lines (edges) represent high 
confidence model predicted TF-target gene interactions at all stages of the biofilm life cycle. 
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Figure 1.7: Transcriptional regulatory networks controlling C. albicans biofilm development 
at each stage of the biofilm life cycle. Transcriptional regulatory networks controlling biofilm 
formation in C. albicans at each specific stage of the four stages (adherence, initiation, maturation, 
dispersal) of the biofilm life cycle. The six master biofilm TFs are represented by magenta circles 
(nodes). Smaller blue (upregulated in biofilms) and yellow (downregulated in biofilms) nodes are 
target genes. The grey lines (edges) represent model predicted high confidence TF-target gene 
interactions during each stage of biofilm development. Magenta nodes are sized by their degree 
counts in each of the four networks. 
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1.4.6 Gene Ontology (GO) analysis of predicted target genes for each master C. 
albicans biofilm TF 

Based on the model predictions, we wanted to identify the Gene Ontology (GO) 
terms enriched for the predicted target genes of each master biofilm TF at each stage of 
the C. albicans biofilm life cycle. All GO terms presented were obtained using the Candida 
Genome Database GO Term finder tool with Bonferroni corrected p-values < 0.05 
(http://www.candidagenome.org/cgi-bin/GO/goTermFinder; accessed on 04/30/2021). 
Enrichment was calculated against all 6,473 C. albicans annotated genes consisting of 
ORFs, non-coding RNAs (ncRNAs), pseudogenes, ribosomal RNAs (rRNAs), small 
nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and transfer RNAs (tRNAs). 

A total of 1,502 GO terms were enriched by the predicted target genes of the 
master biofilm TFs during C. albicans biofilm formation (199 by Bcr1, 246 by Brg1, 408 by 
Efg1, 412 by Ndt80, 182 by Rob1, and 55 by Tec1). To explore the effects of all six master 
biofilm TFs temporally during biofilm formation, we determined common GO terms 
enriched for their predicted target genes at each stage of the biofilm life cycle. Shared 
cellular components influenced by all predicted target genes of all six master biofilm TFs 
are depicted in Figure 1.8 and include hyphal cell wall, ribosomal subunit, cytosolic 
ribosome, cell surface, extracellular region, and ribosome for the adherence stage of the 
biofilm life cycle; ribosome, cytosolic ribosome, and ribosomal subunit for the initiation 
stage of the biofilm life cycle; and extracellular region and external encapsulating structure 
for both the maturation and dispersal stages of the biofilm life cycle. Shared molecular 
functions influenced by all predicted target genes of all six master biofilm TFs are depicted 
in Figure 1.9 and include structural integrity of ribosome for the adherence and initiation 
stages of the biofilm life cycle; and oxidoreductase activity for the maturation stage of the 
biofilm life cycle. No shared molecular functions were observed during the dispersal stage 
of the biofilm life cycle. Shared biological processes influenced by all predicted target 
genes of all six master biofilm TFs are depicted in Figure 1.10 and include peptide 
biosynthetic process, amide biosynthetic process, and translation for the initiation stage 
of the biofilm life cycle; single-species biofilm formation, biological process involved in 
symbiotic interaction, cell aggregation, carbohydrate metabolic process, biofilm formation, 
and aggregation of unicellular organisms for the maturation stage of the biofilm life cycle; 
and organic acid metabolic process for the dispersal stage of the biofilm life cycle. No 
shared biological processes were identified during the adherence stage of the biofilm life 
cycle. Table 1.2 summarizes the shared enriched GO terms of the predicted target genes 
for the master biofilm TFs at each stage of the biofilm life cycle. Interestingly, our model 
predicted novel TFBSs, which included several previously unknown target genes of the 
six master biofilm TFs. Significantly enriched GO molecular functions for the novel target 
genes of the six master biofilm TFs included DNA-binding transcription factor activity for 
Bcr1 (5.5%, 59 out of 1074 target genes, corrected p-value = 0.02759), Brg1 (4.9%, 101 
out of 2052 genes, corrected p-value = 0.00284) and Rob1 (6.2%, 55 out of 891 genes, 
corrected p-value = 0.00165). The novel target genes of Brg1 were specifically enriched 
for anion transmembrane transporter activity (2.2%, 46 out of 2052 genes, corrected p-
value = 0.0454); the novel target genes of Efg1 were specifically enriched for 
transmembrane transporter activity (6.6%, 305 out of 4599 genes, corrected p-value = 
0.04196); and the novel target genes of Ndt80 were specifically enriched for ion binding 
(17.5%, 900 out of 5155 genes, corrected p-value = 0.00982) and transferase activity 
(13%, 672 out of 5155 genes, corrected p-value = 0.03345). 
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Table 1.2: Shared GO terms significantly enriched by the predicted target genes of all six of 
the master biofilm TFs during each stage of the C. albicans biofilm life cycle. NA indicates no 
shared significantly enriched GO terms. 

 Adherence Initiation Maturation Dispersal 

Enriched 
cellular 
components 

hyphal cell 
wall, ribosomal 
subunit, 
cytosolic 
ribosome, cell 
surface, 
extracellular 
region, and 
ribosome 

ribosome, 
cytosolic 
ribosome, 
and 
ribosomal 
subunit 

extracellular 
region and 
external 
encapsulating 
structure 

extracellular 
region and 
external 
encapsulating 
structure 

Enriched 
molecular 
function 

structural 
integrity of 
ribosome 

structural 
integrity of 
ribosome 

oxidoreductase 
activity 

NA 

Enriched 
biological 
process 

NA peptide 
biosynthetic 
process, 
amide 
biosynthetic 
process and 
translation 

single-species 
biofilm formation, 
biological process 
involved in 
symbiotic 
interaction, cell 
aggregation, 
carbohydrate 
metabolic 
process, biofilm 
formation and 
aggregation of 
unicellular 
organisms 

organic acid 
metabolism 
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Biofilm Life Cycle Stages

Figure 1.8: Life cycle stage-specific enriched cellular components during C. albicans biofilm 
development. GO terms are depicted on the Y-axis and colored horizontal grouped bars indicate 
enrichment of predicted target genes by one or more of the six master biofilm TFs for each 
respective GO term. The presence or absence of a colored bar indicates the TF’s influence over a 
specific GO term. 
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Biofilm Life Cycle Stages

Figure 1.9: Life cycle stage-specific enriched molecular functions during C. albicans biofilm 
development. GO terms are depicted on the Y-axis and colored horizontal grouped bars indicate 
enrichment of predicted target genes by one or more of the six master biofilm TFs for each 
respective GO term. The presence or absence of a colored bar indicates the TF’s influence over a 
specific GO term. 
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Biofilm Life Cycle Stages

Figure 1.10: Life cycle stage-specific enriched biological processes during C. 
albicans biofilm development. GO terms are depicted on the Y-axis and colored 
horizontal grouped bars indicate enrichment of predicted target genes by one or more of 
the six master biofilm TFs for each respective GO term. The presence or absence of a 
colored bar indicates the TF’s influence over a specific GO term. 
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Enriched GO terms arising from the predicted target genes for all six master regulators 
are summarized in Table 1.3 (for cellular components), Table 1.4 (for molecular 
functions), and Table 1.5 (for biological processes). 

 

Table 1.3: Cellular functions enriched by the predicted target genes of all six of the master biofilm 
TFs at each stage of the biofilm life cycle. 
 

Adherence  Initiation Maturation Dispersal 

Bcr1 hyphal and 
yeast-form cell 
wall and 
cytosolic small 
and large 
ribosomal 
subunits  

plasma 
membrane 
components, 
cytosolic 
ribosomal 
subunits  

cellular 
periphery 
including yeast-
form cell wall 
and 
extracellular 
region 

hyphal and yeast-
form cell walls, 
plasma membrane, 
fungal biofilm 
matrix, cytosolic 
large ribosomal 
subunit, and 
extracellular vesicle  

Brg1 cytosolic 
ribosomal large 
and small 
subunits, 
cytosol, yeast-
form and hyphal 
cell wall, cell 
surface and 
extracellular 
region cellular 
components 

preribosome, 
ribosome, 
cytosolic large 
and small 
ribosomal 
subunits, 
intracellular non-
membrane-
bounded 
organelle 
(includes 
ribosomes, the 
cytoskeleton, and 
chromosomes), 
integral 
component of 
plasma 
membrane, 
yeast-form and 
hyphal cell wall 
and extracellular 
region 

yeast-form and 
hyphal cell wall, 
plasma 
membrane, cell 
surface and 
fungal biofilm 
matrix 

yeast-form and 
hyphal cell wall, 
plasma membrane, 
cell surface, fungal 
biofilm matrix and 
cytosolic ribosome 

Efg1 yeast-form and 
hyphal cell wall, 
cytosolic large 
and small 
ribosomal 
subunits, 
cytoplasmic 
stress granule, 

90S preribosome, 
preribosome 
large subunit 
precursor, small 
subunit 
processome 
protein containing 
complexes as 

fungal biofilm 
matrix, yeast-
form and hyphal 
cell wall, 
plasma 
membrane, 
extracellular 

cytosol, cytosolic 
large ribosomal 
subunit, 
extracellular region, 
cell surface, 
plasma membrane, 
yeast-form and 
hyphal cell wall and 
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translation 
preinitiation 
complex, 
preribosome 
large subunit 
precursor and 
small-subunit 
processome  

well as cell 
surface, 
extracellular 
region, and 
cytosolic large 
and small 
ribosomal subunit  

region, and cell 
surface 

fungal biofilm 
matrix 

Ndt80 preribosome 
large subunit 
precursor, small 
subunit 
processome, 
cytosolic large 
and small 
ribosomal 
subunits, 
cytoplasmic 
stress granule, 
yeast-form and 
hyphal cell wall, 
cell surface, 
extracellular 
region, and 
fungal biofilm 
matrix 

preribosome, 
cytosolic large 
and small 
ribosomal 
subunits, cell 
surface, 
extracellular 
region, and 
hyphal cell wall 

fungal biofilm 
matrix, hyphal 
and yeast-form 
cell wall, 
plasma 
membrane, 
extracellular 
region, and cell 
surface cellular 
anatomical 
entities 

cytosol, cytosolic 
large ribosomal 
subunit, 
extracellular region, 
plasma membrane, 
cell surface, hyphal 
and yeast-form cell 
wall, and fungal 
biofilm matrix 

Rob1 preribosome, 
cytosolic large 
ribosomal 
subunit, cell 
surface, 
extracellular 
region, and 
hyphal and 
yeast-form cell 
wall  

preribosome, 
cytosolic large 
and small 
ribosomal 
subunits and 
cellular periphery 

extracellular 
region, cell 
surface, fungal 
type cell wall 
and plasma 
membrane  

cytosol, 
extracellular 
vesicle, plasma 
membrane, cell 
surface and fungal 
type cell wall 

Tec1 cytosolic small 
ribosomal 
subunit, hyphal 
cell wall, cell 
surface and 
extracellular  

hyphal cell wall, 
ribonucleoprotein 
complex, cell 
surface and 
cytosolic large 
and small 
ribosomal 
subunits 

DNA packaging 
with 
nucleosome 

external 
encapsulating 
structure, 
extracellular region, 
and DN packaging 
with nucleosome 
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Table 1.4: Molecular functions enriched by the predicted target genes of all six of the master biofilm 
TFs at each stage of the biofilm life cycle. 
 

Adherence Initiation Maturation Dispersal 

Bcr1 ribosomal 
structural 
integrity 

ribosomal 
structural 
integrity 

oxidoreductase 
activity acting on 
diphenols, 
oxidizing metal 
ions, NAD(P)H, 
heme-group, and 
peroxide as 
donors 

oxidoreductase, 
lyase and 
transmembrane 
transporter 

Brg1 ribosomal 
structural 
integrity 

Ribosomal 
structural 
integrity, 
solute:cation 
symporter 
activity and 
glucose 
transmembrane 
transfer activity 

antioxidant and 
oxidoreductase 
activities 

oxidoreductase 
activity acting on 
the CH-OH group 
of donors, NAD 
or NADP as 
acceptor 

Efg1 rRNA binding, 
oxidoreductase 
activity and 
structural 
integrity of 
ribosome 

structural 
integrity of the 
ribosome and 
large ribosomal 
subunit rRNA 
binding 

peroxidate activity, 
oxidoreductase 
activity acting on 
the CH-OH group 
of donors, NAD or 
NADP as 
acceptor, and 
carbon-oxygen 
lyase activity 

oxidoreductase 
activity acting on 
(1) a sulfur group 
of donors and (2) 
acting on the CH-
OH group of 
donors, NAD or 
NADP as 
acceptor, and 
carbon-oxygen 
lyase activity 

Ndt80 structural 
integrity of 
ribosome, 
oxidoreductase 
activity, small 
molecule and 
rRNA binding 

RNA helicase 
activity, 
structural 
integrity of 
ribosome and 
large ribosomal 
subunit rRNA 
binding 

oxidoreductase 
activity, acting on 
the CH-OH group 
of donors with 
NAD or NADP as 
acceptor, small 
molecule binding 
and carbon-
oxygen lyase 
activity 

antioxidant 
activity, 
oxidoreductase 
activity acting on 
the CH-OH group 
of donors with 
NAD or NADP as 
acceptor, and 
glutathione 
transferase 
activity 

Rob1 ribosome 
structural 
integrity and 

ribosomal 
structural 
integrity and 

melatonin binding, 
oxidoreductase 

oxidoreductase 
activity acting on 
the CH-OH group 
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oxidoreductase 
activity  

large ribosomal 
subunit rRNA 
binding 

activity and 
peroxidase activity 

of donors and 
NAD or NADP as 
acceptor 

Tec1 structural 
integrity of 
ribosome 

structural 
integrity of 
ribosome and 
solute:proton 
symporter 
activity 

towards hydrolase 
activity hydrolyzing 
O-glycosyl 
compounds, 
oxidoreductase 
activity, oxygen 
binding and 
protein 
heterodimerization 
activity 

protein 
heterodimerizatio
n activity 

 

 

Table 1.5: Biological processes enriched by the predicted target genes of all six of the master 
biofilm TFs at each stage of the biofilm life cycle. 
 

