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ABSTRACT OF THE DISSERTATION

Applications of Mathematical Physics to Quantitative Biology

by

Timothy John Tyree

Doctor of Philosophy in Physics with a Specialization in Quantitative Biology

University of California San Diego, 2023

Wouter-Jan Rappel, Chair

Interdisciplinary investigation has the potential to advance all fields involved. In this dis-

sertation, three distinct fields of Quantitative Biology are discussed and advanced incrementally

using the general tools of Mathematical Physics. Chapter one applies reaction-diffusion equa-

tions to explain the dispersal of cells by localized degradation of a chemoattractant, which could

explain the migration of leukocytes from the thymus and be a mechanism for morphogenesis.

Chapter two investigates a particle model wherein an attractive force explains the termination of

atrial fibrillation. Atrial fibrillation— the most common cardiac arrhythmia in the world with

approximately 30 million patients in 2010— is associated with increased morbidity and mortality.

Chapter three applies machine learning to explain social recognition in primate hippocampus,

xiv



showing that cross-modal representations of identity can be achieved by at least two distinct

neural mechanisms and that these representations comprise multiple social categories that reflect

different relationships. Together, these chapters demonstrate the general capacity of Mathemati-

cal Physics to advance Quantitative Biology in addition to the capacity for Quantitative Biology

to motivate novel analytic results and analyses within Mathematical Physics.
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Introduction

Chapters 1-3 are each self-contained, and can thus be read in any order. The reader is

encouraged to consult the Table of Contents on the basis of personal interest. For each chapter,

this Introduction discusses the state of the field prior to our work. After which, a synopsis of the

chapter is provided.

Many studies have investigated how cells can move towards the source of a chemoattrac-

tant, but relatively little is known about mechanisms that can cause cells to move away from a

location. Collective cell migration away from a location has been implicated in various biological

events including cancer cell metastasis away from a tumor [32, 121, 159, 190], and migration of

leukocytes away from the thymus [5, 92, 94, 219].

Although cancer cell migration has been attributed to haptotaxis [30], localized degrada-

tion of the extracellular matrix can explain the metastasis of cancer cells [66], similar to how

localized degradation of a chemoattractant can explain the dispersal of cell aggregates in Chapter

1. Furthermore, degradation of the pleiotropic sphingolipid metabolite, sphingosine-1-phosphate

(S1P), by S1P lyase (SPL) explains the emigration of leukocytes from the thymus [111]. As

SPL is a membrane-bound protein, the degradation of S1P is therefore localized to the maturing

leukocytes, creating an outward gradient of S1P towards the blood which is rich in S1P [155].

While mathematical models have successfully described thymic emigration for given concen-

tration fields of S1P [196], no mathematical model of localized attractant degradation has been

found as has been done in Chapter 1. This suggests that the mathematical model proposed in

Chapter 1 can be applied immediately to thymic emigration in addition to cancer metastasis.

Chapter 1 concerns itself with the social amoeba, Dictyostelium discoideum, which is

1



known to migrate towards cyclic adenosine 3’,5’-monophosphate (cAMP) during the aggregation

phase of its life cycle [37], as is shown in Fig. 1. This has been exploited in numerous mi-

crofluidic studies to show single cells can navigate complex mazes by following the chemotactic

gradient prescribed by a reacting and diffusing concentration field of cAMP [206]. Similar

studies have ascertained properties of the locomotion of the social amoeba [62], in addition

to temporal dependence of sensitivity of the social amoeba to attractant gradient [100]. A

dependence of chemotaxis on background attractant concentration has been confirmed in the

social amoeba [101], which has proved to be an key component to the mechanism of dispersal

proposed in Chapter 1.

In Chapter 1, we show that small aggregates of the social amoeba, Dictyostelium dis-

coideum, can show dispersal behavior during which cells move away from the aggregate. Using

a combination of experiments and modeling, we show that this dispersal can arise due to a

competition between the diffusible chemoattractant and the enzyme that degrades it, and that the

localized degradation of the chemoattractant may be a mechanism for morphogenesis.

Chapter 2 concerns itself with the pair-annihilation of particles. Pair-annihilation events

are ubiquitous in a variety of spatially extended systems. The statistics of these events are often

studied using computationally expensive simulations. Examples of such physical systems include

many soft-matter and active-matter physical systems that exhibit spatiotemporal patterning. One

example includes topological defects in nematic liquid crystals that migrate and annihilate when

they meet [53, 123]. The existence of these nematic defects are an unavoidable consequence of

the breaking of a continuous symmetry [134], and the motion of these defects are explained by

continuous energy injections from internal elements [11, 130, 173]. Such nematic defects have

been reported in thin films of actin filaments [223], in microtubule–kinesin bundles [187], and in

in vitro suspensions of cyto-skeletal proteins [82].

Living systems also exhibit pair-annihilation of point-like topological defects. In biofilms

composed of Escherichia coli, for instance, nematic ordering similarly emerges with topological

defects being present in their velocity fields [215]. The annihilation of these topological defects

2



Figure 1. Life cycle of the social amoeba. Developmental morphogenesis of single cells
begins approximately four to six hours after the removal of sustenance with the aggregation
phase, during which the social amoeba, Dictyostelium discoideum, secretes cyclic adenosine
3’,5’-monophosphate (cAMP), which serves as a chemoattractant for their conspecifics. After
approximately six to eight hours of aggregation, quorum-sensing genes express to yield complex
multicellular activity that culminates with the formation of the fruiting body at the peak of a
stalk of sacrificial cells. Upon a decrease in humidity or an increase in light, spore cells are
released from the fruiting body and are carried away by the wind, facilitating their spread and
the continuation of their life cycle, allowing cellular growth and division to occur again at the
level of single cells. Figure is from Ref. [36].
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have been proposed as the mechanism for the buckling of individual layers, which lead to the

formation of biofilm layers [20, 43]. Such buckling has lead to mound formation in biofilms

composed of neural progenitor cells [103].

A living system with topological defects of particular importance is the human heart

during atrial fibrillation, which is the most common type of cardiac arrhythmia in the world and is

associated with increased morbidity and mortality— affecting over 30 million people worldwide

in 2010 [39, 116, 140, 144]. Atrial fibrillation is characterized by disorganized electrical activity

in the upper chambers of the heart, which are responsible for filling the lower chambers of the

heart with blood, as is shown in Fig. 2. When the left or right atrium fibrillates, blood is not

pumped as efficiently, allowing blood to pool, stagnate, and eventually clot [71], which can lead

to a pulmonary embolism in the case of the right atrium or a thrombotic stroke in the case of

the left atrium [38]. Atrial fibrillation is often treated with blood thinners [162], which can have

the undesirable side effect of excessive bleeding in response to wounds and fails to address the

discomfort often associated with atrial fibrillation.

Other treatments for atrial fibrillation include catheter ablation procedures, which use

either heat or cold to ablate portions of the atrium. Such procedures tend to be less successful for

persistent atrial fibrillation compared to paroxysmal atrial fibrillation [211]. The most common

kind of catheter ablation procedure is the pulmonary vein isolation procedure, which seeks to

isolate electrical activity in the pulmonary veins from the left atrium [84]. Pulmonary vein

isolation procedures often need to be repeated for remission of atrial fibrillation [27, 150]. Focal

ablations of the pulmonary veins have proven effective for some case studies [77, 83], though

such procedures can lead to stenosis of the pulmonary veins [77]. A demand therefore exists for

a mechanism that can spontaneously cure atrial fibrillation, and such a mechanism is proposed in

Chapter 2. One may hope that this mechanism may guide future drug discovery to cure clinically

significant symptoms of persistant or paroxysmal atrial fibrillation.

During atrial fibrillation, spiral waves continuously break down to form new spiral waves,

which are in turn removed from the system through collisions with other spiral waves or with

4
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Figure 2. Flow diagram of the human heart. Blue arrows indicate flow of deoxygenated blood
while red arrows indicate flow of oxygenated blood. Blood passively flows into the right atrium
via the superior and inferior vena cava at a pressure of approximately 5 millimeters of mercury.
Upon contraction of the right atrium, the tricuspid valve opens and the right ventricle fills with
blood. Upon contraction of the right ventricle, the pulmonary valve opens and blood flows into
the lungs via the pulmonary arteries. By conservation of volume, an equal amount of blood
leaves the lungs and enters the left atrium via the pulmonary veins. Upon contraction of the left
atrium, the mitral valve opens and blood flows into the left ventricle. Upon contraction of the
left ventricle, the aortic valve opens and blood flows into the rest of the body via the aorta.
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nonconducting boundaries. Studies have manipulated this process using optogenetic procedures

on explanted heart tissue [19, 128]. There is even some numerical evidence showing that the

chirality of spiral waves can be modified using optogenetic intervention [118].

The motion of these spiral waves has long been known to exhibit an onset of mathematical

chaos [74], with a Lyapunov exponent becoming positive [208, 222], which is a well-known

hallmark of the onset of chaos [1, 31, 58, 86]. In addition to cardiac tissue [41, 99, 174, 202],

this spiral defect chaos is present in a variety of chemical and biological pattern-forming

systems [18, 44, 49, 57, 59, 60, 88, 90, 152, 164, 177, 209]. The tips of these spiral waves

undergo pair-annihilation events as if they were point-like particles [119, 120, 212]. The pair-

annihilation of these spiral wave tips have been recently described by a stochastic birth-death

process [212, 175]. By simulating cardiac models on various domain sizes, the creation and

annihilation rates of spiral tips were determined. Using these rates, the termination time was

computed and was shown to be exponentially distributed, consistent with experiments and clinical

data [50, 212, 175]. This mean termination time is a quantity of interest in the context of cardiac

dynamics as termination indicates the heart has transitioned into normal sinus rhythm. Thus,

decreasing the mean termination time to below the characteristic time scale of blood clotting

is a necessary and sufficient condition for curing atrial fibrillation. Determination of the mean

termination time in silico required expensive simulation of rare termination events for which all

spiral tips have annihilated.

In Chapter 2, we develop an alternative approach in which we simulate the annihilation

of spiral wave tips in cardiac models using a simple and computationally efficient model. Spiral

wave tips are represented as particles with dynamics governed by diffusive behavior and short-

ranged attraction. The parameters for diffusion and attraction are obtained by comparing the

motion of the particles to the trajectories of spiral wave tips in cardiac models during spiral defect

chaos. We show that the particle model can reproduce the annihilation rates of the spatially

extended cardiac models and can determine the statistics of spiral wave dynamics, including its

mean termination time, for an arbitrary domain size. We also show that increasing the effective

6



attraction coefficient will result in the removal of long termination times in electrophysiological

parameter regimes, making it a possible target for pharmaceutical interventions, thereby providing

a mechanism for curing atrial fibrillation.

Chapter 3 concerns itself with cross-modal integration of social signals in the primate

brain. Faces and voices are the dominant social signals used to recognize individuals amongst

human and nonhuman primates [2, 12, 193, 204]. Yet it is not known how these critical signals

are integrated into a cross-modal representation of individual identity in the primate brain.

Numerous animal studies have shown unimodal representations of conspecifics are

present in the brain by studying their learned behavioral response to relevant social signals such

as vision, audition, or olfaction [16, 29, 45, 54, 96, 97, 106, 172, 186, 218]. Yet there have been

none that show these unimodal signals are integrated into a cross-modal neural representation of

identity by studying the behavior of individual neurons.

Several interesting studies of unimodal recognition exist. For example, a behavioral study

has recently shown rats were capable of discerning social categories using olfaction alone [96],

and social isolation disrupted olfactory social recognition memory and impaired coupling be-

tween the olfactory bulb and the dorsal hippocampus in mouse [6]. Normal development of the

olfactory bulb was observed in mice with an oxytocin knock-out, though their social cognition

was severely impaired [65]. Furthermore, visual recognition of conspecifics was supported by

numerous behavioral studies in macaque [80], in goat [106], and in fish [91, 104, 217]. Moreover,

face-selective patches of the macaque cortex have been found [87, 221], though these studies did

not consider individual neurons, as is done in Chapter 3.

Additionally, there is a plethora of behavioral studies that support cross-modal represen-

tation of identity in animals. For example, a behavioral study supported cats as being capable

of cross-modal recognition of emotions of conspecifics in addition to humans [167]. Addi-

tionally, a behavioral study showed cross-modal representation of familiar human identities in

cat [201]. Similar behavioral studies in horse have shown cross-modal recognition of familiar

humans [114, 160] in addition to conspecifics [161]. Similar cross-modal behavioral studies
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have been conducted in dog [3], in goat [157], in crows [109], and in non-human primates [2].

However, these studies made no attempt to record from neurons either at the single-cell level

or at the population-level. This distinguishes the results of Chapter 3, which identifies single

neurons in marmoset hippocampus that respond selectively and invariantly to the face and voice

of familiar conspecifics.

Such selective and invariant representations have been found in human hippocampus

with the identification of identity neurons [169]. Further study has shown human hippocampus

possesses putative ”concept cells” that are invariant to the modality of the stimulus [170, 171].

However, it remains to be shown in human hippocampus how these unimodal signals are

integrated into a cohesive cross-modal representation of social identity.

The architecture of hippocampus is remarkably conserved between different species. The

same basic structure is present in human and non-human primates alike [34]. For example, it has

been suggested before that one of the functions of the CA1 synapse is to serve as a mismatch

detector in human hippocampus [122] by comparing projections from the CA3/CA2 to more

direct projections from the DG, as is shown in non-human primate by the solid and dashed

white lines in Fig. 3, respectively. The presence of a mismatch detector has supported through

olfaction in the CA1 synapse of rat hippocampus [151]. The presence of a mismatch detector

is supported in marmoset by the relatively large number of match versus mismatch (MvMM)

neurons that we found in the CA1 in Chapter 3. The hypothesized intuition is that the CA1 serves

as a comparator between what is observed and what is expected, which allows the hippocampus

to switch between memory encoding and memory retrieval.

The common marmoset, Callithrix jacchus, exhibits pro-social behavior similar to that

of humans, including pair-bonding, cooperative care for their young, and imitation— a social

behavior rarely seen outside of the apes [25, 135, 185, 214]. Moreover, marmosets exhibit

social learning [26]. And like other social mammals [89, 129, 220], marmosets exhibit social

hierarchies that are organized along familial lines [47, 51]. For these reasons, marmosets have

long been regarded as the model organism for social cognition [15, 34, 69, 181, 180, 216] and
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Figure 3. Flow diagram of the primate hippocampus. A thionin-stained section through the
midbody of the hippocampus of a rhesus monkey. Arrows indicate information flow through the
trisynaptic circuit. The parahippocampal gyrus (PHG) and the perirhinal cortex (PRh) project to
the entorhinal cortex (ERh) according to the solid black arrows. The ERh projects to the dentate
gyrus (DG), which projects to the cornu ammonis synapses (CA3, CA2, CA1) according to
the solid white arrows, respectively. The CA1 synapse projects to the subiculum (Sub), which
projects back to the ERh according to the solid white arrows. It has been proposed that there
exists a more direct pathway from the DG to the CA1, as is indicated by the dashed white arrow.
Figure is cropped from Ref. [7].

are expected to play a prominent role in the next chapter of neuroscience [14].

In Chapter 3, we show that while, like humans [169, 171, 213], single neurons in the

marmoset hippocampus exhibit selective and invariant responses when presented with the face or

voice of a specific individual conspecific. A parallel mechanism for representing the cross-modal

identities for multiple individuals is evident both within single neurons and at a population level.

Manifold projections likewise showed separability of individuals, as well as clustering for others’

families, suggesting that multiple learned social categories are encoded as related dimensions of

identity in hippocampus. These findings demonstrate that neural representations of identity in

hippocampus are both modality-independent and reflect the hierarchical structure of the primate

social network.
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Chapter 1

Cell dispersal by localized degradation of
a chemoattractant

Chemotaxis, the guided motion of cells by chemical gradients, plays a crucial role in many

biological processes. In the social amoeba, Dictyostelium discoideum, chemotaxis is critical

for the formation of cell aggregates during starvation. The cells in these aggregates generate

a pulse of the chemoattractant, cyclic adenosine monophosphate (cAMP), every 6-10 minutes,

resulting in surrounding cells moving towards the aggregate. In addition to periodic pulses of

cAMP, the cells also secrete phosphodiesterase (PDE), which degrades cAMP and prevents the

accumulation of the chemoattractant. Here we show that small aggregates of Dictyostelium

can disperse, with cells moving away from instead of towards the aggregate. This surprising

behavior often exhibited oscillatory cycles of motion towards and away from the aggregate.

Furthermore, the onset of outward cell motion was associated with a doubling of the cAMP

signaling period. Computational modeling suggests that this dispersal arises from a competition

between secreted cAMP and PDE creating a cAMP gradient that is directed away from the

aggregate, resulting in outward cell motion. The model was able to predict the effect of PDE

inhibition as well as global addition of exogenous PDE and these predictions were subsequently

verified in experiments. These results suggest that localized degradation of a chemoattractant is

a mechanism for morphogenesis.

Eukaryotic cell motion guided by gradients of diffusible chemoattractants plays a crucial
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role in wound healing, embryology, the movement of immune cells, and cancer metastasis

[178, 141, 42, 40]. In some cell types, including neutrophils and the social amoeba Dictyostelium

discoideum, gradient generation occurs through a relay mechanism where cells stimulated by the

chemoattractant secrete additional chemoattractant [4, 113, 200]. To prevent continuous build-up

of chemoattractants, many systems use enzymes to degrade the chemoattractant. These enzymes

are either membrane-bound, with their active sites facing the extracellular environment, or can

diffuse in the surrounding environment [8, 153]. In addition, chemoattractants may be removed

by other methods, including receptor uptake or decoy receptors [95, 124].

Compared to chemoattraction, relatively little is known about chemorepulsion, exem-

plified by the dispersal of immune cells out of a tissue during the resolution of inflammation.

Under some conditions in chamber-based assays, chemoattractant-degrading enzymes can create

a local minimum in chemoattractant concentration, resulting in chemoattractant gradients that

point away from areas with high cell density [52, 205, 198].

In a nutrient rich environment, Dictyostelium cells grow as separate, independent cells.

When deprived of food, these amoebae start to secrete the chemoattractant cyclic adenosine

3’,5’-monophosphate (cAMP) in an oscillatory manner [107, 126]. The secreted cAMP rapidly

diffuses to neighboring cells, which, in turn, start to secrete cAMP as well. The resulting relay

mechanism generates periodic waves that sweep through the cell population with a period of

6-10 min [81]. For wave periods smaller than 10 min, cells only respond to incoming waves,

ignoring the “back of the wave”, and directionally move towards higher concentrations of cAMP

[145, 192], form streams, and eventually aggregate into mounds of up to ∼ 100,000 cells. Cells

within the aggregate subsequently differentiate and form a fruiting body that contains the majority

of the original population of cells as a mass of spores held up off the substrate by a stalk to

maximize dispersal of spores [107, 126]. In addition to cAMP, Dictyostelium cells also secrete

phosphodiesterases (PDEs), which hydrolyse cAMP and which prevents continuous build-up

of cAMP [197, 8]. The presence of PDE is essential for aggregation, and mutants that cannot

secrete PDE fail to form viable aggregation centers [61].
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We reasoned that the competition between a time varying chemoattractant signal and

an inhibitor can result in guidance that changes direction as a function of time. To test this

hypothesis, we examined the aggregation of Dictyostelium cells at low cell densities. We present

evidence that aggregates of developing Dictyostelium cells display dispersal behavior in which

cells are “repelled” from, rather than attracted to, aggregates. This behavior was only present for

small aggregates. Furthermore, we show that during this dispersal behavior oscillatory cAMP

signaling is still active, but that its period is abruptly increased at the onset of dispersal. We

develop a model for cell aggregation and show that periodic signaling of cAMP, together with

a spatial profile of PDE, can explain the observed disperal. Furthermore, the model predicts

that the disruption of the PDE profile, either by removal of PDE or by globally adding PDE,

will result in the abolishment of dispersal. There predictions were subsequently verified in

experiments. Our results suggest that by modulating the frequency of cAMP signaling, small

aggregates can shed their cells, potentially avoiding mounds that would form small and thus

relatively ineffective fruiting bodies.

Materials and methods

Cells and chemicals

Cells of the axenic Dictyostelium discoideum strain AX4 were transformed to express

a fusion of GFP to LimE (∆ coil LimE-GFP) and a gene encoding a fusion of RFP to Coronin

(LimE GFP/corA RFP) [70]. In addition, we transformed wild-type AX4 cells with the plasmid

Flamindo2 expressing Flamindo2-GFP, a marker for cytosolic cAMP levels with a fluorescent

intensity that is inversely proportional to the level of cAMP [148, 149, 85].

We used cultures having a doubling time less than 8 hours, because we found that the

slower growing cells were less chemotactically active. The cells were grown in submerged

shaking culture in HL5 medium (35.5g HL5 powder (Formedium, Norfolk, UK) and 10mL

Penicillin-Streptomycin (10,000 U/mL; Gibco, Thermo Fisher Scientific, USA) per liter of
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DI water) [199]. For starvation, when cells reached their exponential growth phase (3-4 ×

106 cells/mL), they were harvested by centrifugation at 3000 rpm for 5 min, resuspended in

KN2/Ca buffer (14.6 mM KH2PO4, 5.4 mM Na2HPO4, 100 µM CaCl2, pH 6.4), collected by

centrifugation, and re-suspended in KN2/Ca at 107 cells/mL.

1,4-dithiothreitol (DTT, Sigma, St. Louis MO) was prepared by dissolving DTT in

de-ionized water at a concentration of 10mM. We deposited 20 µ l directly on top of a dispersing

aggregate. To test the effects of PDE1, we used 10 µL of PDE 3’,5’ cyclic nucleotide activator-

deficient from bovine heart (Sigma) dissolved in 50% glycerol/50% water at a concentration of

0.5mg/ml.

Experimental setup

For aggregate formation, 4 mL of KN2/Ca buffer was added to a 32mm diameter glass

bottom Petri dishes. We deposited 2 × 106 vegetative cells, obtained from the shaking culture

after removing the growth media and washed twice with KN2/Ca buffer, by placing 40µL

drops at 5 different locations and waited for 10 min for cells to attach to the glass. Differential

interference contrast (DIC) images were taken every minute for 20h on a spinning-disk confocal

Zeiss Axio Observer inverted microscope using a 10X objective with a Cascade QuantEM 512SC

camera (Roper Scientific, Tucson, AZ). To quantify intracellular cAMP dynamics, we captured

fluorescent time-lapse images using Slidebook 6 (Intelligent Imaging Innovations, Denver, CO).

Images were analyzed using custom-made scripts in Python.

Aggregate size and location calculation

Aggregate size was determined by manually tracing the aggregate perimeter with ImageJ

(National Institutes of Health, Bethesda, MD), repeated at least 5 times after which the average

was taken. The location of the aggregate was determined by manually identifying the center in

ImageJ for at least once every 15 min. The trajectory of the aggregate was then computed by

fitting a spline through these points.
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Cell motion measurements and analysis

Cell motion for cells outside of the aggregate was measured using dense optical flow,

which was computed using the grayscale DIC channel and the dense inverse search (DIS)

algorithm, described in a previous study [110]. We used a specific DIS implementation in the

OpenCV library of Python (’cv2.DISOpticalFlow create’) using the fastest available parameter

settings. Inward/outward flow was computed with respect to the centroid of the aggregate, and

the radial component of the velocity was temporally averaged over a window between 90 s and 5

min. Using the raw dense optical flow, we computed the total displacement and the displacement

in the radial direction from which the radial chemotactic index CI was computed as the ratio of

radial displacement and total displacement.

To compute net average cell motion, we averaged the radial velocity of all cells that

were in an annulus centered at the centroid and with a inner radius that is approximately 10 µm

beyond the maximum radius of the aggregate and with an outer radius up to 300 µm, dependent

on the apparent motion of the cells. In order to normalize net cell motion by cell area, we

computed the average cell area in the relevant annulus. For this, the location of the perimeter

of a cell was computed by zeroing and then normalizing the DIC channel, performing edge

detection via Scharr filtration [188], and then binarizing to achieve a scalar phase field with

value zero everywhere except at the edges of the cell. To compute the area of this cell, we first

averaged adjacent time frames. To decrease sensitivity to signal noise, this average was blurred

with a Gaussian filter. The result was binarized such that the interior of the cell took the value

of unity and the area outside took the value of zero. This result was then used to compute the

average cell area in the annulus. To visualize cell motion, we color-coded the dense optical flow

results. Finally, the median CI was computed as the median value amongst all pixels located in

the annulus described above, averaged over 2.5 min. Further details of the image analysis are

provided in the Supplementary Information.
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Pipette aspiration experiments

Extracellular fluid near a dispersing aggregate of cells expressing Flamindo2 was aspi-

rated during its dispersing phase using a micropipette tip with an inner diameter of 180 µm

(Eppendorf, USA). The aspirated fluid (20 µL) was immediately deposited near (≈ 50−100µm)

a non-dispersing aggregate. The position of the centroid of the aggregate was determined by peak

detection using the python package Trackpy. Single cell tracking was then manually performed.

Shedding angle for each dispersed cell was computed as the angle between two rays with the first

ray beginning at the micropipette tip and extending towards the centroid of the aggregate and the

second ray beginning at the aggregate and extending towards the initial position of the cell.

Statistics and reproducibility

P values were computed with the Wilcoxon rank sum test using MATLAB (2017b; The

Mathworks). Experimental values are reported as median (interquartile 1- interquartile 3) or as

mean ± standard deviation. A p value less then 0.05 was considered to be significant.

Computer simulations

Our 2D simulations modeled radial concentration profiles of the chemoattractant cAMP in

a disk-shaped domain using the phase field approach [117]. This domains consisted of a circular

sub-domain of radius r0 = 50 µm, representing the aggregate containing a large number of cells

(see also below), and 100 individual cells, randomly placed in an annulus with radii 150 µm

and 350 µm (Fig. 1.3A). The aggregate was assumed to secrete cAMP in an oscillatory manner

as described in previous studies [131] and to diffuse in the extracellular space (Supplementary

Information, Fig. 1.7). At a distance far from the aggregate, taken here to be 1000µm, the

cAMP concentration was set to the constant background value cAMPback. As initial condition,

the concentration of cAMP was set equal to cAMPback and cell motion was determined after the

first cAMP oscillation cycle. In addition, PDE was assumed to be secreted by the aggregate

at a constant rate, consistent with experimental work [78]. Since aggregate dispersal occurs
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many hours after the onset of the experiment, we took as initial condition the spatial PDE profile,

obtained after constant secretion and degradation for 60 minutes (for details, see Supplementary

Information). The lengthscale of this profile, LPDE , is determined by the diffusion constant

and degradation constant of PDE. cAMP was linearly degraded by PDE with a degradation

constant kPDE . Individual cells were assumed to secrete constant PDE and oscillatory cAMP,

with amplitudes that were scaled relative to the number of cells in the aggregate. Specifically,

using confocal imaging, we estimated the number of cells in a dispersing aggregate to be

approximately 400 (Supplementary Information, Fig. 1.8) so that the amount of secretion from a

single cell is 1/400th of that of the aggregate. In our reduced 1D model, the cAMP concentration

is computed along a radial line and where the PDE profile is given by the steady-state solution

(see the Supplementary Information for further numerical details and Supplementary Information,

Table 1.1 for parameter values).

