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Abstract

Rationale and Objective: The associations of glomerular markers of kidney disease (eGFR 

and albuminuria) with frailty and cognition are well established. However, the relationship of 

kidney tubular injury and dysfunction with frailty and cognition are unknown.

Study Design: Observational cross-sectional study.

Setting & Participants: 2,253 participants with eGFR < 60 ml/min/1.73m2 in the Systolic 

Blood Pressure Intervention Trial
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Exposures: Eight urine biomarkers: Interleukin-18 [IL-18, pg/mL], kidney injury molecule-1 

[KIM-1, pg/mL], neutrophil gelatinase-associated lipocalin [NGAL, ng/mL], chitinase-3-like 

protein-1 [YKL-40, pg/mL], monocyte chemoattractant protein-1 [MCP-1, pg/mL], α−1 

microglobulin [α1M mg/g], beta-2 microglobulin [β2M ng/mL], and uromodulin [Umod ng/mL].

Outcomes: Frailty was measured using a previously validated frailty index (FI), categorized as 

fit (FI ≤ 0.10), less fit (0.10 < FI ≤ 0.21) and frail (FI > 0.21). Cognitive function was assessed 

using the Montreal Cognitive Assessment (MoCA).

Analytical Approach: Associations between kidney tubule biomarkers with categorical FI were 

evaluated using multinomial logistic regression with the fit group as the reference. Cognitive 

function was evaluated using linear regression. Models were adjusted for demographic, behavioral 

and clinical variables including eGFR and urine albumin.

Results: Three of the 8 urine biomarkers of tubule injury and dysfunction were independently 

associated with FI. Each two-fold higher level of urine KIM-1, a marker of tubule injury, was 

associated with a 1.22 [95% CI: 1.01, 1.49) fold greater odds of being in frail group. MCP-1, a 

marker of tubulo-interstitial fibrosis, was associated with a 1.30 [95% CI 1.04, 1.64] greater odds 

of being in frail group, and α1M, a marker of tubule re-absorptive capacity, was associated with 

a 1.48 [95% CI 1.11, 1.96] greater odds. These associations were independent of confounders 

including eGFR and urine albumin, and were stronger than those of urine albumin with frailty 

index (1.15 [95% CI 0.99, 1.34]). Higher urine β2M, another marker of tubule reabsorptive 

capacity, was associated with worse cognitive scores at baseline (β: ‒0.09; 95% CI ‒0.17, ‒0.01). 

Urine albumin was not associated with cognitive function.

Limitations: Cross-sectional design, FI may not be generalizable in other populations.

Conclusions: Urine biomarkers of tubule injury, fibrosis and proximal tubule reabsorptive 

capacity are variably associated with FI and worse cognition, independent of glomerular markers 

of kidney health. Future studies are needed to validate these results among other patient 

populations.

Graphical Abstract

PLAIN-LANGUAGE SUMMARY

The relationship of kidney tubule health with cognition and frailty
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Standard measures of kidney function, including eGFR and albuminuria do not reliably capture the 

health of the kidney tubules, which may provide additional insight into the relationship between 

kidney function and cognition and frailty among older adults. We evaluated the relationship 

between 8 urine markers of kidney tubule function and injury with cognitive function and 

frailty among 2253 participants with chronic kidney disease in the Systolic Blood Pressure 

Intervention Trial. We found that participants with higher concentrations of urine KIM-1, MCP-1, 

and α1M were more likely to be categorized as frail. We also found that participants with higher 

concentrations of urine β2M had lower cognitive scores. These associations were significant 

beyond adjustment for eGFR and urine albumin.

Index words:

urine biomarkers; frailty; cognition; tubule injury and dysfunction

Introduction

Chronic kidney disease (CKD) is highly prevalent in the US and world-wide, and is strongly 

associated with risk of kidney failure, cardiovascular disease, and all-cause mortality. Prior 

studies also consistently demonstrated that CKD is associated with frailty and worse 

cognitive function.1–6 However, these studies largely have utilized estimated glomerular 

filtration rate (eGFR) and urine albumin to creatinine ratio (albuminuria [ACR]), markers of 

glomerular function and injury, respectively, to characterize kidney health. These biomarkers 

do not account for the health of kidney tubules, a substantial limitation as, despite kidney 

tubule atrophy and fibrosis on biopsy being strongly associated with risk of kidney failure, 

these findings are poorly correlated to eGFR and ACR.7–11 Kidney tubules are critical for 

key physiological processes of the kidney, including endocrine resistance, reabsorption of 

key nutrients, elimination of toxins and drugs, and acid/base homeostasis.

A number of urine biomarkers have emerged that allow noninvasive assessment 

of kidney tubule injury and dysfunction; these include markers of tubule injury 

(Interleukin-18 [IL-18], kidney injury molecule-1 [KIM-1], and neutrophil gelatinase

associated lipocalin [NGAL]), repair (chitinase-3-like protein-1 [YKL-40]), and fibrosis 

(monocyte chemoattractant protein-1 [MCP-1]). Additional biomarkers include α−1 

microglobulin [α1M] and beta-2 microglobulin [β2M], which reflect proximal tubule 

reabsorptive capacity, and uromodulin [Umod], which measures defense from infections 

and kidney tubule protein synthetic capacity. Prior studies from the Systolic Blood Pressure 

Intervention Trial (SPRINT) have documented strong associations between these biomarkers 

with risks of cardiovascular disease (CVD), acute kidney injury, and CKD progression.12–15 

A recent study in SPRINT found that declining kidney function measured by eGFR was 

associated with an increased risk of MCI and probable dementia.16 While the biological 

mechanisms that underlie the shared pathophysiology between kidney tubule dysfunction 

and injury with frailty and cognitive function are unclear, it is possible that vulnerability 

to microvascular injury caused by hypertension, hypoxia from dysregulated cerebral blood 

flow, as well as chronic inflammation and endothelial dysfunction may play a role.17–20 
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Thus, we hypothesized that abnormalities in kidney tubule health may be associated with 

frailty index and cognition, above and beyond eGFR and ACR.