Adherence Initiation Maturation Dispersal 

Bcr1 translation, 
fatty acid 
metabolism, 
glycolytic 
process, 
carbohydrate, 
glucose and 
vitamins and 
carboxylic acid 
metabolism 

rRNA processing 
and messenger 
RNA export from 
nucleus 

ATP, organic acid, 
glucose, and 
carboxylic acid 
metabolism 

cellular amino 
acid and alpha-
amino acid 
biosynthesis, 
carbohydrate 
metabolism 
and ATP 
production via 
glycolytic 
process 

Brg1 translation, 
carbohydrate 
and fatty acid 
metabolism 
and ribosome 
assembly 

translation, cellular 
macromolecule 
biosynthesis, 
ribonucleoprotein 
complex biogenesis 
and rRNA transcript 
maturation 

defensive 
response to host, 
single-species 
submerged biofilm 
formation, NADH 
metabolic process, 
carboxylic acid 
metabolism, 
energy derivation 
by oxidation of 
organic 
compounds, 
glucose 
metabolism and 
glycolytic process 

alpha amino 
acid and 
carboxylic acid 
biosynthesis, 
glycolytic 
process, and 
nucleoside 
diphosphate 
metabolic 
process 
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Efg1 nucleobase 
containing 
small molecule 
metabolism, 
cellular amino 
acid 
metabolism, 
ncRNA 
metabolism, 
translation, 
fatty acid 
metabolism 
and cellular 
response to 
chemical 
stimuli 

endonucleolytic 
cleavage of 
tricistronic rRNA 
transcript, 
maturation of 5.8S, 
LSU and SSU rRNA 
from tricistronic 
rRNA transcript, 
ncRNA processing 
metabolic 
processes as well 
as rRNA-containing 
ribonucleoprotein 
complex export from 
nucleus 

ncRNA 
metabolism, 
aspartate family 
amino acid 
biosynthesis and 
metabolism, 
carboxylic acid 
biosynthesis, 
glucose 
metabolism, 
glycolytic process 
and biological 
process involved in 
symbiotic 
interaction with 
host 

glucose 
metabolism, 
glutamine 
amino acid 
metabolism, 
aspartate and 
sulphur amino 
acid 
metabolism, 
sulphur 
compound 
metabolism, 
carbohydrate 
catabolic 
process, and 
glycolytic 
process 

Ndt80 cellular 
nitrogen 
compound 
biosynthesis, 
nucleobase-
containing 
small 
molecule, 
cellular amino 
acid, ncRNA 
and fatty acid 
metabolism, 
translation, 
and cellular-
level biological 
process 

translation, ncRNA 
processing, 
maturation of SSU, 
LSU and 5.8S rRNA 
from tricistronic 
rRNA transcript, 
ribosome large 
subunit assembly 
and rRNA-
containing 
ribonucleoprotein 
complex export from 
nucleus 

symbiotic 
interactions, 
glycolysis, 
aspartate family 
amino acid 
biosynthesis, 
glucose 
metabolisms and 
ncRNA metabolism 

sulphur 
compound, 
glutamine, 
aspartate 
family and 
methionine 
biosynthesis, 
glucose and 
sulphur amino 
acid 
metabolism, 
carbohydrate 
catabolism, 
and glycolysis 

Rob1 carbohydrate, 
monocarboxyli
c acid, and 
small molecule 
metabolism. 
Rob1 controls 
ribosome 
structural 
integrity and 
oxidoreductase 
activity 

ribosome 
biogenesis, ncRNA 
and rRNA 
processing, and 
translation 

single-species 
biofilm formation, 
carboxylic acid, 
fructose 6-
phosphate and 
glucose 
metabolism, 
NADPH 
regeneration and 
glycolytic process. 
Rob1’s functions 
include melatonin 
binding, 
oxidoreductase 

alpha amino 
acid 
biosynthesis 
and 
metabolism, 
glucose, 
fructose 6-
phosphate 
sulphur amino 
acid and 
carboxylic acid 
metabolism 
and glycolytic 
process 
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activity and 
peroxidase activity 

Tec1 NA translation via 
amide biosynthetic 
process 

carbohydrate 
metabolism, 
symbiotic 
interactions, and 
single-species 
submerged biofilm 
formation 

adhesion of 
symbiont to 
host process 

 

 

1.4.7 Network centrality provides additional insights into potentially influential 
target genes 

 We wanted to get an orthogonal view towards important or influential target genes 
in the biofilm regulatory network. Therefore, we implemented network theory-based 
“information flow centrality” metric to get a list of target genes which show control over the 
flow of information in the network (Brandes and Fleischer, 2005). This centrality metric 
treats the edges as information highway, and nodes as mediators of information flow. 
These target genes were identified for each master regulator and their significance was 
calculated using Z-test and the p-values were corrected with 5% false discovery rate. 
Table 1.6 shows significant target genes of Bcr1, Brg1, Rob1 and Tec1. Ndt80 and Efg1 
target genes did not show up as significant after implementing false discovery rate 
correction. 

Table 1.6: Significant target genes based on information flow centrality metric. Z-test, FDR 
corrected p-values < 0.05. 

Bcr1 Brg1 Rob1 Tec1 

CaalfMp05 orf19.2108 orf19.1142 orf19.2018 

orf19.1045 orf19.233.1 orf19.2228 orf19.2131 

orf19.1249 orf19.2831 orf19.2301 orf19.3234.1 

orf19.1308 orf19.2889 orf19.2677 orf19.3314 

orf19.1492 orf19.3775 orf19.2697 orf19.5663 

orf19.1633 orf19.3921 orf19.3287 orf19.6650 

orf19.2190 orf19.5808 orf19.336 orf19.672 

orf19.2720 orf19.5905 orf19.4234 orf19.90 

orf19.4031 orf19.6115 orf19.5053 orf19.979 

orf19.4306 orf19.6701 orf19.5431 
 

orf19.4369 orf19.701 orf19.6173 
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orf19.5039 orf19.7154 orf19.6175 
 

orf19.5056 orf19.7436.1 orf19.7057 
 

orf19.519 orf19.7645 orf19.7443 
 

orf19.5274 
   

orf19.5413 
   

orf19.5445 
   

orf19.5767 
   

orf19.6263 
   

orf19.6625 
   

orf19.980 
   

 

 

1.5 Discussion 

In this study, we created a computational workflow using a supervised support 
vector machine (SVM) classifier and multimodal genome-wide datasets, to predict novel 
TF-target gene interactions for each biofilm master TF temporally over the course of the 
C. albicans biofilm life cycle. Our approach is the first to model stage-specific regulatory 
networks controlling C. albicans biofilm formation. First, we created target sequences 
using previously identified transcription factor binding site (TFBS) consensus sequences 
that represent potential binding sites. Second, we built a feature matrix to capture the DNA 
shape and sequence qualities of each candidate TFBS motif. Third, we predicted a 
positive/true set of potential TFBSs for each TF using our trained SVM classifier based on 
a feature matrix. Lastly, we identified “active” TF-target gene interactions by correlating 
TF binding activity with the time-series gene expression data of target genes. Overall, by 
coupling TFBS sequence and DNA shape information, we successfully predicted novel 
TFBSs, TF-target gene interactions, and ultimately, entire transcriptional regulatory 
networks controlling each stage of the C. albicans biofilm life cycle.  

The transcriptional regulatory networks controlling the four stages of the C. 
albicans biofilm life cycle that we present in this study are intricate, highly interconnected 
and are representative of small-world networks (Fox et al., 2015; Nobile et al., 2012). A 
small-world network is characterized by the presence of short paths between any two 
nodes within the network as well as the presence of network hubs, which act as important 
mediators of signal propagation within the network (Albert and Barabási, 2002; Camacho 
et al., 2018). The overall architecture of the C. albicans biofilm network is highly dynamic, 
with constantly changing TF-target gene interactions at each stage of the biofilm life cycle. 
The biofilm network appears to be structured in a way that allows C. albicans cells to 
respond to and adapt to environmental changes quickly and efficiently, yet also provides 
robustness to the network (Nobile et al., 2012). Our findings reinforce the idea that target 
genes of the six master biofilm TFs are differentially expressed at different stages of the 
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biofilm life cycle (Fox et al., 2015) and indicate that different combinations of target genes 
are controlled by multiple master biofilm TFs at various stages of the biofilm life cycle.  

Based on our GO analyses, we found that Tec1 influences target genes involved 
in hyphal formation in the first two stages of biofilm formation (adherence and initiation), 
while Efg1 influences target genes involved in hyphal formation specifically during 
adherence, maturation, and dispersal stages of biofilm formation. Interestingly, while both 
Efg1 and Tec1 influence target genes involved in hyphal formation, Efg1 enriched target 
genes are involved in the extracellular region of cellular components, while Tec1 enriched 
target genes are involved in the cell wall region of cellular components, suggesting that 
Efg1 and Tec1 contribute distinct controls over their target genes involved in hyphal 
formation. In the adherence and initiation stages of the biofilm life cycle, analysis of the 
enriched cellular components provides an entry point towards understanding the complex 
GO data. As is evident from our transcriptional regulatory networks, Efg1 and Ndt80 
primarily exert combinatorial control over their active target genes with over 93% of target 
ORFs in common. Recently, Mancera et al. (2021) also found evidence of 91% overlap in 
the target genes between Efg1 and Ndt80 between four C. albicans and its closest relative 
C. dubliniensis (Mancera et al., 2021). Together, these two TFs influence many 
downstream target genes producing large scale changes to the biofilm regulatory network. 
Analyzing other TF pairs, we found that Bcr1 and Efg1 (2882/5664 50.9%), Brg1 and Efg1 
(3392/5728 59.2%), Brg1 and Ndt80 (3479/5907 58.9%), Brg1 and Rob1 (2170/4328 
50.1%), Efg1 and Rob1 (2953/5677 52%) and Ndt80 and Rob1 (2998/5898 50.8%) pairs 
shared 50% or more of their active target genes with Brg1, Efg1 and Rob1 participating in 
three of the six TF pairs indicating their high connectivity within the biofilm regulatory 
network. Altogether, the prevalence of TF pairs with high frequency common target genes 
hints at the compensatory nature of the biofilm regulatory network. Interestingly, the TFBS 
features of two other TF pairs also seem to follow similar patterns – Efg1 and Ndt80 
(MinHash and Poisson product score) as well as Bcr1 and Brg1 (MinHash and EP at 
position 6) share the top two influential features indicating similar behavior.  

To extract relevant translational information from our analysis of the complex 
biofilm transcriptional networks, we compared the average log2 fold change value of each 
individual target genes over all four biofilm growth stages (target gene mean expression) 
to mean log2 fold change of all target genes across all biofilm growth stages (global mean 
expression). We then identified significant target genes using Z-test, corrected with 5% 
false discovery rate. Based on this analysis, we came up with three target genes, encoding 
proteins that we hypothesize could be useful therapeutic targets: Orf19.2870/Ldg11, 
Orf19.2762 (Ahp1), and Orf19.2020 (Hgt6). Ldg11 is an uncharacterized protein of C. 
albicans. According to Candida Gene Browser Order, its orthologs are found only in 
closely related C. dubliniensis and C. tropicalis (Fitzpatrick et al., 2010; Maguire et al., 
2013). Ldg11 has no significant human ortholog, making it a good viable candidate for 
antibiofilm drug target.***Ahp1 is an alkyl hydroperoxide reductase that is expressed in 
response to stress, including the antifungal drug fluconazole, and is repressed in response 
to the antifungal drugs amphotericin B and caspofungin ( Bonhomme et al., 2011; Copping 
et al., 2005; Enjalbert et al., 2006; García-Sánchez et al., 2005; Karababa et al., 2004; Liu 
et al., 2005; Maglott et al., 2007; Nett et al., 2009; Seneviratne et al., 2008; Singh et al., 
2011). Ahp1 belongs to a class of molecules called peroxiredoxins (Prxs), which mediate 
cellular responses to reactive oxygen species (ROS). Prxs are critical in the defense of 
pathogens to host produced ROS, and upon deletion have been reported to have 
significant effects on the growth rates of the fungal pathogen Cryptococcus neoformans 
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(Gretes et al., 2012). Interestingly, Prxs are currently being pursued as therapeutic targets 
for eukaryotic pathogens. For example, Prx1a in Leishmania major and Prx1a in 
Leishmania donovani show promise as vaccine targets against infections caused by these 
parasitic pathogens (Gretes et al., 2012). Although the antifungal drug amphotericin B 
causes oxidative damage to cells, it does not directly target Ahp1 activity in C. albicans 
(Al Balushi et al., 2018; Rybak et al., 2019). Similarly, the antifungal drug caspofungin 
inhibits synthesis of an essential cell wall component, β-(1,3)-D-glucan (McCormack and 
Perry, 2005), and thus does not target Ahp1. Thus, Ahp1 is a new potential antifungal drug 
target that is worthy of further exploration. Hgt6 is a putative high-affinity major facilitator 
superfamily (MFS) glucose transporter that is induced by fluconazole and general cell 
stresses (Bonhomme et al., 2011; Copping et al., 2005; Enjalbert et al., 2006; Fan et al., 
2002; Fanning et al., 2012; Nobile et al., 2012). Inhibiting sugar transporters, such as Hgt6, 
could result in cell starvation. For example, disrupting hexose transporter genes in the 
parasite Plasmodium falciparum has been shown to lower intracellular ATP levels, leading 
to starvation (Slavic et al., 2011). In humans, glucose transporter inhibitors have been 
successfully targeted for use in treating type 2 diabetes in patients by lowering glucose 
levels independent of insulin (Lin et al., 2015).  

In addition to using gene expression as the basis to identify key target genes, we 
implemented network theory based centrality measures to assess an orthogonal view of 
target genes. To identify influential target genes for each of the six master regulator, we 
utilized the “information flow” centrality metric (Brandes and Fleischer, 2005). Table 5 lists 
the influential target genes for Bcr1, Brg1, Rob1 and Tec1. Interestingly, Efg1 and Ndt80 
target genes did not pass through multiple hypothesis correction threshold. There are no 
common or shared genes among the four master regulators. However, Bcr1 and Tec1 
targets - orf19.5445 and orf19.3314 respectively – are functionally similar as these target 
genes are involved in endoplasmic reticulum to Golgi vesicle-mediated transport. Since 
transmembrane transporter genes have been identified as drug targets, we focus on these 
genes and list them out next. Bcr1 controls orf19.1308 (member of the drug:proton 
antiporter (14 spanner) (DHA2) family) and orf19.6263 (predicted MFS membrane 
transporter), in addition to orf19.5445. Rob1 has two transporter target genes – orf19.1142 
(putative vacuolar transporter of large neutral amino acids) and orf19.2697 (regulation of 
dipeptide transmembrane transport by regulation of transcription from RNA polymerase II 
promoter and cytoplasm). Of all the target genes, only fatty acid biosynthesis gene 
orf19.979 (Fas1) has been shown to be susceptible to current antifungal drugs 
amphotericin B and caspofungin (Liu et al., 2005). Further investigation into these target 
genes might provide additional insights into their influencing capabilities. 

SVM is categorized as a supervised machine learning method where the model 
utilizes the information in the feature table to classify input data. SVMs are effective for 
high-dimensional data such as the feature table used in this study and are versatile in their 
use of kernels. Due to these advantages, we implemented SVMs for identifying novel 
TFBS controlling C. albicans biofilm formation. While building the SVM classifier, we 
utilized PCAs to visualize the feature space of the input data – experimentally validated 
TFBS from Nobile et al. (2012) and simulated background data. Based on the data 
separation, we implemented a Grid Search approach to optimize SVM hyperparameters. 
During model validation, the radial basis function (RBF) kernel of the SVM consistently 
was the top performer based on accuracy and precision values. To control model run time 
and to achieve consistent model behavior, we chose RBF and linear kernel as two options 
for Grid Search while classifying novel genome wide TFBS. An interesting follow up to 
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model classifications is the presence of low confidence predictions as an indicator that the 
classifier performance is not optimal. Low confidence predictions could originate from the 
experimental data used to train the SVM model. For example, the experimental TFBS data 
obtained from Nobile et al. (2012) for mature C. albicans biofilms (Nobile et al., 2012) is 
unlikely to contain all possible TFBSs for the TFs since some of the binding sites could be 
occluded due to common experimental artifacts of the chromatin immunoprecipitation 
procedure, such as variable crosslinking, variable chromatin fragmentation, and epitope 
masking (Wardle and Tan, 2015). Our SVM-based methodology provides an agnostic 
approach to TFBS prediction and can be generalized for use in other systems. The input 
to the SVM model is a list of True TF binding site sequences, which can be obtained from 
genome-wide binding studies or from various existing databases such as Encode, Jasper, 
and NCBI. The workflow contains Python scripts, which aid in negative training data 
generation, creating feature tables, training the SVM model and evaluating its 
performance and eventually predicting TFBS in test data. The test data would need to be 
created separately and provided to the model for during the classification stage.  