We determined the movement of the cells by computing the local gradient of cAMP,

∇cAMP. Cell motion was in the direction of this gradient with basal speed v0 if the magnitude

of the gradient exceeded a threshold δ ∗. For absolute values of the gradients smaller than this

threshold, thought to be below the detection capabilities of the cell, the cell will not move at

all. Based on earlier work, the threshold was taken to be 0.1 nM across a cell body of 15µm,

resulting in δ ∗ = 6.67×10−3nM/µm [195]. This allowed us to compute the net displacement

for each cell for an entire cAMP oscillation cycle. An aggregate was considered to be dispersive

if cell motion during one cycle was outward for all cells.

Results

Cell aggregates display dispersive behavior

When plated at low density, we observed that developed Dictyostelium cells aggregated

into small-sized aggregates. These aggregates grew in size by attracting nearby cells using

cAMP signaling, and most subsequently merged with others to form larger ones ( at least 1,000
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Fig. 1 (A) Snapshots of oscillations in cell motion following a dispersal event that began spontaneously at
$t=0$ with inward/outward cell motion indicated (red/blue).  (B) Inward/outward single cell motion is consistent
with inward/outward dense optical flow measurements. (left & left-middle) Outward motion of a single cell from
t=+70 minutes to t=+74 minutes. The cell image is at t=+74 minutes. (right-middle & right) Inward motion of a
single cell from t=+74 minutes to t=+78 minutes. The cell image is at t=+78 minutes.  Scale bar is  50 µm.  (C)
The average inward/outward cell motion (red/blue) exhibits periodic time dependence.  Averages were
calculated over 2.5 minutes and over the $100\,\mu$m to $300\,\mu$m range from the dispersing cluster's
center. Inward/outward cell motion exhibits maximum speeds of at least $20\,\mu$m/min in this example.  (D)
Median chemotactic index of cell motion located  $100\,\mu$m to $300\,\mu$m from the dispersing cluster's
center indicates outward directed cell motion during dispersal. (E)  Comparing the size of dispersing cell
clusters that oscillate at least three times (left) to the size of nondispersing clusters (right).  The dispersing and
oscillating clusters (N=40) had a median area of 7±4*10^3µm^2, which was significantly larger (p<0.001) than
that of nondispersing clusters (N=22).  Nondispersing clusters had a area of 20±11*10^3µm^2.  Uncertainty in
median is reported as the interquartile range.

A

C D

To Methods (median CI plot):
Chemotactic index was calculated from dense optical flow results by taking the ratio of the radial component of
cell motion to the magnitude of cell motion.  Median chemotactic index was computed as the median value
amongst all pixels located on cell areas located $100\,\mu$m to $300\,\mu$m from the dispersing cluster's
center.  The resulting median chemotactic index was averaged over 2.5 minutes.

To Methods (area comparison plot): 
Calculation of cluster area was computed by taking the area of a circle of a diameter that was manually
measured in ImageJ.  A cell cluster was considered nondispersing if it did not show any apparent outward cell
motion.  A cell cluster was considered oscillating if it showed outward motion followed by brief inward motion at
least three times successively. Cell clusters that had neighboring cells that oscillated in this way two or fewer
times successively were disregarded.

E

B

Figure 1.1. Dispersal of cells. [a] Micrographs showing dispersing cell motion, visualized
using dense optical flow, near a dispersing aggregate at four different times. Dispersal started at
t = 0 and inward/outward motion is indicated in red/blue while the aggregate center is marked
by the yellow x (scalebar: 50 µm). [b] Examples of single cell trajectories during inward and
outward and inward motion, taken from the middle two panels in [a]. The symbols indicate the
cell location at each frame (separated by 1 min). [c] Spatially averaged inward/outward motion
(red/blue), normalized by total cell area, for cells within a distance of 100 µm and 300 µm from
the aggregate center as a function of time. [d] Median CI for all cells within the same region as
in [b]. [e] Histogram of the median aggregate size for dispersing and oscillating aggregates and
for non-dispersing aggregates.
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aggregates for each experiment). Surprisingly, however, some aggregates showed dramatically

different behavior. Instead of acting as an attractant source, resulting in inward motion of

neighboring cells, they showed distinct dispersal during which cells moved away from the

aggregates as single cells or as a small groups of cells (Movie S1). In addition, these aggregates

often displayed oscillatory dynamics, during which outward motion was followed by inward

motion in a repetitive cycle.

To quantify the cell motion, we analyzed the images using dense optical flow, which

calculates the motion between two image frames (see Methods). This method avoids the use

of explicit cell tracking, which is challenging to implement in an automated way. An example

of the results of the optical flow algorithm for two cycles of a dispersive aggregate is shown in

Fig. 1.1A, where inward (outward) cell motion is displayed using red (blue) shading. Note that

this shading extends well beyond the position of the cell in the snapshot since it represents the

optical flow data for the entire trajectory of each cell. In the first panel, motion is primarily

inward while in the second panel, taken 5 min later, the motion has reversed and is now outward.

This oscillation repeats itself in panel 3 and 4. The panels in Fig. 1.1B show some examples

of manually tracked cells that were present in the black/blue squares of the middle panels in

Fig. 1.1A.

To further quantify the dispersal behavior, we computed the spatially averaged outward

and inward flow near aggregates. For this, we averaged over all cells that were within an annulus

centered at the aggregate with an inner radius of 100 µm and an outer radius of 300 µm. The

result for the aggregate in Fig. 1.1A, normalized by the total cell area (see Methods), is presented

in panel (B) where we plot the inward and outward motion as a function of time in red and

blue, respectively. This shows that cell motion was mainly inward before the onset of dispersal,

arbitrarily set here and in all other figures at t=0, since the inward flow was larger than the

outward flow. At the onset of dispersal, however, the outward flow was suddenly larger than the

inward flow, indicating net dispersal. Furthermore, following this onset, the dynamics of the flow

showed oscillatory behavior, with predominantly outward motion followed by predominantly
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Fig. 2 More fluorescent intensity means less intercellular cAMP. (A) Snapshots of a
dispersing cluster that is signaling cAMP with a period $T=15$ minutes using Flamindo2
cells.(B) Inward/outward cell motion (red/blue) averaged over the ranges $60-120\,\mu$m.
Dispersal oscillations repeat until dispersal gradually terminates. (C) Fluorescent intensity of
Flamindo2 cells versus time spatially averaged over neighboring cells in the range of
$75\sim150\,\mu$m from the aggregate (green) and within the aggregate (black).  (D)
Fluorescent intensity of the neighboring cells (green) and the aggregate (black)  shows the
aggregate driving the signal of the neighboring cells.  (E) Cross correlation of fluorescent
intensity measured between the aggregate and the neighboring cells supports an expected
delay of 30 seconds. (F) Period doubling can be observed from the cross correlation
between fluorescent intensity and inward cell motion (top) sampled 50-10 minutes before the
onset of dispersal when compared to (bottom) 30-70 minutes after the onset of dispersal. (G)
The period of cAMP signaling increases significantly at the onset of dispersal ($p<0.01$,
N_\text{trials}=14) from a typical period of $10\pm4$ minutes to $21\pm6$ minutes.
Immediately following the onset of dispersal, the aggregate typically exhibits a 110%±70%
increase in period.  We observed no aggregate to exhibit dispersal behavior while pulsing
regularly at short periods.
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E F
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Figure 1.2. Attractant signaling of dispersing cell aggregates. [a] Micrographs of a dispersing
aggregate of cells expressing Flamindo2 and the corresponding fluorescent intensity snapshots
(scalebar: 50 µm). [b] Inward/outward optical flow (red/blue) averaged over the ranges 60−
120 µm. [c] Mean fluorescent intensity of Flamindo2 cells, averaged over 75−150 µm from
the aggregate center (green line) and within 20 µm from this center (black line), as a function of
time. [d] As in [c], but now for t=45-60 min after the onset of dispersal. [e] Cross-correlation of
the green and black signal in panel D, demonstrating that the change in intensity in the aggregate
occurs ∼ 30 s before the change in cells away from the aggregate. [f] Cross-correlation of the
inward motion and the fluorescent intensity sampled 50-20 min before the onset of dispersal
(top) and 40-70 min after the onset of dispersal (bottom). [g] Period of cAMP signaling just
before and right after the onset of dispersal (Nagg=14).
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inward motion (Movie S1). For this aggregate, the period of these cycles was ≈20 min for the

first two cycles, after which it decreased to ≈15 min. After these cycles, at t≈110 min, dispersal

ceased and inward motion became dominant again. Finally, we verified that the inward and

outward motion were negatively correlated by computing the cross-correlation between the two

time traces in Fig. 1.1B (Supplementary Information, Fig. 1.9A).

We next quantified the radial chemotactic index CI, defined as the ratio of radial displace-

ment and total displacement, for all cells within the above annulus (see Methods). The results

are shown in Fig. 1.1C and illustrates that the median radial CI becomes positive during outward

motion. This indicates that the motion of cells during the outward cycle was overwhelmingly

directed away from the aggregate. It also suggests that the observed dispersive motion is due to

an outward pointing cue and not simply due to a loss of directed inward motion, which would

result in randomly moving cells and a CI close to 0.

This dispersive behavior was seen for many, but not all, aggregates. Within a 1 hour time

window, we found that more than half the aggregates in 6 separate experiments (Naggregates =23

out of 38) showed dispersal behavior after 16 hours. In 6 separate trials, we identified 38

aggregates between 16 and 17 hours after the start of the experiments. Of these aggregates, 23

showed dispersal behavior as determined using our optical flow algorithm. For the aggregates that

displayed dispersal, the number of oscillations varied between 1 and 8, while maximum speeds

of outwardly and inwardly moving cells were found to be in the range of v = 16−22 µm/min.

For some aggregates, only a limited number of dispersal events was observed, after which nearby

cells were moving, on average, towards the aggregate again (Movie S2). Other aggregates

displayed dispersal events, after which the aggregate did not contain any more cells (Movie S3).

Finally, non-dispersing aggregates displayed the usual chemotactic behavior during which cells

move in a periodic fashion towards the cell aggregate.
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Oscillatory dispersal is limited to small aggregates

To determine for which conditions aggregates showed oscillatory dispersal, we measured

the size of aggregates that had at least three oscillations and compared this to the size of

aggregates that did not show any dispersal. For this comparison, we identified movies that

contained both oscillatory dispersive aggregates and non-dispersive aggregates and determined

their sizes at the same time point, chosen to be the onset of dispersal. Observations at a later

time point showed a decreased size of dispersing aggregates and an increased size of non-

dispersing aggregates. The average size for dispersing aggregates was significantly smaller

than that of non-dispersing aggregates with a median area of 7.1 (5.5-9.9) ×103µm2 vs. 20.0

(17.3-28.0)×103µm2 (Nagg=40 vs. Nagg=22, p<0.001) (Fig. 1.1D).

cAMP signaling is present in aggregates

To determine whether cAMP signaling was still present during dispersal, we used cells

that express Flamindo2. This marker is an indicator for cytosolic cAMP levels and the binding of

cAMP to Flamindo2 causes a decrease in its fluorescence intensity [148, 149, 85]. When plated

at low density, Flamindo2-expressing aggregates also showed dispersal. Specifically, 22/41

aggregates showed dispersal behavior between 16 and 17 hours after cell plating (6 separate

experiments). An example is presented in Fig. 1.2A, with shows micrographs of an aggregate

during two consecutive inward/outward cycles (upper row) and the corresponding fluorescent

snapshots (lower row). The fluorescence intensity oscillated between high and low in a near-

spatially uniform manner, indicating that the cytosolic levels of cAMP of cells in the aggregate

reaches their maximum value in a near-synchronous manner (Movie S4). The dispersal is also

evident from the quantification of the inward and outward flow as a function of time (Fig. 1.2B).

As in Fig. 1.1B, the net motion was towards the aggregate before the onset of dispersal, after

which it became overwhelmingly outwards. Here, cell motion was averaged for distances of 60

µm to 120 µm from the center of the aggregate. This outward motion clearly alternated with
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inward motion for at least 8 cycles.

The fact that continued cAMP signaling was present during dispersal becomes evident

when the fluorescence intensity is plotted as a function of time. This is presented in Fig. 1.2C,

where we plot the average intensity for all cells that are within 20 µm of the edge of the aggregate

(black line) and for all cells at a distance between 75µm and 150µm from the center of the

aggregate (green line). Clearly, periodic cAMP signaling remains present during dispersal.
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Figure 1.3. Cell dispersal model. [a] Schematic drawing of the set-up of the 2D computer
simulations. A circular aggregate of fixed size (50 µm radius) periodically secretes cAMP signals
as well as a constant amount of PDE. The computational domain had a radius of 1000 µm and
the cAMP concentration at its boundary was assumed to be constant. [b] Phase diagram for
cAMPback = 12nM indicating parameter values for which PDE degradation resulted in dispersal.
[c-f] Radial concentration gradients and corresponding profiles (inset) plotted for LPDE = 100µm
and kPDE = 0.6s−1 [c], kPDE = 0.04s−1 (F), and kPDE = 0.004s−1 [d], and for LPDE = 20µm
and kPDE = 0.04s−1 [e]. The minimum gradient for direction sensing is indicated by the black
line.

To determine whether it is plausible that cAMP signaling of the aggregate is driving cAMP

signaling of cells outside the aggregate, we computed the cross-correlation of the fluorescent

signal of the aggregate (black line in Fig. 1.2D) and the fluorescent signal of the isolated cells

(green line in Fig. 1.2D). The result shows that the neighboring cells are positively correlated
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with the aggregate signal with a delay of approximately 30 s (Fig. 1.2E). Computing this cross-

correlation for nearby cells and for cells more distant from the aggregate shows that this delay is

larger for the more distant cells, which further supports the aggregate as the driving center of

signaling (Supplementary Information, Fig. 1.10). To determine whether this delay is consistent

with a diffusive cAMP signal that originates at the aggregate and triggers cAMP signaling in

the neighboring cells we computed the diffusive timescale. This time scale is approximately

L2/DcAMP, where L is the distance to the aggregate and DcAMP is the diffusion constant of cAMP.

Taking DcAMP ∼ 400 µm2/s [55] and L ∼ 100µm, we estimate the diffusive time delay ∼ 25 s,

consistent with the results from the cross-correlation.

We next determined how cAMP signaling is correlated with cell motion. For this, we

computed the cross-correlation function between the fluorescence intensity and radial motion.

The result reveals that the fluorescence signal was anti-correlated with inward motion, both before

and after onset of dispersal (Fig. 1.2F). Specifically, the cross-correlation shows a minimum at

t∼30s, indicating that the inward motion was largest slightly after the fluorescence intensity level

was lowest (corresponding to high intra-cellular cAMP levels). Since increasing intracellular

levels of cAMP results in increasing extracellular levels of cAMP [76], these findings suggest

that high intra-cellular cAMP leads to the formation of a gradient that is pointing towards the

aggregate, resulting in directed motion towards the aggregate. We have verified that this is

consistent with the cAMP signal for non-dispersing aggregates (Supplementary Information,

Fig. 1.9B). This signal is clearly negatively correlated with inward motion, indicating that the

cAMP signal results in significant cAMP concentration levels away from the aggregate and

generates an inward-pointing gradient during high levels of intra-cellular cAMP.

The period of cAMP signaling significantly increases at onset of dispersal

Fig. 1.2C also shows that the period following the onset of dispersal is significantly in-

creased. To determine whether this increase occurred for all dispersing aggregates, we computed

the period of cAMP oscillations as a function of oscillation number. We then compared the
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average period for the two oscillations preceding dispersal and the two following dispersal. The

average period increased from T=10±4 min to T=21±6 min (p=0.002, Nagg=14; Fig. 1.2G) and

we observed that no aggregates exhibited dispersal behavior while pulsing regularly at short

periods. Furthermore, the ratio of these two periods was computed to be 2.1 ±1.4, correspond-

ing to a more than doubling in cAMP signaling period and suggesting the possibility that the

central oscillator somehow skips beats. This doubling of period was observed in non-dispersing

aggregates, indicating that an increase of cAMP signaling period is required for dispersal.

A

Fig. 4 (A) Simulation radial chemotactic index results in
aggregation in response response to the addition of PDE
inhibitor and PDE (left/right) at $t=0$.  (B) Radial cAMP
concentration profiles and outward cAMP gradient (inset)
are shown at $t=-1$ minute before (left) and $t=+6$
minutes after the simulated addition PDE inhibitor and PDE
(middle/right), which occurs 2 minutes after a cAMP pulse.

To Methods(For TT's 1D results and (maybe??) for the above
plots, which result from WJ's 2D results):
Radial chemotactic index was calculated by taking the average of
cells $200-300\,\mu$m away from the simulated cluster center.
The simulated addition of of PDE1 was achieved by setting the
cAMP concentration to zero everywhere at $t=0$.  The simulated
addition of DTT was achieved by setting the PDE concentration to
zero everywhere at $t=0$.  The background cAMP concentration
was initialized to $C_{back}=12$ nM, and cAMP signaling was
simulated at a period of $T=10$ minutes.  Degradation parameters
used for PDE were $k_{PDE} = 0.02/s$ and
$L_{PDE}=100\,\mu$m.

B

PDE
added

PDE
inhibitor
added

time = -1 min time = +6 min time = +6 min

Figure 1.4. Predictions of chemical intervention. [a] Net cell motion during a cAMP cycle
(T=10 s) in response to the global addition of a PDE inhibitor (left) and of PDE (right). [b]
Radial cAMP concentration profiles and outward cAMP gradient (inset) are shown at 1 min
before (left) and 6 min after the simulated addition of the inhibitor and PDE (middle/right).

Computer simulations support PDE-mediated degradation can cause
dispersal

Our experimental results show that dispersal is oscillatory, can last several periods, and

can affect cells as far as 400 µm away from the aggregate. Furthermore, the onset of dispersal

coincides with an increase of the cAMP period. We hypothesized that the competition between
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the periodic cAMP source from the aggregate and the PDE gradient that is pointing towards the

aggregate may be responsible for the observed reversal in directed motion. For small values of

PDE degradation and small cAMP periods, the cAMP gradient would be directed towards the

aggregate. For high values of PDE degradation and large cAMP periods, however, cAMP near

the aggregate could be sufficiently degraded to form an outward cAMP gradient and cause cell

movement away from the aggregate.

To investigate this possible mechanism, we constructed a mathematical model that

describes the production and diffusion of cAMP and PDE (see, Fig. 1.3A Methods and, for a

more detailed description, Supplementary Information). The model contains an aggregate of fixed

size and a variable number of individual cells randomly placed away from the aggregate. Key

parameters in the model are the degradation constant of cAMP due to PDE, kPDE , the lengthscale

LPDE of the PDE profile, and the cAMP concentration far from the aggregate, cAMPback. Cell

motion, defined as positive/negative for outward/inward radial motion, was determined by the

gradient of cAMP and motion was considered possible only if cAMP gradients exceeded a

threshold, based on earlier studies [195] (see Methods). In our simulations, we varied kPDE ,

LPDE and cAMPback. Other fixed parameters are listed in Supplementary Information, Table 1.1.

Motivated by our experimental results, we determined the direction of migration in

simulations in which the cAMP period abruptly increased from 10 min to 21 min. Using these

results, we constructed phase diagrams in the (kPDE , LPDE) space, determining which parameter

values resulted in dispersal. Dispersal was deemed to be present when all cells displayed net

outward motion during the 21 min cAMP period (see Methods). In Fig. 1.3B we have indicated

the region in phase space which resulted in dispersal for cAMPback = 12nM. For values of

parameters that are outside this region, cells did not show dispersal. A snapshot and movie

of a typical simulation are presented in Supplementary Information, Fig. 1.11 and Movie S5,

respectively. Dispersal also occured when we doubled the number or changed initial distance to

the aggregate of the individual cells.

To understand why certain parameter values did or did not result in dispersal, we examined
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the cAMP concentration gradient 9 min after the start of the T =21 min cycle. Examples of

these gradients, averaged over the azimuthal direction and corresponding to parameter values

indicated by dots in Fig. 1.3B, are plotted in Figure 1.3C-F. For the profile corresponding to

successful dispersal the gradient (LPDE = 100µm and kPDE = 0.04 s−1, Fig. 1.3F) is clearly

pointing outward and the gradient exceeds the critical threshold, indicated by a horizontal line,

in a domain that extends a significant distance from the aggregate. For other values of the

parameters, the gradient is too shallow either close to the aggregate (Figure 1.3C), in the entire

domain (Figure 1.3D), or away from the aggregate (Figure 1.3E).

Since the number of cells in the aggregate is much larger than 1, it is possible to simplify

the 2D model to a computationally more amenable 1D model. In this model, secretion of cAMP

and PDE by individual cells are ignored, the cAMP concentration is computed along a radial

line, and the PDE profile is given by its steady-state solution (see Supplementary Information for

details). We have verified that the phase diagram obtained from the 1D model is qualitatively

similar to the one from the full 2D model (Supplementary Information, Fig. 1.12A). Using

this simplified model, we have determined that reducing the computational domain to 500 µm

and the background concentration to 6 nM also results in a qualitatively similar phase diagram

(Supplementary Information, Fig. 1.12B). Furthermore, we used the 1D model to determine the

dispersal domain in phase space as a function of the background concentration and found that

below a minimum value of cAMPback, approximately 4nM, successful dispersal was not possible

(Supplementary Information, Fig. 1.13).

Predictions from computer simulations

The computer simulations show that a dynamic competition between PDE and cAMP

signaling can result in outwardly directed motion. The model can generate several distinct and

clear predictions by altering the PDE profile, and thus the cAMP concentration, in simulations. In

one set of simulations, we considered the effect of globally adding a PDE inhibitor. The outcome

of this simulation is shown in the left panel of Fig. 1.4A, where we plot the net displacement of
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the individual cells per cAMP cycle before (cycle -4-0) and after the global addition of a PDE

inhibitor (cycle 1-4) (see also Movie S6). We considered model parameters to be within the

dispersal region of Fig. 1.4B (cAMPback=12nM, LPDE = 100µm, kPDE = 0.04s−1). Therefore,

the cAMP gradient right before the addition of PDE was pointed away from the aggregate

resulting in cell motion directed away from the aggregate (left panel Fig. 1.4B). The addition of

the inhibitor was modeled by setting kPDE = 0 at the start of cycle #1 while the cAMP signaling

of the aggregate was assumed to continue (see below for experimental verification). The addition

of the inhibitor changed the sign of the gradient (middle panel Fig. 1.4B), resulting in net motion

towards the aggregate. Thus, our simulations predict that dispersing aggregates can become

non-dispersing following the global addition of a PDE inhibitor.

Another set of simulations examined the effect of globally adding PDE. For this, we

again started with the dispersing aggregate described above and set the cAMP concentration to

zero everywhere after cycle 0 while the aggregate continued to secrete cAMP in an oscillatory

fashion. The net displacement of the cells in this simulation is shown in the right panel of

Fig. 1.4A while the resulting cAMP profile and gradient are plotted in the right panel of Fig. 1.4B

(see also Movie S7). Immediately following the resetting of cAMP to 0, the concentration profile

changed and the gradient points towards the aggregate, resulting in inward motion (negative CI;

right panel Fig. 1.4A). Raising the PDE levels to high uniform values at the start of cycle #1 (∼

5 × the value at the aggregate) also resulted in the abolishment of dispersal. Thus, a second

prediction is that dispersing aggregates can also become non-dispersing after the global addition

of PDE.

Dispersal from medium aspiration experiment shows effect of medium

Our computer simulations show that PDE, an extracellular inhibitor for cAMP, can be

responsible for the observed dispersal. To test this, we identified dispersing aggregates and

aspirated a small amount of medium near these aggregates during dispersal. This medium was

then rapidly introduced close to a non-dispersing aggregate using a micropipette, and the shedding
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angle of dispersing cells was quantified (see Methods). We found that this aspiration experiment

rendered the previously non-dispersing aggregate into a dispersing one (Fig. 1.5A; Nagg=3).

Furthermore, analysis of individual cell tracks revealed that cells were primarily directed away

from the needle tip, according to Kuiper’s test against a uniform distribution (Ncell=26, p < 0.05).

This is shown in the inset of Fig. 1.5A, where we have plotted the frequency of cell motion in

each of the 4 quadrants centered around the pipette tip. The average chemotactic index directed

away from the pipette tip was computed to be ⟨CI⟩= 0.8. As a control, we verified that aspiration

of medium far from any aggregate did not result in statistically significant motion away from the

tip when this medium was deposited within 10 µm of a non-dispersing aggregate. In addition,

when depositing medium obtained from a non-dispersing aggregate near another non-dispersing

aggregate, it did not result in movement directed away from the tip. These experiments point to

a role of the medium in the onset of dispersal.

DTT can abolish dispersal

To test our first modeling prediction, that PDE inhibition can reverse the directed motion

of cells near dispersing aggregates, we identified dispersing aggregates and deposited a small

amount of DTT onto them using a pipette. DTT is a known inhibitor of the activity of PDE1,

which dominates extracellular cAMP degradation during the aggregation phase of Dictyostelium

[8]. The addition of DTT ceased outward cell motion, which then was followed by inward cell

motion, as shown in the snapshots of Fig. 1.5B&C. This was further quantified by computing

the average inward and outward flow, which clearly shows that DTT suppressed dispersal and

increased inward motion (Fig. 1.5D). These results were obtained for all analyzed aggregates

(Nagg=23) and indicate that blocking of PDE activity abolished outward motion but not inward

motion. Importantly, the addition of DTT did not abolish the signaling of the aggregate, as

shown by plotting the Flamindo2 fluorescence intensity as a function of time before and after the

addition of DTT (Fig. 1.5E). Thus, the assumption of our predictive simulations, that signaling

continues after the modification, is valid.
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Fig. 5 (A) Cells move away from fluids that are transferred from clusters that are
dispersing. Trajectories are shown for a nondispersing cluster (red) and
neighboring cells (blue) that move significantly away ($p<0.05$) from the
transferred fluid (dispensed at yellow 'x').  Time lapse is taken over a 15 minute
interval.  Scale bar is $50\,\mu$m.  (B/C) 7 minutes before/after the addition of the
PDE inhibitor, DTT, at time $t=0$,  cell motion was inward/outward (red/blue) from
an initially dispersing aggregate (yellow 'x'). The addition of DTT repeatedly
terminated outward cell motion, which then followed with inward cell motion
($N_{trials}=22$).  Time lapse is taken over a 2 minute interval.  Scale bars are
$200\,\mu$m.  (D) Average inward/outward cell motion versus time (red/blue) in
response to DTT introduced at $t=0$. Time lapse is taken over a 2 minute interval.  
(E) cAMP signaling continues despite the addition of DTT.  Plotted is mean
fluorescent intensity of the aggregate (black) versus time in response to DTT
introduced at $t=0$.  Plotted is times $t=-45$ min through $t=+45$ min.