Methods

Study Sample

SPRINT is a randomized clinical trial that evaluated intensive (<120 mmHg) versus standard 

(<140 mmHg) blood pressure treatment targets in 9,361 hypertensive adults enrolled 

between November 2010 and March 2013 and followed until August 2015 with a median 

follow-up of 3.26 years. Details of the trial design have been described elsewhere.21 Briefly, 

participants were required to be at least 50 years of age, to have a SBP of 130 to 180 mmHg, 

and to be at elevated risk of cardiovascular events including at least one of the following: 

prevalent subclinical or clinical cardiovascular disease, chronic kidney disease with an eGFR 

between 20 and ≤ 60 ml per minute per 1.73 m2 estimated with the 4-variable Modification 

of Diet in Renal Disease (MDRD) equation, ≥ 75 years of age, or 10-year Framingham risk 

score of ≥ 15%. Important exclusion criteria include prior stroke, diabetes, and proteinuria 

> 1 g/day. The primary cardiovascular and cognitive results of SPRINT have been published 

elsewhere.21,22 The SPRINT study protocol was approved by Institutional Review Boards at 

each trial site, and all participants provided informed consent.

This ancillary study focuses on the contribution of kidney tubule dysfunction on clinical 

outcomes in the 2,514 SPRINT participants with CKD defined by estimated glomerular 

filtration rate (eGFR) <60 mL/minute per 1.73 m2 using the CKD-EPI combined creatinine 

and cystatin C equation.23 We measured the panel of kidney tubule dysfunction and 

injury markers in spot urine samples obtained at SPRINT baseline. After excluding 225 

participants with missing urine specimens, 11 participants with missing frailty data, and 25 

with missing cognitive data, the resulting analytic sample of 2,253 individuals were used for 

this analysis.

Biomarker measurement

All urine specimens were stored at −80°C until time of measurement in 2018. IL-18, KIM-1, 

MCP-1, and YKL-40 were measured together using a multiplex assay on a MESO Scale 

Diagnostics platform (Rockville, MD). Interassay CVs were 4.9% to 13.7%, 6.1% to 13.0%, 

7.1% to 12.0%, and 6.5% to 11.1%, respectively. The analytic ranges were 2 to 10,000 

pg/mL for IL-18, 4 to 200,000 pg/mL for KIM-1, 3 to 10,000 pg/mL for MCP-1, and 10 

to 500,000 ng/mL for YKL-40. α-1 microglobulin (A1M) was measured using a Siemens 

nephelometric assay (Tarrytown, NY) with interassay CV of 3.5% to 8.8% and detectable 

range of 5 to 480 mg/g. β-2 microglobulin (B2M), Umod, and NGAL were measured on 

a multiplex assay on a MESO Scale Diagnostics platform (Rockville, MD) with interassay 

CVs of 15% to 16%, 13% to 16%, and 11% to 19%, respectively. The ranges of detection 

were 1.2 to 5020 ng/mL for B2M, 0.6 to 2510 ng/mL for uromodulin, and 6 to 251000 

ng/mL for NGAL.13 Urine albumin (mg/L) and urine creatinine were measured using a 

nephelometric method (Siemens, Tarrytown, NY),24 and by an enzymatic procedure (Roche, 

Indianapolis, IN), respectively.
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Outcomes

We categorized participants’ frailty status at baseline using a previously developed frailty 

index (FI) in SPRINT, based upon the model of deficit accumulation and derived from 

the African American Health (AAH) Study and the Hypertension in the Very Elderly Trial 

(HYVET) frailty indices.25,26 Briefly, the FI is comprised of a total of 36 items, including 

information on global cognitive function, self-rated health, self-rated depression, laboratory 

measurements, blood pressure (BP), and comorbid conditions. The FI is calculated as the 

sum of the score for each deficit divided by the total number of non-missing items, with 

scores ranging from 0.007 – 0.559 in SPRINT. For these analyses, we modified the FI 

omitting the item regarding CKD (based on eGFR), reducing the FI to 35 items. We then 

categorized frailty status as in previous work from SPRINT,25 with participants classified as 

fit (FI ≤ 0.10), less fit (0.10 < FI ≤ 0.21) or frail (FI > 0.21). The FI in SPRINT was shown to 

be associated with falls and all-cause hospitalizations,25 as well as greater risks of CVD and 

all-cause mortality.27

Cognitive function was measured at baseline using 3 validated screening tests. The Montreal 

Cognitive Assessment (MoCA; range 0–30) measures global cognitive function, the digit 

symbol coding (DSC, range 0–135) test measures attention and processing speed, and 

logical memory (LM) I and 2 (LM1, range 0–28; LM2, range 0–14) measures episodic 

verbal memory. Specifically, LM1 measures immediate recall, whereas LM2 measures 

delayed recall. Both the DSC and LM are subsets of the Wechsler Adult Intelligence 

Scale-IV. We also considered a MoCA score of < 24 to indicate screening positive for 

potential cognitive impairment.28

Covariates:

Potential confounders were measured at baseline and chosen a priori based on known risk 

factors for kidney disease, frailty, and cognitive function. They included age, sex, race 

(white/other vs Black), insurance status (Medicare [reference], uninsured, Medicaid, VA, 

private/other), body mass index (weight (kg)/height(m)2), years of education (less than a 

high school diploma, high school diploma, some college or greater), any alcohol use in the 

last 12 months (yes, no), current smoking (yes, no), baseline systolic BP (SBP; mmHg) 

and diastolic BP (DBP; mmHg), number of hypertension medications, urine creatinine 