Overall, our study utilizes experimentally validated data from Nobile et al. (2012) 
to begin to dissect the regulatory control of the C. albicans biofilm regulatory network 
(Nobile et al., 2012). Our analysis revealed the dynamic nature of TFs over each biofilm 
developmental stage. We acknowledge that there are limitations in the experimental 
aspects of the data, such as in the fact that the TFBS data from Nobile et al. (2012) was 
based solely on a mature biofilm, which likely precludes capturing all possible TFBSs. 
Additionally, chromatin immunoprecipitation-based protocols are affected by epitope 
masking, making it likely that some TFBS are missed. Future experimentation using more 
modern protocols, such as Assay for Transposase-Accessible Chromatin with high-
throughput sequencing (ATAC-seq) and cleavage under targets and release using 
nuclease (CUT&RUN) sequencing, will certainly be beneficial in improving the model 
predictions (Buenrostro et al., 2015; Fox and Nobile, 2012; Skene and Henikoff, 2017). 

1.6 Future directions 

Given that C. albicans is a major human fungal pathogen, one goal of my thesis 
work has been to accelerate biomarker discovery for fungal infections caused by C. 
albicans. One milestone in achieving this goal is to fill in gaps in our knowledge about C. 
albicans biofilm formation, one important virulence trait of C. albicans. My computational 
approach provides predictive insights into genes, which could potentially be targeted to 
disrupt biofilm formation in this fungal pathogen. Based on my results, I pose the following 
questions as immediate next steps to my thesis work: 

1. Are Ahp1 and Hgt6 potential targets for disrupting biofilm formation in Candida 
albicans? 
2. What is the logic behind TF-target gene interaction changes throughout the C. albicans 
biofilm lifecycle? 
3. Where do master regulators bind to DNA during each biofilm growth stage? 

 

1.7 Methods 

1.7.1 Computational transcription factor binding site identification  

Approach 
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Transcription factors bind to DNA at specific regions in the genome (Berman et al., 2002; 
Fox et al., 2015; Gulati and Nobile, 2016; Inukai et al., 2017; Lohse et al., 2018; Mathelier 
and Wasserman, 2013; Nobile et al., 2012; Nobile and Johnson, 2015; Nobile and Mitchell, 
2005; Rogers and Bulyk, 2018; Schweizer et al., 2000). TFs dynamically bind and unbind 
to DNA to regulate the timely expression of their target genes. C. albicans transcription 
factor behavior has been probed using chromatin immunoprecipitation followed by 
microarray (ChIP-chip) (Fox et al., 2015; Nobile et al., 2012). However, due to the pulse-
like TF-DNA interactions and limitations of the ChIP protocol, genome-wide binding activity 
of biofilm regulators has been intractable and prone to false-negative results. In this paper, 
we use experimentally verified TFBS regions as tools to discover novel TF binding that 
has not yet been experimentally observed. We characterized the binding motifs by 
measuring their sequence and shape features (detailed below). Then, we built a 
supervised learning workflow to learn these motif features and classify novel sequences 
as true or false TFBS. A supervised machine learning classifier model uses labels 
assigned to input samples to learn the identity of each label, whereas an unsupervised 
model does not possess the sample label information. Here, we create a supervised 
support vector machine (SVM) classifier model by training it on a set of true 
(experimentally identified) TFBSs and a set of carefully curated, but false, TFBSs. We 
then allow the SVM to characterize all possible binding sites in the C. albicans genome 
that are TFBS candidates by sequence motif alone. 

 

Features 

Previous studies have provided evidence for how TFs recognize their binding sites 
(Camacho et al., 2018; Inukai et al., 2017; Kantorovitz et al., 2009; Mathelier et al., 2016; 
Rogers and Bulyk, 2018; Sinha et al., 2003; Zhou et al., 2015). Chiu et al. (2015) and 
Mathelier et al. (2016) have shown computational approaches to identifying novel TFBS 
using binding motifs (Chiu et al., 2016; Mathelier et al., 2016). These approaches 
established that TF activity is influenced by DNA sequence as well as shape (Liu et al., 
2009; Rogers and Bulyk, 2018). In this paper, we implemented a DNA sequence similarity 
metric based on the Poisson distribution (Kantorovitz et al., 2009; Van Helden, 2004) 
(Kantorovitz et al., 2009; Van Helden, 2004). The Poisson distribution provides the 
probability of finding at most x number of common k-mers in both sequences, given a 
background expected count value for the k-mer of interest (Kantorovitz et al., 2009; Van 
Helden, 2004). Given Ni counts of kmer i with expected mi count, the probability of finding 
Ni counts is: 

� �� ≥  !" = �#1 −  ���&&��� ! − 1, '!"()  ,  ! > 01                                                    , �ℎ	���&	. 
The Poisson additive similarity score (PAS) and Poisson multiplicative similarity score 
(PPS) measure the similarities between the true binding motif and novel sequences based 
on k-mer counts (k-length subsequence of a motif) overlap in both sequences. For p k-
mers, PAS and PPS are calculated as: 

�+� =  1� , 1 − ��� ≥  !"-
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PAS and PPS scores increase with higher counts of common k-mers between two 
sequences and if no common k-mers are found, the scores are zero (Kantorovitz et al., 
2009). 

Ondov et al. 2016 presented another alignment-free sequence similarity analytical method 
called MinHash (Ondov et al., 2016). In MinHash, k-mers are identified by sliding a k-
length window across sequences to be compared. Comparing each k-mer with its reverse 
complement, only the canonical k-mer is chosen as the representative. Then, the 
nucleotide k-mers are converted to integer values using the hash function. Here, we used 
the mm3 Python package to generate 32-bit hashes for k-mers. Distinct k-mers will 
generate different 32-bit hash integers, while same k-mers will have one 32-bit hash 
integer. The integer representation of k-mers is compared to assess overlap and 
measured as a Jaccard similarity index. The Jaccard similarity index for two sequences, 
seqA and seqB, is calculated by: 

34��4�
 &�'��4��� =  &	5+6789:  ∩  &	5�6789:&	5+6789:  ∪  &	5�6789:, 
where the numerator represents the number of common k-mers (set intersection) found in 
seqA and seqB and the denominator is the total number of k-mers (set union) from seqA 
and seqB. 

Additionally, DNA shape values are used to characterize motif sequences, and these are 
calculated using the DNAShapeR package in R (Chiu et al., 2016). Minor groove width 
(MGW), Roll, Propeller twist (ProT), Helix twist (HelT) and electrostatic potential (EP) are 
the five shape values provided by the package. These five shapes are measured for each 
base of the input motif sequence, using a pentamer window centered on base of interest 
(Chiu et al., 2016). Hence, for a 5 bp length sequence, the resulting shape values will be 
(n x 5) 25 shape values. 

Classification Model: By combining the similarity score and DNA shape feature, separate 
feature tables were calculated for each of the six master biofilm TFs. Using principal 
component analysis (PCA) to reduce dimensionality and visualize the distribution of true 
(foreground) and curated background (negative) datasets, support vector machine (SVM) 
using an RBF kernel was chosen for implementing the classification model (Pedregosa et 
al., 2011). 

1.7.2 Generating background (negative) datasets 

Foreground (true positive) sequences were obtained from Step 1. Compared to 
foreground sequences, the background sequences were created to have similar GC 
percent and length to avoid sequence composition bias. Two approaches are used to 
generate background sequences: 

1. GC percent and length matched background sequences: Exonic sequences for 
Escherichia coli (Ec) (release version GCF_000005845.2_ASM584v2) and the 
coding sequence for Candida albicans (Ca) (SC5314, assembly 22) and 
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Drosophila melanogaster (Dm) (release version 6.30) were used as templates 
(Skrzypek et al., 2017; Thurmond et al., 2019). Three second-order Markov models 
were trained using each of the three genome sequence datasets. For each 
foreground sequence, one of the three Markov models was randomly utilized for 
generating length and GC percent matched background sequence. The 
background sequence generated by the Markov model was excluded if it was 
found in the foreground sequence list and if the background sequence did not 
match the GC percent of the foreground sequence. 

2. Dinucleotide shuffled background sequences: Similar to Step 1, each foreground 
sequence is permuted to create the background sequence. This approach 
maintains the dinucleotide frequency of the foreground sequence. P. Clote’s 
implementation of Erikson and Altschul’s dinucleotide shuffling algorithm was 
utilized in this approach (Altschul and Erickson, 1985). 

Each of these approaches generated a separate background sequence set with an equal 
number of sequences as those in the foreground sequences. As a result, there are two 
times as many background sequences as foreground sequences. 

 

Building the feature table 

Each sequence is characterized by two Poisson based metrics for sequence similarity and 
DNA shape for each nucleotide position. Similarity metrics use the overlap of k-mer 
patterns (subsequence) between two sequences with the count of k-mer overlap modeled 
as a Poisson probability (Van Helden, 2004). Poisson additive score (PAS) calculates the 
additive effect of kmer overlap while the Poisson product score (PPS) characterized the 
k-mer overlap as independent events. DNA shapes were calculated using the 
DNAShapeR tool (Chiu et al., 2016). DNAShapeR outputs five shape values for each 
position of the input sequence. The shape values measure electrostatic potential (EP), 
helix twist (HelT), minor groove width (MGW), propeller twist (ProT), and Roll for a 
sequence. For an n length DNA sequence, 5n shape values were computed. The feature 
table was saved in a binary feather file format. 

 

Training and cross validation of the SVM model 

The background data was combined with the foreground sequence data to train the 
support vector machine classifier model. This dataset, consisting of n foreground 
sequences and 3n background sequences, was split into two categories: (a) training and 
testing data and (b) validation data. 80% of the samples were randomly chosen for training 
the model and tuning the model's parameters. The remaining 20% of the samples were 
reserved for evaluating the model’s accuracy. This cross-validation approach minimizes 
the issue of model overfitting, where the model is hyper tuned for training data and does 
not perform well on yet unseen real-world data sets. Model parameter C was tuned using 
a randomized grid search over a range of values. Permutation testing was used to test 
whether model classifications are significant or not (Ojala and Garriga, 2009). Lastly, 
model accuracy was measured using the validation dataset and plotted as a confusion 
matrix, which is a two-by-two matrix of true vs. predicted input labels. The diagonal 
elements of the confusion matrix represent the number of inputs which were correctly 
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classified, while the off-diagonal elements represent misclassification errors. For each TF, 
the trained model is saved in a binary feather file format, allowing for reuse of the trained 
model on new datasets. Once the model is saved in a file, the feather file can be used to 

A. SVM classifier training

B. Classifying genome-wide data

New TF

binding

sites

Genome-wide

potential

TF binding
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Trained
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Figure 1.11: Methods overview. The top panel (A) denotes the training process for the support 
machine learning classifier. The bottom panel (B) provides the process to classify genome-wide TF 
binding sites identified through BLASTn. The red outlined boxes denote novel implementations to 
generate negative data to create an informative classifier. Whereas in the bottom B panel, BLASTn 
was utilized to identify all regions matching the consensus TF motif for all master regulators. 
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directly classify new inputs, without having to train the model. Figure 1.11 provides an 
overview of SVM model training and testing phases. 

 

Classifying genome-wide matches of TF binding regions as True binding sites 

The genome-wide search of TF binding sites using the consensus sequence for each TF 
was performed using BLASTn (Altschul et al., 1990). In total, 1,914,803, 526,808, 
1,168,070, 5,184,038, 2,762,292, and 42,335 potential TF binding sites were returned by 
BLASTn for Bcr1, Brg1, Efg1, Ndt80, Rob1, and Tec1, respectively. These binding regions 
(search space) represent all possible regions where each TF can bind to the C. albicans 
genome. A feature table is created for all binding sites in the search space, as specified 
in the building feature table section above. Using the feature table and the trained SVM 
model, every region in the search space is classified as either a true binding site or a false 
binding site. The binding sites classified as True by the model are saved in a BED file 
format. 

 

Associating TFBS to target genes 

After obtaining high-confidence positive TFBS predictions, intergenic predictions were 
identified using an intersect function with f parameter set to 1.0, for full intersection over 
the full length of TFBSs using Pybedtools (Dale et al., 2011; Quinlan and Hall, 2010). Each 
of the intergenic TFBSs were associated to their closest ORFs using the Pybedtool closest 
function with D="b" parameter; the genome file was supplied to -b. With these results, 
model predictions were converted from TFBS genome locations to gene domain. 

 

Identifying significant targets as putative drug targets 

For each biofilm master TF, we accumulated its target’s gene expression (log fold change 
(LFC) values) from Fox et al. (2015), along with systematic gene name and gene 
description from CGD (Fox et al., 2015; Skrzypek et al., 2017). The LFC values were 
averaged across all four biofilm growth stages, and the mean LFC values were converted 
to Z scores by subtracting the global mean and dividing by standard deviation of mean 
expression values. Since these Z scores are now assumed to follow a standard Normal 
distribution, they were converted to p-values using Scipy’s norm.cdf() function (Virtanen 
et al., 2020). To reduce false positive significant target genes, the Benjamini-Hochberg 
correction with a false discovery rate of 0.05 was implemented on Z score p-values using 
statsmodels fdrcorrection() function (Benjamini and Hochberg, 1995). Significant target 
genes, whose FDR corrected p-values are below 0.05. 
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Chapter 2 
 

A CUT&RUN method and data analysis workflow for genome-wide analysis of 
transcription factor-DNA interactions in Candida albicans 

 

2.1 Abstract 

Regulatory transcription factors control many important biological processes 
including cellular differentiation, responses to environmental perturbations and stresses, 
and host-pathogen interactions. Determining the genome-wide binding of regulatory 
transcription factors to DNA is essential to understanding the function of transcription 
factors in these often complex biological processes. Cleavage Under Targets and Release 
Using Nuclease (CUT&RUN) is a modern method for genome-wide mapping of in vivo 
protein-DNA binding interactions that is an attractive alternative to the traditional and 
widely used chromatin immunoprecipitation followed by sequencing (ChIP-seq) method. 
CUT&RUN is amenable to a higher throughput experimental setup and has a substantially 
higher dynamic range with lower per-sample sequencing costs compared to ChIP-seq. 
Here, we describe a comprehensive CUT&RUN protocol and accompanying data analysis 
workflow that is tailored for genome-wide analysis of transcription factor-DNA binding 
interactions in the human fungal pathogen Candida albicans. This detailed protocol 
describes all necessary experimental procedures, from epitope tagging of transcription 
factor coding genes, to library preparation for sequencing; additionally, it includes our 
customized computational workflow for CUT&RUN data analysis. 

2.2 Introduction 

Candida albicans is a clinically relevant polymorphic human fungal pathogen that 
exists in a variety of different modes of growth, such as the planktonic (free-floating) form 
and as communities of tightly adhered cells protected by an extracellular matrix, known 
as the biofilm form (Nobile et al., 2012). Like other developmental and cellular processes, 
biofilm development is an important C. albicans virulence trait that is known to be 
controlled at the transcriptional level by regulatory transcription factors (TFs) that bind to 
DNA in a sequence-specific manner (Nobile et al., 2012). To understand the complex 
biology of this important fungal pathogen, effective methods to determine the genome-
wide localization of specific TFs during distinct developmental and cellular processes is 
increasingly valuable.  