To Results:
Fluorescent intensity decreased in the nondispersing aggregate in response to fluids sampled
from dispersing clusters, suggesting cAMP signaling is involved in the gradual motion away from
the needle.

To Methods:
(A) Results were not sensitive to the location of the needle tip.
(D) Cell motion was calculated by dense optical flow and was averaged over 5 minutes and was
averaged over the $100\,\mu$m to $300\,\mu$m range from the dispersing aggregate (yellow 'x').
(E) Fig. 5D and Fig. 5E considered trials at different magnifications.  To measure neighboring cell
mean fluorescent intensity (green), the fluorescent intensity was averaged over the $100\,\mu$m
to $200\,\mu$m range from the dispersing aggregate center. To measure mean fluorescent
intensity within the aggregate (black), the fluorescent intensity was averaged over the $0\,\mu$m
to $20\,\mu$m range from the dispersing aggregate center.

D

CBA

PDE
inhibitor
added

E

Figure 1.5. Effect of chemical intervention. [a] Micrograph of a previously non-dispersing
aggregate after exposure to medium transferred from an aggregate that was dispersing. Motion is
visualized using dense optical flow with blue/red corresponding to motion away from/towards
the transferred fluid (yellow ’x’). The inset shows the frequency of mean radial cell directions
in each of the four quadrants relative to the pipette tip. (scale bar: 50 µm). [b,c] Micrographs
7 min before [b] and 7 min after [c] the addition of DTT at t = 0. Cell motion was calculated
by dense optical flow inward/outward from the aggregate (yellow ’x’). (scale bar: 50 µm). [d]
Average inward/outward cell motion (red/blue) in response to DTT introduced at t = 0. [e] Mean
Flamindo2 fluorescent intensity of the aggregate versus time in response to DTT introduced at
t = 0.
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Addition of PDE abolishes dispersal

To test the prediction that the global addition of PDE can alter the dispersing behavior

of aggregates, we added PDE1 to aggregates. Fig. 1.6A&B show two micrographs before and

after the introduction of PDE1 onto a dispersing aggregate. Before PDE1 introduction, at t=0,

the aggregate shows oscillatory dispersal. After adding PDE1, dispersal was abolished and

inward motion was dominant. This is quantified in Fig. 1.6C where we plot the inward and

outward motion as a function of time. This behavior was consistent in all aggregates Nagg=21 we

analyzed. The Flamindo2 intensity of both the aggregate and neighboring cells increased sharply

following the exposure to PDE1, indicating the intracellular cAMP concentration decreases.

After a delay, cAMP signaling resumed (Fig. 1.6D), again validating our modeling assumption.

We also verified that dispersal was not abolished in the control experiment, in which we deposited

solution without PDE onto the aggregate.

Discussion

In this report, we showed that aggregates of Dictyostelium cells can display a dramatic

reversal in directed motion in which cells move away, rather than towards the cluster of cells.

This dispersal was often present in the form of cycles of alternating inward and outward motion

and was only seen for small-sized aggregates. Furthermore, we established that cAMP signaling

remained present during the dispersal phase and that the period of cAMP signaling approximately

doubled at the onset of dispersal. Using mathematical modeling, we showed that the competition

between the secretion of cAMP and a steady state profile of PDE, the inhibitor of cAMP, can be

responsible for the observed dispersal. We showed that if PDE exhibits a spatial profile such that

its concentration near the aggregate is higher than further away, it can create in an outwardly

pointing gradient capable of supporting dispersal. Our experiments showed that the medium

plays an essential role in the aggregate dispersal: the introduction of an aspirate taken during

the dispersal phase of an aggregate, which presumably contains little cAMP and an abundance
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A

Fig. 6 (A) Snapshot of a dispersing cluster $t=-12$ minutes before the addition of
PDE1 and (B) $t=+24$ minutes after the addition of PDE1 at $t=0$.  (C)
Inward/outward (red/blue) optical flow averaged from cells 120-200 microns away from
the center of the aggregate. (D) Mean fluorescent intensity was averaged over a 40
$\mu$m radius sample from the aggregate's bulk (black) and was averaged over
neighboring cells located 120-200 $\mu$m from the center of the aggregate (green).
The addition of PDE1 stunned cAMP activity both inside the cluster bulk and in
neighboring cells.  The addition of PDE1 did not terminate cAMP signaling in the
cluster.  As for cell behavior, the addition of PDE1 did cease outward cell motion but
did not cease inward cell motion ($N_{trials}=3$). Scale bars are 50 $\mu$m. Time
lapse duration was taken to be 6 minutes.

To Methods:  Raw fluorescent intensity data was preprocessed with a
maximum filter to increase the signal to noise ratio.  Fluorescent
intensity time traces were normalized with respect to cell area and
were computed from a 6-minute moving average of spatially averaged
raw fluorescent intensity.  The signal from the cluster was the result of
averaging distances less than 40 $\mu$m from the center of the
aggregate.  The signal from the neighbors was the result of averaging
over ranges 120-200 $\mu$m from the cluster center.

C

B

D

Figure 1.6. Effect of chemical intervention (cont’d). [a-b] Micrographs of an initially
dispersing aggregate t=-14 min before the addition of PDE1 [a] and t=+14 min after the addition
of PDE1 [b] (scale bar: 50 µm.). [c] Inward/outward (red/blue) optical flow averaged for cells
80-160 microns away from the aggregate center. PDE1 was added at t=0. (D) Total Flamindo2
fluorescent intensity, computed using a 5 min moving average, for cells inside the aggregate
(black) and cells 80-160 microns away from the aggregate center (green).
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of PDE, rendered a previously non-dispersing aggregate into a dispersing one. Obviously,

this experiment does not rule out the possibility that the medium contains a chemorepellent.

Identifying such a repellent, however, is not feasible since the medium contains hundreds of

different proteins. In addition, and predicted by our simulations, our experiments show the

abolishment of dispersal following the addition of PDE or a PDE inhibitor.

Essential in the proposed mechanism is the temporal signaling of secreted cAMP of the

aggregate. We found that the period of this signaling increases abruptly at the onset of dispersal

from approximately 10 min to 21 min. Earlier studies have shown that Dictyostelium cells exhibit

a cellular memory and can continue to move in the original direction, even after a gradient

reversal [192, 145]. These studies showed that cells are able to respond to very shallow gradients,

after having been exposed to waves with amplitudes on the order of 1 µM and that this memory

is effective for cAMP waves with periods up to 10 min but that this memory breaks down for

larger periods. This suggests that cellular memory before the onset of dispersal prevents outward

cell motion. Following the period doubling, however, cellular memory will have dissipated and

the outwardly pointing gradient can become steep enough to guide cells away from the aggregate,

resulting in the observed dispersal. We should note that it is not clear at the moment what causes

this increase in periodicity of cAMP signaling. Earlier perfusion chamber experiments have

shown that the frequency of cAMP signaling increases for increasing cell density or decreasing

cAMP dilution [81]. This increase, however, is gradual and not sudden. This suggests that

unknown feedback mechanisms or bistabilities, perhaps through cell counting factors, may be

at play during the aggregation process and are responsible for the observed sudden shift in

frequency.

The critical parameters in our proposed mechanism are the signaling period, the degra-

dation constant of cAMP, the length scale of the spatial profile of PDE, and the background

concentration of cAMP. Our modeling shows that there exists a region in (LPDE ,kPDE) parameter

space for which dispersion is possible. For these parameter values, the cAMP gradient is pointing

outward and exceeding the critical sensitivity threshold within a sufficiently large annulus. For
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parameter values outside this region, the reversed gradient is either too small for reversed motion

or is only significant close to the aggregate. For example, making the degradation constant too

large will result in a very shallow gradient near the aggregate while making it too small will lead

to gradients that are below the threshold for the entire domain. We should point out that in the

limit of no degradation, the cAMP gradient will always point toward the aggregate as long as it

continues to secrete cAMP in an oscillatory manner. Likewise, in the limit of an infinite PDE

length scale, corresponding to uniform degradation, the cAMP gradient will also always point

towards the aggregate throughout the entire signaling cycle. Finally, for very small PDE length

scales, degradation is only significant very close to the aggregate and the gradient will not be

steep enough to direct dispersal further away from the aggregate. This means that a PDE that is

exclusively bound to the membrane is unlikely to be responsible for the observed dispersal.

Similar qualitative arguments can be made for the necessity of a minimum value of

cAMPback. Values for cAMPback that are below this minimum value will result in reversed

gradients that are too small to be detected. Our model predicts that for values of cAMPback smaller

than 4nM it is not possible to achieve dispersal. Consistent with this result, our experiments

show that the introduction of PDE abolished dispersal. This can be understood by realizing that

PDE will not only reduce the cAMP concentration close to but also far away from the aggregate.

Therefore, the introduction of PDE will reduce cAMPback, which means that outward gradients

are no longer sufficient to generate dispersal movement.

Although the precise parameter values that allow for dispersal depend on the details of

the model, it is still useful to examine whether the observed range is physiologically relevant. For

the diffusion coefficient of PDE we can take DPDE ∼ 10µm2/s, a value typical for a Brownian

particle with a effective radius roughly 10 times larger than that of cAMP. In addition, as in a

previous study, we can take as an upper limit for its decay rate the value of a typical extracellular

protein: KPDE ∼ 10−4s−1 [132, 13]. This results in a maximal length scale on the order of

LPDE =
√

DPDE/KPDE ∼ 102 µm. Note that the actual decay rate may be larger and the length

scale smaller, since PDE is inhibited by a secreted inhibitor, PDI [75]. Furthermore, some of the
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PDE is membrane bound, further reducing the length scale. Thus, our values of LPDE for which

the model displays dispersal (< 100µm) appear to be within the physiological range. Previously

model values of the cAMP degradation rate due to the presence of PDE are in the range of

kPDE ∼ 0.04−0.2 s−1 [131, 132]. In these studies, the PDE concentration was normalized by

the Michaelis constant. The experimentally determined half-life of cAMP in a suspension of 108

cells/ml at a concentration of 1 µM was found to be approximately 60s, resulting in a degradation

rate, normalized by the PDE concentration, of approximately 0.02 s−1. Our PDE concentration

is normalized by the value at the aggregate, which makes it difficult to estimate the precise

degradation constant. However, assuming that this value is not significantly different from the

PDE concentration in the suspension experiment or from the Michaelis constant, we can conclude

that the dispersal range found in our model (kPDE > 0.01s−1) is physiologically relevant. Finally,

our model shows that dispersal is only possible if the background cAMP concentration is above

a critical value that we estimate to be around 3nM. This value is comparable to the estimated

value found in experiments (10nM) and is thus also in the physiological range [203]. A non-zero

background value can be explained in our experiments by realizing that the petri dish contains a

large number of aggregates, each secreting cAMP, resulting in elevated cAMP levels away from

the dispersing aggregate.

Although our 2D model is conceptually simple, it captures the salient features of cAMP

signaling, diffusion and degradation and we do not expect that the qualitative findings will

change in a significant manner if the details of the model are developed. In our simulations,

we have taken a specific form of the secretion dynamics, based on earlier modeling studies

[131]. However, we have verified that the precise dynamics of the secretion dynamics does not

affect that qualitative results. For example, simulations with different pulse shapes, including

sinusoidal, block-shaped and Gaussian ones, gave qualitatively identical results. Furthermore, we

have implemented very simple cell motion rules requiring cells to take on one of three motility

states (towards or away from the aggregate or not moving at all). In reality, the response of cells

is more complicated than this ternary rule and may include randomness, speeds that depend on
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the gradient steepness, and cellular memory. Implementing these more complex rules, however,

are not expected to alter the qualitative conclusions. Our modeling also shows that a further

simplification to a 1D model, which only considers cAMP secretion from the aggregate and

assumes a steady state profile of PDE, is able to reproduce the essential features of our proposed

mechanism. This can be explained by realizing that the cell density of the aggregate is much

higher than the density of freely moving cells. Our model assumes a steady state profile of PDE,

which is consistent with experimental work that showed that the secretion rate of PDE is constant

in time [78].

The mechanism we propose is an example of a self-generated chemotactic gradient

[142, 205, 206]. This type of gradient has been observed before for chemoattractant sources that

are time-independent. For example, a study showed that a linear gradient can be established in

the zebrafish posterior lateral line primordium through spatially asymmetric sequestration and

internalization [210, 52]. In this case, the established gradient is linear, resulting in motion that

is persistently directed. Another example involves vegetative Dictyostelium cells placed in a

uniform concentration of folate. These cells can break down folate through secreted and cell-

surface folate deaminase [154]. As a result, a high cell density region creates a local reduction of

folate and thus a self-generated gradient, as also verified in a computational model [205]. Finally,

a recent study demonstrated that Dictyostelium cell can create self-generated chemoattractant

gradients that allow them to navigate complex paths with great efficiency [206]. Our results show

that self-generated gradients can also play a significant role when the chemoattractant source is

time dependent and can even result in surprising dispersal behavior.

Intriguingly, the aggregates that display dispersal are significantly smaller than aggregates

that continue to accrue neighboring cells Fig. 1.1D. This raises the possibility that the dispersal

mechanism is a protection against the formation of aggregates that are too small to continue

along a viable developmental path, since a aggregate that is too small will not be able to form

a fully developed fruiting body structure. Our dispersal can thus be considered as an example

of quorum sensing, which plays a role in a large number of biological systems [183]. Quorum
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sensing has also been demonstrated in Dictyostelium cells where, in the vegetative stage, the

AprA-CfaD complex works as a chemorepellent and limits the cell proliferation by negative

feedback control [22, 9] while in the developed stage the secreted protein counting factor limits

the size of the aggregates [21, 23, 24]. We have verified, however, that aggregates of mutant cells

lacking these quorum sensing proteins (specifically, AprA, CF50, CfaD, and CtnA) were still able

to display dispersal ( Supplementary Information and Movie S8). This further points towards the

competition between cAMP secretion and PDE-mediated degradation as a mechanism for the

observed dispersal.
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1.1 Supplementary Information

Image analysis

Our measure of positive/outward/blue and negative/inward/red average cell motion was

computed from differential interference contrast (DIC) microscopy. The raw DIC values were

first normalized by subtracting the background and scaling the absolute remainder to unity. Then,

edges were detected using a Scharr filtration. We decided against filling in the edges before

computing dense optical flow, since most filling transforms proved to be unreliable in filling

the same regions consistently between frames. By not filling in the edges, the stability of the

resulting signals improved.

We determined the locations of cells using two consecutive binarized images that are

separated by a time interval ∆t > 0 such that

lt(x,y) =

1, if at time t,(x,y) contains cell(s)

0, otherwise
(1.1)

lt+∆t(x,y) =

1, if at time t +∆t,(x,y) contains cell(s)

0, otherwise
(1.2)

Thus, the total cross sectional area of a cell at time t is given by the integral over space of the

mask lt(x,y) taken to be
∫ ∫

lt(x,y)dxdy. In order to increase stability in the cell displacement

field, we employed a mask consisting of a blurred average cell location given by

l′(x,y) =
1√

2πσ
exp

(
−1

2

(
lt+∆t/2(x,y)

σ

)2
)

(1.3)

where lt+∆t/2(x,y) = min(lt + lt+∆t ,1) and where σ > 0 is the width of the Gaussian blurring.

We checked that results were not sensitive to our choice of σ as long as it is sufficiently small.

We assigned a value of σ = 3µm in our analyses. This blurred mask is the reason for the “blob”
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effect observed in our images highlighting the inward/outward motion of cells (Fig. 1 and 2).

We defined the displacement field, u⃗(x,y) = (ux(x,y),uy(x,y)), to be the one that mini-

mizes the following sum of squared differences

u⃗(x,y) = argmin(ux(x,y),uy(x,y))

∫ ∫
[lt+∆t(x,y)− lt(x+ux(x,y),y+uy(x,y)]

2 dxdy (1.4)

The numerical method used to compute u⃗(x,y) in this work was the Dense Inverse Search optical

flow method [110]. To avoid destroying information used in the dense optical flow procedure,

this blurred mask was not applied until after the raw displacement field, u⃗(x,y), was computed.

After computing the displacement field, we computed the corresponding velocity field according

to, v⃗(x,y) = u⃗(x,y)/∆t. The time interval ∆t used in our analysis was determined by the frame

rate and was in the range of 10-60s.

2D model

Our computational model is solved in a 2D circular domain with radius rmax (See

Fig. 1). This domain contains a circular, fixed aggregate with radius r0 and Ncell individual

cells outside this aggregate. The cAMP concentration, cAMP, and PDE concentration, PDE,

obey the reaction-diffusion equations with diffusion constants DcAMP and DPDE , respectively.

The diffusion coefficient of cAMP was taken to be DcAMP ∼ 400µm2/s [55] while the diffusion

coefficient of PDE (DPDE ∼ 10µm2/s) was taken as a value typical for a Brownian particle with

a effective radius roughly 10 times larger than that of cAMP. The aggregate secretes cAMP and

PDE at a constant rate as well as cAMP in an oscillatory fashion, incorporated by imposing a

time-varying flux at the boundary of the aggregate. Individual cells also secrete cAMP and PDE,

further detailed below. cAMP is degraded through PDE while PDE degrades at a constant rate.

Since traditional finite difference methods are not able to handle curved boundaries, we

utilized the phase-field method to numerically solve the system. This method, traditionally used
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to solve a variety of free boundary problems, can also be applied to tackle diffusional problems

in stationary but complicated geometries [108, 64, 117] and offers an accurate, computationally

inexpensive method that can be implemented with ease. In this approach, an auxiliary field, φ , is

introduced that locates the interface and that is coupled to the other physical fields through an

appropriate set of partial differential equations. The phase field φ for our geometry is chosen to

have the form

φ(r) =
1
2
− 1

2
tanh((r0 − r)/ξ ) r < rmax/2 (1.5)

φ(r) =
1
2
+

1
2

tanh((rmax − r)/ξ ) r > rmax/2 (1.6)

Thus, the phase field has the value 1 inside the annular-shaped computational domain, 0 outside

the domain and inside the aggregate, and varies between these two values across a diffusive

boundary layer of thickness ξ , taken to be much smaller that r0. The aggregate boundary and the

domain boundary are identified by φ =1/2. One can show that in the limit of ξ → 0, appropriate

boundary conditions can be recovered [108].

The cAMP concentration is obtained by solving the following reaction-diffusion equation:

∂cAMP
∂ t

= DcAMP

∇⃗ ·
[
φ ∇⃗cAMP

]
φ

− kPDEPDE cAMP+FcAMP
(⃗∇φ)2

Kφ
(1.7)

while the equation for the PDE concentration is written as:

∂PDE
∂ t

= DPDE

∇⃗ ·
[
φ ∇⃗PDE

]
φ

−KPDEPDE +FPDE
(⃗∇φ)2

Kφ
(1.8)

In these equations, the second terms describe the degradation of cAMP by PDE (normalized

as explained below) with rate kPDE , and the self-degradation by PDE, with rate KPDE . The

last terms in the reaction-diffusion equations represent the flux boundary conditions for cAMP

and PDE at the aggregate. In these terms, K is a normalization constant which depends on
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the area L = 2πr0 of the membrane: K =
∫

d⃗x (⃗∇φ)2/L [117]. In our model, the aggregate

secretes cAMP in an oscillatory fashion, with dynamics that are given by the Martiel-Goldbeter

model (see below) [131]. Thus, the cAMP flux is time varying and the appropriate boundary

condition at the aggregate boundary corresponds to DcAMP
∂cAMP(r0)

∂ r = FcAMP(t). The secretion

of PDE is assumed to occur at a constant rate FPDE . As boundary condition at r = rmax, we take

PDE(rmax) = 0 and cAMP(rmax) = cAMPback.

In addition to the aggregate, we also placed Ncell individual cells at random locations

outside the aggregate. We assumed that each individual cell is secreting cAMP following the

Martiel-Goldbeter model, together with a constant amount of PDE, and that each individual

cell secretes the same amount as a cell within the aggregate. Therefore, the ratio of the flux

parameters for the single cell and for the aggregate is identical to the reciprocal of the number of

cells in the aggregate. To estimate the number of cells in an aggregate, we constructed z-stacks

using confocal microscopy (Fig. 1.7). The aggregates were roughly cylindrical in shape and

our measurements found that the height was 39.5 ± 5.9 µm and the radius was 38.0 ± 20.0

µm (N=39 aggregates). Therefore, the volume was estimated to be approximately 2×105µm3.

Earlier work showed that a typical Dictyostelium cell has a volume of roughly 500 µm3 [28],

leading to an estimate of the number of cells in an aggregate of around 400. Thus, a single cell

secretes 1/400th of the amount secreted by the aggregate.

The main text shows results where N = 100 particles were placed in an annulus with

radii 150 µm and 350 µm. These numbers were motivated by manual counting of the number of

cells before dispersal in our experiments. We have verified that increasing this number by several

fold or by increasing the outer radius of the annulus did not affect the qualitative results of our

simulations. To mimic cAMP relay, we started the cAMP pulse for each pulse when the temporal

gradient of the local cAMP concentration exceeded a critical value, chosen here to be 0.1 nM/s.

However, we have verified that choosing this onset contemporaneous with the aggregate pulse

did not change the qualitative picture.

Since dispersal occurs many hours into the experiments, we used as initial condition for
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PDE the spatial profile obtained by solving the PDE diffusion equation for 60 minutes in the

presence of the aggregate (secreting PDE at a constant rate FPDE) but in the absence of individual

cells. In this time period, the PDE profile has reached its equilibrium value for typical parameter

values. To determine the constant secretion rate, we note that the analytic steady-state solution,

given by

PDE(r) = PDEmax
K0(r/LPDE)

K0(r0/LPDE)
, (1.9)

is an good approximation of the resulting solution. Here, PDEmax is the concentration of PDE at

the edge of the aggregate and K0(x) is the modified Bessel function of the second kind of order

zero, and LPDE =
√

DPDE/KPDE is the length scale of the PDE profile. The boundary condition

at the aggregate for this solution reads DPDE
∂PDE

∂ r =−DPDEPDEmax
K1(r0/LPDE)
K0(r0/LPDE)

=−FPDE . For

simplicity, we will set PDEmax = 1 and, thus, this condition will give us a value for the PDE flux

rate FPDE for each value of LPDE . Using this flux value, we then solved the PDE equation and

used this as our initial conditions.

The reaction-diffusion equations Eqns. 1.7 and 1.8 were solved on a 1000x1000 regular

square grid using an alternating-direction method, employing a spatial discretization of ∆x= 2µm

and a timestep of ∆t=1s. Other parameter values are given in Table 1.1. Following Dallon and

Othmer [48] we model individual cell secretion by simply adding cAMP and PDE to the grid

point closest to the location of the cell. For the determination of the phase diagram in Fig. 3, we

computed the motion of the individual cells during the second pulse generated by the aggregate.

At each timestep, the particle either moves inward, outward, or not at all. The rules of motion

are given in the main text and involve a minimum steepness of the local cAMP gradient below

which the particle does not move. A cluster was considered to be dispersing if, during a full

cAMP period, all particles moved outwards.
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Reduction to 1D

The fact that the number of cells within the aggregate is large allows us to simplify

our 2D model. Specifically, since the aggregate dominates the cAMP as well as the PDE

dynamics, we can safely ignore any secretion from individual cells. Furthermore, we can use

the analytic steady-state approximation for the PDE given in Eq. 1.9 (with PDEmax = 1). These

simplifications result in a problem with rotational symmetry and we can reduce our model to a

1D version, were solved along a line representing the radial direction:

∂cAMP
∂ t

=
DcAMP

r
∂

∂ r

(
r

∂cAMP
∂ r

)
− kPDEPDE cAMP (1.10)

along with the appropriate boundary conditions. To determine the direction of motion of cells,

we seeded the computational domain with virtual particles. Motion was determined by the local

gradient, using the same rules as for the 2D model.

cAMP Signaling Model

The cAMP flux was computed using the Martiel and Goldbeter model for cAMP signaling,

using the original parameters used to generate Fig. 2 in Ref. [131], which are reproduced in

Table 1.2. Full details can also be found in the original study [131]. Briefly, the model describes

the concentration of extracellular cAMP γ(t), the concentration of intracellular cAMP β (t), and

the fraction of active chemoattractant receptors ρT (t) by the following equations:

dγ(t)
dt

= ktρV β (t)− keγ(t) (1.11)

dβ (t)
dt

= qσΦ(ρT (t),γ(t))− (ki + kt)β (t)

dρT (t)
dt

= (1−ρT (t)) f2(γ(t))−ρT (t) f1(γ(t)),
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where

f1(γ) =
k1 + k2γ

1+ γ
f2(γ) =

k1L1 + k2L2cγ

1+ cγ
,

and where

Φ(ρT ,γ) =
α(λθ + εY 2)

1+αθ + εY 2(1+α)
; Y =

ρT γ

1+ γ
.

We take the flux from the aggregate into the computational domain to be proportional to β .

Specifically, we take F(t) = F0β (t)/βmax with F0 = 200 molecules/(µm s) and where we have

normalized β (t) by its maximum value βmax.

Dispersal in mutants

As mentioned in the main text, we have verified that aggregates of mutant cells lacking

the quorum sensing proteins AprA, CF50, CfaD, and CtnA were still able to display dispersal.

Specifically, we found that 33/43 aprA−, 23/33 CF50−, 22/62 cfaD−, and 20/31 CtnA− aggre-

gates clearly displayed apparent outward cell motion for at least three oscillations. This data was

taken from 3-7 different sets over multiple days. Examples of these dispersing aggregates are

presented in Movie S8.
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Movie legends

• Movie S1: DIC movie (left) and corresponding optical flow (right) of a dispersing aggregate

showing multiple dispersing events (scalebar: 100 µm).

• Movie S2: DIC movie of a dispersing aggregate, shown within the circle, that displays

a limited number of dispersing events. After the dispersal, nearby cells are moving, on

average, towards the aggregate again (scalebar: 100 µm).

• Movie S3: Example of an aggregate that disperses completely (scalebar: 100 µm).

• Movie S4: Movie of a dispersing aggregate, showing the DIC images (left) and the

simultaneous Flamindo2 fluorescence intensity (right). Note that a decrease in Flamindo2

intensity corresponds to an increase in cytosolic cAMP (scalebar: 100 µm).