(mg/g), cystatin C-creatinine based eGFR (mL/min/1.73 m2) using CKD-EPI equation 

and depressive symptoms using the 9-item patient health questionnaire (PHQ-9, range 0–

27).23,29

Statistical Analysis

Biomarkers were log2 transformed to allow interpretation as “per two-fold higher” and to 

allow comparison of strengths of associations across biomarkers. Samples with biomarker 

values below the limit of detection were assigned a value equivalent to the lower limit of 

detection divided by the square root of two. All models were adjusted for urine creatinine to 

correct for urine tonicity. This was done instead of indexing due to the susceptibility of bias 

by muscle mass and health status.30 Descriptive statistics were performed on all participants 

and stratified by frailty category, as well as characteristics for participants with MoCA < 24, 

and included a correlation matrix for the biomarkers.
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We used linear regression to evaluate kidney biomarkers with FI as a continuous outcome, 

and multinomial logistic regression to evaluate kidney biomarkers and FI as a categorical 

outcome, setting the fit group as the reference category. As a sensitivity analysis, we 

also evaluated the association with the less fit group as the reference. Cross-sectional 

analyses were evaluated with three models for each biomarker. We first evaluated the 

unadjusted association including only the biomarker of interest and urine creatinine. A 

second model adjusted for all confounders listed above except eGFR or urine albumin. Our 

final model additionally adjusted for eGFR and log2 urine albumin. Although our focus was 

on the biomarkers of kidney tubule injury and dysfunction, we evaluated the independent 

association with urine albumin (per 2-fold higher) and outcome measures in companion 

analyses, in order to provide an indicator for strengths of association compared to the other 

urine markers, as urine albumin is already available to clinicians in clinical practice. These 

models were repeated using the cognitive function tests using linear regression for MoCA 

continuously, and logistic regression using the cut point of <24 versus higher. We used the 

same modeling approach for cognitive function as we did for frailty. We used simple linear 

regression when evaluating continuous DSC test and LM tests.

All analyses were performed in Stata (version 15.1, Stata Corporation). Significance was 

defined for all analyses as p <0.05.

Results

Among 2,253 participants with eGFR < 60 ml/min/1.73m2 and complete biomarker, FI 

and cognitive data, 806 (36%) participants were considered frail, 1196 (53%) were less fit, 

and 251 (11%) were fit, and 1298 (58%) had a MoCA score of < 24. Age was similar 

across FI groups, whereas those classified as frail were more often women, black, had lower 

educational attainment, more often smoked, and had lower eGFR and urine ACR than those 

who were fit. Median urine concentrations of biomarkers of tubule function at baseline 

were consistently higher in those classified as frail than those classified as fit, with the 

exception of urine Umod which had the opposite pattern (Table 1). Characteristics between 

participants with missing data versus the total population can be found in table S1. Briefly, 

there was a greater percentage of black participants and participants treated by diuretics with 

missing data compared to the total population, and median concentrations of MCP-1, and 

β2M were higher (Table S1). A correlation matrix indicated that the urine tubule biomarkers 

were moderately correlated with one another with correlations ranging from ‒0.0007 to 0.81 

(Table S2).

Associations of Kidney Tubule Dysfunction and Injury with Frailty Index

In unadjusted analyses, 6 of the 8 biomarkers of kidney tubule injury and dysfunction were 

statistically significantly associated with the continuous FI, implicating worse kidney tubule 

health with worse FI scores (higher urine concentrations of all biomarkers except Umod). 

The exceptions were YKL-40 and β2M which were not associated with FI. In adjusted 

models, higher urine KIM-1, MCP-1, α1M, and albumin remained significantly associated 

with continuous FI scores. Similarly, when evaluating the categorical FI outcome (fit, less 

fit, and frail) in unadjusted models, the same 6 biomarkers were statistically significantly 
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associated with frailty, relative to fit participants. In adjusted models without eGFR or 

albuminuria, higher urine NGAL, KIM-1, MCP-1, α1M, and β2M, and lower Umod were 

all statistically associated with higher likelihood of being in the frail group. The addition of 

eGFR and urine albumin attenuated associations, such that KIM-1, MCP-1, α1M remained 

statistically significantly associated with being frail compared with fit in fully adjusted 

models. As a comparator, higher urine albumin was also associated with FI in this model; 

however, the associations of KIM-1, MCP-1 and α1M appeared stronger than urine albumin, 

even though these biomarkers had already been adjusted for urine albumin concentrations 

(Table 2, Figure 1). In our sensitivity analysis evaluating the association using the less 

fit group as the reference, effect sizes were attenuated compared to odds ratios with the 

fit group as the reference, and only MCP-1 and α1M remained statistically significantly 

associated (Table S3).

Association of Kidney Tubule Dysfunction and Injury with Cognitive Function

When evaluating the unadjusted association between biomarkers of kidney tubule health 

with cognitive function measured by MoCA as a continuous variable, we found that each 2

fold higher urine NGAL, YKL-40, KIM-1, MCP-1 and β2M were statistically significantly 

associated with lower cognitive scores. However, only higher β2M remained statistically 

significantly associated with worse cognition after adjustment for confounders, eGFR and 

urine albumin (Table 3). Urine albumin was not associated with cognitive scores. When 

evaluated as a binary variable (MoCA < 24), none of the biomarkers were associated 

lower cognitive function (Table 3). In companion analyses we evaluated the DSC and 

LM2 as more specific measures of cognitive function. Higher urine NGAL and β2M were 

statistically associated with lower DSC scores in fully adjusted models, and Umod was 

statistically associated with worse LM2 scores (Table 4).