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been 
widely used to investigate protein-DNA interactions in C. albicans and has largely replaced 
the more traditional chromatin immunoprecipitation followed by microarray (ChIP-chip) 
approach. Both ChIP-seq and ChIP-chip, however, require a large number of input cells, 
which can be a complicating factor when investigating TFs in the context of specific growth 
forms, such as biofilms. In addition, the chromatin immunoprecipitation (ChIP) assay often 
yields a significant amount of background signal throughout the genome, requiring a high 
level of enrichment for the target of interest to sufficiently separate signal from noise. While 
the ChIP-chip assay is largely out of date today, the sequencing depths necessary for 
ChIP-seq has made this assay prohibitively expensive for many researchers, particularly 
those studying multiple TFs and chromatin-associated proteins. 
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Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is an attractive 
alternative to ChIP-seq. It was developed by the Henikoff lab in 2017 to circumvent the 
limitations of ChIP-seq, while providing high resolution genome-wide mapping of TFs and 
chromatin-associated proteins (Henikoff). CUT&RUN relies on the targeted digestion of 
chromatin within permeabilized nuclei using tethered micrococcal nucleases, which is 
followed by sequencing of the digested DNA fragments. Since DNA fragments are 
specifically generated at the loci that are bound by a protein of interest, rather than being 
generated throughout the genome via random fragmentation as in ChIP assays, the 
CUT&RUN approach results in greatly reduced background signal, and thus requires one 
tenth of the sequencing depth compared to ChIP-seq. These improvements ultimately lead 
to significantly lower sequencing costs as well as lower numbers of input cells.  

Here we describe a robust CUT&RUN protocol that has been adapted and 
optimized for determining the genome-wide localization of TFs in C. albicans cells isolated 
from biofilms and planktonic cultures. We also present a thorough data analysis pipeline, 
enabling the processing and analysis of the resulting sequence data, that requires users 
to have minimal expertise in coding or bioinformatics. Briefly, we begin with our epitope 
tagging procedure for TF coding genes, describe the harvesting of biofilm and planktonic 
cells, and describe the isolation of intact permeabilized nuclei from the cells. We describe 
how the nuclei are incubated with primary antibodies against the specific protein or epitope 
tagged protein of interest, the tethering of the chimeric A/G-micrococcal nuclease (pAG-
MNase) fusion proteins to the primary antibodies, genomic DNA recovery after chromatin 
digestion, and preparation of the genomic DNA library for sequencing. We also describe 
our data analysis pipeline, which takes raw DNA sequencing reads in FASTQ format and 
implements all required processing steps to provide a complete list of significantly 
enriched loci that are bound by the TF of interest (targeted by the primary antibody). We 
note that multiple steps of our library preparation protocol have been specifically adapted 
and optimized for CUT&RUN analysis of TFs (as opposed to nucleosomes). While the 
data presented in this manuscript were generated using our TF-specific adaptations of a 
commercially available CUT&RUN kit (the EpiCypher CUTANA ChIC/CUT&RUN kit, 
Catalog # 14-1048), we have also validated our protocols using individually sourced 
components (i.e., pAG-MNase enzyme and magnetic DNA purification beads) as well as 
in-house prepared buffers, which significantly reduce experimental cost. Our 
comprehensive experimental and data analysis protocols are described in detail below in 
a step-by-step format. 

2.3 Protocol 

1. Epitope Tagging of C. albicans Strains 

1.1. Upload the gene of interest, along with the 1 kb upstream and downstream 
flanking sequences, from the Candida Genome Database 
(http://www.candidagenome.org/) to Benchling.com. 

1.2. Design a gRNA by highlighting 50 bp upstream and downstream from the stop codon 
and click the gRNA selection tool on the right. Select “Design and Analyze Guides”. Use 
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the Ca22 (Candida albicans SC5314 (diploid)) genome and an NGG (SpCas9, 3’ side) 
PAM for the guide parameters. Click finish. 

1.2.1. On the subsequent page, confirm the target region for gRNA design and 
press the green button. 

1.2.2. Sort gRNAs by the “On-Target Score”. 

NOTE: Benchling.com computes on-target and off-target scores to quantify the 
specificity of the gRNAs. An ideal guide has an on-target score of >60, an off-target 
score of approximately 33, and overlaps the stop codon. This enables high gRNA 
specificity, while ablating gRNA targeting after GFP integration. gRNAs with an off-
target score of approximately 50 indicates allelic variation, and thus only one allele 
will be recognized by the gRNA. 

1.2.3. Add these sequences to the 5’ (CGTAAACTATTTTTAATTTG) and 3’ 
(GTTTTAGAGCTAGAAATAGC) ends of the 20 bp gRNA, creating a 60 bp 
primer/oligonucleotide. Alternatively, copy the 20 bp sequence to the gRNA 
calculator supplied by Nguyen et al. 

1.2.4. Order the 60 bp custom gRNA oligonucleotide. 

1.2.5. Amplify the “universal A fragment” with 100 µM AHO1096 
(GACGGCACGGCCACGCGTTTAAACCGCC) and 100 µM AHO1098 
(CAAATTAAAAATAGTTTACGCAAG) and the “unique B fragment” with the 
custom 60 bp gRNA oligonucleotide (100 µM) from step 1.2.4 and 100 µM 
AHO1097 (CCCGCCAGGCGCTGGGGTTTAAACACCG) using pADH110 
(Addgene ID# 90982) and pADH139 (Addgene ID# 90987), respectively, as 
template DNA. Use the provided cycling conditions and PCR reaction mixes. 

  A Fragment B Fragment 
    

dH2O 75.5 µL 75.5 µL 
 

Temp 
(°C)  

Time Cycles 

5X HF Buffer 20 µL 20 µL 
 

98 30 s 1 

10 mM dNTP 2 µL 2 µL 
 

98 20 s 30 

FWD Primer 
(100 µM) 

0.5 µL 
(AHO1096) 

0.5 µL 
unique 
gRNA 

 
58 20 s 

REV Primer 
(100 µM) 

0.5 µL 
(AHO1098) 

0.5 µL 
(AHO1097) 

 
72 30 s 

DNA (1 
ng/µL) 

1 µL pADH110 1 µL 
pADH139 

 
72 15 s 1 

Phusion 
Polymerase 

0.5 µL 0.5 µL 
 

8 hold 1 
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Total 
Reaction 
Volume 

100 µL 100 µL 
    

 

1.2.6. Confirm successful amplification by checking 5 µL of PCR on a 1% agarose 
gel. The A and B fragment amplicons are approximately 1 kb each. 

1.2.7. Mix 1 µL each of A and B fragments together and stitch together with the 
PCR reaction mix and cycling conditions to create the full-length C fragment. 

C Fragment PCR Reaction Mix 
 

Cycling Condition 1 

dH2O 74.5 µL 
 

Temp (°C) Time Cycles 

5x HF Buffer 20 µL 
 

98 30 s 1 

10 mM dNTPs 2 µL 
 

98 10 s 5 

Universal A 1 µL 
 

58 20 s 

Unique B 1 µL 
 

72 60 s 

Phusion 
Polymerase 

0.5 µL 
    

 

1.2.8. Add 0.5 µL of 100 mM AHO1237 (AGGTGATGCTGAAGCTATTGAAG) 
and 0.5 µL of 100 mM AHO1453 (ATTTTAGTAACAGCTTCGACAATCG) to each 
PCR reaction, mix well by pipetting, and complete the following cycling conditions. 

Cycling Condition 2 

Temp (°C) Time Cycles 

98 30 s 1 

98 10 s 

30 66 20 s 

72 60 s 

72 30 s 1 

8 hold  1 

 

1.2.9. Confirm proper stitching and amplification of the C fragment by checking 5 
µL of the amplicon on a 1% agarose gel. The expected fragment size is 2 kb. 
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NOTE: If stitching and amplification results in multiple non-specific bands or 
smearing, perform a PCR cleanup of the A and B fragments and repeat from step 
1.2.7. 

1.2.10. Store C fragment at -20 °C until use. 

1.3. Add the entire CTG optimized monomeric eGFP with linker sequence (RIPLING) 
published in Ennis et al. (pCE1, Addgene ID# 174434) immediately upstream of the stop 
codon in your gene of interest on Benchling.com, creating a C-terminal translational 
fusion. This construct will be used to design oligonucleotides for amplifying donor DNA 
(dDNA) from pCE1. 

1.3.1. Design a forward oligonucleotide with 18-22 bp homology to the linker 
sequence and > 50 bp homology to the 3’ end of the open reading frame. 

NOTE: The 18-22 bp homology creates an annealing Tm for amplification between 
55-58 °C. If the full-length oligonucleotide forms primer dimers, adjust homology 
to the linker sequence/GFP or the genome accordingly. 

1.3.2. Create a reverse oligonucleotide with 18-22 bp homology to the 3’ end of 
GFP and > 50 bp homology to the downstream non-coding sequence. 

1.3.3. Order these oligonucleotides and amplify the dDNA with touch down PCR 
cycling protocol. 

   
Temp 
(°C) 

Time Cycles 
 

GFP Amplification PCR Reaction 
 

98 30 s 1 
 

dH2O 37.25 µL 
 

98 10 s 10 Δ-1 C / 
cycle 

5x HF Buffer 10 µL 
 

65 20 s 

10 mM dNTPs 1 µL 
 

72 30 s 

pCE1 (1 ng/µL) 1 µL 
 

98 10 s 25 
 

Forward Primer 
(100 µM) 

0.25 µL 
 

57 20 s 
 

Reverse Primer 
(100 µM) 

0.25 µL 
 

72 30 s 
 

Phusion 
Polymerase 

0.25 µL 
 

72 15 s 1 
 

   
8 hold 1 

 

1.4. Design two sets of colony PCR (cPCR) oligonucleotides for confirming integration of 
GFP by amplifying across the flanking integration sites. First select the forward dDNA oligo 
on Benchling.com and click the Primer button on the right. 
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1.4.1. Click “Create Primers” and then “Wizard”. Click “Tm Param” and confirm 
algorithm is set to “SantaLucia 1998”. Click “Use Selection” to input the coordinates 
of the forward oligonucleotide designed in 1.3.1 as the target sequence. 

1.4.2. Set the optimal primer Tm to 55 °C and the max amplicon size to 900 bp 
and then click the blue “Generate Primers” button at the top right. 

1.4.3. Select the oligonucleotide pair with the lowest penalty score and confirm 
that the primers amplify across the 5’ integration site. The forward cPCR primer 
should lie upstream of the forward dDNA primer sequence, and the reverse cPCR 
primer should lie fully within the eGFP tag or the linker sequence. 

1.4.4. Repeat steps 1.4-1.4.3 with the reverse dDNA oligonucleotide to create the 
second set of cPCR oligonucleotides that amplify across the 3’ integration site. The 
forward cPCR primer should lie fully within the eGFP tag or the linker sequence, 
and the reverse cPCR primer should lie downstream of the reverse dDNA primer 
sequence. 

1.4.5. Order these oligonucleotides. 

1.5. Digest 2,500 ng of pADH140, which contains Cas9 (Addgene ID# 90988), with Fast 
Digest MssI for each gene to be GFP-tagged. Each digestion reaction should be 15 µL 
total, adjust volume of water added accordingly based on the pADH140 plasmid 
concentration. Store digested plasmid at -20 °C until use. 

dH2O  Variable 
 

Temp 
(°C)  

Time  

pADH140 Variable 
 

37 1 h 

FastDigest Buffer 1.5  µL  
 

65 15 min 

MssI 0.8  µL  
 

8 hold 

Total Volume 15  µL  
   

 

1.6. Denature 12 µL 10 mg/mL salmon sperm DNA for each gene that will be GFP-tagged 
at 99 °C for 10 min and rapidly cool to ≤ 4 °C. Store at -20 °C until use 

1.7. Streak a C. albicans LEU2 hemizygous nourseothricin-sensitive strain onto YPD 
plates and incubate at 30 °C for two days. 

1.8. Select a single colony and transfer to 4 mL liquid YPD. Incubate 12-16 h at 30 °C with 
shaking at 250 rpm. 

1.9. Measure the optical density at 600nm wavelength (OD600) of the overnight (12-16 h) 
cell culture using a disposable cuvette (1 mL, 1 cm path length). 

1.10. Dilute overnight culture into an Erlenmeyer flask to an OD600 of 0.1 in YPD. The 
volume depends on the number of transformation reactions. Account for 5 mL per reaction 
and include an additional 5 mL for checking the OD600 later. 
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1.11. Incubate the diluted overnight culture in a shaking incubator at 30 °C with shaking 
at 250 rpm until it reaches an OD600 of 0.5-0.8. 

1.12. Centrifuge at 4000 x g for 5 min then remove and discard the supernatant. 

1.13. Resuspend cell pellet in 1 mL sterile water via gentle pipette mixing with filter tips 
and transfer to a sterile 1.5 mL microfuge tube. 

1.14. Pellet the cells by centrifuging at 4000 x g for 1 min then remove and discard the 
supernatant. Resuspend in 1 mL sterile water and repeat for a total of two washes. 

1.15. Resuspend the pellet in 1/100th of the volume used in step 1.10. For example, if 
step 1.10 used 15 mL, resuspend pellet in 150 µL sterile water. 

1.16. In a separate tube for each transformation reaction, mix 50 µL C fragment, 50 µL 
dDNA, 2500 ng MssI digested pADH140, and 10 µL denatured salmon sperm DNA. 

1.17. Add 50 µL of the cell slurry from step 1.15 and mix by pipetting. 

1.18. Make a stock of PLATE mix for n + 1 transformations. 

1.19. Add 1 mL PLATE mix to the cell/DNA mixture and mix by inverting 3-5 times. 

NOTE: Tap the bottom of the tubes while inverted to dislodge any liquid that remains 
trapped at the bottom of the tube. 

1.20. Place in an incubator at 30 °C overnight (12-16 h) without shaking. 

1.21. Heat shock the cells for 15 min at 44 °C in a water bath. 

1.22. Centrifuge the 1.5 mL tubes at 5000 x g for 2 min. 

1.23. Remove the PLATE mix by vacuum aspiration with sterile pipette tips, being careful 
to avoid disturbing the cell pellet. 

1.24. Resuspend the cells in 1 mL YPD, pellet by centrifugation at 4000 x g for 1 min, then 
remove and discard the supernatant. Repeat for a second wash, then resuspend the cells 
in 1 mL YPD and transfer to a 10 mL round bottom disposable culture tube containing an 
additional 1 mL of YPD (2 mL final volume). Recover cells at 30 °C with shaking at 250 
rpm for 5 h. 

1.25. Centrifuge tubes at 4000 x g for 5 min, remove and discard supernatant. 

1.26. Resuspend the cell pellet in 100 µL sterile water and plate on YPD supplemented 
with 200 µg/mL nourseothricin (NAT200). Incubate at 30 °C for 2-3 days. 

1.27. Aliquot 100 µL of 20 mM NaOH into the wells of a 96 well PCR plate, with each well 
corresponding to an individual colony that grew on the NAT200 plates. Using a sterile 
toothpick or pipette tip, pick individual transformed colonies and patch them onto a new 
NAT200 plate and swirl remaining cells into a well with 20 mM NaOH. Repeat for the 
remaining colonies. This creates the cell lysate used as the DNA template for PCR 
amplification.  
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1.28. Seal the PCR plate and incubate for 10 min at 99 °C in a thermal cycler with heated 
lid. 