• Movie S5: Example of a 2D simulation showing dispersal. The particle positions are

indicated by white disks and the cAMP using the displayed color scale (LPDE = 100 µm

and kPDE=0.04/s).

• Movie S6: Simulation showing the effect of adding a PDE inhibitor (LPDE = 100 µm and

kPDE=0.04/s).

• Movie S7: Simulation showing the effect of the global addition of PDE (LPDE = 100 µm

and kPDE=0.04/s).

• Movie S8: Movie of dispersing aggregates consisting of aprA−, CF50−, cfaD−, and

CtnA− cells (scalebar: 100 µm).
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Table 1.1. Parameters used in the simulation of radial cAMP profiles.

Parameter Name Value

r0 aggregate radius 50 µm
rmax domain size 1mm
∆x grid resolution 2µm
∆t time resolution 1 s
DcAMP diffusion coefficient of cAMP 400µm2/s
DPDE diffusion coefficient of PDE 10µm2/s
F0 Amplitude of cAMP flux 2×102 molecules/(µm s)
v0 cell velocity 5 µm/min
δ ∗ smallest sensible gradient 6.67×10−3 nM/µm

Figure 1.7. Shape of attractant pulse. Normalized intracellular cAMP concentration in the
Martiel-Goldbeter model as a function of time.
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Table 1.2. Parameters used in the simulation of cAMP biosynthesis. Parameters used in the
calculation of cAMP flux generated by the aggregate as a function of time. For further details,
see the original publication [131].

Parameter Name Value

kt cAMP secretion rate 0.9/min
ke extracellular cAMP degradation rate 5.4/min
ki intracellular cAMP degradation rate 1.7/min
k1 basal CAR deactivation rate constant 0.036/min
k2 CAR deactivation rate constant 0.666/min
σ intracellular cAMP synthesis rate constant 0.6/min
q adenylyl cyclase activity constant 4000
c sensitivity constant of CAR to cAMP 10
L1 relative basal CAR activation rate constant 10
L2 relative CAR activation rate constant 0.005
λ cAMP basal synthesis constant 0.01
θ cAMP basal synthesis constant 0.01
ρV ratio of intracellular to extracellular volumes 0.2
ε sensitivity constant of cAMP synthesis to extracellular cAMP 1
α intracellular ATP 3

Fig. S1. Normalized intracellular cAMP concentration in the Martiel-Goldbeter model as a function of time.

Fig. S2. Confocal z-stacks of a dispersing aggregate, showing the extent of the aggregate using Flamindo2 fluorescent intensity (scale bar: 50 µm.)

Fig. X Time traces and (inset) cross correlation functions between
(A) inward cell motion (red) and outward cell (blue) motion near a
dispersing and oscillating cluster and (B) inward cell motion (red)
and Flamindo2 fluorescent intensity (green) near a non-dispersing
cluster.  Both correlation functions depict periodic, anti-correlated
behavior.  Correlation functions were calculated over the time
window $t=50-110$ minutes for the dispersing wild type cluster (A)
and for $t=0-50$ minutes for the non-dispersing cluster expressing
the cAMP marker.  The apparent start of inward/outward motion is
indicated (red/blue dots) for each cycle.

To Results:
For detrended, normalized signals, $Z(t)$ and $P(t)$, we define their cross-
correlation function on the interval $t\in[t_a,t_b]$ to be 
$$\Gamma_{Z,P}(\tau) = \int_{t_a}^{t_b}dtZ(t+\tau)P(t)$$

Where we are interested in long time averages $t_b-t_a\gg T$.  

Time traces and correlation functions are plotted in Fig. X.  Flamindo2 fluorescence
was anti-correlated with inward cell motion near a non-dispersing cluster with a
period of $T=7$ minutes and a phase shift of $\delta=(1.0±0.1)\pi$.  Flamindo2
fluorescence was also anti-correlated with the variance of grayscale inside a
dispersing cluster oscillating at a period of $T=8$ minutes and a phase shift of
$\delta=(1.1±0.1)\pi$. Inward cell motion was anti-correlated with outward cell motion
near a dispersing cluster oscillating at a period of $T=12$ minutes and a phase shift
of $\delta=(1.0±0.2)\pi$.  Phase shift uncertainty was estimated from the full width
half max of the relevant cross-correlation function.

To Methods:
Detrending was performed by the pythonic expression
"scipy.signal.detrend(Z_values)", and normalization was performed such that
$\int_{t_a}^{t_b}dtZ^2(t)=\int_{t_a}^{t_b}dtP^2(t)=1$.  Cell motion was averaged $100-
300\,\mu m$ from the cluster centroid.

Nota bene:
If need be, for the phase shift between a given two signals, I could do a statistical test
for signal coherence and give a 90% confidence intervals on a phase shift.

A B

Fig. S3. (A)Time traces of and cross correlation function (inset) between inward (red) and outward (blue) cell motion (red) of the dispersing aggregate of Fig. 1. Inward cell
motion was anti-correlated with outward cell motion near this dispersing aggregate oscillating at a period of T = 12 minutes and a phase shift of (1.0± 0.2)fi. Phase shift
uncertainty was estimated from the full width half max of the relevant cross-correlation function. (B) Time traces and (inset) cross correlation function between inward cell
motion (red) and Flamindo2 fluorescent intensity (green) near a non-dispersing aggregate. Fluorescence intensity was anti-correlated with inward cell motion with a period of
T = 7 minutes and a phase shift of (1.0± 0.1)fi.

et al. PNAS | January 6, 2021 | vol. XXX | no. XX | 7

Figure 1.8. Dispersing cell aggregate. Confocal z-stacks of a dispersing aggregate, showing
the extent of the aggregate using Flamindo2 fluorescent intensity (scale bar: 50 µm.)
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Fig. X Time traces and (inset) cross correlation functions between
(A) inward cell motion (red) and outward cell (blue) motion near a
dispersing and oscillating cluster and (B) inward cell motion (red)
and Flamindo2 fluorescent intensity (green) near a non-dispersing
cluster.  Both correlation functions depict periodic, anti-correlated
behavior.  Correlation functions were calculated over the time
window $t=50-110$ minutes for the dispersing wild type cluster (A)
and for $t=0-50$ minutes for the non-dispersing cluster expressing
the cAMP marker.  The apparent start of inward/outward motion is
indicated (red/blue dots) for each cycle.

To Results:
For detrended, normalized signals, $Z(t)$ and $P(t)$, we define their cross-
correlation function on the interval $t\in[t_a,t_b]$ to be 
$$\Gamma_{Z,P}(\tau) = \int_{t_a}^{t_b}dtZ(t+\tau)P(t)$$

Where we are interested in long time averages $t_b-t_a\gg T$.  

Time traces and correlation functions are plotted in Fig. X.  Flamindo2 fluorescence
was anti-correlated with inward cell motion near a non-dispersing cluster with a
period of $T=7$ minutes and a phase shift of $\delta=(1.0±0.1)\pi$.  Flamindo2
fluorescence was also anti-correlated with the variance of grayscale inside a
dispersing cluster oscillating at a period of $T=8$ minutes and a phase shift of
$\delta=(1.1±0.1)\pi$. Inward cell motion was anti-correlated with outward cell motion
near a dispersing cluster oscillating at a period of $T=12$ minutes and a phase shift
of $\delta=(1.0±0.2)\pi$.  Phase shift uncertainty was estimated from the full width
half max of the relevant cross-correlation function.

To Methods:
Detrending was performed by the pythonic expression
"scipy.signal.detrend(Z_values)", and normalization was performed such that
$\int_{t_a}^{t_b}dtZ^2(t)=\int_{t_a}^{t_b}dtP^2(t)=1$.  Cell motion was averaged $100-
300\,\mu m$ from the cluster centroid.

Nota bene:
If need be, for the phase shift between a given two signals, I could do a statistical test
for signal coherence and give a 90% confidence intervals on a phase shift.

A B

Figure 1.9. Correlation of collective cell motion and fluorescent intensity. [a] Time traces
of and cross correlation function (inset) between inward (red) and outward (blue) cell motion
(red) of the dispersing aggregate of Fig. 1. Inward cell motion was anti-correlated with outward
cell motion near this dispersing aggregate oscillating at a period of T = 12 minutes and a phase
shift of (1.0±0.2)π . Phase shift uncertainty was estimated from the full width half max of the
relevant cross-correlation function. [b] Time traces and (inset) cross correlation function between
inward cell motion (red) and Flamindo2 fluorescent intensity (green) near a non-dispersing
aggregate. Fluorescence intensity was anti-correlated with inward cell motion with a period of
T = 7 minutes and a phase shift of (1.0±0.1)π .
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A

Fig. X (A) The mean fluorescent intensity was recorded 0-10 µm from the aggregate
center (red), only in the neighboring cells located 100-140 µm from the center (green),
and only in the neighboring cells located 160-200 µm from the center (blue).  The
scale bar is 50µm.  (B) Raw fluorescent time series versus time. (C) The cross
correlation of the fluorescent intensity from the center of the aggregate to the nearby
neighboring cells (black) and from the center of the aggregate to the more distant
neighboring cells (brown) supports the aggregate driving neighboring cell fluorescence
with an expected delay of 50±10 seconds for the nearby cells and an expected delay
of 60±10 seconds for the more distant neighboring cells. The first three pulses were
omitted from the calculation of the cross correlation function since they did not
demonstrate the aggregate driving the signaling.

Caveat: The cluster only visually appears to be dispersing before these nice
concentric pulses occurred.  These pulses were used anyway, because they clearly
showed that the pulses were originating inside of the cluster.  This was not as clear in
earlier pulses or in other trials.
Time between two frames = 10.00 seconds, Spatial resolution = 0.67 µm/pixel
Cluster center was taken to be the apparent origin of the concentric cAMP pulses,
which was approximately stationary.
Source Trial = 08042020 c2P1_20X

10.14.2020

[Dispersing] Aggregate Clearly Drives cAMP Signaling

B C

Figure 1.10. Dispersing cell aggregate is source of correlation. [a] Regions in which the
Flamindo2 fluorescent intensity was recorded: within 0-10 µm from the dispersing aggregate
center (indicated in red), only in neighboring cells located 100-140 µm from the center (marked
as green cells), and only in the neighboring cells located 160-200 µm from the center (marked as
blue cells) (Scale bar: 50 µm). [b] Raw fluorescent intensity as a function of time for the three
regions indicated in panel A (time resolution: 10 s). [c] The cross correlation of the fluorescent
intensity from the center of the aggregate to the nearby neighboring cells (black) and from
the center of the aggregate to the more distant neighboring cells (cyan). The cross-correlation
reaches a maximum for the black curve at t ∼ 50 s and at t ∼ 70 s for the cyan curve, supporting
the idea that the diffusive signal from the aggregate is driving the cAMP signaling in neighboring
cells.

Fig. S4. (A) Regions in which the Flamindo2 fluorescent intensity was recorded: within 0-10 µm from the dispersing aggregate center (indicated in red), only in neighboring
cells located 100-140 µm from the center (marked as green cells), and only in the neighboring cells located 160-200 µm from the center (marked as blue cells) (Scale bar:
50 µm). (B) Raw fluorescent intensity as a function of time for the three regions indicated in panel A (time resolution: 10 s). (C) The cross correlation of the fluorescent
intensity from the center of the aggregate to the nearby neighboring cells (black) and from the center of the aggregate to the more distant neighboring cells (cyan). The
cross-correlation reaches a maximum for the black curve at t ≥ 50 s and at t ≥ 70 s for the cyan curve, supporting the idea that the diffusive signal from the aggregate is
driving the cAMP signaling in neighboring cells.

Fig. S5. Snapshot of a simulation, showing the cAMP using a colorscale. Individual cells are represented as white disks. The sub-domain with radius of 500 µm, used in the
computational movies (Movie S5-7), is indicated by the dashed circle.

Fig. S6. A: Phase diagram obtained using the simplified 1D model, which ignores contributions from single cells, using the parameters corresponding to Fig. 3B. B: Phase
diagram obtained using the 1D model with cAMPback=6nM and rmax=500 µm.

8 | et al.

Figure 1.11. Snapshot of model simulation. Snapshot of a simulation, showing the cAMP
using a colorscale. Individual cells are represented as white disks. The sub-domain with radius
of 500 µm, used in the computational movies (Movie S5-7), is indicated by the dashed circle.
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Comparing Phase Diagrams (Supplementary Info.)

Source .odg file is
'figure_SI_pde_sim.odg'

 Fig. S6 (A) plotted from data found in 
phase_diagram_results_final_d=400_150-350_1d. 

(B) plotted from data found in 
phase_diagram_results_final_d=400_150-350_100.png

A B

Figure 1.12. Dispersal phase diagrams. [a] Phase diagram obtained using the simplified 1D
model, which ignores contributions from single cells, using the parameters corresponding to
Fig. 3B. [b] Phase diagram obtained using the 1D model with cAMPback=6nM and rmax=500
µm.
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Figure 1.13. Minimum background attractant. Percentage of trials that supported dispersal
as a function of Cback. This percentage was computed by discretizing the phase diagram in
terms of LPDE , kPDE in the range 10µm < LPDE < 200µm and 10−3s−1 < kPDE < 1s−1 into 400
logarithmically spaced sample points and by then numerically determining whether dispersal
was present for each point. Dispersal was only present for Cback ≥5 nM.
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Chapter 2

Annihilation dynamics during spiral de-
fect chaos revealed by particle models

Many physical systems exhibit annihilation events during which pairs of objects collide

and are removed from the system. These events occur in a number of soft-matter and active-matter

systems that exhibit spatiotemporal patterning. For example, topological defects in nematic

liquid crystals can develop motile topological defects that annihilate when they meet [53, 123].

Pair-wise annihilation of defects or singularities also plays a role in a number of biological

systems. In bacterial biofilms, for instance, imperfect cell alignment results in point-like defects

that carry half-integer topological charge and can annihilate in pairs. These topological defects

explain the formation of layers and have been proposed as a model for the buckling of biofilms

in colonies of nematically ordered cells [20, 43].

In this study, we focus on the pair-wise annihilation that occurs during spiral defect chaos

in excitable systems. In this state, spiral waves continuously break down to form new ones and

are removed through collisions with other spiral waves. While spiral defect chaos is present

in a variety of chemical and biological pattern-forming systems [44, 177, 57, 88, 152, 59, 49,

209, 18, 164, 90, 60], perhaps its most studied example can be found in models of cardiac tissue

[99, 202, 41, 174]. These models naturally exhibit spiral waves and the tips of these spiral waves

undergo stochastic annihilation events [119, 212, 120]. Importantly, these annihilations underlie

cardiac fibrillation, characterized by unorganized electrical wave propagation in the heart [174].
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Fibrillation in the ventricles is lethal [93] while atrial fibrillation— the most common cardiac

arrhythmia in the world with approximately 30 million patients in 2010— is associated with

increased morbidity and mortality [144, 140, 39, 116].

The extinction dynamics of spiral tips in spatially extended cardiac models have been

studied recently, revealing that it can be described by a stochastic birth-death process [212,

175]. By simulating cardiac models on various domain sizes, the creation and annihilation

rates of spiral tips were determined. Using these rates, the mean termination time, τ , was

computed and was shown to be exponentially distributed, consistent with experiments and

clinical data [50, 212, 175]. This termination time is a quantity of interest in the context of

cardiac dynamics as termination indicates the heart has transitioned into normal sinus rhythm.

Thus, minimizing τ is of critical importance for managing cardiac fibrillation. Previous work has

shown τ depends on the tissue size, A, and reducing τ can be achieved by reducing A [164, 212].

Unfortunately, decreasing the size of cardiac tissue is not practical without invasive surgery.

Therefore, determining the dependence of τ on other physiological properties is desirable,

especially if these properties can be drug-targeted.

In this study, we propose targeting the attraction coefficient, a, which controls the strength

of attraction between spiral wave tips. We first simulate two spatially extended cardiac models

and show that the spiral tip dynamics in these models is described by an attractive interaction

at short distances and diffusive Brownian behavior at large distances. We then formulate a

stochastic model in which tips are represented as particles and show that it can capture the

attractive and diffusive properties of the tips in the cardiac models. Furthermore, we show that

this particle model generates tip dynamics that reproduce both the annihilation rates as a function

of the density of tips and the distribution of termination times for the two cardiac models. Finally,

we show that increasing the attraction coefficient significantly decreases the mean termination

time of spiral defect chaos.

To determine the dynamics of spiral wave tips in the cardiac models, we integrated the
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mono-domain equations, which describe the time evolution of the membrane potential, u, by

∂tu = Du∇
2u− f

(
y
)
. (2.1)

Here, the diffusion coefficient, Du, is a constant scalar parameter, while the auxiliary variables,

y, encode electrophysiological trans-membrane currents according to

∂ty = g
(
u,y
)
. (2.2)

The precise formulation of f and g is provided in the Supplementary Information along with

the model parameters. To stress the generality of our approach, we used two commonly-

employed models for cardiac tissue: the Fenton-Karma (FK) model [63] and the Luo-Rudy

(LR) model [127]. We integrated Eqns 2.1-2.2 explicitly on a square computational domain of

size A and enforced periodic boundary conditions, which results only in the pair-creation and

pair-annihilation of spiral tips due to global conservation of vorticity in u. We used a spatial

discretization of ∆x = 0.025 cm and a temporal discretization of ∆t = 0.025ms and computed

spiral tip locations via the intersecting level-set method [63].

Simulations of the cardiac models started with random initial conditions that contained

multiple spiral tips and continued until all spiral wave tips were annihilated. A snapshot of a

simulation is shown in Fig. 2.1A for the LR model, with u visualized using a gray scale and

clockwise and counterclockwise spiral wave tips are indicated by black and yellow symbols,

respectively. Additional snapshots, including ones for the FK model, are shown in Fig. 2.5 of

Supplementary Information. In these simulations, only pairs of counter-rotating tips that are

connected by an activation front can annihilate (Fig. 2.1A). For a movie that demonstrates how

spiral tips create and annihilate in pairs we refer to Movie S9.

To quantify the dynamics of the spiral wave tips, we first computed the lifetime of

annihilating pairs, Γ. The distribution of these lifetimes was approximately exponential (Fig. 2.6A
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Fig. 1 Results of full models
\textbf{a} Grayscale snapshot of $V_\text{m}$ showing spiral defect chaos in
the FK model with  $A=25\text{ cm}^2$.  Indicated are the tips of (black stars)
clockwise and (yellow stars) counterclockwise rotating spiral waves.  Spiral tips
attract and annihilate in pairs as indicated by the white arrows.
\textbg{b} MSD of spiral tips versus temporal lag.  Black lines indicate
Brownian motion.  
\textbf{c} Mean radial velocity versus inverse range.

A

1B generated here:
http://localhost:8889/no
tebooks/demonstration
%20of%20brownian
%20behaviour.ipynb

(Fenton-Karma) msd powerlaw fit of msd from lagt=0.1 to 4:
m = 1.001574 +/- 0.012169
M = 0.601874 +/- 0.004858 Hz/cm^2; B=0.602354 +/- 0.008501
RMSE=0.1207 Hz/cm^2; R^2=0.9930; MPE=10.1104%; N=186
D = 0.1505 +/- 0.0012 cm^2/s
(Luo-Rudy) msd powerlaw fit of msd from lagt=0.02 to 0.2:
m = 0.995682 +/- 0.019039
M = 16.334743 +/- 1.080847 Hz/cm^2; B=16.533842 +/-
0.174579
RMSE=0.0574 Hz/cm^2; R^2=0.9940; MPE=3.9124%; N=65
D = 4.0837 +/- 0.2702 cm^2/s

Figure 2.1. Spiral tip properties. A Grayscale snapshot of the membrane potential u showing
spiral defect chaos in the LR model with A = 25 cm2. Indicated are the tips of clockwise (black
stars) and counterclockwise (yellow stars) rotating spiral waves. Spiral tips attract and annihilate
in pairs as indicated by the white arrows. B MSD of spiral tips versus temporal lag. Black lines
indicate Brownian motion. C Mean radial velocity versus inverse distance between annihilating
tips. Shaded bands represent 95% confidence intervals.

of Supplementary Information) with the FK model producing significantly longer-lived pairs

on average (Table 2.1). By averaging over an ensemble of tip trajectories, we next computed

the mean squared displacement (MSD) of the spiral wave tips as a function of time lag [163],

shown in Fig. 2.1B. For a domain size of A = 25 cm2, results from both cardiac models show

that the MSD is not significantly different from linear for long timescales with exponent values

of 1.002±0.015 (FK model for time lags > 100 ms) and 0.98±0.04 (LR model for time lags

> 60ms). Thus, in both cardiac models, the spiral wave tips effectively undergo Brownian motion

for long timescales. At short timescales, however, the tips did not exhibit diffusive behavior.

To determine the behavior of the tips at short timescales, we further analyzed the move-

ment of spiral waves in the simulations. This analysis revealed that annihilation occurs when

the activation front connecting the tip pair is blocked by a nearby polarized region. The block

results in a rapid shrinking of the activation front and the removal of the pair (see also Movie S9).

Thus, at short timescales, the annihilating pair of tips appear to attract, which becomes apparent

from Fig. 2.1C where we plot the ensemble-averaged radial velocity dR/dt as a function of the

distance between the tips, R. This velocity is not constant, but instead, becomes more negative

when 1/R increases (and R decreases). In other words, an apparent attractive force induced the

annihilation of counter-rotating pairs of spiral waves.
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Fig. 2 Results of the particle model
\textbf{a} MSR between annihilating tips versus time
until annihilation from simulations of the FK (blue) and
LR (orange) models with shaded regions
corresponding to  95\% confidence intervals of the
mean value, determined via bootstrap. Also shown are
the fits of the MSR from the oscillatory (solid lines) and
linear (dashed lines) particle models.  The inset angles
correspond to values of $\phi_f$ obtained from fitting.  
\textbf{b}  Mean annihilation rate density versus
number density for (symbols) spiral tips from the full
models with (solid lines) their linear particle model fits
at (black) A=25cm$^2$ and (red) A=100cm$^2$
domain sizes.  Indicated are (dotted lines) power law
fits scaled by a constant for visibility.

A B

Figure 2.2. Pair-annihilation dynamics. A MSR between annihilating tips versus time until
annihilation from simulations of the FK and LR models with shaded regions corresponding to
95% confidence intervals. Also shown are the fits of the MSR from the OPM (solid lines) and
the LPM (dashed lines). B Mean annihilation rate versus number density for spiral tips from the
cardiac models (symbols) and their linear particle model fits (dashed lines).

To quantify this attractive force, we identified more than 1.5× 103 annihilating pairs

for each cardiac model. For a given pair annihilating at time t f , we determined R versus time

until annihilation, t ′ ≡ t f − t ≥ 0. From this, we computed the mean squared range (MSR) by

ensemble-averaging R2 conditioned on a given t ′. The results are shown in Fig. 2.2A as solid

lines, together with the 95% confidence intervals as shaded areas. On short timescales, the

MSR demonstrates oscillations, illustrating that the apparent attractive force has an oscillatory

component.

To gain further insight into the annihilation dynamics of the tips using the spatially ex-

tended cardiac models is computationally expensive, especially for large domain sizes. Therefore,

we developed a computationally efficient model in which the spiral wave tips are represented by

moving particles subject to an oscillatory short-range attractive force and Brownian motion with

diffusion coefficient, D. Such a significant simplification of a cardiac model was earlier used

to describe the chaotic tip trajectories of a single spiral wave in the presence of heterogeneities

[125]. Here we formulated an oscillatory particle model (OPM) in which we modeled the

strength of attraction between two annihilating tips as inversely proportional to the distance

between them and in which the radial component of this force was taken to be the sum of a
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constant term, a0, and a locally precessing term with period, TOPM = 2π/ω , and amplitude, a1.

Thus, the distance between annihilating tips can be modeled by the following Langevin equation:

dRi(t ′) =− 2
Ri(t ′)

(
a0 +a1 cos

(
ωt ′+φ f

))
dt ′+

√
8DdWt ′ , (2.3)

where Wt ′ is a Wiener process at time t ′, D is estimated from the least-square slope of MSR at

large ranges (MSR > 3 cm2), and φ f is a final phase difference. Note that the factor of two arises

from the pair-wise interaction while the factor of 8 arises from the additivity of variance.

Integrating E[d(R2
i (t

′))] according to the Stratonovich formulation of stochastic calculus

results in

MSROPM(t ′) = 4
(

2Dt ′+a0t ′+
a1

ω

(
sin(ωt ′+φ f )− sin(φ f )

))
. (2.4)

This result was verified by comparing this expression to the average MSR of many statistically

independent simulations of Eqn. 2.3. The next step was to fit Eq. 2.4 to the MSR curves obtained

from the cardiac models using simulated annealing on the last 300 ms (FK) and 100 ms (LR)

before annihilation. The fits to both cardiac models for these time intervals are excellent (mean

percent error (MPE) <4%), as can be seen Fig. 2.2A. The fitted parameters, a0, a1, φ f , and TOPM

are reported in Table 2.1, together with the aforementioned estimates for D. As expected, the

fitted period of the OPM matches the period of the spiral waves in the cardiac models. In

Table 2.1 we also report the period of the spiral waves in the cardiac models, T , determined

by computing the mean number of rotations per lifetime. A comparison between TOPM and T

reveals that these periods match perfectly, indicating that the oscillatory component in the MSR

is due to the rotational nature of the spiral wave.

The OPM can, in principle, be used to compute annihilation rates, which can then be

compared to results from the cardiac models. However, computing these rates with the OPM is

challenging because annihilation only occurs when the final phase difference between the two

particles takes a specific value. Thus, it requires the tedious task of keeping track of the phase
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for each particle and implicitly enforcing the condition φ(t f ) = φ f at the time of annihilation. To

circumvent this problem, we simplified the OPM to a linear particle model (LPM) by taking the

attractive force between particles as linear in 1/R. Modeling the diffusive behavior of spiral tips

as before, the LPM reads

dRi(t ′) =−2a
Ri

dt ′+
√

8DdWt ′ , (2.5)

which similarly results in a MSR given by

MSRLPM(t ′) = 4(a+2D)t ′ . (2.6)

To relate a to the parameters of the OPM, we demanded that the MSR averaged over the

exponentially distributed lifetimes of the cardiac models, ⟨MSR⟩, be equal for both particle

models. For the LPM, we can derive

⟨MSRLPM⟩=
∫

∞

0

(dt ′

Γ
e−t ′/Γ

)
4(a+2D)t ′ = 4(a+2D)Γ . (2.7)

while a similar calculation for the oscillatory particle model gives

⟨MSROPM⟩= 4
(

a0 +a1
cos(φ f )−ωΓsin(φ f )

1+(ωΓ)2 +2D
)

Γ . (2.8)

Setting ⟨MSRLPM⟩= ⟨MSROPM⟩ results in an analytical expression for a in terms of the OPM

parameters that is independent of D:

a = a0 +a1
cos(φ f )−ωΓsin(φ f )

1+(ωΓ)2 . (2.9)

The estimates of a evaluated from Eq. 2.9 are listed in Table 2.1, and corresponding MSRLPM

plots are shown as dashed lines in Fig. 2.2A. Repeating the analysis for different domain sizes,

A, revealed that the estimate of a was largely independent of A for both of the cardiac models
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(Fig. 2.7 of Supplementary Information). Thus, the LPM can be used to simulate spiral tip

annihilation in different domain sizes using a fixed set of model parameters, determined for a

single value of A.