Regression coefficients for the full model evaluating β2M with MoCA scores, and odds 

ratios for the full model evaluating α1M with FI can be found in tables S4 and S5, 

respectively.

Discussion

In this study of 2,253 SPRINT participants with CKD, we found that higher concentrations 

of several urine markers of kidney tubule dysfunction and injury were modestly associated 

with frailty and cognitive dysfunction. The observed associations were independent of eGFR 

and urine albumin, and other CVD risk factors. When compared to urine albumin, urine 

α1M, MCP-1, KIM-1 had stronger associations with FI and worse cognitive function. 

While higher β2M was associated with lower MoCA scores, higher NGAL and β2M were 

associated with lower scores on the DSC, a test of attention and processing speed, and 

lower Umod was associated with lower scores on logical memory assessment. Overall, these 

findings suggest that markers of kidney tubule dysfunction and injury have the potential 

to identify individuals with higher burdens of frailty and cognitive dysfunction above and 

beyond glomerular markers of kidney health (eGFR and albuminuria).

Persons with CKD are at a substantially greater risk for a myriad of negative health 

outcomes including heart disease, stroke, acute kidney injury, and mortality, and previous 
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studies have suggested the possibility that CKD also identifies individuals at higher risk 

for cognitive dysfunction and frailty.1–6,31–33 Until now, studies evaluating relationships of 

kidney disease with cognition and frailty have exclusively used measures of kidney health 

that capture glomerular function and injury. Both cross-sectional and longitudinal studies 

have reported statistically significant associations between worse glomerular function and 

injury and frailty. For instance, in a cross-sectional study in the Cardiovascular Health 

Study, Shlipak et al. found that the prevalence of frailty and disability was greater among 

participants with elevated serum creatinine level compared to participants with normal 

kidney function, and that frailty remained significantly associated with elevated serum 

creatinine after adjustment for comorbid conditions.34 Other studies reported associations of 

higher albuminuria with frailty.35 Results are similar in longitudinal studies. For example, 

Darsie et al. found that older adults with a eGFR < 60 had more rapid decline in cognitive 

function scores over 9 years of follow-up,36 while Kurella et al. found that that participants 

with an eGFR of < 45 had a significantly greater change in modified mini mental state exam 

scores (3MS) over follow-up.37 However, other studies have found no associations between 

CKD and cognitive function and frailty. A recent study by Scheppach et al. found that while 

albuminuria was associated with increased risk of incident dementia, only cystatin C based 

eGFR was statistically associated whereas eGFR by creatinine was not.38 Similarly, Zijlstra 

et al. found that only CKD stage 4 was statistically associated with cognitive decline, which 

was steeper among older adults with a history of vascular disease. They found no association 

with kidney disease and functional status.39 Still, these studies have focused on glomerular 

function and injury, and results have been mixed. While these are the standard clinical 

measurements of kidney function used in clinical practice, they only capture one aspect 

of kidney health. Therefore, we extend these findings by demonstrating that kidney tubule 

dysfunction and injury are associated with cognitive impairment, and that such relationships 

are evident for several of the biomarkers even after accounting for eGFR and albuminuria. 

Thus, the full extent of the relationship of kidney disease with cognitive impairment may 

have been underestimated in prior studies.

The mechanisms that underlie the associations between kidney tubular health with both 

frailty and cognitive impairment are uncertain and require additional study. While it is 

possible that there is a causal link between kidney disease and both frailty and cognition, we 

favor a hypothesis of systemic disease processes of vascular aging that may simultaneously 

affect the kidney, functional status, and cognition. We have previously shown that these 

biomarkers are associated with a greater risk of CVD,12 which has been consistently 

related to both frailty and worse cognition, suggesting these outcomes may share a 

common etiology. Both the kidney and the brain are highly vascular organs with tightly 

autoregulated blood flow in an effort to protect against vascular insults.17,18 Hypoxia, 

chronic inflammatory stress, and other mechanisms that promote vascular aging may lead 

to end-organ damage that is manifested clinically by impairments in kidney function, 

functional status, and cognition.19,20,40,41 Future studies to understand these potential 

mechanisms should be a high priority, as, ultimately, intervening in these pathways may 

improve multiple facets of aging concurrently.

In our study, we found that higher urine α1M was associated with FI, and higher β2M 

was associated with both worse global cognitive function and attention and processing 
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speed. These proteins are freely filtered at the glomerulus, and then avidly reabsorbed 

in the proximal tubules, such that urinary excretion is low in healthy individuals. Drugs 

that damage proximal tubule reabsorptive capacity increase urine excretion of these 

proteins.42 Thus, higher concentrations in both markers suggest deficits in proximal 

tubular reabsorption capacity.43 This action of the proximal tubules is highly dependent on 

mitochondrial activity. Therefore, the consistency of these two markers with the endpoints 

investigated in this study suggest that mitochondrial dysfunction, hypoxia, or dysfunction in 

the proximal tubule of the kidney may be particularly important in defining the mechanisms 

linking kidney disease with frailty and cognitive impairment. On the other hand, we are 

uncertain why one marker would be associated with one outcome but not the other, and vice 

versa with the alternate marker. These findings require confirmation in other settings, and 

additional investigation.

Similarly, MCP-1 is expressed in epithelial and fibroblast cells in the kidney tubules. In 

persons with diabetes, higher urine MCP-1 has been linked with greater tubulo-interstitial 

fibrosis on kidney biopsy.44,45 We have shown that higher urine MCP-1 concentrations are 

associated with CVD events in kidney transplant recipients.46 Here, we found that higher 

MCP-1 was independently associated with FI. Thus, accelerated aging and systemic fibrotic 

processes may represent another potential pathway linking the observed associations. 