1.29. Make two cPCR reaction mixes with the oligonucleotides designed in steps 1.4-
1.4.5. Scale up the  number of reactions as needed. Perform the PCR reaction with the 
cell lysate made in steps 1.27 and 1.28 and run 20 µL from each well on a 1% agarose 
gel. Colonies with amplification of the two cPCR primer sets properly incorporated the 
GFP dDNA. 

cPCR Reaction 
    

dH2O 11.66 µL 
    

DreamTaq Green 
Buffer 

2.2 µL 
 

Temp 
(°C) 

Time Cycles 

5M Betaine 4.4 µL 
 

94 30 s 1 

MgCl2 0.44 µL 
 

94 10 s 35 

10 mM dNTP 0.44 µL 
 

55 30 s 

DreamTaq 0.22 µL 
 

72 1 min 

Forward Primer 
(100 µM) 

0.22 µL 
 

72 15 s 1 

Reverse Primer 
(100 µM) 

0.22 µL 
 

8 hold 1 

Lysate 2.2 µL 
    

 

1.30. Re-streak colonies that incorporated GFP on SC media lacking leucine. Incubate in 
a 30 °C incubator for 2-3 days. Pick individual colonies and patch onto YPD and YPD 
supplemented with 400 µg/mL nourseothricin (NAT400) plates. Colonies that fail to grow 
on NAT400 plates after 24 h successfully lost the CRISPR components. 

1.31. Confirm that the GFP-tag is retained by repeating step 1.29 from the YPD patch 
plate. If the correct bands are present, inoculate 4 mL YPD and grow overnight (12-16 h) 
as described in step 1.8. 

1.32. Mix the overnight culture of the new GFP-tagged strain from 1.31 with filter-sterilized 
50% glycerol in a 1:1 ratio in a sterile cryotube. Store at -80 °C and re-streak on YPD 
plates as needed. 

NOTE: We highly recommend validating the GFP-tagged strains by confirming nuclear 
localization of the tagged TF via fluorescent microscopy and confirming a wild-type 
phenotype in an appropriate phenotypic assay. For example, if studying biofilm regulators 
confirm that the strain forms wild-type biofilms using the phenotypic assay described in 
steps 2.1-2.7. 
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2. Sample Preparation using Biofilm or Planktonic Cultures 

NOTE: For biofilms, follow steps 2.1-2.7. For planktonic cells follow steps 2.1-2.3 and 2.8-
2.9. 

2.1 Streak C. albicans eGFP-tagged strain(s) onto YPD agar plates and incubate at 
30 °C for 2-3 days.  

2.2 Using a single isolated colony from the agar plate, inoculate into 4 mL of YPD liquid 
medium. Incubate at 30 °C with shaking overnight (12-16 h).  

2.3 Determine the OD600 of the overnight culture(s).  

2.4 Inoculate a sterile 12-well untreated cell culture plate with the overnight cell culture 
to a final OD600 of 0.5 (equivalent to 2 x 107 cells/mL) in RPMI-1640 medium to a final 
volume of 2 mL. Incubate for 90 min at 37 °C in an ELMI microplate incubator with shaking 
at 250 rpm.  

NOTE: We recommend using one 12-well cell culture plate per strain with one well 
uninoculated as a control for medium contamination. 

2.5 Remove unadhered cells by aspiration using sterile pipette tips attached via 
flexible plastic tubing to a vacuum trap apparatus. Wash the adhered cells once with 2 mL 
sterile 1x PBS solution. Add 2 mL fresh RPMI-1640 medium to wells and incubate for 24 
h at 37 °C with shaking at 250 rpm.  

NOTE: Change pipette tips between wells of different strains and/or conditions. Take care 
not to scrape the bottom of the well with the tip while aspirating. 

2.6 At the end of the 24 h incubation, collect and pool the liquid and biofilm material 
from each of the 11 inoculated wells from step 2.4 into a single sterile 50 mL conical tube. 
Repeat as necessary with independent pools if processing more than one strain or growth 
condition concurrently. 

NOTE: Scrape the bottoms and edges of each well with a pipette filter tip to dislodge cells 
that remain adhered to the surface. Use the pipette to homogenize the biofilms. 

2.7 Pellet samples by centrifuging at 4000 x g for 5 mins. Decant as much of the 
supernatant as possible, taking care to minimize disruption of the pellet. Snap-freeze pellet 
in liquid nitrogen and store at -80 °C immediately after collection or continue directly to 
step 3 (Isolation of Nuclei).  

2.8 For planktonic cultures, back dilute to OD600 of 0.1 in 50 mL volume of RPMI-
1640 liquid media and incubate at 30 °C shaking at 225 rpm for 2-5 h until OD600 is 
between 0.5 to 0.8. Cells should go through at least two doublings before being harvested. 
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NOTE: Conditions used for planktonic cultures can be adjusted as needed. 

2.9 Pellet samples by centrifuging at 4000 x g for 5 mins. Decant as much of the 
supernatant as possible, taking care to minimize disruption of the pellet. Snap-freeze pellet 
in liquid nitrogen and store at -80 °C immediately after collection or continue directly to 
step 3 (Isolation of Nuclei). 

3. Isolation of Nuclei  

NOTE: Prepare Resuspension Buffer, Ficoll Buffer, and SPC Buffer-PI fresh on the day of 
the experiment. To resuspend pellets, gently pipette mix cell or nuclei pellets (using either 
200 μL or 1 mL pipette tips) to avoid damaging cells or nuclei. Turn on heat block and pre-
heat block to 30 °C before beginning the nuclei isolation. All pipette tips and tubes for the 
remainder of this protocol should be certified DNA/RNA and DNase/RNase-free, and we 
recommend the use of filter-tips for all pipetting steps. 

3.1. Resuspend pellet(s) in 1 mL of room temperature Resuspension Buffer-PI and 
transfer to a sterile 1.5 mL microfuge tube. 

3.2. Pellet at 2000 x g for 2 min in a table-top centrifuge and remove supernatant. 

NOTE: Remove supernatant using either 200 μL or 1 mL pipette tips, taking care to 
minimize disruption of the pellets. 

3.3. Resuspend pellet(s) in 200 μL room temperature Resuspension Buffer-PI.  

3.4. From the resuspended pellet, transfer a 5 μL aliquot into a new PCR tube and store 
at 4 °C for later use. 

NOTE: This will used as a control during a quality control step to evaluate the quality of 
the isolated nuclei. 

3.5. Pellet at 2000 x g for 2 min and remove and discard the supernatant using a pipette. 
Repeat wash step for a total of two washes with 200 μL Resuspension Buffer-PI. 

3.6. Centrifuge at 2000 x g for 2 min and remove supernatant. Add 300 μL of 
Resuspension Buffer-PI & 10 μL of Zymolyase solution (50mg/ml). Incubate for 30 min in 
30 °C heat block. 

NOTE: Alternatively, a water bath heated to 30 °C can also be used instead of a heat 
block. During the 30 min incubation step, complete step 4 (Concanavalin A Bead 
Activation) to save time. 

CRITICAL STEP: After the 30 min incubation, transfer 5 μL aliquot into a new PCR tube. 
Stain the 5 μL of isolated nuclei and the 5 μL aliquot of intact cells stored at 4 °C at step 
3.4 using calcofluor white (a fluorescent cell wall staining dye) and a nucleic acid stain per 
the manufacturer’s instruction. Visually inspect the integrity and purity of the isolated nuclei 
using a fluorescence microscope. Intact control cells should show prominent cell wall 
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staining by the calcofluor dye, while the isolated nuclei will show prominently stained intact 
nuclei without cell walls. 

3.7. Centrifuge at 2000 x g for 5 min at 4 °C and then remove supernatant.  

NOTE: Keep samples and buffers on ice from this point forward.  

3.8. Resuspend pellet in 500 μL ice-cold Resuspension Buffer-PI using 1 mL filter tip by 
pipetting gently up and down 5 times. Centrifuge at 2000 x g for 5 min at 4 °C then remove 
supernatant using a 1 mL pipette. Resuspend the pellet with 1 mL freshly made ice-cold 
Ficoll Buffer. 

3.9. Centrifuge samples at 5000 x g for 10 min at 4 °C and then remove supernatant. 
Resuspend the pellet in 500 μL ice-cold SPC-PI Buffer.  

NOTE: From this point onward, handle the nuclei extra gently to avoid damaging them.  

3.10. Centrifuge samples at 5000 x g for 10 min at 4 °C and remove as much of the 
supernatant as possible without disrupting the pellet. Place the tubes containing pelleted 
nuclei on ice and proceed to section 4 or snap-freeze pellet in liquid nitrogen and store at 
-80 °C immediately after collection. 

NOTE: We recommend proceeding to section 4 immediately, if possible. Avoid multiple 
freeze-thawing of isolated nuclei as it is known to increase DNA damage leading to poor 
quality results.  

4. Concanavalin A Bead Activation 

CRITICAL STEP: From this point forward, users have the choice to continue with the 
protocol using a commercially available CUT&RUN Kit or to source key components 
individually and prepare buffers in-house. If using the kit, all buffers and reagents used 
below are included in the kit unless otherwise noted. If sourcing components 
independently, we also provide individual catalog numbers for all reagents used in Table 
1.  

NOTE: Chill all buffers on ice before use.  

4.1. Gently resuspend the ConA beads using a pipette. Transfer 22 μL of ConA bead 
suspension per sample to be processed in a single 1.5 mL microfuge tube.  

NOTE: When performing CUT&RUN for a total of 10 samples, for example, transfer 220 
μL of ConA bead suspension to a 1.5 mL microfuge tube. 

4.2. Place the tube on a magnetic rack until the bead slurry is clear, remove and discard 
the supernatant using a pipette. 

4.3. Remove the tube containing the ConA beads from the magnetic rack and immediately 
add 200 μL ice-cold Bead Activation Buffer and gently mix using a pipette. Place the tube 
on the magnetic rack until the bead slurry is clear, remove and discard the supernatant 
using a pipette. Repeat this step for a total of two washes.  
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4.4. Resuspend beads in 22 μL ice-cold Bead Activation Buffer per sample of nuclei to be 
processed. Keep beads on ice until needed.  

5. Binding Nuclei to Activated Beads 

NOTE: Chill all Buffers on ice before use. All Buffers supplemented with protease inhibitors 
should be prepared on the day of the experiment. We recommend using strip tubes to 
facilitate handling of the 0.2 mL tubes in the subsequent steps. 

5.1. Resuspend the pelleted nuclei from step 3 in 100 μL of ice-cold SPC-PI Buffer and 
transfer to a new 8-tube 0.2 mL strip. Add 20 μL of the activated beads to each sample 
and gently pipette mix. Incubate at room temperature (RT) for 10 min without any agitation. 

5.2. Place tubes on magnetic rack until slurry is clear, remove and discard supernatant 
using a pipette. Remove tubes from the magnetic rack and add 200 μL ice-cold Wash 
Buffer to each sample. Resuspend beads by gently pipetting up and down several times. 
Transfer 100 μL aliquots from each sample into a new 8-tube 0.2 mL strip.  

CRITICAL STEP: Each CUT&RUN sample is divided into two separate aliquots. One of 
the aliquots is used for negative control antibody (e.g., IgG negative control antibody) and 
the other is used for target antibody against protein of interest (e.g., anti-GFP antibody). 
Both datasets are required for the computational pipeline to accurately identify enrichment 
signals that are specific to the TF of interest. 

NOTE: We have performed a control CUT&RUN experiment using anti-GFP antibodies 
with an untagged strain and found the results to be comparable to the use of IgG 
antibodies in a GFP-tagged strain; therefore, we recommend using the standard IgG 
control for all experiments. 

6. Primary Antibody Binding 

NOTE: pAG-MNase fusion protein binds well to rabbit, goat, donkey, guinea pig and 
mouse IgG antibodies. Generally, most commercial ChIP-seq certified commercial 
antibodies are compatible with CUT&RUN. The amount of primary antibody used depends 
on the efficiency of the antibody and a titration of the antibody (e.g., 1:50, 1:100, 1:200, 
and 1:400 final dilution) may be necessary if antibody of interest has not been previously 
tested in ChIP or CUT&RUN experiments. Chill all buffers on ice before use. All buffers 
used for antibody binding steps should be prepared on the day of the experiment.  

6.1. Place tubes on magnetic rack and wait until slurry is completely clear, remove and 
discard supernatant using a pipette. Add 50 μL Antibody Buffer and gently pipette mix. 

6.2. Add 3 μL anti-GFP polyclonal antibody (or 0.5 ug if using untested antibodies). 

NOTE:  While some CUT&RUN protocols report increased yield by adding a secondary 
antibody prior to pAG-MNase addition, we did not observe a significant improvement in 
our hands and thus do not include a secondary antibody. 

6.3. Incubate tubes on nutator at 4 °C for 2 h. 
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6.4. Quickly centrifuge the tubes at 100 x g, place the tubes on a magnetic rack, and once 
the slurry is clear remove and discard the supernatant using a pipette. 

6.5. While the tubes containing the beads are still on the magnetic rack, add 200 μL ice-
cold Cell Permeabilization Buffer directly onto the beads. Remove and discard 
supernatant using a pipette. Repeat for a total of two washes with the ice-cold Cell 
Permeabilization Buffer. 

6.6. Add 50 μL ice-cold Cell Permeabilization Buffer to each tube and gently pipette mix.   

NOTE: Beads are often clumpy at this point but can easily be dispersed by gently mixing 
using a 200 μL pipette. 

7. Binding of pAG-MNase to Antibody 

7.1. Add 2.5 μL CUTANA pAG-MNase (20X stock) to each sample, and gently pipette mix. 
Incubate samples (slightly elevated at ~ 45-degree angle) on a nutator at 4 °C for 1 h.  

7.2. Quickly centrifuge the strip tubes at 100 x g, place the tubes on a magnetic rack, and 
once the slurry is clear, remove and discard the supernatant using a pipette. 

NOTE: This step is critical. Carry-over antibody remaining in cap or sides of the tubes after 
this step will significantly increase the amount of background signal. 

7.3. While the tubes containing the beads are still on the magnetic rack, add 200 μL ice-
cold Cell Permeabilization Buffer, allow the slurry to clear, and remove and discard the 
supernatant using a pipette. Repeat step for a total of two washes with the Cell 
Permeabilization Buffer.  

7.4. Add 100 μL ice-cold Cell Permeabilization Buffer to samples and gently pipet up and 
down.  

8. Targeted Chromatin Digestion and Release 

8.1. Incubate the tubes containing the sample(s) in a wet ice bath for 5 min. Using a 
multichannel pipet, add 3 μL of 100 mM CaCl2 into each sample. Gently pipet up and 
down and immediately return the tubes to the wet ice bath, incubate for 30 min. 

8.2. Add 66 μL Stop Buffer to each sample, and gently vortex to mix. Incubate samples 
for 10 min at 37 °C in a dry bath. 

NOTE: We recommend adding 1.5 pg of heterologous E. coli spike-in DNA per sample in 
the 2X Stop Buffer. Addition of 1.5 pg of E. coli spike-in DNA results in 1,000-10,000 
mapped spike-in reads for 1-10 million mapped experimental reads. The spike-in DNA is 
used to calibrate for sequencing depth and is especially important for comparing samples 
in a series. Addition of spike-in E. coli is highly recommended but not essential. The 
commercial CUT&RUN kit includes E. coli spike-in DNA, but it can also be purchased 
separately. 

8.3. Place the tubes on the magnetic rack and transfer 160 μL of the supernatant into a 
1.5 mL microfuge tube. Transfer 80 μL of sample into a new 2 mL microfuge tube and 
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store at -20 °C in the event the experiment fails, and you need a backup sample. Proceed 
to step 9 with the remaining 80 μL collected sample.  