We implemented the LPM, using the obtained values of a and D, by numerically inte-

grating Eq. 2.5 on a spatially-extended square computational domain with periodic boundary

conditions. For initial conditions, we considered N uniformly distributed particles at two domain

sizes (A = 25 cm2 and A = 100 cm2), and updated the particle positions every ∆t = 0.01 ms (see

also Supplementary Information). Pairs of particles were removed from the simulations, and

thus annihilated, at rate κ whenever they were closer than a reaction range, r. As an estimate for

this range we chose the 25th percentile of the distribution of distances between non-annihilating

tips. We have verified, however, that other choices of r give similar qualitative results.

We then used the LPM to compute annihilation rates and adjusted the only free parameter

(κ) to match the annihilation rates found in the cardiac models. This is facilitated by the fact that

in our previous work we showed that the latter, computed for different domain sizes A, collapse

onto a single curve when rescaled by A [212]. Furthermore, in this study, we report that the

annihilation rate can be approximated by a power law, w− = M−nν− , where w− ≡ W−(N)/A

is the rescaled annihilation rate and n = N/A is the tip density (Fig. 2B). The fitted LPM

annihilation rates are shown as lines in Fig. 2.2B and the resulting LPM parameters are listed

in Table 2.2. These fits demonstrate that the LPM can accurately replicate the annihilation

rates of the cardiac models (MPE <4%). Importantly, as was the case for a, these fits use the

same parameter values for both system sizes, and modifying the parameter κ based on domain

size allows for good fits at both domain sizes. Note that simulations of the particle model are

much more efficient than the cardiac models, especially for large domain sizes, as they use

O((L/∆x)2) ∼ 103 fewer degrees of freedom. For example, for A = 100 cm2, the speed-up

exceeded 104-fold.

By carrying out additional simulations of the LPM, we determined how the annihilation

rate depends on the attraction coefficient, a, while holding the remaining parameters D, r, and κ
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A

Fig. 3 Results of particle models when changing a
\textbf{a} Mean annihilation rate density versus number density.
Power laws were fit from the linear particle model for increasing
values of the attraction coefficient, $a$,  
as indicated by (inset) the color bar.  
\textbf{b} Power law exponent as a function of $a$ for (blue) the FK
model and (orange) the LR model.
\textbf{c} Power law magnitude versus $a$. 

increasing a

B C

Figure 2.3. Pair-annihilation power laws. A Mean annihilation rate versus number density
obtained from power law fits of the LPM using parameters corresponding to the FK model for
different values of a (indicated by the color bar). Dotted lines correspond to power laws. B
Power law exponent as a function of a computed using the LPM with parameters corresponding
to both the FK and LR model (dotted line: ν− = 4/3). C Corresponding power law magnitude
versus a. Black circles in B&C represent values of a corresponding to the cardiac models. Dotted
line has exponent 1/3.

fixed. Perhaps not surprisingly, since larger attractive forces result in distant particles coming

together faster, this rate was found to increase with increasing values of a. Importantly, however,

we found that the rate was again always fitted well by the power law w− = M−nν− (Fig. 2.3A).

For both models, we found that for increasing values of a the exponent ν− became smaller

(Fig. 2.3B) while M− increased (Fig. 2.3C).

Using the fact that the annihilation rate can be fitted by a power law in the LPM, we

were able to compute statistical properties of spiral defect chaos in the spatially extended cardiac

models. For this, we used the creation rate in the cardiac models, which we found to be captured

by a power law fit as well: w+ = M+nν+ (Fig. 2.4A). In the remainder, we will keep this creation

rate fixed while varying a, and thus the annihilation rate, according to Figs. 2.3B&C. Using the

power laws for creation and annihilation rates, we constructed a transition matrix from which we

computed the distributions of termination times [146, 212]. These distributions were found to

be exponentially distributed for all values of a (Fig. 2.4B, see also Fig. 2.6B of Supplementary

Information), consistent with experimental data [50]. Furthermore, the distribution tends to
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smaller termination time values for increasing a.

Using these power laws, it is now straightforward to determine the mean particle number,

Navg, which can be estimated by solving w+(n) = w−(n). This results in a closed expression for

Navg:

Navg = Anavg = A
(

M+

M−

) 1
ν−−ν+

, (2.10)

which shows that the mean particle number increases linearly with the domain size. Fig. 2.4C

shows the results from this expression, using parameters corresponding to A = 25cm2 for all

domain sizes, which is possible since a is insensitive to A (Fig. 2.7 of Supplementary Information).

The estimated value using Eq. 2.10 agrees well with the average number of tips from the cardiac

models (symbols). Finally, the average number of tips computed using Eq. 2.10 decreases as a

function of a (Fig. 2.4D), which can be explained by the fact that ν− decreases for increasing

values of a (Fig. 2.3C).

It is now also possible to obtain an approximate expression for the mean termination time

of spiral defect chaos, a property especially relevant to cardiac models and fibrillation in clinical

settings. For paired birth-death processes, it can be computed using an analytic solution [73] and

is a function of the initial (even) number of spiral tips, N0, [73]:

τ(N0) =
N0/2

∑
k=1

ϕ(2k−2)
∞

∑
j=k

1
ϕ(2 j)w+(2 j/A)A

(2.11)

where ϕ(2k)=∏
k
i=1 w−(2i/A)/w+(2i/A) and ϕ(0)≡ 1. Since the termination time is dominated

by τ(2), we can use the obtained power laws to derive an approximate closed expression. For

large values of A, the termination time can be shown to be proportional to [212]

τ ∼ exp
[

A
2

∫ navg

2/A
ln

w+2(s)
w−2(s)

ds
]

(2.12)
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D E F

A B C

Figure 2.4. Termination statistics. A Mean creation rate versus number density for spiral tips
from the cardiac models using different domain sizes. Dashed lines correspond to power law fits,
resulting in M+ = 0.864±0.002 Hz/cm2 and ν+ = 0.23±0.010 (FK model) and M+ = 3.28±0.10
Hz/cm2 and ν+ = 0.715±0.010 (LR model). B Probability density of termination times of the
LPM for increasing values of a equally spaced from a = 1 cm2/s to a = 5 cm2/s. Parameter
values correspond to the FK model and A = 25 cm2. C Average tip number as a function of
A computed using the cardiac models (symbols), along with the linear prediction of Eq. 2.10.
D Average tip number as a function of a computed using the LPM with parameter values
corresponding to A = 25 cm2. The darkened symbols correspond to the value of a representing
the cardiac models. E Mean termination time versus A computed using Eq. 2.13 (dashed lines)
and separately obtained from the cardiac models (symbols). F Mean termination time as a
function of a (using parameter values for A = 25 cm2). Black circles correspond to cardiac
models.
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which becomes, after substituting the expressions for w±:

τ ∼
(

2
A

)ν−−ν+

eAnavg(ν−−ν+)/2 (2.13)

Thus, consistent with earlier work using the cardiac models [164, 212], the termination time

increases exponentially with A, Furthermore, aside from a prefactor that is independent of A, this

expression provides an explicit estimate for τ for any domain size, including ones that would be

prohibitively expensive to simulate directly. This is shown in Fig. 2.4E, where we plot the values

for τ obtained from the cardiac models as symbols together with a fit using Eq. 2.13. The former

ones were, of course, only obtainable for small domain sizes while the fit can be extended to

arbitrary large sizes.

We also computed τ , as given by Eq. 2.11, as a function of a with the other parameters

fixed to those corresponding to the cardiac models. We found that τ decreased by a factor of

∼ 102 in response to a increasing by a mere factor of 10, as shown in Fig. 2.4F. This great

sensitivity of τ to a, considered together with the relative insensitivity of a to A, suggests that

changing a is a potential mechanism for controlling the mean termination time for fixed domain

sizes. Specifically, if modifying the electrophysiological parameters of the cardiac models

increases attraction only, then τ decreases, resulting in shorter termination times. Therefore, it

would be interesting to determine whether this control is achievable by altering tissue dynamics

using pharmaceutical intervention.

In summary, this study reveals that the annihilation dynamics of spiral waves in spatially

extended cardiac models can be captured by a computationally efficient particle model. In this

model, the spiral wave tips are represented by diffusing particles, with a diffusion coefficient

determined from spiral tip motion, and a local attractive force. We showed that the particle

model accurately reproduced the annihilation rates of spiral tips in the cardiac models and that it

can be used to efficiently model their tip dynamics. Our study shows that the parameters of the

particle model were largely insensitive to domain size, suggesting they can be obtained from tip
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Table 2.1. Particle properties of spiral tips from the cardiac models including parameter values
corresponding to OPM and LPM.

Symbol Fenton-Karma Luo-Rudy

Γ (ms) 105.3 ± 1.7 33.4 ± 0.7
D (cm2/s) 0.115 ± 0.008 0.42 ± 0.14
a0 (cm2/s) 1.407 ± 0.016 4.2 ± 0.3
a1 (cm2/s) 1.2822 ± 0.0005 12.180 ± 0.012
φ f (radians) -0.541 ± 0.004 -1.165 ± 0.003
TOPM (ms) 115.94 ± 0.03 97.36 ± 0.12
T (ms) 115.9 ± 1.9 97.4 ± 0.8
a (cm2/s) 1.552 ± 0.017 9.3 ±0.3
r (cm) 0.457±0.009 0.314±0.003
κ (Hz) 15 75

motion at a single domain size. This enabled us to compute a variety of statistical properties for

arbitrary domain sizes, including the mean termination time, with minimal computational effort.

We also used the particle model to show increasing the strength of the apparent attraction force

accelerates annihilation, thus decreasing the mean termination time. In future work, we plan to

extend our study by including non-conducting boundaries and an explicit formulation of creation

events. Furthermore, future work involving cardiac models can investigate the dependence of the

attraction coefficient between spiral tips on trans-membrane currents. Reproducing desirable

effects on these currents can then be the target of drug discovery, potentially opening a new door

to noninvasive therapies for clinically significant symptoms of cardiac fibrillation.
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Research Training in Mathematical and Computational Biology Grant (1148230) and the NSF

Division of Mathematical Sciences award 1903275.

62



Table 2.2. Power law fits for the annihilation rates.

Model A (cm2) ν− M− (Hz/cm2)

Fenton-Karma Cardiac 25 1.88±0.03 5.6±0.3
LPM 25 1.871±0.012 5.53±0.16
LPM 100 1.835±0.015 4.75±0.17

Luo-Rudy Cardiac 25 1.638±0.017 16.7±0.8
LPM 25 1.614±0.012 16.9±0.7
LPM 100 1.611±0.017 12.6±0.6

2.1 Supplementary Information

Detailed Equations and Parameters of Full Cardiac Models

The time evolution of the scalar field modeling trans-membrane voltage, Vm, is described

by the excitable reaction-diffusion equation,

∂tu = Du∇
2u− Iion/Cm (2.14)

where f = Iion/Cm is the ratio of the electric charge current density, Iion, to the trans-membrane

capacitance per unit area, Cm = 1µF/cm2. The vector field of auxiliary dynamical variables, y,

take values locally everywhere on the computational domain. The scalar field, Iion, is locally

determined by y together with Vm. While increasingly detailed models exist for the term

f = Iion/Cm, the main text considers the following two relatively simple cardiac models known

to exhibit spiral defect chaos.

Fenton-Karma Model

Equations for the Fenton-Karma model used in this study are Eqn. 2.14 together with

Iion = Ifi + Iso + Isi,
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where the fast inward current density is

Ifi(u,v) =− v
τd
(1−u)(u−uc)Θ(u−uc),

the slow outward current density is

Iso(u) = u
Θ(uc −u)

τ0
+

Θ(u−uc)

τr
,

and the slow inward current density is

Isi(u,w) =
w

2τsi

(
1+ tanh

(
k(u−usi

c )
))

,

with parameter values τd = 0.45ms, τ0 = 12.5ms, τr =33.25ms, τsi = 29ms, k = 10, and usi
c =

0.85. We used V ′ = 90mV and V ′′ = 150mV to define the dimensionless trans-membrane voltage

field u = (Vm +V ′)/V ′′.

The trans-membrane electric diffusion coefficient for the Fenton-Karma model was

Dm = 0.0005cm2/ ms, and the time evolution of the auxiliary vector field, y(t) = (v(t),w(t)),

was locally described for the fast variable,

dv
dt

= (1− v)Θ(uc −u)
(

Θ(u−uv)

τ
−
v1

+
Θ(uv −u)

τ
−
v2

)
− v

Θ(u−uc)

τ
+
v

(2.15)

and for the slow variable,

dw
dt

= (1−w)
Θ(uc −u)

τ
−
w

−w
Θ(u−uc)

τ
+
w

, (2.16)

where the parameters were taken to be uc = 0.13, uv = 0.04, τ
−
v1 = 1250ms, τ

−
v2 = 19.6ms,

τ+v = 13.03ms, τ−w = 40ms, and τ+w = 800ms.

The parameter set we used was taken from parameter set 8 of Ref. [56]. The conduction
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velocity was cv = 51cm/s, which is within the electrophysiological range.

Luo-Rudy Model

Equations for the Luo-Rudy model used in this study are Eqn. 2.14 together with

Iion = INa + Isi + IK1T + IK,

where the current density from sodium is

INa = (Vm −ENa)GNa jhm3.

with parameter values GNa = 16mS/cm2 and ENa = 54.4mV. The slow inward current density

is

Isi = Gsi(Vm −Esi) f d,

where Gsi = 0.052mS/cm2 and Esi =−82.3mV−13.0287log
(
[Ca+2]i/(1mM)

)
.

The current density attributed to potassium is IK1T + IK, computed using the equations

and parameters of Ref. [166, 165]. We have used [K+]o = 5.4mM. GK = 0.423mS/cm2 and

[K+]i = 145mM, [Na+]i = 18mM, and [Na+]o = 145mM . We supposed a fixed homeostatic

body temperature of T = 37◦C. The trans-membrane diffusion coefficient for the Luo-Rudy

model was Dm = 0.001cm2/ms, and the time evolution of the auxiliary vector field, y(t) =

([Ca+2]i(t),m(t),h(t), j(t),d(t), f (t),x(t)), was locally described by

d[Ca+2]i/dt =−
(

10−7 mM
µA

)
Isi +

(
0.07ms−1)(10−7mM− [Ca+2]i

)
for intracellular calcium and for the dimensionless gating variables, y = m,h, j,d, f ,x, by

dy/dt = (y∞ − y)/τy. (2.17)

65



Furthermore, we used

y∞(Vm) = ay(Vm)τy(Vm)/1ms

and

τy(Vm) =
1ms

ay(Vm)+by(Vm)
,

where ay, by, were dimensionless, strictly monotonic functions, which we evaluated in constant

time using a lookup table based on the equations and parameters of Qu et al. in Ref. [166, 165].

Additional parameters a and b can be found in these references. We have the potassium current

density,

IK1T = IK1(Vm)+(1µA/cm2)
(Vm +87.95mV)/54.6448mV

1+ e(7.488mV−Vm)/5.98mV
+(1µA/cm2)

Vm +59.87mV
25.5037mV

,

where

IK1(Vm) =
(1µA/cm2)Vm+87.95mV

1.62129mV

√
[K+]o

5.4mM(
1+ e

v+28.735mV
4.19287mV

)(
e

Vm−506.36mV
16.1943mV +0.49124e

Vm+93.426mV
12.4502mV

1+e−
Vm+92.703mV

1.94439mV
+ 1.02mV

1+e
Vm+28.735mV

4.19287mV

) ,

and where we have taken [K+]o = 5.4mM. We computed IK using IK = I1x, where

I1 =
(

2.837GK

√
5.4mM
[K+]o

) Vm −E1

Vm +77mV

(
exp
(Vm +77mV

25mV

)
−1
)/

exp
(Vm +35mV

25mV

))
,

where have used the values GK = 0.423mS/cm2 and

E1 = (103mV)
RT
F

log
( [K+]o +0.01833[Na+]o
[K+]i +0.01833[Na+]i

)
≈−77.61mV.

where we took [K+]i = 145mM, [Na+]i = 18mM, [Na+]o = 145mM, R = 8.3145J/(mol◦K) as

the universal gas constant, and F = 96485.3321233100184C/mol as Faraday’s constant. We
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supposed a homeostatic body temperature of T = 37◦C fixed. We have similarly approximated

EK1 = (103mV)
RT
F

log
(
[K+]o
[K+]i

)
≈ 87.95mV.

To avoid numerical overflow when time evolving these gating variables, we treated time

scales as zero, τy = 0, whenever they took a value τy ≤ 5 ·10−4ms. Additionally, we evaluated I1

using L’Hospital’s Rule in the 10−6mV neighborhood of Vm =−77mV. The conduction velocity

was cv = 33cm/s, which is within the electrophysiological range.

Generation and Observation of Chaotic Trajectories

The full cardiac models were simulated using finite difference methods on a spatially

extended square computational domain with periodic boundary conditions. Numerical integration

of Eqn. 2.14 was achieved using the body-centered forward-time explicit Euler method with

the Laplacian operator discretized using a five point stencil. As stated in the main text, initial

conditions contained spiral tips. Observations of spiral tip motion began 100 ms after the

simulation began at time t = 0 so as to allow periodic boundaries enough time to become smooth.

Spiral tip trajectories were determined via nearest neighbor tracking of locations determined

using the following protocol based on intersecting level sets. Spiral tip positions were recorded

every 1 millisecond.

The locations of spiral tips were determined from the intersection points of the level

sets of constant voltage Vm using a constant threshold of Vthreshold =−30 mV. Level sets were

determined from two frames evaluated at frames 1 millisecond apart.

Spiral tips attracted and annihilated in pairs, as is shown by the snapshots in Fig. 2.5

for both of the full cardiac models (left to right) t ′ = 8 ms, t ′ = 4 ms, and t ′ = 0 ms before an

annihilation event. For both full cardiac models, an activation front connects two spiral tips of

opposite chirality before they annihilate. A depolarized region acts as a wave block, causing the

activation front to shrink in length before spontaneously dissipating.
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Annihilation dynamics of spiral tips
Shown are snapshots of (top) the LR model and (bottom)
the FK model at (left) t’=8ms, (middle) t’=4ms, and
(right) t’=0ms before an annihilation event.  Indicated
are the tips of (black stars)
clockwise and (yellow stars) counterclockwise rotating
spiral waves.  Annihilation is explained by a wave-block
resulting from a depolarized area acting as a wall to
spiral tip motion.

(top) Fenton-Karma model
t': tf-t=0.004, num tips: 6
t': tf-t=0.002, num tips: 6
t': tf-t=0.000, num tips: 4

(bottom) Fenton-Karma model
t': tf-t=0.004, num tips: 4
t': tf-t=0.002, num tips: 4
t': tf-t=0.000, num tips: 2

Figure 2.5. Snapshots of spiral tip annihilation. Grayscale snapshots of membrane voltage, u,
showing spiral defect chaos in (top) the LR model and (bottom) the FK model with A = 25 cm2.
Indicated are the tips of (black stars) clockwise and (yellow stars) counterclockwise rotating
spiral waves. Snapshots were taken at (left) t’=8ms, (middle) t’=4ms, and (right) t’=0ms before
an annihilation event. Annihilation can be explained by a wave-block resulting from a depolarized
area acting as a wall to spiral tip motion.
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Exponentially distributed extinction timescales

Spiral tip trajectories were generated at a fixed domain size, A = 25 cm2, and pair-

annihilation events were determined by ordinary nearest-neighbor particle tracking subject to

periodic boundary conditions. We defined the lifetime of a pair of annihilating particles, Γ, as the

maximum temporal duration where the distance between annihilating particles was computable,

as described in the main text. Repeated simulations revealed Γ was exponentially distributed

for the LR model and bi-exponentially distributed for the FK model, as is shown in Fig. 2.6A.

We approximated both as exponentially distributed when estimating the attraction coefficient, a,

from the mean minimum lifetime reported in Tab. 1 of the main text.

Bootstrapping repeated observation of termination events demonstrated the mean termina-

tion times similarly exhibited exponential distributions, as is shown in Fig. 2.6B. Also shown are

the exponentially distributed termination times predicted by the paired birth-death model. The

black traces were determined by time evolving the quasistatic distribution of particle numbers

according to the aforementioned master equations described in the main text. The transition rates

were determined from the power law fits to w±(n) = M±(n ·1 cm2)ν± reported in the main text

evaluated at the same A = 25 cm2 domain size.

Detailed equations for extinction dynamics

The universal power laws reported in the main text describe the mean pair-creation rates,

W+2(N), and the mean pair-annihilation rates, W+2(N), as a function of the number of particles

or spiral tips. For clarity, those power laws are written explicitly as

W±2(N)/A ≡ w±(n) = M±(n ·1 cm2)ν± . (2.18)

For periodic boundary conditions, the dynamics of extinction consists only of the creation

and annihilation of spiral tips in pairs because vorticity is globally conserved. As described

in Reference [212], the extinction dynamics of spiral defect chaos can be accurately modeled
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through the paired birth-death process over N = 0,2,4,8, ... with the master equation

dP(N, t)
dt

= W−2(N +2)P(N +2, t)−W−2(N)P(N, t) (2.19)

+W+2(N −2)P(N −2, t)−W+2(N)P(N, t) ,

where W+2(0) = 0 accounts for absorbing boundary conditions at N = 0. Due to the absorbing

boundary condition at N = 0, no nontrivial steady state solution exists to Eqn. 2.19. However,

setting the left-hand-side of Eqn. 2.19 to zero and normalizing allows us to explicitly compute

the quasistationary distribution of particle numbers, Pqs(N), in terms of the power law fits to

W±2(N). We caution the reader that an incorrect formula for this quasistationary distribution

has been published previously in Ref. [212]. The correct solution is found as described in the

preceding paragraph.

For both of the full cardiac models, the mean of the correct quasistationary distribution

discussed here (FK: 8.1, LR: 4.3) was not significantly different from the apparent mean number

of spiral tips computed directly by time averaging direct simulations of the full cardiac models,

(FK: Navg =8.1±0.7, LR: Navg =5.0±2.4). Exponentially distributed termination times result

from explicitly evolving Eqn. 2.19 with Pqs(N) as initial conditions. Predicted exponential

distributions of termination times are shown as black lines in Fig. 2.6B. The mean of these

termination time distributions predicts a mean termination time, τ . When using directly observed

birth-death rates instead of their powerlaw fits, there is not a significant difference between the

predicted τ and the τ computed directly from the full cardiac models [212].

70



Exponential dependence of mean termination time on domain size

The mean termination time conditioned on an initial number of particles, N0, is written in

terms of A, by substituting the power law fits directly into Eqn. 10 of the main text, resulting in

τ(N0,A) =
(Ã/2)ν+

M+A

N0/2

∑
k=1

(
M+

M−

( Ã
2

)ν−−ν+
)k−1 k!ν−−ν+

kν−−ν+

∞

∑
j=k

( j−1)!ν+

j!ν−

(
M+

M−

( Ã
2

)ν−−ν+
) j

,

(2.20)

where Ã ≡ A/1 cm2. Computing the mean termination time, τ is achieved by averaging τ(N0)

with respect to Pqs(N). Results are shown in Fig. 4E. At A = 25cm2, the predictions (FK:

25.9s, LR: 0.51s) compared reasonably well to the apparent mean termination times (FK:

τ = 27.8±6.5s, LR: τ = 0.74±0.06s). At A = 100cm2, the predictions were remarkably larger

(FK: 1.68×109s, LR: 8.16×101s). This is because Eqn. 2.20 increases exponentially as A is

increased for both of the full cardiac models. This behavior appears independent of the initial

number of particles, which is shown by taking the ratio of τ(N0 = 20)/τ(N0 = 2) versus A,

as is shown in Fig. 2.6C. This suggests in the limit of large domain sizes, Eqn. 2.20 can be

approximated by τ(N0 = 2) for any choice of N0. We remark τ(N0 = 2,A) is a rapidly converging

Dirichlet series that can be expressed in terms of the generalized hypergeometric function, (p)Fq,

via analytic continuation of parameters, p and q, according to

τ(N0 = 2,A)∼ (Ã/2)ν+

M+A (ν++1)Fν−

(
1;2;

M+

M−

( Ã
2

)ν−−ν+
)
∼ τ0eA/A0 as A → ∞,

which indeed increases exponentially with A for the full cardiac models, as shown in Fig. 2.6D.

As a result of this exponential dependence, a characteristic area scale, A0, emerged independent

of any choice of A. Exponential fits for the FK model were A0 = 3.827± 0.007 cm2 at both

N0 = 2 and at N0 = 20. For the LR model, the characteristic area was A0 = 13.3±0.3 cm2 at both

N0 = 2 and at N0 = 20. Also at both N0 = 2 and at N0 = 20, the fitted characteristic time scale

was approximately τ0 = 2.44±0.02 ms for the FK model. For the LR model, τ0 = 13.1±0.4 ms

for N0 = 2 and τ0 = 14.7±0.5 ms for N0 = 20.
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textbf{a} The probability density of the lifetime of annihilation events from the full models at
$A=25$ cm$^2$.
\textbf{b} The probability density of termination times.  Black lines indicate the prediction of
the master equations for a paired birth-death process.
\textbf{c} Graph of the analytic solution for mean termination time conditioned on an initial
number of particles, $N_0=2$ \textit{versus} domain size using the universal powerlaws fit to
the full models.
\textbf{d} Graph of the analytic solution for mean termination time conditioned on an initial
number of particles, $N_0=20$ \textit{versus} domain size using the universal powerlaws fit
to the full models. 

A CB D

Figure 2.6. Timescales are exponential. A The probability density of the lifetime of
annihilation events from the full cardiac models at A = 25 cm2. B The probability density
of termination times. Black lines indicate the prediction of the paired birth-death equations
for a paired birth-death process. C Graph of the analytic solution for mean termination time
conditioned on an initial number of particles, N0 = 20 divided by the same solution evaluated at
N0 = 2 versus domain size using the universal power laws fit to the full cardiac models. Dotted
lines indicate linear fits. D Graph of the analytic solution for mean termination time conditioned
on an initial number of particles, N0 = 2 versus domain size using the universal power laws fit to
the full cardiac models. Dotted lines indicate exponential fits.