Finally, we also found that higher KIM-1 was associated with FI suggesting that injury 

to the proximal tubule may reflect tissue damage elsewhere in the body that might lead to 

frailty.

Strengths of this study include its relatively large sample size, evaluation of patients with 

established CKD, and availability of 8 markers of tubule dysfunction and injury concurrent 

with a validated frailty index and cognitive tests. The study also has important limitations. 

SPRINT excluded participants with diabetes mellitus, prior stroke, and proteinuria >1 g/

day, all of which are linked with frailty and cognitive impairment. Additionally, clinical 

trial participants are likely to be less frail and cognitively impaired than the general 

population, which may have limited our ability to detect associations. Similarly, the FI 

may not generalize to other studies or patient populations, and future studies will be needed 

to validate these results. All participants with kidney tubule biomarker measurements had 

eGFR below 60 mL/min/1.73m2 at baseline in SPRINT, therefore it is unclear whether 

these associations will hold up in other populations. This study had a cross-sectional design, 

thus we are not able to assess if kidney tubule dysfunction preceded frailty or cognitive 

impairment or vice versa. Longitudinal studies to assess temporality will be an important 

next step. Furthermore, because we have suggested that the biological mechanism between 

tubular markers with cognitive function and frailty might lie on the same etiologic pathway 

as CVD, it is possible that clinical vascular disease is on the causal pathway to kidney tubule 

dysfunction and injury and each of these outcomes and may act as mediators. However, 

due to the cross-sectional nature of the analysis, and the lack of vascular/subclinical CVD 

variables available in SPRINT, we could not assess the degree to which subclinical vascular 

disease may help explain the observed association. Finally, there may be unmeasured/

residual confounding in our models, however, we utilized available covariates known to 

be associated with the exposures and outcomes.
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In conclusion, in adults with hypertension and CDK participating in SPRINT, several 

markers of kidney tubule dysfunction and injury, specifically higher KIM-1, MCP-1 

and α1M, were modestly but statistically significantly associated with the FI. Similarly, 

higher NGAL, B2M and lower Umod were modestly but statistically associated with 

distinct measures of cognitive dysfunction. These associations were independent of 

eGFR, albuminuria, and other CKD risk factors, and consistently appeared stronger than 

associations of urine albumin with these same outcomes. While these results are hypothesis

generating, they suggest the possibility that kidney tubule injury, tubulo-interstitial fibrosis 

and deficits in proximal tubule reabsorptive capacity may share a common systemic 

pathology of vascular aging with mechanisms promoting frailty and cognitive impairment. 

Future studies are needed to validate these results among other patient populations.
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Figure 1. 
Multinomial regression showing the baseline association of urine biomarkers of kidney 

tubule injury and dysfunction with frailty index status (each modeled as “per 2-fold 

higher” with frailty compared with fit older adults [less fit group omitted]). Models were 

adjusted for age, sex, race, BMI, alcohol use, years of education, insurance status, SBP 

and DBP, smoking status, urine creatinine, eGFR, and albuminuria. IL-18, interleukin-18; 

KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin; MCP, 

monocyte chemoattractant protein-1; β2M, β2-microglobulin; A1M, α1-microglobulin; 

Umod, uromodulin.
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Table 1.

Characteristics of 2253 SPRINT participants with CKD stratified by Frailty Index and Cognitive Status.

Characteristics Fit (FI < 0.10)
(n=251)

Less Fit (0.10 > FI ≤
0.21)
(n=1196)

Frail (FI > 0.21)
(n=806)

MoCA < 24
(n=1298)

Mean ± SD

Age, years 73.8 (8.8) 73.4 (8.6) 72.7 (9.7) 74.7 (8.8)

Male Sex 163 (65) 737 (62) 449 (56) 813 (63)

Black Race 54 (22) 263 (22) 247 (31) 396 (31)

Some College or Greater 196 (78) 896 (75) 505 (63) 505 (63)

Body mass index, kg/m2 27.6 (4.6) 29.3 (5.5) 30.5 (6.5) 29.4 (5.8)

Current Smoking 5 (5) 82 (14) 111 (21) 113 (16)

Depression Score 0.75 (1.5) 1.9 (2.5) 5.5 (5.1) 3.0 (3.9)

eGFR, mL/min/1.73m2 49.5 (8.5) 46.9 (9.9) 43.4 (11.1) 45.7 (10.5)

Urine ACR, mg/g 64.4(200.3) 64.3 (154.3) 105.2 (294.0) 84.6 (237.0)

Urine creatinine, mg/g 124.6 (76.3) 124.4 (72.8) 123.9 (74.8) 124.4 (70.9)

SBP, mmHg 138.5 (14.0) 139.1 (16.1) 140.9 (17.2) 140.2 (16.2)

DBP, mmHg 74.2 (9.6) 74.0 (11.9) 75.1 (13.3) 73.5 (12.3)

Treated by diuretic 112 (45) 644 (54) 455 (56) 694 (54)

Treated by ARB or ACEi 153 (61) 750 (63) 501 (62) 792 (61)

LDL Cholesterol 106.3 (26.6) 107.5 (33.4) 103.5 (38.2) 105.4 (33.9)

Biomarkers Median (IQR)

IL-18, pg/mL 27.6 (15.7, 48.1) 30.1 (15.9, 55.6) 33.3 (17.4, 60.2) 31.0 (16.8, 56.8)

NGAL, ng/mL 24.2 (13.6, 50.2) 26.9 (14.6, 53.6) 31.0 (16.2, 66.5) 29.3 (15,7, 61.1)

YKL-40, pg/mL 590.8 (248.4, 1235.6) 528.5 (217.7, 1120.9) 585.9 (214.6, 1476.8) 568.6 (221.7, 1334.0)