9. Cleanup of Collected DNA Sample  

NOTE: Incubate DNA Purification Beads at room temperature for at least 30 min before 
use. Pre-chill 100% isopropanol on ice before moving forward. When pipette mixing the 
samples, pipette up and down at least 10 times. 

9.1. Vortex DNA Purification Beads to homogenize the bead solution. Add 50 μL (~0.6X 
sample volume) resuspended beads to each sample. Pipette mix and incubate samples 
on a nutator for at least 5 min at room temperature. 

NOTE: The ratio of DNA purification beads to sample used is critical. Using 0.6X volume 
of DNA Purification Bead solution relative to the sample allows the magnetic beads to bind 
to large DNA fragments released from damaged nuclei. CUT&RUN enriched DNA 
fragments are much smaller compared to these large DNA fragments and are thus 
retained in the supernatant in step 9.1. 

9.2. Place the tubes on a magnetic rack and transfer 130 μL of the supernatant containing 
your DNA to a Simport 0.2 mL 8-tube strip. Add an additional 30 μL (Total volume of 160 
μL) of DNA Purification Beads to the sample(s).  

9.3. Add 170 μL (~1X sample volume) of ice-cold 100% isopropanol, mix well by pipetting 
up and down at least 10 times and incubate on ice for 10 min. 

NOTE: It is critical that 100% ice-cold isopropanol is used for this step for the DNA 
purification beads to efficiently capture the CUT&RUN enriched small fragments.  

9.4. Place the tubes on the magnetic rack and once the slurry has cleared, carefully 
remove, and discard the supernatant using a pipette.  

9.5. While the tubes are on the magnetic rack, add 200 μL of freshly prepared room 
temperature 80% ethanol to the tubes and incubate at room temperature for 30 s. Carefully 
remove and discard the supernatant using a pipette. Repeat step for a total of two washes 
with 80% ethanol.  

9.6. Spin the tubes briefly at 100 x g then place the tubes back on the magnetic rack and 
remove any leftover ethanol using pipette after the slurry has cleared. Air dry the beads 
for up to 5 min while the tubes remain on the magnetic rack with the lid open.  

NOTE: Do not exceed 5 min drying time as it can significantly reduce the final DNA yield.  

9.7. Remove the tubes from the magnetic rack and elute the DNA from the beads by 
adding 17 μL of 0.1X TE pH8. Mix well then incubate for at least 5 min at room 
temperature.  

9.8. Place the tubes on the magnetic rack until slurry becomes clear. Once the slurry has 
cleared, carefully transfer 15 μL of the supernatant to a sterile 0.2 mL PCR tube.  
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9.9. Measure the concentration of the collected DNA using a Qubit fluorometer following 
the manufacturer’s protocol. 

NOTE: Typically, the concentration of the collected DNA is ~1ng per μL. Sometimes, the 
concentration of the collected DNA is too low to quantify using Qubit. This is not an 
indicator of a failed experiment. Proceed with library preparation regardless of the 
concentration of the collected DNA. 

9.10. Proceed to Library Preparation for Sequencing section or store samples at -20 °C 
until ready to process. 

Library Preparation for Sequencing 

NOTE: The following steps use the NEB Ultra II DNA Library Prep Kit. When handling 
steps requiring the Ultra II Ligation Master Mix, avoid touching sample tubes and always 
keep them on ice.  

10. End Repair and Adaptor Ligation 

10.1. Using 0.1X TE pH8 bring up total volume of CUT&RUN DNA to 50 μL. Make a master 
mix of 3 μL End Prep Enzyme Mix and 7 μL End Prep Reaction Buffer per sample. Add 
10 μL of master mix to CUT&RUN DNA and mix thoroughly by pipetting up and down.  

10.2. Perform a quick spin at 100 x g to collect all liquid from the sides of the tube. Place 
the tubes in a thermocycler, with the heated lid set to ≥ 75 °C, and run the following 
program:  

Temp Time Total Number of Cycles 
20 oC 30 min 1 
50 oC 60 min 1 
4 oC Hold 1 

NOTE: Depending on the starting input DNA concentrations collected from section 9, 
follow the required adaptor dilution from the table below.  

Input DNA Adaptor Dilution Working Adaptor Conc 

101 ng-1 ug No dilution 15 µM 

5-100 ng 10-fold 1.5 µM 

< 5 ng 25-fold 0.6 µM 

 

10.3. Add 2.5 μL Adaptor per sample and mix thoroughly by pipetting up and down at least 
10 times. 

NOTE: It is critical that the adaptor is added to the sample and mixed thoroughly before 
the ligation master mix is added. 
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10.4. Make a master mix of 30 μL Ultra II Ligation Master Mix, 1 μL Ligation Enhancer. 
Add 31 μL of the master mix to the sample(s). Mix thoroughly by pipetting up and down at 
least 10 times.  

10.5. Incubate at 20 oC for 15 min in a thermocycler with the heated lid off. 

NOTE: It is critical that samples be always kept on ice and transferred to the thermocycler 
only after the thermocycler has already reached 20 oC. 

10.6. Perform a quick spin at 100 x g to collect all liquid from the sides of the tube, then 
add 3 μL of USER Enzyme and incubate tubes in thermocycler at 37 °C for 15 min with 
the heated lid set to ≥ 47 °C.  

NOTE: This is a safe stopping point, samples can be stored at -20°C or continued directly 
to step 11. 

11. Cleanup of Adaptor-Ligated DNA without Size Selection 

NOTE: Place magnetic beads at room temperature for at least 30 min before using.  

11.1. Add 154.4 μL (~1.6X sample volume) of the DNA Purification Beads to the Adaptor 
Ligation reaction from step 10. Pipet mix and incubate samples on benchtop for at least 5 
min at room temperature.  

11.2. Place the tubes on the magnetic rack and once the slurry has cleared, carefully 
remove, and discard the supernatant using a pipette.  

11.3. Add 200 μL of freshly prepared room temperature 80% ethanol to the tubes and 
incubate at room temperature for 30 s. Carefully remove and discard the supernatant 
using a pipette, repeat step for a total of two washes with 80% ethanol.  

11.4. Spin the tubes briefly at 100 x g. Place the tubes back on the magnetic rack and 
remove any leftover ethanol using a pipette. Air dry the beads for up to 5 min while the 
tubes remain on the magnetic rack with the lid open.  

NOTE: Do not exceed 5 min drying time as it can significantly reduce the final DNA yield.  

11.5. Remove the tubes from the magnetic rack and elute the DNA from the beads by 
adding 17 μL of or 0.1X TE pH 8. Mix well then incubate for at least 5 min at room 
temperature. 

11.6. Place the tubes on the magnetic rack until slurry becomes clear. Once the slurry has 
cleared, carefully transfer 15 μL of the supernatant to a sterile 0.2 mL PCR tube.  

12. PCR Enrichment of Adaptor-Ligated DNA 

12.1. Make a master mix of 25 μL Ultra II Q5 Master Mix and 5 μL Universal PCR Primer/i5 
Primer (10 µM) per sample. 

NOTE: Prepare one extra sample-worth of master mix to account for pipetting losses. 
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12.2.  Add 30 μL of master mix to the 15 μL Adaptor Ligated DNA sample. Add 5 μL of 
unique Index Primer/i7 Primer (10 µM) to each sample to bring the final volume to a total 
of 50 μL. Mix thoroughly by pipetting up and down at least 10 times. 

12.3. Perform the following PCR cycling conditions:  

 Temp Time Total Number of Cycles 
Initial Denaturation 98oC 45 s 1 
Denaturation 98oC 15 s 14 
Annealing/Extension 65oC 10 s 
Final Extension 65oC 5 min 1 
Hold 4oC Hold 1 

 

13. Cleanup of PCR Amplified DNA with Size Selection  

NOTE: Incubate DNA Purification Beads at room temperature for at least 30 min before 
use. Mixing steps involve pipetting up and down at least 10 times.  

13.1. Vortex DNA Purification Beads to resuspend. Add 35 μL (~0.7X sample volume) of 
resuspended beads to the PCR amplified DNA samples. Mix and incubate samples on 
nutator for at least 5 min at room temperature. 

13.2. Place the tubes on magnetic rack and once the slurry is clear, transfer the 
supernatant containing your DNA to a new Simport 0.2 mL 8-well PCR strip tube.  

13.3. Add 119 μL (~1.4X sample volume) beads to the sample, mix by pipetting up and 
down. Incubate samples on nutator for at least 5 min at room temperature.  

13.4. Place the tubes on the magnetic rack and once the slurry has cleared, carefully 
remove, and discard the supernatant using a pipette.  

13.5. Add 200 μL of freshly prepared room temperature 80% ethanol to the tubes and 
incubate at room temperature for 30 s. Carefully remove and discard the supernatant 
using a pipette, repeat step for a total of two washes with 80% ethanol.  

13.6. Spin the tubes briefly at 100 x g. Place the tubes back on the magnetic rack and 
remove any leftover ethanol using a pipette. Air dry the beads for up to 5 min while the 
tubes remain on the magnetic rack with the lid open.  

NOTE: Do not exceed 5 min drying time as it can significantly reduce the final DNA yield.  

13.7. Remove the tubes from the magnetic rack and elute the DNA from the beads by 
adding 14 µL of or 0.1X TE pH 8. Mix well then incubate for at least 5 min at room 
temperature.  

13.8. Place the tubes on the magnetic rack until slurry becomes clear. Once the slurry has 
cleared, carefully transfer 13 μL of the supernatant to a sterile 0.2 mL PCR tube.  

14. Size Select Libraries by Polyacrylamide Gel Electrophoresis  
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14.1. Prepare fresh 1x TBE and insert pre-made commercial 10% acrylamide TBE gel in 
the gel electrophoresis apparatus filled with 1x TBE.  

14.2. In the first well add 2 μL of Low Range DNA ladder. 

14.3. Mix 3 μL of 6X Loading Dye with 13 μL of sample previously collected on step 13.8. 

14.4. Carefully add 15 μL into each well of the gel. 

NOTE: We recommend leaving one well in the gel empty between each sample, if 
possible. This reduces the likelihood of sample cross contamination. 

14.5. Run gel for 90 min at 70 V.  

14.6. Remove the gel cast from the gel box. Open the gel cast per manufacturer's 
instructions. 

14.7. Gently remove the gel from the gel cast per manufacturer's instructions and place it 
inside a gel holding tray or a PCR-tube box cover filled with 100 mL of 1x TBE. 

NOTE: Make sure to gently remove gel from cast to avoid ripping the gel as it is thin and 
fragile. It is critical to soak the users gloves and the gel itself with 1x TBE whenever 
handling the gel. 

14.8. Add 10 µL of Sybr Gold to the tray and gently swirl for a brief period. Cover with foil 
to protect from light and incubate statically at room temperature for 10 min.  

14.9. Rinse gel twice with 100 mL of in-house deionized tap water.  

14.10. Image the gel under blue light illumination using an amber filter cover (Figure 1).  

NOTE: Successful libraries show a smear between 100-500 bp. There will also be a 
prominent ~125 adaptor-dimer band. The presence of adaptor-dimer is not an indicator of 
poor library quality or failure. This amount of adaptor-dimer is unavoidable for CUT&RUN 
experiments against low-abundance TFs and is a consequence of low amount of input 
material used to prepare these libraries. It is critical that ultraviolet light is not used to avoid 
damaging the DNA. 

14.11. As shown in Figure 1, for each individual library, cut the gel slightly above the ~125 
bp prominent adaptor-dimer band (making sure to avoid touching the prominent adaptor-
dimer band) and below the 400 bp ladder mark. 

NOTE: It is critical to avoid the ~125 adaptor-dimer band. Even tiny amounts of adaptor-
dimers will significantly reduce library quality. 

14.12. Puncture the bottom of 0.65 mL tube using a 22-gauge needle and place the 
punctured tube inside a sterile 2 mL microfuge tube. Transfer slice of gel to the punctured 
tube inside of the 2 mL microfuge tube. 

14.13. Centrifuge the 2 mL microfuge tube containing the 0.65 mL punctured tube and 
sample at 10,000 x g for 2 min to collect the gel slurry inside the 2 mL microfuge tube. The 
punctured tube should now be empty and can be discarded. 
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NOTE: If the punctured tube still has any gel remaining inside, place the punctured tube 
back inside the 2 mL microfuge tube and centrifuge again at 10,000 x g for 2 min. 

14.14. To the gel slurry inside the 2 mL microfuge tube, add 300 μL of ice-cold gel elution 
Buffer and mix on a nutator platform at room temperature for a minimum of 3 h or overnight 
(12-16 h). 

14.15. Transfer all liquid and gel slurry to 0.22 µM filter column. Centrifuge at 10,000 x g 
for 1 min. Collected volume should be ~ 300 μL.  

14.16. Add 450 μL (~1.5X sample volume) of DNA Purification Beads and incubate at 
room temperature for 5 min on shaking nutator. After the 5 min, place sample on magnetic 
rack until slurry is clear.  

NOTE: Incubate DNA Purification Beads at room temperature for at least 30 min before 
use. Mixing steps involve pipetting up and down at least 10 times.  

14.17. Remove and discard 500 μL of supernatant, making sure not to disrupt the beads. 

14.18. Remove sample from magnetic rack and mix beads by pipetting up and down 
several times. Transfer 200 μL of sample into new PCR strip tube.  

14.19. Place the strip-tubes on the magnetic rack and once the slurry has cleared, carefully 
remove, and discard the supernatant using a pipette.  

14.20. Add 200 μL of freshly prepared room temperature 80% ethanol to the tubes and 
incubate at room temperature for 30 s. Carefully remove and discard the supernatant 
using a pipette, repeat step for a total of two washes with 80% ethanol.  

14.21. Spin the tubes briefly at 100 x g. Place the tubes back on the magnetic rack and 
remove any leftover ethanol using a pipette. Air dry the beads for up to 5 min while the 
tubes remain on the magnetic rack with the lid open.  

NOTE: Do not exceed 5 min drying time as it can significantly reduce the final DNA yield.  

14.22. Remove the tubes from the magnetic rack and elute the DNA from the beads by 
adding 17  µL of 0.1X TE pH 8. Mix well then incubate for at least 5 min at room 
temperature.  

14.23. Place the tubes on the magnetic rack until slurry becomes clear. Once the slurry 
has cleared, carefully transfer 15 μL of the supernatant to a sterile 0.2 mL PCR tube.  

14.24. Measure the final library quantity using Qubit.  

14.25. This final library is now ready for sequencing. 

NOTE: We typically pool together up to 48 libraries and sequence the pooled libraries 
using an Illumina NextSeq platform with paired-end 40 bp read lengths. 
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CUT&RUN sequence analysis 

From here onwards, we present our computational protocol to analyze CUT&RUN 
sequence data. The protocol begins with setting up the computational virtual environment 
and walks users through executing the commands on their local machine. This protocol 
will work on all computational resources such as local machines, AWS instances, high-
performance computing clusters, etc.  

Analysis software prerequisites 

15. Users can download the source code for CUT&RUN analysis from GitHub - 
https://github.com/akshayparopkari/cut_run_analysis  

15.1. The workflow will work best on a system running MacOS or various Linux OS. 
Windows users can run the workflow using GitBash (https://gitforwindows.org/). 

15.2. Users can directly download the code from GitHub page by clicking on the green 
“Code” button, followed by clicking on “Download ZIP” option. Then, users can unzip the 
folder to a relevant location on their local machine. 

15.3. (Run only once) Install Conda environment – This workflow uses the Conda 
command line tool environment to install all required software and tools. Conda software 
can be accessed at https://docs.conda.io/en/latest/miniconda.html. 