Marginal dependence of force magnitudes on domain size

Spiral tip trajectories were generated at various domain sizes, A, and the attraction

coefficient, a, was estimated from the apparent MSR of pairs from the full cardiac models

as described in the main text. Examples of the MSR are shown at A = 25 cm2 in Fig. 2.7A

and at A = 39.0625 cm2 in Fig. 2.7B. An apparent strengthening in diffusion can be seen in

Fig. 2.7A-B, where increasing the domain size increases the slope of the MSR at long ranges

where the attractive force becomes weak.

We observed the apparent value for a decreased, though only marginally, as A was

increased as is shown in Fig. 2.7C. For the FK model, increasing A by 178% decreased a by

-21%, while for the LR model, increasing A by 300% decreased a by -24%.

The sum of attractive and diffusive forces is quantified by a+2D, which approximates the

mean squared distance between annihilating particles divided by the quantity four times the mean

lifetime of annihilation events, as discussed in the main text. We observed the apparent value

for a+2D increased as A was increased, though also only marginally, as is shown in Fig. 2.7D.

For the FK model, increasing A by 178% increased a+ 2D by 9%, while for the LR model,
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BA C

amax_fk=1.8453 #cm^2/s #350x350
amax_lr=11.5860 #cm^2/s #350x350

amax_fk=1.8337# cm^2/s #fk #250x250
amax_lr=10.5936# cm^2 #lr 250x250

Figure 2.7. Forces are insensitive to domain size. A Apparent MSR versus time until
annihilation for the full cardiac models simulated at a side length of 250 pixels (A= 39.0625 cm2).
The distance between two adjacent pixels was ∆x= 0.025 cm fixed. Symbols indicate the average
of 103 statistically independent simulations. B Apparent attraction coefficient versus domain
size. C Apparent sum of attractive and diffusive forces versus domain size.

increasing A by 300% increased a+2D by 14%. This increase in apparent force magnitude is

explained by diffusion becoming effectively stronger as the domain size is increased.

This relative insensitivity of effective force magnitudes to domain size can be explained

by the average distance between annihilating particles being set by local properties that are

intrinsic to the full cardiac models. Therefore, it makes perfect sense that increasing an extrinsic

property of the system, such as A, should have minimal effect on an intrinsic property, such as a.

If attraction was somehow able to be increased by modifying the electrophysiological parameters

of the full cardiac models, then the mean termination time could be decreased at larger domain

sizes that might otherwise correspond to a pathological state.

Detailed Equations for Stochastic Particle Model

Let X(t) = (X1(t), . . . ,XN(t))∈
(
[0,L)× [0,L)

)N be the positions at time t for N particles

that move in a spatially extended square with domain size, A = L2, with periodic boundary con-

ditions. We denote Xik(t) as the kth coordinate of the ith particle at time t. The initial distribution

of particles, X(0), is drawn randomly from the uniform distribution over the entire domain. The

points time evolve forward by ∆t = 10−2ms independently for each spatial coordinate, k = 1,2,
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by using the formula,

Xik(t +∆t) =
[
Xik(t)+µik

(
X(t),Φ(t)

)
∆t +

√
2D∆tZ

]
pbc

,

where [ · ]pbc denotes enforcement of periodic boundary conditions, D > 0 is the diffusion

coefficient, Z ∼ N (0,1) is a value both randomly and independently drawn from the normal

distribution with zero mean and unit variance, and Φ = (φ1,φ2,φ3, ...,φN) is a vector of local

phase variables that can be used to represent the oscillatory component of the attractive force

between annihilating spiral tips. In the linear particle model (LPM), the kth component of

the impulse factor acting on the ith particle is µik, which was summed synchronously over all

particles according to

µik(X(t)) =
N

∑
j=1

[
− â

(
X j(t)−Xi(t)

)
k∣∣X j(t)−Xi(t)
∣∣2
]

pbc
.

A key benefit to the simplicity of the LPM is that it is independent of any choice of Φ(t). Our

implementation of the oscillatory particle model was the same, except we added a similar term

to µik by multiplying by an additional factor of cos(φi(t)−φ j(t)) in order to explain the distance

between pairs of annihilating spiral tips in the mean square.

Annihilation was modeled by removing pairs of particles with probability, κ∆t, whenever

they were closer than the reaction range, r. In the main text, r was fixed to the 25th percentile

of the minimum ranges between non-annihilating tips. The value of r can alternatively be

systematically varied with the reaction rate, κ , to fit the LPM to the mean pair annihilation rates

of the full cardiac models. This is shown in Fig. 2.8A, which visualizes the likelihood of the fit

for the FK model. The shape of this likelihood is explained by the following analysis.
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BA C

This supplemental figure supports
instantaneous, local 

pair-annihilation reactions 
in (blue) the Fenton-Karma model.

Figure 2.8. Reaction scale of the linear particle model fit to the mean pair-annihilation
rates of the full cardiac models. A Heatmap showing log-likelihood. B Contour plot showing
isolines of constant log-likelihood. C Scatter plot showing parameters supporting strictly positive
log-likelihood for (blue) the Fenton-Karma model and (orange) the Luo-Rudy model. Color
deepens with increasing likelihood. Indicated are maximum likelihood parameter settings for
(black square) the Fenton-Karma model and (black triangle) the Luo-Rudy model.

Estimation of annihilation rate for multiple reactions

To estimate global reaction rates from local reaction rates, we first estimate the mean

time until the first reaction between any two particles conditioned on an initial configuration

x = X(0), which we denote τ(x). Let κi, j(X)> 0 denote the rate that the ith particle reacts with

the jth particle in the pair-annihilation reaction Xi +X j →∅. We denote the overall rate of any

pair of particles reacting by κ̄(X)≡ ∑i< j, j κi, j(X), where the sum considers all pairs of particles.

The following expectation is computed by averaging over all paths X = X(t) conditioned on the

initial configuration x = X(0). The expected likelihood that no reaction has occurred by time t is

computed according to

u(x, t)≡ EX(0)=x

[
exp
(
−
∫ t

0
dsκ̄(X(s))

)]
, (2.21)

which has boundary conditions u(x,0) = 1 and u(x,∞) = 0. The expected time until the first

reaction, conditioned on an initial spiral tip distribution x, is then computed by integrating by

parts,

τ(x) =
∫

∞

0
dtu(x, t) =−

∫
∞

0
dt∂tu(x, t). (2.22)
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The aforementioned is applicable regardless of whether the motion is deterministic or

stochastic. As the prior case can be considered a special case of the latter, it suffices to estimate

annihilation rate for general stochastic paths— as is done in the following for the general

Langevin equation,

dX(t) = µ(X , t)dt +σ(X , t)dB(t), (2.23)

where B(t) is standard Brownian motion in the same basis as X . Here, µ is a general drift while

σ is a correlation matrix accounting for the strength of the noise. Parameters µ and σ can be

found through fitting based on particle trajectories and interactions, and are intended to capture

the effective forces that act on the particles. We average over paths of X using path integrals,

which We compute using the Feynman-Kac formula [17, 98], which tells us that u satisfies the

partial differential equation (PDE),

∂tu =−∂x
(
µ(x, t)u

)
+

1
2

∂
2
x
(
σ(x, t)2u

)
− κ̄(x)u . (2.24)

We will now assume that the drift µ and noise level σ exhibit no explicit dependence on t.

By integrating both sides of Eqn. 2.24 from t = 0 to t = ∞, we arrive at the following time-

independent PDE describing τ(x):

−1 = µ(x)∇τ(x)+
1
2

σ
2(x)∇2

τ(x)− κ̄(x)τ(x) (2.25)

The average first reaction time for N particles is then computed by averaging over the

initial particle configurations, denoted by τ̄N = Ex[τ(x)]. Using Eqn. 2.25, we can explain the

linear scaling relation between M− and κr2/L2 in the large domain limit.

To study the scaling dependence of W−2 on κ and r, we consider the following test case

where forces may be neglected. Let C (x;r) be the set of all pairs of particles within range, r,

conditioned on initial particle configuration, x. Conditioning further on a constant number of

reacting particles, |C (x;r)|= M, the value of τ is then a constant in terms of x, τ(x) = (κM)−1,
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which implies ∇τ(x) = 0. Substituting into Eqn. 2.25 results in τ(x) = 1/κ̄(x). The average

over all initial conditions is then computed according to

τ̄N = Ex[1/κ̄(x)] = κ
−1Ex

[(
∑

i< j, j
Θ(r−Ri j)

)−1
]
,

which can be estimated numerically for a given N and r/L.

Consider the limiting case where x is conditioned on all N particles not being within a

distance r of another particle. Randomly placing an additional particle in the domain with a

uniform probability increases M to unity with constant probability, Nπr2/L2. This probability

will decrease only marginally if a few particles come within range, as the total area available to

react decreases only marginally. Thus, the sensitivity of W−2 to N includes a factor of κr2/L2.

This suggests the mean annihilation rate scales according to

W−2(N) = 1/τ̄N ∼ κ
(
Nπr2/L2) f (N,L) as r/L → 0.

where f (N,L) is a function insensitive to perturbations in r and κ . Consistency with the apparent

power-law behavior requires a power law of the form, f (N,L) = CNν−1(1 cm2/L2)ν−1 for

some constant, C > 0. Substituting W−2(N) = M−L2Nν
−
(
1 cm2/L2)ν− reveals the identification,

ν = ν−. Simplifying predicts the desired length-scale invariant scaling relation, M− ∝ κr2/L2,

which explains the linear shape of Fig. 2.8B.

Importantly, we only found good maximum likelihood fits when a was within a narrow

band of values. To show this, we systematically varied the attraction coefficient, a, to find the

solution set of maximum likelihood fits forms manifolds embedded in three dimensions. These

manifolds are visualized in Fig. 2.8C for various choices of D overlaid. The annihilation rates

were generally insensitive to the choice of D, which further underscores the importance of spiral

tip attraction in describing the extinction of spiral defect chaos.

Chapter 2, in part, has been submitted for publication of the material as it may appear in
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the Physical Review E, 2023, Tyree, TJ; Murphy, P; Rappel WJ. American Physical Society, 2023.

The dissertation author was the primary investigator and author of this paper.
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Movie legends

• Movie S9: Grayscale movie of spiral tip motion from the Luo-Rudy model. Yellow

symbols represent spiral wave tips, which create and annihilate in counter-rotating pairs.

Domain size is A = 25 cm2.
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Chapter 3

Cross-modal representation of identity in
primate hippocampus

Navigating the complex societies that typify primates relies learning the identity of

each individual in the group and their respective social relationships through observation [189].

Although evidence shows that neurons in the brains of primates and other mammals selectively

respond to the identity when viewing the face or hearing the voice of a specific individual as

unimodal signals [12, 156, 194, 184, 182, 33], data showing that single neurons are responsive

to both the face and voice of an individual – a cross-modal representation of identity – is

limited to ‘concept cells’ in human hippocampus; a sparse population of highly-selective neurons

responsive to well-known individuals and locations across different views and modalities learned

through observation [169, 171, 213]. These neurons are significant for several reasons including

their putative role in memory functions [170] and potential uniqueness to humans [168]. Here

we tested whether cross-modal representations of identity are evident in the hippocampus of

marmoset monkeys by recording single hippocampal neurons [46] while presenting subjects

with multiple exemplars of individual marmoset faces - from different viewpoints - and voices

as unimodal stimuli, consistent with previous work [194] as well as concurrently by presenting

the faces and voices from the same (identity match) or different individuals (identity mismatch):

i.e. Match versus Mismatch (MvMM). Visual stimuli were presented from a monitor directly

in front of the animal while a speaker positioned directly below the screen broadcasted the
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acoustic stimuli. Subjects were only presented with familiar conspecifics housed in the same

colony that differed in their respective social relatedness (e.g. family members and non-family

members [213]).

To first test whether cross-modal representations of identity are evident in the hip-

pocampus of a nonhuman primate, we performed the same ROC selectivity analysis described

previously in humans [169, 171, 213] and revealed a population of cross-modal invariant neurons

for individual identity when observing marmoset faces or voices (Figure 3.1A, 3.9A), as well

as neurons selective for individual identity when viewing only their faces (Figure 3.1B, 3.9B),

or hearing only their voices (Figure 3.1C, 3.9C). These identity neurons were confirmed in all

hippocampal subfields (Figure 3.2A). Overall, we observed N=148 (9.2%) of N=1,602 qualifying

neurons demonstrated selectivity for a single preferred individual (Figure 3.2B) with different

neurons selective for faces (N=52), voices (N=39) or both faces and voices (N=57; Figure 3.2C).

The mean area under the ROC curve (AUC) of identity neurons (AUC=0.902±0.014) was signifi-

cantly above chance (p<0.001, Figure 3.2D). Although these neurons in marmosets were overall

less selective than in humans [169, 171, 213], this disparity may reflect species differences in the

baseline hippocampus activity (Figure 3.10) that affect neural coding mechanisms for identity.

Analysis of eye-movements (Figure 3.2E) revealed marmosets’ visual behavior and neural

activity were differentially affected by modality and identity. Marmosets exhibited significantly

shorter fixations (p<0.001, N f ixations =18,965; Figure 3.2F) and significantly more saccades

(p<0.001, Nsaccades =2,203) during trials with face-only relative to the voice-only trials (Fig-

ure 3.2G). These monkeys were also highly focused on faces during stimulus presentations, with

faces accounting for 77.9% of viewing time and eyes specifically accounted for 37.6% of viewing

time. The firing rate of identity neurons was significantly greater than the remaining neurons

when subjects were looking at the eyes or face (both p<0.001; Figure 3.2H) suggesting that this

class of neurons was particularly sensitive to faces and facial features regardless of identity. This

was not, however, a broad attentional effect [138], as the firing rate of simultaneously recorded

non-identity neurons did not show the same increased firing rate when gazing at faces or eyes.
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Figure 3.1. Identity neurons in primate hippocampus. [a-c] Top row: subset of stimuli shown
above raster and PSTH. Bottom row: spike waveform density; normalized PSTH to all stimuli
(preferred: red, nonpreferred: black), indicated are time points that show significant difference
(p<0.05); median number of spikes for unimodal stimuli (grey/black indicate non-preferred
individuals; ROC curve (shuffled controls shown in black). Exemplar identity neurons responding
selectively to [a] the face and voice of a preferred conspecific (red), [b] the face only, and [c] the
voice only.
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Figure 3.2. Identity neurons in primate hippocampus (cont’d). [a] Anatomical distribution
of identity neurons (red) in hippocampal subfields relative to neurons remaining that responded
to any stimulus (white). Black shadow indicates the electrode array track with MRI distortion
artifact. [b] Pie chart showing the abundance of identity neurons in black with the number of
remaining neurons that qualified for the ROC selectivity analysis in white. [c] Pie chart showing
the mode distribution of identity neurons. Modes included face (light blue), voice (dark blue), and
both (orange). [d] Histogram showing the distribution of areas under ROC curves comparable to
red ROC curves in Figure 3.1. Colors are as in [c]. Black dotted line is the mean, while red dotted
line is the mean of 10,000 random shuffles of the labels. [e] Exemplar eye-movements (yellow)
with fixations indicated (red). [f] Distribution of eye fixation durations for unimodal trials. [g]
Distribution of apparent saccade number for unimodal trials. [h] Distribution of median firing
rates while observer was looking at eyes (left) and face (right) for identity neurons (black) versus
remaining neurons (white). Three asterisks indicate a significant median difference (p¡0.001).
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A potential parallel mechanism to highly-selective “concept cells” is for individual cells

to contribute to multiple functions [179, 136], such as single neurons being sensitive to the

cross-modal identity of multiple conspecifics. Previous studies show that hippocampal neurons

are sensitive to mismatches between the features of a particular stimulus and previously learned

category [112, 72]. To test whether a similar mechanism is evident for the learned social identities

of conspecifics in marmoset hippocampus, we next analyzed whether neurons would respond

differently when simultaneously observing the face and voice from the same (identity match) or

different (identity mismatch) individuals. By presenting a face and voice in all MvMM trials,

we controlled for the potential effects of multi-modal integration (Figure 3.11A) and instead

tested whether a subordinate category– identity– elicited changes in neural activity. Analyses

revealed that indeed a subpopulation of units– MvMM neurons– exhibited a significant firing

rate preference for either match trials (Figure 3.3A) or mismatch trials (Figure 3.3B), with some

neurons modulated only by this category distinction (Figure 3.3A) and others more generally

stimulus drive (Figure 3.3B).

Overall, 21.7% of neurons (N=511 of 2,358) exhibited a significant response during

MvMM trials, with significantly more units exhibiting a higher firing rate during match (N=401)

than mismatch (N=110) trials (p<0.001; Figures 3.4A, 3.11B). MvMM neurons were largely

distinct from the identity neurons described above (Figure 3.4B). Interestingly, 56% of the neu-

rons observed in both populations whose anatomical location could be confirmed were recorded

in CA1. In contrast to identity neurons, MvMM neurons were biased to CA1 (Figure 3.4C), with

N=155 (44.3%) out of 350 neurons confirmed in the CA1 qualifying as MvMM neurons. In CA1,

significantly more MvMM neurons (N=129/155, 83.2%) preferred match trials to mismatch trials

(p<0.001). Analysis of visual behavior revealed that the MvMM neurons exhibited significantly

higher median firing rate while the subject was looking at the eyes or face (p<0.001, N=511;

Figure 3.4D) indicating that these neurons were likewise sensitive to these socially-relevant

features. Further analysis indicated that marmosets exhibited significantly more saccadic eye

movements during mismatch trials (Figure 3.4E) and that this difference in behavior was most
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Figure 3.3. Single neurons in hippocampus represent multiple individuals. [a,b] The PSTH
normalized by the pre-stimulus baseline (top) and spike raster (bottom) for two exemplar MvMM
neurons. Black indicates match and red indicates mismatch trials. Vertical line indicates stimulus
onset. Inset shows spike waveform density. Asterisk indicates significant time points (p<0.05).
Exemplar neuron with higher firing rate for [a] match and [b] mismatch trials.
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prominent 1-2s after stimulus onset (p<0.05, Nsaccades =4,603; Figure 3.4F) suggesting that the

monkeys were perceptually sensitive to the incongruence in the subordinate category– identity–

shared between cross-modal signals, consistent with the pattern of neural responses to these

stimuli.

These findings suggest two seemingly distinct mechanisms for representing cross-modal

identity are evident in primate hippocampus. We conjectured that more temporally selective

coding mechanisms in hippocampus may inform how these two processes for encoding identity

are integrated at a population level. To test this, we developed an algorithm to identify intervals

of time during which individual neurons exhibited significant differences in median firing rate for

a specific category (p<0.05), which we labeled as predictive time bins (Figure 3.12). Importantly,

this algorithm was applied to all neurons in the population, not only those classified as identity

selective or MvMM neurons (e.g. Figures 3.1-3.4). We first implemented this analysis to test

whether predictive time bins were selective for specific individuals when observing their face

or voice. Figure 3.5A and Figure 3.13 show a pair of exemplar neurons that exhibited separate

predictive time bins for two different individuals. Analyses revealed that N=1,634 out of 2,358

hippocampal neurons (69.3%) exhibited at least one identity-specific predictive time bin, with

the majority comprising predictive time bins for two or more individuals (Figure 3.5B).

Identity-specific predictive time bins exhibited a mean AUC (AUC=0.802±0.003) that

was significantly above chance (p<0.001, Nbins =3,958; Figure 3.6A). Analysis of visual behavior

showed that neurons possessing identity-specific predictive time bins exhibited a significant

increase in median firing rate when subjects were looking at the face of the preferred individual

(Figure 3.6B). Notably, instances of face and eye viewing were highly variable and not limited

to the timing of predictive time bins suggesting that attentional effects from visual behavior

were not likely driving neural activity during these periods (Figure 3.14). We applied the same

algorithm to test for predictive time bins that distinguished MvMM trials and found a similar

result (Figure 3.6C) with 1,455 neurons exhibiting MvMM predictive time bins. Furthermore, the

firing rate of neurons with predictive time bins for MvMM exhibited a significantly higher firing
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Figure 3.4. Single neurons in hippocampus represent multiple individuals (cont’d). [a]
Pie chart showing the number of neurons that responded significantly more for match (black)
or mismatch (red) trials. [b] Venn diagram showing the number of MvMM neurons (black)
in common with identity neurons (red). [c] Relative abundance of MvMM neurons in each
hippocampal subfield. [d] Distribution of median firing rate while looking at the eyes (left)
and face (right) for MvMM neurons (black) versus remaining neurons (white). [e] Probability
density of saccadic eye movements directed towards the eyes for match (black) and mismatch
(red) trials. Indicated are the time points in [f]. [f] Distribution of apparent number of saccades
to eyes. Asterisk indicates significant median difference (p<0.05).
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Figure 3.5. Cross-modal encoding of identity. [a] PSTH of two exemplar predictive neurons.
Colored traces average over trials involving preferred individual while the gray shaded regions
indicate 95% confidence intervals of the session mean. Colored regions indicate identity-specific
time bins. One asterisk indicates statistical significance (p<0.05). [b] Pie chart showing number
of identity-specific predictive neurons that prefer one individual (white), two individuals (gray),
and three or more individuals (red).

rate than other neurons when subjects looked at the face than the remaining neurons (p<0.001;

Figure 3.6D). We observed considerable overlap between neurons with identity-specific and

MvMM predictive time bins, as 82.2% (N=1,196, Figure 3.15A) exhibited predictive time bins

in both analyses. These results demonstrate that information about specific identities is evident

in the activity of hippocampal neurons using this more temporally refined predictive-time bin

analysis.

Encouraged by these findings, we developed a stable neural decoder by combining the

firing rates of predictive time bins using an ensemble of gradient-boosted decisions trees [35].

When using identity-specific time bins, we could reliably decode the identity of all marmosets

when subjects observed their face or voice (accuracy: 77.4%; Figure 3.7A). Likewise, the same

approach could successfully decode MvMM trials when using MvMM time bins (accuracy:

75.7%; Figure 3.7B). Interestingly, the two kinds of decoders used mostly different time points,

with only 24.6%±1.5% of identity-specific time bins overlapping with MvMM time bins within

the same neurons (Figure3.15B).

To test whether the same population could represent multiple cross-modal identities, we

developed the identity network model (INM) that integrates these two decoding approaches.

88



***

C

***

B
***

D

A

***

Figure 3.6. Cross-modal encoding of identity (cont’d). [a] Histogram showing AUC distribu-
tion of identity-specific time bins with colors indicating preferred individuals in legend. Dotted
lines indicate the mean (black) and the control with shuffled labels (red). [b] Distribution of
median firing rates while the observer was looking at the face for the identity-specific predictive
neurons compared to the remaining neurons. [c] Histogram showing AUC distribution of MvMM
time bins. Dashed lines indicate the mean (black) and the control with shuffled labels (red). [d]
Distribution of median firing rates while the observer was looking at the face for the MvMM
predictive neurons compared to the remaining neurons. Three asterisks indicate statistical signifi-
cance (p<0.001).
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The first approach was identical to the identity-specific decoder described above, resulting in

accurate decoding for each individual’s face or voice. The second approach classified MvMM

trials as either match or mismatch but was blind to individual identity. Our INM combined

these two approaches to achieve cross-modal decoding of individual identity (Figure 3.16). This

combination was critical because the identity-specific predictive population was only accurate

for individual identity but performed poorly for classifying MvMM (Figure 3.7A), while the

MvMM predictive population was the inverse (Figure 3.7B). When combined across individuals,

the INM successfully decoded the cross-modal identity of all twelve individuals (accuracy:

84.5%; Figure 3.7C). Notably, decoding performance was at least 5× above chance when

distinguishing all individuals (Figures 3.7D, 3.17). Together, these results demonstrate cross-

modal representations for the individual identities of multiple conspecifics are evident at the

population-level in primate hippocampus [176].

Because identity neurons were included in decoding, we investigated whether their

explanatory contribution was disproportionate to their sparse distribution. We compared INM

performance when these neurons were removed from the analysis and separately used only in

the analysis versus an equal number of other neurons, and we observed no significant effect

on decoding performance despite the consideration of only individuals preferred by identity

neurons (Figure 3.7E, 3.19-3.20) suggesting that these highly-selective neurons are no more

significant for decoding the cross-modal identity of familiar individuals than other neurons in the

population.

The success of the INM provided compelling evidence that an individual within a mar-

moset’s social network can be decoded from their face and/or voice, but an individual’s identity

is also coupled to their social relationships, such as their family. To test whether hippocampus

encodes categorical attributes of social identity, we applied nonlinear dimensionality reduction

techniques shown to be powerful tools for revealing elements of brain functions [133], including

in studies of hippocampus [147]. Using mean firing rates consistent with studies of face and voice

processing in the primate brain [68], we first verified these reduction techniques were capable of
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Figure 3.7. Cross-modal decoding of identity. [a] ROC curves for the detection of face or
voice of individuals. Firing rates were considered from MvMM time bins (green, AUC=0.536)
and identity-specific time bins (black, AUC=0.779) similarly averaged over individuals. Thinner
colored lines indicate individuals as in Figure 3.4A. [b] ROC curves for the detection of match
trials. Firing rates were considered from MvMM time bins (green, AUC=0.782) and from
identity-specific time bins (black, AUC=0.516). [c] ROC curves for the detection of both face
and voice of individuals from same 19 recording sessions as in [g,h]. Firing rates were considered
from MvMM time bins (green, AUC=0.615), identity-specific time bins (black, AUC=0.622),
and the INM (gray, AUC=0.818), similarly averaged over individuals. Results of the INM for
individuals are shown by thin lines colored as in the legend of Figure 3.4A. Red dotted line
indicates random guess as in [a,b]. [d] Bar plot showing true positive rates predicted by a
winner-take-all model that considered predictions from the INM specific to twelve individuals.
Indicated is the mean of the shuffled labels (red) and 5× that value (black). Bar plots summarize
the trials from the testing sets of 33 recording sessions (Ntrials=454). [e] Bar plot showing mean
AUC with identity neurons removed (light gray) versus the control randomly removing an equal
number of bins from the remaining cells (dark gray). Uncertainty indicates 95% confidence
of the mean. No significant difference was observed across recording sessions for any of the
three qualifying subjects according to a paired Wilcoxon-Mann-Whitney test (Archie, p=0.81,
Nidentities =14; Baloo, p=0.58, Nidentities =9; Hades, p=0.50, Nidentities =12).
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separating the stimulus categories at multiple probe locations along the anterior-posterior axis

(Figure 3.21). We then replicated the findings of the INM using the same identity-specific predic-

tive time bins for marmoset faces and voices drawn from the entire hippocampal population and

showed that manifold projections similarly separated individuals (Figure 3.8A, 3.22), including

for different subpopulations of neurons (Figure 3.22G).