KIM-1, pg/mL 741.9 (294.3, 1279.9) 850.3(384.9, 1574.8) 918.6 (425.0, 1737.2) 846.3 (416.5, 1586.3)

MCP-1, pg/mL 153.7 (80.1, 287.3) 179.0 (89.0, 318.9) 188.5 (98.0, 346.5) 183.9 (96.2, 326)

α1M, mg/g 12.8 (6.6, 21.9) 12.9 (7.2, 24.4) 14.7 (7.9, 28.0) 14.5 (7.6, 25.8)

β2M, ng/mL 104.2(44.0, 327.3) 96.0 (38.1, 293.2) 109.1 (37.6, 382.0) 114.2 (43.0, 342.0)

Umod, ng/mL 6.9 (4.8, 9.9) 7.0 (4.6, 10.4) 5.9 (3.9, 9.5) 6.6 (4.5, 9.9)

Urine Albumin, mg/L 12.0 (6.0, 42.0) 15.0 (7.0, 41.0) 21.0 (8.0, 73.0) 17.0 (8.0, 50.0)

Note. Values for continuous variables are given as mean ± standard deviation; those for categorical variables, as count (percentage).

Abbreviations: eGFR, estimated glomerular filtration rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; ARB, angiotensin II 
receptor blocker; ACEi, angiotensin-converting enzyme inhibitor; LDL, low-density lipoprotein; IL-18, interleukin-18; KIM-1, kidney injury 
molecule 1; NGAL, neutrophil gelatinase-associated lipocalin; MCP-1, monocyte chemoattractant protein 1; β2M, β−2 microglobulin; α1M, α−1 
microglobulin; Umod, uromodulin.
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Table 2.

Cross-sectional Association between Urine Biomarkers of Kidney Tubule Injury and Dysfunction and Frailty 

in 2253 SPRINT Participants with CKD

Frailty Index

Biomarker Frailty Continuous (range 0.007 – 
0.559)

Fit (FI ≤ 
0.10)

Less fit (0.10 < FI ≤ 0.21) Frail (FI > 0.21)

(range 0.007 – 0.559) OR (95% CI)

Log 2 IL-18, pg/mL

 Unadjusted 0.01 (0.002, 0.01)*** - 1.05 (0.94, 1.18) 1.17 (1.04, 1.32)*

 Adjusted
a 0.003 (−0.0004, 0.01) - 1.06 (0.85, 1.31) 1.12 (0.89, 1.41)

 Adjusted + eGFR & albumin
b 0.002 (−0.002, 0.005) - 1.00 (0.79, 1.28) 1.06 (0.82, 1.37)

Log 2 NGAL, ng/mL

 Unadjusted 0.003 (0.001, 0.01)** - 1.05 (0.96, 1.14) 1.13 (1.03, 1.24)**

 Adjusted
a 0.001 (−0.001, 0.003) 1.21 (1.01, 1.44)* 1.23 (1.02, 1.49)*

 Adjusted + eGFR & albumin −0.001 (−0.003, 0.002) 1.14 (0.95, 1.37) 1.13 (0.93, 1.38)

Log 2 YKL-40, pg/mL

 Unadjusted 0.001 (−0.0001, 0.003) - 0.97 (0.91, 1.04) 1.01 (0.84, 1.08)

 Adjusted
a 0.0003 (−0.002, 0.002) 0.99 (0.87, 1.12) 0.99 (0.86, 1.13)

 Adjusted + eGFR & albumin 0.0002 (−0.002, 0.002) 0.98 (0.85, 1.13) 0.99 (0.85, 1.15)

Log 2 KIM-1, pg/mL

 Unadjusted 0.01 (0.003, 0.01)*** - 1.10 (1.01, 1.20)* 1.19 (1.09, 1.31)***

 Adjusted
a 0.01 (0.003, 0.01)*** 1.16 (0.99, 1.34) 1.36 (1.14, 1.63)**

 Adjusted + eGFR & albumin
b 0.004, (0.001, 0.01)** 1.09 (0.91, 1.30) 1.22 (1.01, 1.49)*

Log 2 MCP-1, pg/mL

 Unadjusted 0.01 (0.003, 0.01)*** - 1.11 (0.99, 1.23) 1.24 (1.10, 1.39)***

 Adjusted
a 0.01 (0.002, 0.01)*** 1.12 (0.93, 1.36) 1.37 (1.10, 1.69)**

 Adjusted + eGFR & albumin
b 0.004 (0.001, 0.01)** 1.08 (0.87, 1.33) 1.30 (1.04, 1.64)*

Log 2 α1M, mg/g

 Unadjusted 0.01 (0.005, 0.01)*** - 1.06 (0.94, 1.19) 1.25 (1.11, 1.42)***

 Adjusted
a 0.01 (0.01, 1.02)*** 1.41 (1.13, 1.75)** 1.91 (1.50, 2.43)***

 Adjusted + eGFR & albumin
b 0.01 (0.004, 0.01)*** 1.18 (0.91, 1.54) 1.48 (1.11, 1.96)**

Log 2 β2M, ng/mL

 Unadjusted 0.0004 (−0.0001, 0.002) - 0.98 (0.93, 1.04) 1.00 (0.95, 1.06)

 Adjusted
a 0.002 (0.0003, 0.003)* 1.07 (0.98, 1.18) 1.11 (1.00, 1.22)*

 Adjusted + eGFR & albumin
b 0.0004 (−0.001, 0.002) 1.03 (0.93, 1.14) 1.02 (0.92, 1.14)

Log 2 Umod, ng/mL

 Unadjusted −0.01 (−0.01, −0.01)*** - 0.99 (0.85, 1.15) 0.80 (0.68, 0.93)**
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Frailty Index