15.4. (Run only once) Once Conda is installed, users must create a virtual environment 
using the supplementary file 2 provided with the following command – 

conda create --name <env> --file Supplementary_File_2.txt 

15.5. Users will need to activate the virtual environment, every time they want to 
execute/run this workflow using – 

conda activate <env> 

15.6. Organize your input raw FASTQ files in a single folder, ideally one folder per 
CUT&RUN experiment 

Generate genome file for alignment (run only once for each genome file) 

16. Create a folder to save all C. albicans genome files 

16.1. mkdir ca_genome_files 

17. Download C. albicans genome assembly 21 from Candida Genome Database, 
using either wget or curl tool (Skrzypek et al., 2016). 

17.1. wget 
http://www.candidagenome.org/download/sequence/C_albicans_S
C5314/Assembly21/current/C_albicans_SC5314_A21_current_chro

mosomes.fasta.gz 

17.2. curl -O 
http://www.candidagenome.org/download/sequence/C_albicans_SC5314/
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Assembly21/current/C_albicans_SC5314_A21_current_chromosomes.fast

a.gz 

NOTE: We use C. albicans assembly 21 here to compare CUT&RUN results with 
previously published ChIP-chip results, which were aligned to Assembly 21. Users can 
download other assembly versions and run similar commands to generate relevant 
genome files for their alignment needs. 

18. Generate Bowtie2 index database (database name: ca21) 

18.1. bowtie2-build 
C_albicans_SC5314_A21_current_chromosomes.fasta.gz ca21 

18.2. bowtie2-inspect -s ca21 

Run CUT&RUN analysis pipeline 

19. Familiarize yourself with the parameters of the pipeline by reading through the help 
section. 

19.1. bash cut_n_run_pipeline.sh -h 

20. Execute cut_n_run_pipeline.sh file with relevant parameters. An example to 
execute the script is shown below.  

20.1. bash cut_n_run_pipeline.sh /path/to/input/folder 4 y y y 
y y > /path/to/output.log 2>&1 

Organize output files 

21. Merge significant peaks from all replicates called by Macs2 located in 
/path/to/input/folder/peakcalling/macs2 using BedTools merge function 
(Quinlan & Hall, 2010). 

21.1. cat 
/path/to/input/folder/peakcalling/macs2/all_replicate_files 

sort -k1,1 -k2,2n | mergeBed -c 4,5,6,7,8,9 -o 

last,mean,first,mean,mean,mean > /path/to/merged_output.bed 

22. Remove matches to blacklisted genomic regions BedTools subtract function. 

22.1. subtractBed -a /path/to/merged_output.bed -b 
/path/to/Supplementary_File_1.bed -A > 

/path/to/merged_output_no_blacklist_hits.bed 

 

NOTE: Supplementary_File_1.bed contains the blacklisted regions in C. albicans 
genome. Users can skip this step to keep signal contained within these blacklist regions. 

23. Merge BigWig files from replicates using UCSC bigWigMerge function (Kent et al. 
2010). 
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23.1. Convert the BedGraph output from bigWigMerge to BigWig using UCSC 
bedGraphToBigWig function. 

2.3.1 Results 

We describe a robust CUT&RUN protocol adapted and optimized for investigating 
the genome-wide localization of specific TFs in C. albicans biofilms and planktonic cultures 
(see Figure 2.1 for an overview of the experimental approach). We also describe a 
thorough data analysis pipeline to analyze the resulting CUT&RUN sequence data that 
requires users to have minimal expertise in coding or bioinformatics (see Figure 2.2 for 
an overview of the analysis pipeline). Contrary to the ChIP-chip and ChIP-seq methods, 
CUT&RUN is carried out using intact permeabilized nuclei prepared from a significantly 
reduced number of input cells, without formaldehyde crosslinking. Isolating intact nuclei 
from C. albicans spheroplasts is a critical step in the protocol. Efficient spheroplasting via 
digestion of the C. albicans cell wall using zymolyase can be challenging since the 
enzymatic digestion reaction conditions must be optimized for each cell type. Thus, to 
ensure a successful CUT&RUN experiment with high-quality sequencing results, we use 
an early quality control step and verify the presence of intact nuclei using a standard 
fluorescence microscope. We regularly assess cell wall digestion and nuclear integrity by 
visualizing both control intact cells and isolated nuclei stained with the cell wall dye 
calcofluor white and the nucleic acid strain SYTO 13. In contrast to the isolated intact 
nuclei, where cell wall staining by calcofluor white is not observed, both nuclei and the cell 
walls are fluorescently labeled in the intact control cells (Figure 2.3A). Lastly, prior to 
sequencing, we evaluate fragment size distribution of CUT&RUN libraries using a 
bioanalyzer. This quality control step is a reliable measure in assessing the quality of 
CUT&RUN libraries. As seen in Figure 2.3B, successful libraries generated for 
experiments investigating TFs show high enrichment for fragments smaller than 280 bp. 
We also recommend assessing the final pooled libraries using a bioanalyzer to ensure the 
complete removal of contaminating adapter dimers (Figure 2.3C). In our experience, 5-
10 million paired-end reads per-library provide sufficient sequencing depth for most TF 
CUT&RUN experiments in C. albicans. 

We validated this CUT&RUN protocol and accompanying data analysis pipeline by 
investigating two TFs, Ndt80 and Efg1, controlling C. albicans biofilm formation. As shown 
in Figure 2.3D, both Ndt80 and Efg1 are bound at intergenic regions (highlighted in red) 
flanking the TEC1 ORF. These intergenic regions surrounding TEC1 were previously 
shown to be highly enriched for Ndt80 and Efg1 binding during biofilm formation by ChIP-
chip4. A systematic comparative analysis indicated that our CUT&RUN protocol 
successfully identified the majority of the previously known binding events for Ndt80 and 
Efg1 during biofilm formation4 (Figure 2.4). Furthermore, we were able to identify many 
new TF binding events that were not captured in the previously published ChIP-chip 
experiments (Figure 2.4). Overall, both Ndt80 and Efg1 bound to loci overlapping with 
previously published ChIP-chip data, as well as to loci identified only using the CUT&RUN 
method (overlaps between our CUT&RUN data and previously published ChIP-chip data 
for Ndt80 and Efg1 are summarized in the Venn diagrams in Figure 2.4). Nonetheless, 
our CUT&RUN method identified most of the significant peaks identified by ChIP-chip 
along with additional peaks missed using the ChIP-chip method. In summary, these results 
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show that the CUT&RUN protocol described here is a robust method optimized for 
investigating C. albicans TF-DNA binding interactions from low-abundance samples. 

Figure 2.1: Schematic of the CUT&RUN protocol. First, C. albicans cells are permeabilized to 
isolate intact nuclei. ConA beads are activated, and the intact nuclei are then bound to the activated
ConA beads. Antibody of interest is added to the bead-bound nuclei and incubated at 4 oC. Next, 
pAG-MNase is added and allowed to bind to the target antibody. Only after the addition of CaCl2, 
pAG-MNase is activated and targeted chromatin digestion proceeds until the addition of the 
chelating regent to inactivate pAG-MNase. The pAG-MNase bound antibody complex is allowed to 
diffuse out of the permeabilized nuclei and the resulting DNA extracted and cleaned-up. 
Sequencing ready libraries are prepared from the CUT&RUN enriched DNA fragments. The 
resulting libraries are then run on a 10% PAGE gel to separate and remove contaminating adaptor-
dimers from the CUT&RUN enriched fragments which are now ligated with sequencing adaptor. 
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Figure 2.2: Schematic of CUT&RUN sequence data analysis. The workflow 
starts by performing quality check on raw FASTQ files using FASTQC, followed by 
trimming to remove sequencing adapters. The trimmed reads are then aligned to 
reference genome and the aligned reads are filtered based on their size to enrich 
for transcription factor-sized binding signals (20 bp ≤aligned read ≤120 bp). Size 
selected reads are then calibrated against spike-in Escherichia coli reads, and 
lastly, calibrated reads are used to call peaks using MACS2. 
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2.4 Discussion and Summary 

This protocol presents a comprehensive experimental and computational pipeline 
for genome-wide localization of regulatory transcription factors in C. albicans and is 
designed to be highly accessible to anyone with standard microbiology and molecular 
biology training. By leveraging the high dynamic range and low sample input requirements 
of the CUT&RUN assay and optimizing the protocol for localization of TF-DNA binding 
interactions in C. albicans, we have developed a powerful and affordable alternative to 
traditional ChIP-seq approaches. When compared to ChIP-seq, this protocol is more 
amenable to high throughput, requires substantially lower input cell numbers, does not 

18 kb Window

Efg1

TEC1

Ndt80

A B C

D

Control Intact Cells Isolated Nuclei

Ladder

bp

Figure 2.3: Quality control steps critical for successful CUT&RUN experiments. (A) Cells 
were stained with calcofluor white and syto 13 green fluorescent nucleic acid stain before and after
nuclei isolation and visualized using EVOS fluorescent microscope. (B) CUT&RUN libraries are 
analyzed using Bioanalyzer. Successful CUT&RUN TF libraries (indicated by the green checkmark) 
are enriched for short-fragments smaller than 200 bp and is the best indicator of success. (C) 48 
CUT&RUN libraries pooled together and analyzed using Bioanalyzer. High quality pooled 
CUT&RUN libraries (indicated by the green checkmark) are free of adaptor-dimers (lane 1) while 
low-quality pooled libraries (indicated to the red ‘X’) retain small amounts of adaptor-dimers (lane 
2). (D) Representative IGV tracks from CUT&RUN datasets showing significant enrichment for Efg1
and Ndt80 binding at the intergenic regions flanking Tec1. 
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require the use of toxic crosslinking agents, and requires ten-fold fewer sequencing reads 
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Figure 2.4: Evaluation of Ndt80 and Efg1 enriched peaks identified using our CUT&RUN 
protocol and data analysis pipeline on C. albicans biofilm cells. The Venn diagrams in the top 
row illustrate the degree of overlap between Ndt80 and Efg1 binding sites identified via CUT&RUN 
with previously published ChIP-chip data. The bottom row highlights CUT&RUN signals for all 
binding events for Ndt80 and Efg1 as colored heatmaps (red = high peak signal, blue = low/no peak 
signal) and the signal intensity as a profile plot above the heatmaps. 1000 bp region upstream (-1 
kb) and downstream (+1 kb) are also shown in the heatmap. 
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per sample to produce high-quality results (Hainer et al., 2019; Meers et al., 2019; Skene 
& Henikoff, 2017; Skene et al, 2018). To further reduce the per-sample cost of this 
protocol, we have included buffer recipes and a detailed reagent list to enable in-house 
preparation of all necessary buffers and economical bulk sourcing of other essential 
reagents. Since C. albicans biofilm formation, phenotypic switching, and commensalism 
are all regulated by complex interwoven transcriptional networks, this robust, facile, and 
affordable methodology provides a powerful new tool for understanding these and many 
other cellular processes in this important fungal pathogen (Rodriguez et al., 2020). 

TFs are not as abundant as histones or other chromatin-associated proteins, thus 
creating a unique challenge for investigating TF-DNA binding interactions via CUT&RUN. 
To address this challenge, we made critical adjustments and optimizations to the standard 
CUT&RUN experimental protocol (Skene & Henikoff, 2017). Since most successful 
CUT&RUN experiments targeting TFs yield a small amount of DNA that is too dilute to 
quantify and is often enriched for fragments smaller than 150 bp in our protocol, we 
optimized the End Repair and dA-Tailing reaction conditions to favor these smaller 
fragments (Hainer et al., 2019; Skene & Henikoff, 2017; Zhu et al., 2019). Even with this 
optimization step, we found that the PCR-amplified libraries contained a significant 
proportion of adapter dimers, which could not be completely removed using magnetic 
bead-based DNA size selection methods. To address this issue, we additionally included 
a PAGE gel size selection step to generate final sequencing ready libraries that are largely 
devoid of adapter dimers. This is a critical step of our CUT&RUN protocol, as removing 
adapter dimers while retaining the smaller TF-derived CUT&RUN fragments is essential 
for obtaining high quality results. Furthermore, our computational pipeline filters the 
sequencing data to focus on the smaller reads that are derived from TF-DNA binding 
interactions in the CUT&RUN assay. Due to these TF-specific adjustments, our protocol 
is not recommended for the profiling of large chromatin associated complexes such as 
nucleosomes. While it is theoretically possible to adapt our protocol for this purpose by 
following the standard library preparation protocol included with the NEBNext Ultra II 
Library Prep kit, one would still need to adjust the post-sequencing size selection included 
in our computational pipeline. Specifically, in the size filtering section in the code file 
cut_n_run_pipeline.sh, users would need to replace the current value of “14400” 
(120 bp * 120 bp) with the square of the desired fragment length to enable our analysis 
pipeline to analyze the sequencing results generated for other types of chromatin-DNA 
binding interactions.  

Another key step in a successful CUT&RUN experiment includes choosing optimal 
post-sequencing data analysis parameters. While most of our computational pipeline is 
designed to be standardized and applicable to the study of any regulatory TF of interest 
in C. albicans, there are two important considerations that the user should evaluate while 
running the pipeline. The first consideration is whether to include or remove duplicate 
reads from the sequencing data prior to identification of bound target sites. Since low 
abundance TFs will typically yield sequencing data containing a significant percentage of 
reads that are derived from PCR duplication during the library amplification step, removing 
PCR duplicates can have a significant negative impact on the results. However, with highly 
abundant TFs or chromatin associated proteins, PCR duplicates typically represent a 
smaller portion of the total number of reads and are often removed to suppress 
background noise in the data. Ultimately, this decision to keep or remove PCR duplicates 
is dependent on the TF of interest and the depth of sequencing data obtained, and thus 
we automatically generate independent output files for data derived with or without PCR 
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duplicate reads so the user can decide which output files yield the best results for each 
experiment. The second consideration is whether to identify and remove problematic loci 
that yield significant, yet highly variable, enrichment in both experimental (antibody against 
protein of interest) and negative control (IgG) samples. Our peak-calling algorithm uses 
MACS2 (https://pypi.org/project/MACS2/) to identify significantly enriched loci in both the 
experimental and control samples and excludes those that appear in both. While this 
typically eliminates these problematic loci, we have noticed that some of these loci 
occasionally appear as significant peaks in certain experiments, but based on our 
experience, we do not believe that these are true positive sites of TF enrichment. Thus, 
we provide an optional filtering step to remove these problematic loci, which we refer to 
as “blacklisted” loci. Our list of blacklisted loci primarily contains highly repetitive sequence 
elements and regions such as telomeric repeats and centromeres that have historically 
yielded false positive results in our previous genome-wide binding assays. We note that 
this is a very conservative list of loci that we have high confidence in assigning as 
problematic; however, each user should evaluate whether this filter is appropriate for their 
experiment(s) on a case-by-case basis. 