To investigate whether representation of identity can be described by the relative timing

of spikes, we computed manifold projections of spike times recorded during match trials (Fig-

ure 3.8B, left) using parameterless signed connection rate features. The signed connection rate

from one neuron to another describes how it interacts with other neurons, revealing statistical

distributions specific to any given pair of neurons (Figure 3.8B, right); a facet of neural activity

separate from the firing rate of any single neuron. Results using this event-coded measure again

revealed excellent separability for identity-match trials (Figure 3.8C), thereby replicating the

effect observed with the INM using an independent facet of neural activity and further supporting

cross-modal representations of identity as encoded in population-level activity in marmoset

hippocampus.

Given this result, we next asked whether social categories other than identity may likewise

be represented in event-coded hippocampal activity. Specifically, we tested whether representa-

tions of other marmosets’ family members were distinct from non-family members for the two

marmosets whose families were not included in the stimulus sets using two distinct quantifica-

tions of manifold projections, though the pattern was consistent for all subjects. First, results

revealed a significant difference in the mean square range (MSR) of the manifold projections

along this category boundary (Figure 3.8D, 3.23A), suggesting a larger event-coded state-space

was occupied while observing family members (Figure 3.23B). Notably, while these projections

were supervised, the clustering that emerged based on respective social relatedness was unsu-

pervised. Second, we computed the unsupervised latent firing rate as the manifold projection

of the absolute value of signed connection rate. Although individual identities did not separate

(Figure 3.24A), we found trajectories that appeared stable in time and comparable across trials
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(Figure 3.24B). The motion of mean latent firing rate significantly separated social categories at

multiple time points for all subjects (Figure 3.8E; Figure 3.24C,D). Together, these results demon-

strate that neural representations of social identity in primate hippocampus are not only invariant

to the sensory modality and comparable over time (Figure 3.25) but low-dimensional manifolds

(Figure 3.8F) can describe relationships between different social categories (e.g. individual

identity, family groups, etc.) learned by observing interactions between individuals [189].

Here we showed that the cross-modal identity of multiple conspecifics is represented

in the primate hippocampus. Although we identified putative ‘concept cells’ similarly to hu-

mans [169, 170], we discovered that this population of highly selective neurons is not the only

mechanism for representing concepts of individuals. Rather, both single neurons and the broader

population in hippocampus encode cross-modal identity of multiple conspecifics, similar to

what has been reported for objects [176], suggesting that the sparse representations of ‘concept

cells’ may not be the only mechanism to represent semantic memory in hippocampus. Fur-

thermore, analyses revealed that a population-level code represents not only the cross-modal

identity of multiple familiar individuals but information pertinent to social categories, as well.

Similar to the role of hippocampus in other contexts [10] (Figure 3.26), these representations

may support a learned schema that here applies to social identity [193, 2]. The presence of

unimodal representations of identity in the primate frontal and temporal cortex [204, 156],

amygdala [184, 79] and the medial temporal lobe [115] and representations of social dominance

in amygdala [143] may reflect an integrative social recognition circuit in which substrates in the

broader network play distinct but complementary roles that collectively govern natural primate

social brain functions [67].
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Figure 3.8. Cross-modal representation of identity using rate and event codes. [a] Two-
dimensional manifold projection of our rate-coded representation computed from firing rates of
identity-specific time bins. One symbol represents one identity match trial. Indicated is the mean
(black). Colors in legend correspond to individuals. [b] Schematic illustrating the hindsight delay
to a given neuron (left), used to generate histograms of signed connection rates to three neurons
(right). [c] Two-dimensional manifold projection of our event-coded representation of identity
computed as the manifold projection of signed connection rates of all neurons in the same
exemplar recording session. One symbol represents one spike. Indicated is the mean (black). [d]
Boxplots of MSR showing significantly different values when subjects observed family of other
subjects. Shown is Archie observing family of Hades (top left, p¡0.001, Nidentities ≥23) and Buck
observing family of Hades (top right, p=0.003, Nidentities≥26), Archie observing family of
Baloo (bottom left, p=0.017, Nidentities ≥30), and Buck observing family of Baloo (bottom right,
p=0.828, Nidentities ≥37). Significance was computed according to Student’s t-test. [e] Latent
activity averaged over all recording sessions from subjects Archie (left) and Buck (right). Colors
indicate average over the family of Baloo (blue) and Hades (orange) relative to all conspecifics
(gray). Shaded regions indicate 95% confidence of the mean estimated via bootstrap. [f] Graph
of connections bundled between individuals. Triangles in legend indicate family members.
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3.1 Supplementary Information

Subjects.

Four adult marmosets (2 male, 2 female) served as subjects in these experiments. All

animals are socially housed with 2-8 conspecifics in the Cortical Systems and Behavior Labora-

tory at the University of California San Diego (UCSD). All animals housed in a cage are family

members, as each cage comprises a pair-bonded adult male and female and 1-3 generations of

offspring. The UCSD marmoset colony in the Miller Lab houses ∼70 animals in 15 family

groups in a single room with visual and acoustic access between cages. All procedures were

approved by the Institutional Animal Care and Use Committee at the University of California

San Diego and follow National Institutes of Health guidelines. A total of 47 recording sessions

were performed with these subjects over the course of the experiment and analyzed here.

The total number of single units recorded from marmoset hippocampus totaled N=714

in Archie, N=822 in Baloo, N=212 in Buck, and N=610 in Hades (Figure 3.11B). All four

subjects were considered equally in the identity neuron analysis and the MvMM neuron analysis

(Figures 3.1-3.4). All subjects were considered in the predictive time bin analysis (Figure 3.5-3.7)

except for Buck due to his low count of single units across his 13 recording sessions. For the

manifold projection analysis (Figure 3.8), all subjects were considered while they observed

families that had at least two family members from amongst the cohort of individuals shown.

Experiment design.

Neurophysiological recordings were performed while subjects were head and body

restrained in our standard marmoset chair [139]. Visual stimuli were presented on an LED

screen from a BenQ monitor 1080 positioned 24 cm in front of the animal. Acoustic stimuli

were presented at 70-80 dB SPL from a speaker positioned below the monitor (Figure 3.27).

All behavior was collected in an anechoic chamber illuminated only by the screen, which had a

dynamic range from 0.5 to 230 cd/m2, with luminance linearity verified by photometer. Stimulus
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presentation was controlled using custom software and eye position was monitored by infrared

camera tracking of the pupil. For hardware, calibration, and validation see previous work in the

lab [139].

Subjects initiated trials by holding fixation of gaze for 100ms at a center fixation dot on

the screen, at which point stimulus presentation was initiated. The 150ms period immediately

post- stimulus was discarded to account for the time for visual signals to propagate from the

retina to the hippocampus. This latency has been measured to be in the range 100-200ms [97].

This biophysical argument supports our estimate of the stimulus onset t=0 occurring 150ms after

stimulus was presented. Unless otherwise specified, baseline firing rates were estimated from

500ms preceding t=0 excluding 300ms for anticipatory firing. Stimulus responses were initially

measured by comparing the peristimulus baseline firing rate to firing rates averaged from the

max of a 500ms sliding window from t=300ms to 3.5s.

Stimuli were divided amongst unimodal– face-only and voice-only– and cross-modal–

identity match and identity mismatch– on a trial-by-trial basis. Up to twelve conspecifics were

represented per stimulus set (min 10, max 12). Face stimuli comprised multiple examples of

each individual marmoset from different head orientation.

All face and voice stimuli were pictures or audio recordings from animals housed in the

same colony room as the subjects. Because the colony is housed in a single room in which all

animals have visual and acoustic interactions with each other, we assumed that all animals have

sufficient experience observing each other to be familiar with their respective individual identities.

Each individual marmoset was represented in multiple distinct stimuli (Nstimuli=36.0±15.3)

for each individual in each recording session across each of the three stimulus classes: face

forward, face profile and vocalization. No single stimulus was presented to subjects more than

two times in a single test session. Monkeys with fewer than 10 presentations per individual in a

recording session were not considered in any analysis. The stimulus duration of trials involving

vocalizations (i.e. voice-only and cross-modal) necessarily varied because each “phee” call

differed in duration (mean: 3.02±0.74s). The median face stimulus duration was 3.50 seconds
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(IQR: 2.78-3.51 seconds). The minimum face stimulus duration was 2.05 seconds and the

maximum face stimulus duration was 4.46 seconds. Stimuli were presented in 10-trial blocks,

with an inter-block active forage trial with juice reward to maintain attention. Each recording set

was composed of 400 face and/or voice stimuli, split into 2 subsets.

All stimuli were composed of faces and/or voices of conspecific monkeys in our colony

familiar to each subject. A total of 16 individual monkeys were represented overall (9 male, 7

female). Test subjects were not included in their own stimulus sets. Because our goal was to

test for representations of individual identity rather than cross-modal perceptual integration of

face/voice biomechanical movements (i.e. McGurk Effect) we presented subjects with static face

stimuli so as not to introduce confounds that may emerge due to temporal misalignments of the

face and vocalizations during the identity mismatch trials.

All face stimuli were photographs of monkeys from our colony taken while animals were

in our standard marmoset chair with a light background behind them. The animals are trained to

sit comfortably while a neck guard restricted their mobility. While seated, subjects could freely

change head direction. Photographs of each subject were visually inspected and selected based

on image quality and suitable representation of multiple head orientations (Figures 3.1, 3.9).

Photos used as stimuli were cropped to only show the neck guard and the face/head, so as to

eliminate views of the rest of the body and chair.

All voice stimuli were marmoset “phee” calls comprising two pulses, the species-typical

long-distance contact calls. Previous work has shown that marmosets are able to recognize the

caller’s identity when hearing “phee” calls [137]. Recordings were made at 44.1kHz sampling

rate while a monkey engaged in natural vocal interactions with a visually occluded conspecific

in a soundproof chamber and hand-selected using custom code. Only examples with high SNR

and minimal background noise were selected for stimuli.

All analyses were performed in Python unless otherwise indicated.
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Surgical and neural recording details.

The surgical procedure employed here has been described previously [46]. Briefly, we

performed an initial surgery to affix a post to the skull on each animal to restrain subjects’

head during experiment preparation. Following recovery, a second procedure was performed to

embed the drive housing and the electrode array for stable chronic electrophysiological recording.

We implanted a 64-channel microwire brush array (MBA, Microprobes) either unilaterally or

bilaterally into the hippocampus using preoperative MRI stereotaxic coordinates. Electrode

locations were confirmed by postoperative MRI and histology. All surgeries were performed

under sterile and anesthetized conditions. The implants were inserted 7-13 degrees of angle off

the vertical using the medial sulcus as reference before the operation has taken place. Neural

recordings were performed with an Intan 512ch Recording Controller system via an RHD2164

64-channel amplifier chip, sampled at 30kHz. Neurophysiology data was analyzed using Spyking

Circus yielding across all recording sessions 2,358 isolated units, referred to as neurons in the

main text and in the remainder of Methods and Materials. Standard procedures were employed

to remove obvious recording errors, which resulted in less than 1% of trials being removed from

the analysis a priori.

Identifying identity neurons.

Hippocampal neurons were tested for an invariant response to individuals in the face-only

and voice-only trials using an ROC analysis identical to that described in human hippocam-

pus [169]. For each isolated single neuron we performed the analysis for all identities where at

least 4 unimodal stimuli (either face or voice but not both) were presented for each of the follow-

ing three unimodal stimulus categories: face forward, face profile and voice. The response of a

neuron to a trial was the taken to be the maximum spike count in a 500 millisecond continuous

sliding time window from t=0.3 seconds to t=3.5 seconds following stimulus onset at time t=0.

As in [169], the response of a neuron to a stimulus was the median response averaged over all
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presentations of the stimulus.

A neuron was considered responsive to a stimulus if its response to the stimulus was

above the responsiveness threshold, which was determined as the sum of the mean baseline

plus two standard deviations (s.d.) of the baseline, where the baseline was the number of spikes

averaged over the times t=-0.8 seconds to t=-0.3 seconds. This differs from the original study in

humans [169], which used five s.d. instead of two, which was not practical in this study due to

marmoset hippocampal neurons typically exhibiting larger baseline firing rates (Figure 3.10), for

which five s.d. would have resulted in responsiveness thresholds that would only be evident in

N=166 out of the 2,358 single units involved in this study (7.0%).

A neuron was considered cross-modal invariant to an individual if it was responsive to all

three unimodal stimulus categories for that individual. If a neuron instead responded only to the

voice of an individual, then it was considered voice-invariant. If a neuron instead responded to an

individual for both the front facing and profile facing stimulus categories, then it was considered

face-invariant.

As in [169], stimuli were considered in ROC selectivity analyses only if at least one

neuron responded to it. Also as in [169], an above-threshold response to a stimulus of the

preferred subject was considered a positive test. Significance of an ROC for a given subject

was determined by comparison to 99 surrogate ROC curves, which resulted from randomly

and independently shuffling the labels. An area under the curve (AUC) that surpassed that

of all surrogates was considered significant (p<0.01). Neurons that met or exceeded these

thresholds were necessary to determine selectivity for individual identity in marmosets. If a

neuron was determined to be invariant to an individual within a given mode or modes, then

selectivity was determined using the same mode or modes for that same individual. That is,

cross-modal invariant neurons were tested for selectivity using all three unimodal stimulus

categories, face-only invariant neurons were tested for selectivity using only front facing and

profile facing unimodal stimuli, and voice-only invariant neurons were tested for selectivity using

only the voice.
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Cross-modal invariant neurons that passed the ROC selectivity test of [169] were con-

sidered selective for the identity and were thus labeled as putative “concept cells”. Because all

voice-only unimodal stimuli were combined into a single stimulus category, voice-invariance

would imply voice-selectivity for one identity if not for an additional statistical test that compared

the median trial response to the voice stimuli of the preferred individual to that of all other indi-

viduals according to a one-sided Wilcoxon-Mann-Whitney test (p<0.01) with an above-threshold

response constituting a positive prediction of the preferred individual. The comparable test was

used to determine selectivity for the face-invariant neurons. The invariant neurons demonstrating

selectivity were considered identity neurons.

Identifying MvMM Neurons.

Determination of MvMM neurons was achieved by comparing the median response of a

neuron to identity match trials to the median response of that same neuron to identity mismatch

trials. If a neuron was responsive to either match or mismatch trials, then a statistically significant

difference computed according to a Wilcoxon-Mann-Whitney test qualified a neuron as a MvMM

neuron (p<0.05). Preference of a MvMM neuron to match or mismatch trials was subsequently

determined by a one-tailed Wilcoxon-Mann-Whitney test (p<0.05). Importantly, we did not

preselect for neurons that were broadly stimulus driven, but focused analysis only during the

median stimulus and compared activity between match and mismatch trials. This is reflected in

the exemplar neurons selected for Figure 3.3. The match preferent neuron (Figure 3.3A) shows a

difference in firing rate during presentation of the stimuli but is not broadly stimulus driven. By

contrast, the mismatch preferent neuron (Figure 3.3B) exhibits stimulus driven activity as well as

differential firing rate between the stimulus types.

Identifying predictive time bins.

Hippocampal neurons were analyzed in terms of their firing rate response during time

bins that we identified as candidate time bins. For each neuron, our procedure consisted of three
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stages. The first stage was to generate a large list of time bins of varying duration using an

extension of a sliding window approach. The second stage identified a subset of time bins as

having a general ability to distinguish trials. We required this subset to be mutually disjoint.

Candidate time bins resulted from the third stage, which varied each time bin independently

according to our refining procedure.

The first stage extended the sliding window approach by using 200ms time bins evenly

distributed between 0 and 3.6 sec, the maximum stimulus duration (Figure 3.12A). Time bins

of duration greater than 200ms were constructed by joining adjacent time bins, leading to a

maximum allowed time bin duration of 3.6 seconds. A general ability to weakly distinguish

trials was determined by splitting the training trials according to three-fold stratified cross-

validation and then computing the training AUC of each fold (Figure 3.12B). Training AUC was

initially computed from the ROC curve that resulted from an above-threshold firing rate response

determining a positive trial. Separately, training AUC was computed from a below-threshold

firing rate response as determining a positive trial. In either case, if the training AUC was greater

than chance (AUC>0.5) for all three folds, then the time bin was retained for stage two. The

same convention for above versus below firing rate response as determining a positive trial

was used for stage two and for stage three. All population-level decoders were blind to this

convention of sign.

The second stage selected a disjoint set of candidate time bins, optimizing for their ability

to distinguish trials by maximizing the mean AUC averaged over the same three folds. To achieve

this, time bins were selected in decreasing order of their mean AUC and included only if doing

so maintained the disjointness of time bins.

To reduce the effect of discretizing the trial into time bins, the third stage refined the

resulting disjoint set by considering a number of random perturbations of each remaining

candidate time bin and keeping only the optimal perturbation. The random perturbations shifted

the start times and the end times independently by a random amount identically sampled from

the normal distribution with zero mean and standard deviation equal to the duration of the
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unperturbed time bin. We generated a sample of N=100 perturbed time bins and removed those

with a duration <10ms. Perturbations were additionally removed if they exhibited a start time

before stimulus onset t=0 or if they exhibited an end time after t=3.6 seconds. A worsening AUC

in any of the folds resulted in rejection of the given candidate time bin.

If any of the resulting training AUC values were smaller than that of the unperturbed

time bin, there that perturbation was removed from consideration. The overall training AUC was

computed for each perturbation using all training trials together. The perturbed time bin with

the largest overall training AUC was kept instead of the unperturbed time bin. Perturbed time

bins were allowed to overlap with other remaining time bins, thereby relaxing the condition of

disjointness for the sake of parallelizability, which is statistically valid because zero spike times

in the training set appear in the testing set and the decoder makes no assumption of independence

of features. A flowchart summarizes the time bin refinement procedure (Figure 3.12C). If no

perturbations remained under consideration, then the unperturbed time bin was kept from stage

two. Any remaining candidate time bins were considered predictive only if they presented a

statistically significant difference in median firing rate for the true (e.g. identity match) training

trials compared to the false (e.g. identity mismatch) training trials. Significance was determined

according to p¡0.05, where p was the statistic computed as the mean p-value resulting from a

Wilcoxon–Mann–Whitney test conducted over the training trials averaged over five stratified

cross-validation folds over training, which was a sufficient statistic in the sense that all time bins

with p<0.05 also exhibited a statistically significant difference in median value at the same level

of significance according to a Wilcoxon-Mann-Whitney test conducted over all MvMM trials.

This procedure provided the features used in our population-level decoders.

Training the population-level neural decoders.

Population-level decoders were trained on the training trials before computing predictions

for the separate testing trials. Decoders were trained and tested on a Quadro RTX 5000 GPU

typically in less than five seconds of runtime. The population-level decoders trained using firing
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rates directly as inputs. Neither translating nor scaling of the firing rates was performed, as

the decoders were both location and scale invariant [35]. The prediction was estimated by the

weighted average of values returned by an ensemble of gradient-boosted decision trees relative

to a default value of one half (controlled by base score in Table 3.1). For each training epoch, at

least 25 decision trees were trained (controlled by num parallel tree). While a unique solution

exists for a given decision tree, a heuristic algorithm was used to approximate the unique solution

using the quantile method of [105].

Decision trees were trained to minimize the binary cross-entropy loss function (equiva-

lently, to maximize likelihood) at the ensemble-level by considering only a fraction of the training

trials (controlled by subsample). Decision node rules considered only a fraction of the input

firing rates (controlled by colsample bynode) to determine placement of its weight. The weight

of a node was limited to a certain amount (controlled by max delta step). The complexity of the

decision node rules was further limited using linear and quadratic regularization (controlled by

reg alpha and reg lambda in Table 3.1, respectively).

Each decision tree was gradient boosted in the sense that nodes were recursively added

in accordance with an estimate of the gradient of a training loss computed at the ensemble-level.

If inserting a decision node failed to improve the loss by a sufficiently large amount (controlled

by gamma), then that decision node was removed from the tree. To further limit structural

complexity, the maximum tree depth was set to no more than five decisions (controlled by

max depth). The weight for a new decision tree was scaled down by a factor (controlled by

learning rate). Training terminated for a given decision tree when the total weight for the next

decision node was smaller than a certain amount (controlled by min child weight). After all

decision trees terminated training, the training epoch was complete. After a fixed, predetermined

number of training epochs, the ensemble terminated training. Then, predictions were computed

for the testing trials (Figure 3.16A). Predictions were used to evaluate the predictive ability of a

given set of one or more predictive time bins in terms of AUC.
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Determining hyperparameter settings for the population-level neural
decoders.

The parameter settings for our population-level neural decoders resulted from a series of

coarse grid searches each conducted over a wide range of settings for one pair of hyperparameters

at a time. Each parameter setting considered five-fold stratified cross-validation involving the

training trials only with the goal of maximizing mean testing AUC. Early stopping was used

during this tuning procedure, which supported a minimum 60 training epochs for the match vs

mismatch (MvMM) predictive population and a minimum 67 training epochs for the identity-

specific predictive population as sufficient according to early stopping. By increasing the number

of training epochs, stability of performance became immediately apparent for up to 500 epochs

for both MvMM and identity-specific decoders. We made no use of early stopping anywhere

else apart from the hyperparameter tuning procedure described here. This hyperparameter

tuning procedure was conducted only on the training trials for Archie observing Waylon in one

recording session from subject, Archie (session #8). Archie (male) and Waylon (female) were

not family members– though they likely knew each other in the colony. These training trials

(from session #8) were complementary to testing trials from no more than one of the multiple

recording sessions summarized in Figure 3.7. The hyperparameter settings that resulted are

reported in Table 3.1.

Summarizing testing performance from multiple predictors.

Population-level decoders were trained as MvMM or identity-specific predictors for each

individual identity in each recording session involved in Figure 3.7. To account for variations

in prediction magnitude between decoders, predictions were scaled linearly to a maximum

value of unity before combining ROC traces in the multiple recording sessions summarized in

Figures 3.7A-C,E and 3.19-3.20. No such scaling was involved with the multiclass predictions

reported in Figures 3.7D and 3.17. Sampling trials for multiple predictive populations from the

same recording session. For a given recording session, the following criteria were respected
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Table 3.1. Neural decoder hyperparameter settings. Numerical values were passed as keyword
arguments to the constructor of xgboost.XGBClassifier instances [35]. Columns correspond to
the two types of predictive populations reported in this study.

MvMM Identity-Specific

base score 0.5 0.5
num parallel tree 25 50
subsample 0.2 0.2
colsample bynode 0.1 0.1
max delta step 0.5 1
reg alpha 0.4 0.3
reg lambda 0.4 0.3
gamma 0.1 37
max depth 5 2
learning rate 0.9 0.6
min child weight 0.5 1

while partitioning testing trials from training trials involving the identity network model (INM)

discussed in the main text. Testing trials for the INM were also testing trials for both the MvMM

decoder and the identity-specific decoders. Because stimuli involving individuals were sampled

uniformly, the frequency of a given individual could be small for a given recording session. To

account for this, individuals were considered only if they exhibited at least forty appearances in

a given recording session.

Because of the uniform nature of our uniform random sampling of trials over the larger

space of cross-modal stimuli, each recording session had relatively few trials involving both

the face and the voice of a particular individual. This resulted in far more negative trials being

presented to the observer relative to the number of true trials for the INM. This was also the

case for both the MvMM decoders and the identity-specific decoders reported in Figures 3.7

and 3.17-3.20. All three binary classification tasks had balanced samples randomly selected,

which were then randomly shuffled before 30% were randomly selected to be testing trials. The

remaining 70% of trials were considered for training. Unbalanced sampling in the training set

was accounted for by scaling the positive weights by a factor of 5 for the MvMM decoders

and 100 for the identity-specific decoders. Decoders involved in Figure 3.7 used 200 training
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epochs, all of which were used in testing decoder performance except the first training epoch.

The only exception was the identity-specific decoders involved in evaluating the INM for the

winner-take-all model in Figures 3.7D and 3.17, which considered all 500 training epochs.

Decoding multiple identities using a winner-take-all model.

We used the winner-take-all model to predict the identities of multiple individuals shown

during identity match and face-only trials. The twelve individuals summarized (Figure 3.7E)

have their detailed testing performance reported (Figure 3.17). The winner-take-all model

predicted the correct identity with an overall testing accuracy of 91.0% (Ntrials =454). For a

given recording session, the following procedure was performed to generate the predictions for

the winner-take- all model. First, we identified all identities involved in a sufficient number of

identity match trials (Ntrials ≥12). All identity match trials involving the identities identified

were shuffled and 30% were randomly selected as testing trials to be withheld from training with

the remaining 70% of trials.

We considered predictions of our INM to approximate a predicted probability that a given

trial from the testing set involved the given identity. The presence of the individual was modeled

using the decoder outputs in the winner-take-all model if the INM had the sufficient number of

predictive time bins available. After repeating this procedure for all individuals in the recording

session, the predicted identity of the winner-take-all model corresponded to that of the maximum

predicted value (Figure 3.16B).

Quantifying relative contribution of identity neurons in decoders of
preferred identities.

To investigate the possibility of identity neurons exhibiting any clearly observable signifi-

cance in the INM at the population-level, we removed all identity neurons from consideration

and recomputed the testing predictions of Figure 3.7C for each individual that was statistically

preferred by an identity neuron. After recording the testing AUC, we repeated a comparable
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procedure as a control that randomly removed an equivalent number of predictive time bins from

any neuron that was not found to be an identity neuron. This control procedure was repeated

many times (Nsamples =200) and then averaged to estimate the mean control testing AUC, which

was not significantly different from a normal distribution according to D’Agostino-Pearson’s

omnibus test (p>0.05, Nsamples =200). The aforementioned control and test procedures were

conducted using independent randomized samples.

ROC curves were computed with above-threshold values indicating a positive trial for

the three observers with at least two family members amongst the identities presented. The

INM appeared successful despite the removal of identity neurons independently for multiple

observers (Figure 3.20). Removing identity neurons from the INM for all recording sessions

involving one observer resulted in a mean testing AUC that was not significantly smaller than

that of the control according to a one-tailed paired student’s t-test that supposed identity neurons

contributed more to decoding than other neurons. We independently replicated this same

statistical insignificance of identity neurons at the population-level for multiple observer subjects

(p>0.05, Nobservers =3). This insignificance was consistent with a comparable analysis that made

no assumption of normality, which suggested the median testing AUC was also not significantly

smaller when all identity neurons were removed relative to the control (p>0.05, Nobservers =3). It

is uncertain whether this insignificance can be attributed to these identity neurons being observed

in nonhuman primates, as no comparable predictive time bin analysis has ever been performed in

humans to the knowledge of the authors.

Generating random time bins from the non-predictive population.

Time bins were randomly selected for neurons uniformly drawn from the population

that exhibited zero predictive time bins (the ‘non-predictive population’). Time bins possessed

start and end times drawn from a uniform random sample from t=0 to 3.5 seconds, the latter of

which was the median stimulus offset time. Time bins with a duration briefer than 0.2 seconds

were immediately removed from consideration. The number of random time bins involved in
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Figure 3.18A was equal to the number of predictive time bins involved.

Quantifying of the effect of restricting the abundance of predictive time
bins.