Biomarker Frailty Continuous (range 0.007 – 
0.559)

Fit (FI ≤ 
0.10)

Less fit (0.10 < FI ≤ 0.21) Frail (FI > 0.21)

(range 0.007 – 0.559) OR (95% CI)

 Adjusted
a −0.01 (−0.01, −0.003)** 1.04 (0.78, 1.38) 0.90 (0.66, 1.22)

 Adjusted + eGFR & albumin
b −0.002 (−0.01, 0.002) 1.26 (0.92, 1.73) 1.30 (0.93, 1.82)

Log 2 albumin, mg/L

 Unadjusted 0.005 (0.003, 0.01)*** - 1.05 (0.98, 1.13) 1.16 (1.08, 1.25)***

 Adjusted
a 0.005 (0.003, 0.01)*** 1.20 (1.05, 1.37)** 1.31 (1.14, 1.51)***

 Adjusted + eGFR 0.003 (0.001, 0.004)** 1.12 (0.97, 1.29) 1.15 (0.99, 1.34)

Note.IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin; MCP-1, monocyte 
chemoattractant protein-1; β2M, β2-microglobulin; α1M, α1-microglobulin; Umod, uromodulin.

a
Adjusted for age, race, sex, body mass index, alcohol use, years of education, insurance status, baseline systolic and diastolic blood pressure, 

smoking status, and urine creatinine.

B
Adjusted for all variables listed above and estimated glomerular filtration rate (eGFR) and Log2 albumin.

*
P<0.05;

**
P<0.01;

***
P<0.001
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Table 3.

Cross-Sectional Association between Urine Biomarkers of Kidney Tubule Injury and Dysfunction and 

Cognitive Function in 2253 SPRINT Participants with CKD

Biomarker

MoCA Score MoCA Score < 24

(Range 5–30) (n=1298, 58%)

β coefficient (95% CI) OR (95% CI)

Log 2 IL-18, pg/mL

 Unadjusted −0.11 (−0.26, 0.04) 1.05 (0.98, 1.13)

 Adjusted
a −0.04 (−0.22, 0.14) 1.04 (0.93, 1.17)

 Adjusted + eGFR & albumin
b −0.04 (−0.22, 0.15) 1.05 (0.93, 1.19)

Log 2 NGAL, ng/mL

 Unadjusted −0.11 (−0.22, −0.01)* 1.05 (0.99, 1.10)

 Adjusted
a −0.04 (−0.18, 0.10) 1.02 (0.93, 1.11)

 Adjusted + eGFR & albumin −0.03 (−0.17, 0.11) 1.02 (0.93, 1.12)

Log 2 YKL-40, pg/mL

 Unadjusted −0.11 (−0.19, −0.02)* 1.04 (1.00, 1.08)

 Adjusted
a −0.01 (−0.12, 0.09) 0.99 (0.93, 1.06)

 Adjusted + eGFR & albumin −0.01 (−0.12, 0.10) 0.99 (0.92, 1.06)

Log 2 KIM-1, pg/mL

 Unadjusted −0.11 (−0.23, 0.01) 1.07 (1.01, 1.14)*

 Adjusted
a −0.13 (−0.27, 0.02) 1.06 (0.96, 1.16)

 Adjusted + eGFR & albumin
b −0.12 (−0.28, 0.03) 1.07 (0.97, 1.18)

Log 2 MCP-1, pg/mL

 Unadjusted −0.29 (−0.43, −0.14)*** 1.15 (1.07, 1.23)***

 Adjusted
a −0.14 (−0.30, 0.03) 1.08 (0.97, 1.20)

 Adjusted + eGFR & albumin
b −0.13 (−0.31, 0.04) 1.08 (0.97, 1.21)

Log 2 α1M, mg/g

 Unadjusted −0.26 (−0.41, −0.11)** 1.12 (1.04, 1.21)**

 Adjusted
a −0.10 (−0.28, 0.07) 1.02 (0.91, 1.14)

 Adjusted + eGFR & albumin
b −0.08 (−0.29, 0.12) 1.03 (0.91, 1.18)

Log 2 β2M, ng/mL

 Unadjusted −0.11 (−0.17, −0.04)** 1.04 (1.01, 1.07)*

 Adjusted
a −0.09 (−0.17, −0.01)* 1.04 (0.99, 1.10)

 Adjusted + eGFR & albumin
b −0.09 (−0.17, −0.01)* 1.05 (0.99, 1.10)

Log 2 Umod, ng/mL

 Unadjusted 0.08 (−0.11, 0.27) 1.04 (0.95, 1.14)

 Adjusted
a −0.13 (−0.35, 0.10) 1.11 (0.96, 1.29)
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Biomarker

MoCA Score MoCA Score < 24

(Range 5–30) (n=1298, 58%)

β coefficient (95% CI) OR (95% CI)

 Adjusted + eGFR & albumin
b −0.19 (−0.43, 0.05) 1.12 (0.96, 1.31)

Log 2 urine albumin, mg/L

 Unadjusted −0.15 (−0.23, −0.06)** 1.05 (1.01, 1.09)*

 Adjusted
a −0.03 (−0.13, 0.07) 1.00 (0.93, 1.06)

 Adjusted + eGFR −0.02 (−0.12, 0.09) 1.00 (0.93, 1.07)

Note.IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated lipocalin; MCP, monocyte chemoattractant 
protein-1; β2M, β2-microglobulin; A1M, α1-microglobulin; Umod, uromodulin. Unadjusted models include urine creatinine

a
Adjusted for age, race, sex, body mass index, alcohol use, years of education, insurance status, baseline systolic and diastolic blood pressure, 

smoking status, and urine creatinine.

b
Adjusted for all variables listed above and estimated glomerular filtration rate (eGFR) and Log2 albumin.
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Table 4:

Cross-sectional Association between Urine Biomarkers of Kidney Tubule Injury and Dysfunction and 

Measures of Cognitive Function in 2253 SPRINT Participants with CKD

Biomarker Digit Symbol Coding (range 0–
135)

Logical Memory Test 1 
(Immediate Recall) (range 0–28)

2 (Delayed Recall) (range 0–
14)

B coefficient (95% CI)

Log 2 IL-18, pg/mL

 Unadjusted −0.58 (−1.09, −0.07)* −0.12 (−0.29, 0.06) −0.04 (−0.16, 0.08)

 Adjust0EDA −0.001 (−0.60, 0.59) −0.07 (−0.31, 0.16) −0.01 (−0.17, 0.15)

 Adjusted + eGFR & albumin
b 0.04 (−0.59, 0.67) −0.10 (−0.35, 0.15) −0.01 (−0.18, 0.16)

Log 2 NGAL, ng/mL

 Unadjusted −0.74 (−1.12, −0.37)*** −0.10 (−0.23, 0.03) −0.03 (−0.12, 0.06)

 Adjusted
a −0.53 (−0.98, −0.07) −0.11 (−0.28, 0.07) −0.04 (−0.16, 0.08)

 Adjusted + eGFR & albumin −0.49 (−0.96, −0.02)* −0.11 (−0.29, 0.07) −0.04 (−0.16, 0.09)

Log 2 YKL-40, pg/mL

 Unadjusted −0.60 (−0.89, −0.30)*** −0.07 (−0.18, 0.03) −0.02 (−0.09, 0.05)

 Adjusted
a −0.24 (−0.60, 0.11) −0.01 (−0.15, 0.13) −0.03 (−0.12, 0.07)

 Adjusted + eGFR & albumin −0.27 (−0.63, 0.10) −0.02 (−0.17, 0.12) −0.03 (−0.13, 0.07)

Log 2 KIM-1, pg/mL

 Unadjusted −0.27 (−0.69, 0.15) −0.06 (−0.21, 0.08) −0.11 (−0.21, 0.01)

 Adjusted
a −0.47 (−0.96, 0.02) 0.02 (−0.17, 0.21) −0.11 (−0.23, 0.03)

 Adjusted + eGFR & albumin
b −0.41 (−0.92, 0.11) 0.03 (−0.17, 0.23) −0.10 (−0.24, 0.03)

Log 2 MCP-1, pg/mL

 Unadjusted −1.12 (−1.61, −0.63)*** −0.32 (−0.49, −0.15)*** −0.27 (−0.38, −0.15)***

 Adjusted
a −0.56 (−1.13, 0.002) −0.15 (−0.37, 0.08) −0.15 (−0.30, 0.003)

 Adjusted + eGFR & albumin
b −0.55 (−1.14, 0.03) −0.16 (−0.39, 0.07) −0.15 (−0.31, 0.004)

Log 2 α1M, mg/g

 Unadjusted −0.91 (−1.43, −0.39)** −0.37 (−0.55, −0.19)*** −0.31 (−0.43, −0.19)***

 Adjusted
a −0.19 (−0.78, 0.41) −0.12 (−0.35, 0.11) −0.07 (−0.23, 0.08)

 Adjusted + eGFR & albumin
b 0.09 (−0.60, 0.77) −0.12 (−0.39, 0.15) −0.07 (−0.25, 0.12)

Log 2 β2M, ng/mL

 Unadjusted −0.43 (−0.67, −0.20)*** −0.11 (−0.20, −0.03)** −0.10 (−0.16, −0.04)***

 Adjusted
a −0.33 (−0.59, −0.07)* −0.02 (−0.12, 0.08) −0.04 (−0.11, 0.03)

 Adjusted + eGFR & albumin
b −0.29 (−0.56, −0.02)* −0.01 (−0.12, 0.10) −0.03 (−0.11, 0.04)

Log 2 Umod, ng/mL

 Unadjusted 1.05 (−0.39, 1.71)** −0.10 (−0.33, 0.13) −0.14 (−0.30, 0.02)

 Adjusted
a 0.04 (−0.73, 0.80) −0.21 (−0.51, 0.09) −0.30 (−0.50, −0.10)**
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Biomarker Digit Symbol Coding (range 0–
135)

Logical Memory Test 1 
(Immediate Recall) (range 0–28)

2 (Delayed Recall) (range 0–
14)

 Adjusted + eGFR & albumin
b −0.25 (−1.07, 0.56) −0.30 (−0.62, 0.01) −0.37 (−0.58, −0.15)**

Log 2 albumin, mg/L

 Unadjusted −0.66 (−0.95, −0.36)*** −0.17 (−0.28, −0.07)** −0.14 (−0.21, −0.07)***

 Adjusted
a −0.18 (−0.52, 0.15) −0.01 (−0.14, 0.12) −0.02 (−0.11, 0.07)

 Adjusted + eGFR & albumin
b −0.07 (−0.43, 0.28) 0.02 (−0.12, 0.16) −0.01 (−0.10, 0.09)

Note. MoCA, Montreal Cognitive Assessment; IL-18, interleukin-18; KIM-1, kidney injury molecule-1; NGAL, neutrophil gelatinase-associated 
lipocalin; MCP, monocyte chemoattractant protein-1; β2M, β2-microglobulin; A1M, α1-microglobulin; UMOD, uromodulin.

a
Adjusted for age, race, sex, body mass index, alcohol use, years of education, insurance status, baseline systolic and diastolic blood pressure, 

smoking status, and urine creatinine

B
Adjusted for all variables listed above and estimated glomerular filtration rate (eGFR) and Log2 albumin.

*
P<0.05;

**
P<0.01;

***
P<0.001
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