CUT&RUN has become a popular choice for investigating protein-DNA 
interactions in higher eukaryotes as well as in the model yeast Saccharomyces cerevisiae, 
and we have successfully adapted this methodology to investigate genome-wide TF-DNA 
binding interactions in the clinically relevant fungal pathogen C. albicans. This protocol 
provides detailed methods for all necessary experimental and computational procedures, 
from engineering strains that express epitope-tagged TFs, through to the computational 
analysis of the resulting CUT&RUN sequencing data. Overall, this protocol and the 
accompanying data analysis pipeline produce robust TF-DNA binding profiles, even when 
using complex multimorphic populations of cells isolated from low abundance biofilm 
samples and provides superior data quality at a lower overall cost when compared to 
ChIP-seq methodologies. 
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Chapter 3 
 

A computational workflow for the analysis of 3’ Tag-Seq data 

 

3.1 Abstract 

RNA-sequencing (RNA-seq) is a ubiquitous tool to profile genome-wide changes 
in gene expression. RNA-seq uses high-throughput sequencing technology to quantify the 
amount of RNA in a biological sample. With the increasing popularity of RNA-seq, many 
variations on the protocol have been proposed to extract unique and relevant information 
from biological samples. 3’ Tag-Seq (also called TagSeq, 3′ Tag-RNA-Seq, and Quant-
Seq 3′ mRNA-Seq) is one RNA-seq variation, where the 3’ end of the transcript is selected 
and amplified to yield one copy of cDNA from each transcript in the biological sample. 

We present a simple, easy, and publicly available computational workflow to 
analyze 3’ Tag-Seq data. The workflow begins by trimming sequence adapters from raw 
FASTQ files. The trimmed sequence reads are checked for quality using FastQC, aligned 
to the reference genome, and read counts are obtained using STAR. Differential gene 
expression analysis is performed using DESeq2, based on differential analysis of gene 
count data. The outputs of this workflow are MA plots and tables of significant and 
differentially expressed genes and UpSet plots. 

This protocol is intended for users interested in analyzing 3’ Tag-Seq data. As 
such, transcript length-based normalizations are not performed within the workflow. Future 
updates to this workflow could include custom analyses based on the gene counts table 
and data visualization enhancements. 

3.2 Introduction 

RNA sequencing (RNA-seq) is a widely used tool to detect genome-wide changes 
in gene expression (Wang et al., 2009). It was first used in Saccharomyces cerevisiae to 
identify the gene expression patterns of all genes, exons, and their boundaries across the 
genome (Nagalakshmi et al., 2008). For humans, as well as many model organisms like 
yeast, fruit flies, and mice, RNA-seq has been instrumental in providing high-resolution, 
functionally relevant, genome annotations (Cherry et al., 2012; Gnerre et al., 2011; 
International Human Genome Sequencing Consortium, 2004; Matthews et al., 2015). 
Briefly, the RNA-seq protocol begins with the isolation of total RNA, which is typically 
enriched/selected for polyadenylated (polyA) RNA or alternatively depleted for ribosomal 
RNA (rRNA) (Zhao et al., 2018). After this step, double-stranded complementary DNA 
(cDNA) is synthesized via reverse transcription from the RNA, resulting in cDNA libraries. 
The cDNA molecules are fragmented, and sequencing adapters are added to the cDNA 
fragments. Then, the cDNA fragments are subjected to high-throughput sequencing to 
generate short sequence reads, which are used for downstream analyses.  

Whole transcript RNA-seq workflows produce data providing information on 
quantifying gene expression, novel transcripts, alternatively spliced genes, and allele 
specific expression (Wang et al., 2009). Although the extent of this information is typically 
valuable to the researcher, oftentimes, the goal of many biological research projects is 
simply to identify changes in gene expression patterns between conditions. Given this 
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simplified goal, classical RNA-seq protocols may be more complex and more expensive 
than is necessary towards the goal of obtaining genome-wide gene expression changes 
(Ma et al., 2019; Wang et al., 2009). To simplify classical RNA-seq protocols, recent 
advances in the field have provided alternative RNA-seq methods that are used today to 
address specific biological questions (Moll et al., 2014; Morrissy et al., 2011). One of these 
alternative methods is 3’ Tag-Seq (also called TagSeq, 3′ Tag-RNA-Seq, and Quant-Seq 
3′ mRNA-Seq). In this method, cDNA libraries are reverse transcribed only from the 3’-
end of the mRNAs, resulting in a single copy of cDNA arising from each transcript (Ma et 
al., 2019; Moll et al., 2014; Torres et al., 2008). Compared to classical RNA-seq methods, 
3’ Tag-Seq is simpler, quicker, and lower cost, and provides sufficient sequencing depth 
for differential gene expression analysis (Ma et al., 2019). These benefits make 3’ Tag-
Seq the ideal choice for researchers whose end goals are to identify changes in patterns 
of gene expression between two or more conditions. 

Analysis of classical RNA-seq data was identified as one of the early challenges 
in dealing with these complex sequencing datasets (Wang et al., 2009). Ultimately, 
analysis of RNA-seq data is highly dependent on the experimental design used to create 
the sequencing libraries (Conesa et al., 2016). Consequently, there is no “one size fits all” 
workflow for the analysis of RNA-seq output reads. Here, we present a simple, easy, and 
publicly available computational workflow to analyze 3’ Tag-Seq data. The workflow 
begins by trimming sequencing adapters from raw FASTQ files (Cock et al., 2010; Conesa 
et al., 2016). The trimmed sequence reads are checked for quality using FastQC, aligned 
to the reference genome, and read counts are obtained using STAR (“Babraham 
Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data,” n.d.; 
Dobin et al., 2013). Differential gene expression analysis is performed using DESeq2, 
based on differential analysis of gene count data (Love et al., 2014). The outputs of this 
workflow are MA plots and tables of significant and differentially expressed genes. 
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3.3 Basic Protocol 1 
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Figure 3.1: RNA-seq analysis workflow. (i) Adapters added to raw RNA-seq reads are trimmed 
using BBDuk tool. (ii) A quality control (QC) report is generated for trimmed reads using FastQC. 
(iii) Reads passing the QC check are aligned to the reference genome using STAR and a gene 
count table is created. (iv) The gene count table is used to run differential gene expression analysis 
using DESeq2, and the DESeq2 output is saved as a table to a file for downstream usage. 
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In the following section, we describe in detail our 3’ Tag-Seq analysis workflow. Figure 
3.1 provides a summary of the computational workflow. Briefly the pipeline begins with the 
processing of raw RNA-seq FASTQ files and ends with a table output of differential gene 
expression (Love et al., 2014). 

 

Necessary resources 

Hardware 

An internet connected computer.  

Software 

The workflow uses the Conda command line tool environment to install all required 
software and tools. Conda software can be accessed at  
https://docs.conda.io/en/latest/miniconda.html. The workflow is saved in a bash script file 
called pipeline.sh. The source code and documentation can be found on GitHub at 
https://github.com/akshayparopkari/RNAseq/wiki.  

Other Requirements 

1. Access to computational cluster and login information 
2. Basic knowledge of Linux 
3. Raw FASTQ sequencing data 
4. Sample metadata 

3.3.1 Downloading RNAseq workflow on local machine 

On Linux and macOS, users can use the in-built Terminal application, and on Windows, 
users can download and use Git Bash (https://gitforwindows.org/). 

1. Navigate to desired directory to download this folder on your machine 

git clone https://github.com/akshayparopkari/RNAseq.git 

NOTE: Alternatively, users can click on the green “Code” button on GitHub page - 
https://github.com/akshayparopkari/RNAseq - followed by clicking on “Download ZIP" 
option. Then, users can unzip the downloaded folder and save it to a relevant location on 
their local machines. 

 

2. Make script files executable 

cd RNAseq/ 

chmod u+x pipeline.sh 

chmod u+x format_counts_table.py 
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3.3.2 Loading the Conda virtual environment 

Conda enables virtual environments that contain the required software packages/libraries 
to be installed and set up. In this instance, the RNAseq Conda environment contains the 
BBMap suite, STAR alignment software, and FASTQC tool (“Babraham Bioinformatics - 
FastQC A Quality Control tool for High Throughput Sequence Data,” n.d.; Bushnell, 2014; 
Dobin et al., 2013). Additionally, required Python and R libraries and their dependencies 
are also installed. 

1. Create Conda environment using Supplemental File 1 

conda create -n RNAseq --file Supplemental_File_1.txt 

NOTE: Users only need to create the environment once. For subsequent analysis, users 
can activate the environment to run the analysis using the following command – 

conda activate RNAseq 

3.3.3 Creating an input data folder 

The main script of 3’ Tag-Seq is the pipeline.sh file. This single bash script contains 
all the preprocessing steps - QC filtering with BBDuk, QC check with FastQC and, finally, 
alignment and gene counting with STAR. pipeline.sh takes in a single input which is a 
folder/directory with: 

1. all raw FASTQ sequence files AND 
2. the sample metadata Excel file 

 

The raw FASTQ sequence files may either be compressed (using gzip) or uncompressed. 
The file names must start with the sample ID, followed by the underscore and the rest of 
the file name. For example, projectname_date_L001.fastq.gz should be named 
sampleid_projectname_date_L001.fastq.gz. The first part of the file name before the first 
underscore is how the script knows which sample it is processing. The sample metadata 
file contains all metadata associated with the input samples including sample ID, 
genotype, condition, treatment, time, etc. For this repository, the sample metadata file 
must contain at least two columns - SampleID and Condition. The table below is an 
example of a sample metadata file, where the first two columns SampleID and Condition 
are required, and the third column FASTQ_file and beyond is optional, but highly 
recommended. A comprehensive metadata file also enables convenient sample 
submission to a sequence read archive (SRA), once your manuscript is published. Table 
1 represents a sample metadata file. 

Table 3.1: Sample metadata file. Users can use this file as a template to generate their metadata 
file. 

SampleID Condition FASTQ_file Other_Sample_Info 

Sample1A WT Sample1A_S8_L001_R1_001.fastq.gz ... 

Sample1B Mutant Sample1B_S8_L001_R1_001.fastq.gz ... 

Sample2A WT Sample2A_S8_L001_R1_001.fastq.gz ... 
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Sample2B Mutant Sample2B_S8_L001_R1_001.fastq.gz ... 

Sample3A WT Sample3A_S8_L001_R1_001.fastq.gz ... 

Sample3B Mutant Sample3B_S8_L001_R1_001.fastq.gz ... 

... ... ... ... 

 

NOTE: The input directory must contain raw FASTQ files and a sample metadata Excel 
file. Users may implement a user-defined project structure to organize their RNA-seq data. 
Please see Cookiecutter Data Science project 
(https://cookiecutter.readthedocs.io/en/1.7.2/) for ideas on how to best organize 
computational data. 

Transferring data to/from cloud computing resource to a local machine via command line 

Below is common usage of secure copy scp function which one of the commands used 
for transferring files to/from cloud computing resource. The other command is secure file 
transfer protocol sftp. Please refer to cloud computing resource wiki for detailed 
instructions on sftp function. 

scp FROM TO 

where FROM is the source location and TO is the destination location. 

Third party GUI apps 

Users can also use third party clients to transfer files to/from MERCED. FileZilla 
(https://filezilla-project.org/) for Linux and Windows or Cyberduck (https://filezilla-
project.org/) for MacOS and Windows are alternative to using scp or sftp to transfer files 
with drag and drop. 

 

3.3.4 Running the RNAseq pipeline 

Users must activate the RNAseq Conda environment, before attempting to executing the 
pipeline. For more information, please see section 3.3.2. 

1. Run the RNAseq pipeline 

INPUTFOLDER=’’path/to/your/input/folder’’  # enter your data 
folder with FASTQ files here 

bash pipeline.sh "$INPUTFOLDER" > "$INPUTFOLDER"/preprocess.log 

 

3.3.5 Output files 

pipeline.sh outputs many files, which can be useful to dig deeper into specific samples to 
address any discrepancy in the data. The three important files to check are: 

1. gene_raw_counts.txt, which is a tab-separated file of raw gene counts 
for all samples with gene names as the rows and samples as columns 
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2. deseq2_lfc.txt, which is a tab-separated file from the DESeq2 analysis 
3. MA_plot.pdf, which is a PDF depicting volcano plots of log fold changes 

against mean gene expression 

 

More information about other output files: 

1. All “_trimmed.fastq” ending files are trimmed sequences from BBmap 
and are saved in the trim_log directory 

2. All “.bam” ending files are alignment files generated by STAR and are 
saved in the STAR_log directory 

3. All “ReadsPerGene.out.tab” ending files are gene count files for each 
sample generated by STAR and are saved in the STAR_log directory 

4. All “Log.out”, “Log.final.out” and “Log.progress.out” ending files are 
intermediary alignment files generated by STAR and are saved in the 
STAR_log directory. 

 

3.3.6 Visualizing overlaps in multiple experimental conditions 

Users can use the overlap_upsetR.R script to visualize overlaps in genes for multiple 
experimental conditions. The overlap is represented as an UpSet plot (Lex et al., 2014). 
UpSet plots are an extension of Venn diagrams and are useful when there are more than 
three categories/sets of conditions/samples. The overlap_upsetR.R takes one input – 
either “up” or “down” – to calculate overlap between various samples/conditions. Users 
need to supply an input directory in the code on line 38, and run the following command 
to get the output UpSet plot - 

1. To visualize genes upregulated in multiple conditions/samples 
a. overlap_upsetR.R up 

 

2. To visualize genes downregulated in multiple conditions/samples 
a. overlap_upsetR.R down 

Figure 3.2 is an example of UpSet plot showing upregulated genes overlapping various 
combinations of four experimental conditions. 

 

 

 

 



77 

 

 

 

 

3.4 Support Protocol 1 

During the alignment step, STAR utilizes genome index files for mapping sequenced 
reads to a reference genome. This protocol describes how to generate genome indices 
for the Candida albicans Assembly 21 genome as an example. These steps can be used 
to generate genome indices for your reference genome of choice. 

1. In your home folder, download C. albicans chromosomal sequences from the Candida 
Genome Database - http://www.candidagenome.org/ (Skrzypek et al., 2017). 

wget 
http://www.candidagenome.org/download/sequence/C_albicans_SC5314/
Assembly21/current/C_albicans_SC5314_A21_current_chromosomes.fast
a.gz 

gunzip C_albicans_SC5314_A21_current_chromosomes.fasta.gz 
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Figure 3.2: Example UpSet plot output. Three transcription factors (TFs) – Nrg1, Rfg1 and Zcf8 
– knockout (KO) RNAseq experimental data is shown. The bar plot on the top represents the 
overlap of upregulated genes in each of the three experimental samples as well as control WT 
sample. The horizontal bar on the left highlights the number of significantly upregulated genes in 
each of the four experimental conditions. The black circles and lines in the bottom show the 
categories for which overlap is calculated and shown by the bar chart on the top. E.g., the fourth 
bar on the top represents 199 significantly upregulated genes observed in both WT and Nrg1-KO 
conditions. The blue bar is highlighting overlaps for the three experimental conditions. 
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2. Download C. albicans genome annotation GTF file from Candida Genome Database. 

wget 
http://www.candidagenome.org/download/gff/C_albicans_SC5314/Assem
bly21/C_albicans_SC5314_A21_current_features.gtf 

gunzip C_albicans_SC5314_A21_current_features.gtf  

3. Activate 3’Tag-Seq Conda environment 

module load anaconda3 

source activate RNA-seq 

4. Generate STAR genomes 

mkdir ca_genome/ 

cd ca_genome/ 

STAR --runMode genomeGenerate --genomeDir ./ --genomeFastaFiles 
~/ C_albicans_SC5314_A21_current_chromosomes.fasta 

5. STAR will generate output index files in the ca_genome folder. 

 

3.5 Summary 

We presented an RNAseq workflow which takes in raw FASTQ files and provides 
differential gene expression table as the output. The workflow is specifically designed to 
handle data generated using 3’ Tag-Seq experimental protocol. We also provide an R 
script which can visualize overlapping genes among multiple experimental conditions. The 
code is published on GitHub which allows users to dig into the source code and potentially 
modify the code to their specific use case. 
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