To systematically vary the relative abundance of predictive time bins, we randomly

sampled time bins from the non-predictive population. Their firing rates were concatenated with

those of all predictive time bins with at least 75 match trials and 75 mismatch trials. We took a

random sample of predictive time bins in addition to a statistically independent random sample

of time bins from the non-predictive population. The relative sizes of the samples were chosen

to reflect a given relative abundance of predictive time bins. Testing accuracy was computed at

the same relative abundance over many statistically independent samples (N=100) in order to

estimate the mean testing accuracy conditioned on the relative abundance of predictive time bins

considered by the decoder. Uncertainty in mean testing accuracy was estimated by bootstrapping

that same sample of testing accuracies, resulting in 95% confidence intervals less than 1% for

both traces reported in Figure 3.18A. Many random time bins (N¿105) were independently

generated for this analysis in order to estimate the mean testing accuracy at the 1% minimum

relative abundance reported in the main text while simultaneously involving the entire aggregated

predictive population. The fold with the median testing performance (AUC=0.9911) provided

the predictive time bins (N=347) and the aggregated trials (N=150) that were used to quantify

the effect of restricting the number of predictive time bins in Figure 3.18B.

Computing signed connection rate.

Our event-coded representation relied on our signed connection rate measure, which we

computed using our two primitive event measures. The first we referred to as the hindsight delay,

τ− > 0, which is the amount of time since a given neuron has spiked. The second we refer to

as the foresight delay, τ+ > 0 which is the amount of time until a given neuron will spike. A

schematic illustrating the computation of the hindsight delay is shown (Figure 3.8B, left). A
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similar computation is found for the foresight delay by time inversion. If the given neuron has

not yet spiked, then we take the hindsight delay to approach infinity. Similarly, if the given

neuron was not observed to spike again, then we take the foresight delay to approach infinity.

Note that our primitive event measures do not evaluate to non-positive real numbers.

The magnitude of our signed connection rate is the multiplicative inverse of the minimum

of the hindsight delay and the foresight delay. Finally, we set the sign of our signed connection

rate to be negative if the hindsight delay was used. Using the standard conventions of real

analysis, our signed connection rate is now well-defined at all times for all neurons that exhibited

at least two spikes. Equivalently, our signed connection rate was computed according to a real

function of two variables

c(τ+,τ−) =
Θ(τ−− τ+)

τ+
− Θ(τ−+ τ−)

τ−
,

where Θ(x) = 1 if x is nonnegative, otherwise, Θ(x) = 0. We evaluated our signed connection rate

for every neuron at the spike times of the neuron that spikes the most over the recording session

(i.e. the reference neuron). This was our attempt to measure how a single neuron “connects” with

any other neuron. In doing this, we observed statistical distributions that appeared specific to a

given neuron pair (Figure 3.8B, right). We considered a given neuron to have an approximately

symmetric signed connection rate if it exhibited no more than twice as many negative values as

positive values in these statistical distributions.

Estimating manifold projections.

We used uniform manifold approximation and projection (UMAP) to compute our mani-

fold projections in Figure 3.8 of the main text, which presents descriptive manifold projections

computed from predictive firing rate features and separately from our signed connection rate

measure of spiking events. The same parameter settings on the same optimization algorithm was

used for both rate and event-coded manifold projections. We used the identity-specific predictive
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time bins in the rate-coded representation. The rate-coded manifold projections considered

neuron spikes from t=0 to 2 seconds after the stimulus onset. Similarly, the event-coded manifold

projections considered neuron spikes from t=0 to 2 seconds after the stimulus onset. The average

predictive time bin from the MvMM predictive population reported in Figure 3.4 was centered

from t=0 to 2 seconds after the stimulus onset, with approximately half of predictive time bins

ending earlier, which supports 2 seconds as a reasonable choice for the max time considered by

the rate and event-coded manifold projections.

The UMAP algorithm was composed of two steps that can fruitfully be described as

graph construction and graph projection [133]. The graph was constructed from a given set of

comparable observations. The graph was projected to a low-dimensional space of real numbers.

The output was embedded in twenty-four-dimensional real space for statistical analyses and two

to three dimensions for visualizations. In the optimization procedure, five negative samples were

selected for each positive sample. The minimum distance between two observations was set to

0.1Hz. The number of nearest neighbors was initialized to 50 for rate-coded representations

and 1000 for our event-coded representations. Repulsion strength was initialized to unity. Local

connectivity was set to 1Hz in estimating probability distances. We trained for 200 epochs at a

learning rate initialized to unity. The resulting function was equipped with a learned graph of

the data, which projected to the manifolds visualized in Figures 3.8, 3.22, 3.25 and 3.26. An

example of connections from such a learned graph were visualized (Figure 3.8F).

For our rate-coded manifold projections, the inclusion of predictive time bins (p<0.05)

appeared sufficient for the separation of individuals (Figure 3.22A), which was supported by com-

puting the minimum distance between the centroid of any individual and then comparing across

multiple recording sessions. Minimum distances that were computed from predictive time bins

exhibited a significantly smaller median value when compared to candidate time bins that were

not predictive (p>0.85) according to a Wilcoxon-Mann-Whitney test (p<0.001, Nsessions =29),

suggesting predictive activity leads to better separation of individuals in comparable rate-coded

representations (Figure 3.22B). Shown are examples of rate-coded manifold projections that
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used predictive firing rates as trial-by-trial observations. Event-coded manifold projections used

signed connection rates as spike-by-spike observations for Hades (Figure 3.22C,D) and for Baloo

(Figure 3.22E,F) in addition to Archie (Figure 3.25A-C) and Buck (Figure 3.25D-F).

Estimating latent firing rate.

Our latent firing rate was computed using unsupervised nonlinear dimensionality reduc-

tion of the absolute value of the signed connection rate for all neurons that had no less than one

third of its computed signed connection rate values as positive (i.e. approximately symmetric).

In computing the latent firing rate, we used a method of nonlinear dimensionality reduction

that made no assumption of uniformity, which was achieved by passing the keyword argument,

densmap=True to the manifold projection constructor, umap.UMAP, in the Python programming

language. The output metric and the input metric were both Euclidean (flat), which supports the

output having the same units as the input. The output was embedded in six-dimensional real

space and the first three dimensions are visualized in Figure 3.24A for an exemplar recording

session. After this output was computed at the spike times of all neurons involved, it was

analyzed as a time series by time ordering the data according to evaluation time.

By considering latent firing rates evaluated at the times t=0 to 4 seconds after a stimulus

onset, we observed relatively stable trajectories for multiple recording sessions conducted over

multiple observers. Shown are three exemplar identity match trials, where Baloo observed the

face and voice of her mother, her father, and her sister as shown in Figure 3.24B. We performed

a median filter with a sliding window of 50 neuron spikes before plotting our estimates of the

latent firing rates.

Generating the hammer bundle plot.

The graph of connections bundled between individuals in Figure 3.8F represents the

learned graph associated with an event-coded representation of identity analogous to Figure 3.8C.

The procedure for generating the shape of Figure 3.8F was achieved using the Python function,
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umap.plot.connectivity with the keyword argument, edge bundling=‘hammer’. Coloration was

achieved to multiplying the resulting image with a color mask. The color mask resulted from

passing the colored scatter plot of the event-coded representation through a Gaussian filter using

the GNU Image Manipulation Program, which was also used for the image multiplication.

Determining anatomical positions of implants.

All implants were followed by at least one postoperative MRI (Figure 3.28). The scans

were aligned to anatomical features with RadiAnt Dicom viewer and the position along the

anterior- posterior axis was determined by measurement from the center of the array to the ear

canal. Because implants were stereotactically performed coronally, all recordings for a given

array were assigned the same anterior-posterior (AP) position.

Because of the 1mm spread of the microwire brush arrays, it was difficult to precisely

estimate the position of any given electrode, or indeed the entire bundle on a particular day.

We used the position of the tip of the electrode from each MRI and extrapolated the trajectory

by estimating position along the drive axis by cross-referencing with contemporaneous notes

made of the date and distance of every movement of the drive. Based on a centroid at each

estimated position, we chose particular sessions for we had the greatest confidence that the

majority of the array was located predominantly in one or two hippocampal fields. Because the

relative positioning of individual electrodes was not clearly observable, all reported analyses

were developed to be agnostic to neuron location.

Confirming implant location by MRI.

MRI was performed at the UCSD Center for Functional Magnetic Resonance Imaging

in a 7.0T Bruker 20cm small animal imaging system using Advance II software. Preoperative

images were analyzed in Osirix DICOM Viewer and stereotactic coordinates were established

using a pair of saline-filled barrels affixed above the putative posterior end of temporal sulcus

(marked on the skull during headcap surgery). Array positioning and tract trajectory was verified
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by post- operative MRI. Follow-up scans were performed occasionally to update array position.

Determination of anatomical positioning was performed using RadiAnt DICOM Viewer

(Medixant, n.d.). Stereotactic alignment was performed using a number of clearly defined and

readily identifiable anatomical landmarks. 2D coronal slices were made vertical by rotating to

align the medial longitudinal fissure with a vertical line. Yaw was corrected by re-slicing the

coronal plane to align both interaural canals. Pitch correction was performed by re-slicing MRI

so that the 4th ventricle was aligned vertically with the isthmus of the corpus callosum.

Position on the anterior-posterior axis was calculated relative to the interaural canal.

Measurement was taken from the coronal slice at which the array first entered the hippocampal

complex (Figures 3.2A, 3.4C). Arrays were implanted with as little pitch as possible, so AP

position variability is negligible along the electrode trajectory.

Electrode positions are not precisely determinable with our brush arrays, as microwires

are not visible at the resolution of the scans and individual tips are not individually distinguishable

by any practical means available. Electrode splay of the 64-ch MBA in tissue was measured at

approximately 1mm, so we approximated electrode position by use of a 1mm spherical voxel

centered at the tip of the array.

We used a Microdrive with a 500µm thread pitch that could reliably make controlled

movements with a precision of 30-40µm. An array tip was identified for every MRI in each

subject and position was extrapolated based on contemporaneous notes regarding electrode

movement. Once putative array centroids have been hand-tagged they were assigned to one of

the hippocampal subfields. Centroids were deemed to be in a hippocampal subfield if more than

70% of their volume fell within that area, as assessed by hand-traced MRI. Recording sessions

where the centroid fell significantly between two subregions were not counted in anatomical

analyses. CA2 and CA3 were combined due to insufficient granularity in this methodology and

resolution in our scans to effectively differentiate them. Figure 3.15 shows the estimated position

of each electrode array in the hippocampus for all subjects.
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Figure 3.9. Additional Identity Neurons in Primate Hippocampus. Shown are exemplar
identity neurons that are [a] cross- modal invariant, [b] face-selective, and [c] voice-selective
comparable to Figure 3.1. [a-c] Top row: subset of stimuli shown above raster and peristimulus
time histogram (PSTH). Bottom row: spike waveform; normalized PSTH to all stimuli (preferred:
red, nonpreferred: black), indicated are time points that show significant difference (p<0.05);
median number of spikes for unimodal stimuli (grey/black indicate non-preferred individuals;
ROC curve (shuffled controls shown in black). PSTH was normalized by the pre-stimulus
baseline, and shaded regions indicate 95% confidence intervals. Indicated are time points that
show a statistically significant difference in mean (p<0.05). Horizontal dotted lines indicate
mean background firing rate and responsiveness threshold.
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Fig. SX  
Figure 3.10. Marmoset hippocampus neurons have high baseline firing rates. Shown is a
histogram of the mean background spike counts computed for all neurons involved in this study.
The dotted lines come from the mean baselines reported in the main figures from Quian Quiroga
et al., Nature (2005), which summed over 700ms instead of 500ms. We confirm all recorded
neurons are considered in this histogram.
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Figure 3.11. Match versus Mismatch Neurons [a] Histogram showing the multimodal index
of MvMM neurons (black) and all recorded neurons (gray). Neither the mean nor median
multimodal index was significantly greater than zero for either population (p>0.05, N≥499).
The multimodal index was not well defined for N=12 out of 511 MvMM neurons due to small
response. Zero is indicated by the black dotted line. Bin width is 0.01. [b] Pie charts showing the
abundance of MvMM neurons averaged over all recording sessions for each observer involved
in this study. Shown is the number of MvMM neurons (black, top) amongst all other recorded
neurons (white, top) and the number of identity-match preferring MvMM neurons (black, bottom)
amongst the identity-mismatch preferring MvMM neurons (red, bottom). The CA1 region was
only confirmed in Nsessions =4 out of 8 of the recording sessions from Hades. [c] Shown are (top)
Venn diagrams and (bottom) pie charts that show the composition of populations investigated in
the main text. (top) Venn diagram overlaps represent the abundance of (black) MvMM neurons in
common with (red) identity-selective neurons, which exhibited a relative abundance of putative
‘concept cells’ as represented by the orange color in (bottom) the pie charts. Results are shown
for each subject involved in this study. Furthermore, the number of MvMM neurons in common
with MvMM predictive neurons was 359, while the number of MvMM neurons in common with
the identity-specific predictive neurons was 388.
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Figure 3.12. Identification of predictive time bins. [a] Schematic showing (gray) the spike
times of an example neuron firing versus time after the stimulus onset at t=0. Indicated are
(black) start and end times of time bins before the refinement procedure. [b] Flow chart showing
training trials being split by stratified cross-validation to result in multiple receiver operator
characteristic (ROC) traces. Each training fold resulted in an area under the curve (AUC), which
were then averaged to produce the mean training AUC as an estimator of the general ability of a
time bin to distinguish true trials from false trials. Time bins satisfying a list of properties were
considered as candidate time bins (described in Methods). [c] Flow chart showing the procedure
that resulted in all predictive time bins (described in Methods).
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Figure 3.13. Exemplar predictive neurons. Shown are (top) PSTH traces and (bottom) spike
rasters for two predictive neurons that each prefer at least two individuals. Shaded regions
indicate predictive time bins, which exhibited a significantly different median firing rate for their
preferred identity (p < 0.05). Colors correspond to legends. The number of trials shown for
Overall is matched in the plot to the number of trials for the two selective individuals.
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Figure 3.14. Variability of visual behavior relative to identity-specific predictive time bins.
[a-f] Shown are visual behavior rasters (left) and spike rasters (right) for six predictive time
bins. Blue shaded regions indicate the identity-specific predictive time bin. Gray indicates face
gazing while black indicates eye gazing in the visual behavior rasters. Trials represent repeated
presentations of the same front-facing unimodal stimulus. Unimodal stimuli were chosen to
agree with the identity preference of the predictive time bin. [g-h] Histograms showing the
relative abundance of random delays that increased the amount time in common between the
time bin and time spent gazing at preferred faces (g, gray) and time spent gazing at preferred
eyes (h, black). Bar height shows the percent of identity-specific predictive time bins, where
each time bin had at least 10 presentations of at the same unimodal face-only stimulus where
both eyes of the preferred individual were clearly visible (Nbins218). More area in the right two
bars indicates perturbing the time bins typically decreased overlap with visual behavior.
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Figure 3.15. Conjoined predictive populations. [a] Venn diagram showing the abundance
of predictive neurons in common between the identity-specific predictive neurons (black) and
the MvMM predictive neurons (green). [b] Histograms showing the probability density of the
average percent overlap of the identity-specific predictive time bins with the MvMM predictive
time bins from the same neurons (gray) and of an equal number of uniformly distributed pairs of
random time bins as control (red). Indicated is the total duration of overlap divided by the total
duration of identity-specific predictive time bins, (612.3s/2493.7s)=24.6%±1.5% (black dashed
line), which was significantly greater than control (17.0%±0.5%; red dashed line) according to
Student’s t-test (p<0.001, Nsamples =10,000). Control uniformly sampled pairs of time bins on
the interval from t=0 to t=3.5 seconds following stimulus onset. The bin width is 0.25%.
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Figure 3.16. Decoder Schematics. [a] Flow chart showing predictive time bins were combined
with the training trials that were used to determine the predictive time bins to train a decoder
for classifying trials as either true or false. The decoder then produced remarkably strong
predictions on novel trials. [b] Flow chart showing the winner-take-all model resulting from a
MvMM decoder and one identity-specific decoder for each individual. Cross-modal trials were
categorized as either match or mismatch trials. The identity of the match trial was then predicted
as that of the decoder with the largest output via winner-take-all (WTA).
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Fig. SX Confusion matrix corresponding to Figure 3J.  The
sex of the animal is indicated by the boxes on the diagonal,
with blue corresponding to female animals and black
corresponding to male animals.

Legend

Male  

Female

Figure 3.17. Multiple individuals classified by winner-take-all model. Confusion matrix
reporting the winner-take-all predictions of the INM on twelve individuals shown to three
observers over 34 recording sessions (testing accuracy=0.91, sensitivity=0.91, specificity=0.91,
precision=0.88, negative predictive value=0.93, Ntrials =454 match trials). The biological sex
of the observed conspecifics is indicated by on the diagonal with blue indicating female and
black indicating male. The following conspecifics were family members with a subject: Aladdin,
Jasmine, Mowgli, Ares, Hermes. Percentages indicate true positive rates of the testing set of
trials. All individuals decoded testing trials with a true positive rate at least 5× random chance,
as is indicated by the black dashed line in Figure 3.7D of the main text.
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Figure 3.18. Decoding improved by melding multiple recording sessions. [a] ROC curves
showing the MvMM decoding performance of (red) MvMM predictive time bins and (gray)
randomly selected time bins. Indicated is (red dotted) random chance. Predictive time bins were
selected from multiple recording sessions (Nsessions =14).[b] Histograms of testing AUC values
are shown for (gray) random individual predictive time bins and (red) 50 randomly selected
predictive time bins, exhibiting a statistically significant difference of median value according to
a Wilcoxon-Mann-Whitney test (p<0.001, N=100). Predictive time bins for the MvMM binary
classification task were randomly considered from multiple recording sessions (Nsessions =14).
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Figure 3.19. Decoding performance with and without identity selective neurons averaged
over preferred individuals. [a] Shown are the ROC traces of the INM with all identity
neurons removed (gray; AUC=0.850) and an equal number of random neurons removed from
the remaining predictive population (black; AUC=0.820). [b] Shown are the ROC traces of the
INM with only identity neurons considered (gray; AUC=0.700) and an equal number of neurons
randomly selected from the remaining predictive population as control (black; AUC=0.677).
Indicated is random chance (red dotted; AUC=0.500). [c] Shown are the ROC traces of the INM
with all putative “concept cells” removed (gray; AUC=0.841) and an equal number of random
neurons removed from the remaining predictive population (black; AUC=0.795). [d] Shown are
the ROC traces of the INM with only putative “concept cells” considered (gray; AUC=0.700)
and an equal number of neurons randomly selected from the remaining predictive population as
control (black; AUC=0.666). Indicated is random chance (red dotted; AUC=0.500).

125



http://localhost:8888/notebooks/visualizing%20decoder%20predictions
%20constrained%20to%20concept%20cells%20(science_srt).ipynb

A

B

Figure 3.20. Identity network model for individual subjects. ROC curves were computed
by averaging over all recording sessions for each of three observers: Archie (left, Nsessions =14),
Baloo (middle, Nsessions =12), and Hades (right, Nsessions =8). [a] ROC curves of our INM
with only identity neurons (black) and an equal number of cells from the remaining predictive
population (gray). Individual identities were averaged over if they were preferred by at least
one identity neuron. [b] ROC curves demonstrating the predictive power of our INM with all
“concept cells” removed (black) and an equal number of cells removed from the remaining
predictive population (gray). Individual identities were averaged over if they were preferred by
at least one “concept cell”. We controlled for network size by using the same number of features
for both ROC curves in each panel. We did this for both the MvMM predictive population and
the identity-specific predictive population in evaluating the INM.
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Figure 3.21. Separating stimulus categories at multiple probe locations. [a-c] Shown
are manifold projections from a recording session conducted on (left) the most posterior and
(middle) the most anterior probe location (anterior-posterior (AP) positions: -3.1mm, -0.9mm,
respectively). (right) Shows AP positions versus mean-squared range (MSR) from (black dot in
left,middle) the mean projected trial location. MSR was scaled across recording sessions to have
a mean value of unity, as is shown by the black dashed line in the scatter plot to the right. One
symbol represents one recording session in the scatter plot to the right. Indicated is the direction
from posterior to anterior hippocampus. [a] Shown are stimulus categories of mode (dark blue)
voice- only trials, (light blue) face-only trials, and (orange) identity-match trials. [b] Shown are
face-only trials categorized by orientation as either (light blue) front-facing or (orange) profile.
[c] Shown are unimodal and identity match trials categorized by identity as is indicated by the
legend. Large MSR values suggest excellent separation at the indicated probe location. In the
majority of recording sessions conducted on the most posterior electrode array (AP position: -3.1
mm), MSR was greater than the mean, suggesting excellent separability of identity in the most
posterior probe location. Input features were mean firing rates averaged over the stimulus from
t=0 to 3.5 seconds for each recorded neuron. The most posterior probe at -3.1 mm was implanted
in Hades, who generated all recording sessions confirmed to be in CA1. Recording sessions
were omitted if their AP position was not confirmed to be the same within a 95% confidence of
no more than ±0.1 mm, which resulted in 28 recording sessions being considered.
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Projections of different Subpopulations from CA1 regionG

Figure 3.22. Low-dimensional projections of our rate code and event code. [a] Scatter
plot showing an exemplar recording session as two-dimensional rate-coded representations of
individual identity, where the firing rates were computed from all candidate time bins exhibiting
(left) p<0.05, (middle) p<1.00, and (right) p>0.85. [b] Box-and-whisker plots showing the
minimum distance between any individual in our rate-coded representation of individual identity.
The median minimum distance of (left) p<0.05 was significantly smaller than the median
minimum distance of (right) p>0.85 according to a Wilcoxon-Mann-Whitney test (p<0.001,
Nsessions =29). [c-f] Shown are the (top) first two axes and (bottom) first three axes of our
representations of individual identity for two distinct observers: [c,d] Hades and [e,f] Baloo.
[c,e] Shown are manifold projections of our predictive time bins and [d,f] our signed connection
rate. Colors indicate individuals, and triangles indicate family members. The signed connection
rate was evaluated no more than two seconds after stimulus onset, which was evaluated whenever
the neuron with the largest overall spike count fired. [g] Rate-coded manifold projections
comparing the same recording session restricted to four subpopulations of identity-specific
predictive neurons. Subpopulations are shown (from left to right): all identity-specific predictive
neurons, all identity neurons, all cross-modal invariant “concept cells”, and all MvMM neurons.
Colors indicate individual identities listed in legends.
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Figure 3.23. Separability of social categories. Significantly different values when subjects
were observing the family of (top) Hades and (bottom) Baloo. [a] Shown are boxplots of
MSR of subjects observing families of other subjects. Significance was computed according
to a one-sided Student’s t-test consistent with the other subjects viewing the same family,
resulting in (top left, Nidentities ≥20) p<0.001, (top right, Nidentities ≥16) p<0.001, (bottom left,
Nidentities ≥14) p=0.102, and (bottom right, Nidentities ≥26) p=0.055. Gray box indicates subjects
were observing their own families. [b] Histograms showing the relative abundance of neurons
with significantly larger variance of signed connection rate for the subject’s own family relative
to other conspecifics according to Fligner-Kileen’s test (p<0.01). Variance of signed connection
rate was computed from the reference neuron to each neuron. Control was a random shuffle of
the labels for each neuron. Distributions were determined via bootstrap. Dotted lines indicate the
mean values for Hades viewing her own family (left, 18±3% out of N=610) and Baloo viewing
her own family (right, 10±2% out of N=822), which both exhibited significantly more significant
neurons than control (left, 2.0±1.1% out of N=610; right, 5.2±1.5% out of N=822) according to
Student’s t-test (p<0.001, Nbootstrap =10,000). Uncertainty indicates 95% confidence intervals
of the mean. Gray box indicates subjects were observing their own families. Bin width is 0.5%.
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Figure 3.24. Quantification of latent activity. [a] Shown are the first three axes of the six
dimensional latent firing rate, which was an unsupervised manifold projection of the absolute
value of the signed connection rate from the same neuron with the largest overall spike count
(i.e. the reference neuron) to all neurons that appeared approximately symmetric (defined in
Methods). [b] Shown are time traces of our latent firing rate for an exemplary trial from each of
three family members of Baloo. Each color represents one dimension. The order of dimensions
is consistent between panels. [c] Root mean squared (RMS) change in latent firing rate versus
time averaged over all recording sessions from subjects (left) Baloo and (right) Hades. Traces
average over identity-match trials showing (blue) the family members of the subject and (gray)
all conspecifics. [d] Latent activity versus time for (left) Baloo and (right) Hades. Latent activity
traces were computed as the ratio of the RMS change in latent firing rate to control minus one.
Control was RMS change in latent firing rate averaged over all identity-match trials. [e] Latent
activity versus time for (left) Baloo and (right) Hades viewing their own family. Control was as
in [d].
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65 neurons from CA3 region on 5/20/2020:

15 neurons from no confirmed region on 8/21/2020:

20 neurons from no confirmed region on 10/5/2020:

10 neurons from no confirmed region on 2/20/2020:

49 neurons from CA3 region on 5/15/2020:

10 neurons from DG region on 6/16/2020:
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DONE: show for baloo, too.
TODO: look for place to reference this panel
in the main text.
TODO: check SM figure numbering is
referenced correclty in the main text

Figure 3.25. Stability of manifold projections. [a-f] Manifold projections comparing three
different recording sessions conducted on different observers, Archie [a-c] and Buck [d-f]. Shown
are rate-coded projections (left), event- coded projections (middle), and MSR computed from
the event-coded projections (right). Colors indicate individual identities listed in legends.
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Figure 3.26. Separability of socially-agnostic categories. [a-b] Event-coded representations
of inanimate objects from the laboratory setting. Separation of socially-agnostic categories are
shown in marmoset hippocampus for two subjects, [a] Baloo and [b] Hades. Visual images
from each of these object categories was presented to subjects using the same stimulus presen-
tation protocol as for the unimodal stimuli while recording single neuron activity in marmoset
hippocampus from two marmosets. Likewise, we performed the same signed-connection rate
analysis and input those data into UMAP using the same data analysis pipeline as described for
analyses presented in Figure 3.8.
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Figure 3.27. Schematic drawing of experimental setup. In an anechoic chamber, marmoset
subjects were seated, positioned 24 centimeters away from a monitor and a speaker. The speaker
was located just below the monitor.
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Figure 3.28. Anatomical locations of microwire bundles across animals. Arrows on MRI
cross-sections indicate trajectory of each microwire brush array in marmoset hippocampus. Each
color indicates a different animal’s array. Circles correspond to anterior-posterior position.
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[16] Sandy Bensoussan, Raphaëlle Tigeot, Alban Lemasson, Marie-Christine Meunier-Salaün,
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