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Abstract

Rationale—Over the last decade many new psychostimulant analogues have appeared on the 

recreational drug market and most are derivatives of amphetamine or cathinone. Another class of 

designer drugs is derived from the 2-aminoindan structural template. Several members of this 

class, including the parent compound 2-aminoindan (2-AI), have been sold as designer drugs. 

Another aminoindan derivative, 5-methoxy-2-aminoindan (5-MeO-AI or MEAI), is the active 

ingredient in a product marketed online as an alcohol substitute.

Methods—Here we tested 2-AI and its ring-substituted derivatives 5-MeO-AI, 5-methoxy-6-

methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan (MDAI) for their abilities 

to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine 

(NET) and serotonin (SERT). We also compared the binding affinities of the aminoindans at 29 

receptor and transporter binding sites.

Results—2-AI was a selective substrate for NET and DAT. Ring substitution increased potency 

at SERT while reducing potency at DAT and NET. MDAI was moderately selective for SERT and 

NET, with 10-fold weaker effects on DAT. 5-MeO-AI exhibited some selectivity for SERT, having 

6-fold lower potency at NET and 20-fold lower potency at DAT. MMAI was highly selective for 

SERT, with 100-fold lower potency at NET and DAT. The aminoindans had relatively high affinity 

for α2-adrenoceptor subtypes. 2-AI had particularly high affinity for α2C receptors (Ki = 41 nM) 

and slightly lower affinity for the α2A (Ki = 134 nM) and α2B (Ki = 211 nM) subtypes. 5-MeO-AI 

and MMAI also had moderate affinity for the 5-HT2B receptor.
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Conclusions—2-AI is predicted to have (+)-amphetamine-like effects and abuse potential 

whereas the ring-substituted derivatives may produce 3,4-methylenedioxymethamphetamine 

(MDMA)-like effects but with less abuse liability.
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1. INTRODUCTION

Although the phenomenon of designer drugs is not new, many novel controlled substance 

analogues have appeared on the recreational (i.e., non-medical) drug market over the last 

decade. New analogues are appearing at an alarming rate and the widespread availability and 

misuse of these substances is causing a significant public health problem (Baumann and 

Volkow 2016; Halberstadt 2017; Huestis et al. 2017). Some of these substances are 

amphetamine derivatives, for example 4-fluoroamphetamine and 4-methylamphetamine 

(Johansen and Hansen 2012; Elliott and Evans 2014; Linsen et al. 2015; Solis et al. 2017). 

Other substances are derived from cathinone (2-amino-1-phenylpropan-1-one), the β-keto 

analogue of amphetamine, which occurs naturally in the leaves of the Khat plant Catha 
edulis. Amphetamine and cathinone derivatives act as substrates for plasma membrane 

monoamine transporters and promote the non-exocytotic release of norepinephrine (NE), 

dopamine (DA), and serotonin (5-HT) (Rothman et al. 2001; Baumann et al. 2012; Cozzi et 

al. 2013; Hutsell et al. 2016; Eshleman et al. 2017). The effects and abuse potential of 

monoamine releasers vary depending on their selectivity for NE, DA, and 5-HT transporters 

(NET/SLC6A2, DAT/SLC6A3, and SERT/SLC6A4, respectively). Substances that are 

relatively selective for NET and DAT, such as (+)-amphetamine and (+)-methamphetamine, 

act as psychostimulants, whereas 3,4-methylenedioxymethamphetamine (MDMA, 

“Ecstasy”) is nonselective for NET, DAT and SERT and is thought to produce 

“entactogenic” effects via 5-HT release (Liechti et al. 2000; Farre et al. 2007; Tancer and 

Johanson 2007). The abuse liability of monoamine-releasing drugs is correlated with their 

capacity to release NE and DA (Rothman et al. 2001). Conversely, non-selective or 5-HT-

selective releasers have reduced abuse-potential, as evidenced by self-administration and 

intracranial self-stimulation (ICSS) measures (Wee et al. 2005; Bauer et al. 2013; Schindler 

et al. 2016).

In addition to the cathinone derivatives, another class of designer drugs is derived from the 

2-aminoindan structural template (see Figure 1). These substances can be viewed as cyclic 

analogues of amphetamines. The parent compound of this structural class, 2-aminoindan (2-

AI, Su-8629), was likely first synthesized by Benedikt (1893) in low yield from 2-indanone 

via reduction of the oxime derivative. In terms of its human psychopharmacology, 2-AI 

reportedly produces mild stimulant effects, with a p.o. dose range of 50–100 mg 

(Anonymous 2017). 2-AI has been available in Europe as a designer drug (EMCDDA 2007; 

Brandt et al. 2013; Brunt et al. 2017).

Ring-substituted derivatives of 2-AI, such as 5-methoxy-2-aminoindan (5-MeO-AI, MEAI), 

5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-aminoindan 
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(MDAI), have also been sold as designer drugs (Figure 1). Encounters with MDAI were 

reported to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) in 

2010 (EMCDDA 2011). MDAI and MMAI were synthesized by Nichols et al. as potentially 

non-neurotoxic entactogens (Nichols et al. 1990; Johnson et al. 1991b). Both of these 

substances produce MDMA-like behavioral effects in rats (Nichols et al. 1990; Johnson et 

al. 1991b; Gatch et al. 2016) and increase 5-HT release with some selectivity vs. NE and DA 

(Johnson et al. 1991a). Use of MDAI reportedly induces euphoria and feelings of empathy, 

with 150–200 mg p.o. being a typical recreational dose (Corkery et al. 2013). The third ring-

substituted compound, 5-MeO-AI, appears to have been first synthesized in 1956 (Richter 

and Schenck 1956) and has been proposed as a potential alcohol substitute (Golan 2016; 

Shimshoni et al. 2017; Shimshoni et al. 2018). 5-MeO-AI reportedly produces mild 

psychoactive effects and euphoria in recreational users (Slezak 2015). 5-MeO-AI is the 

active ingredient in a product called PaceDrink, which is marketed online as an alcohol-like 

intoxicant.

The goal of the present investigation was to assess the pharmacological properties of 2-AI 

derivatives. 2-AI, MMAI, and MDAI reportedly act as substrate-type monoamine releasers 

(Simmler et al. 2014b; Eshleman et al. 2017) but full dose-response data for releasing 

activity (i.e., EC50 values) are only available for the latter compound. Furthermore, much of 

what is known about the monoamine-releasing effects of aminoindans is based on assays 

conducted in non-neuronal cells overexpressing transporter proteins, which tend to 

underestimate the potency of substrate-type releasers by an order of magnitude or more 

compared to native tissues. In studies of HEK293 (HEK) cells expressing DAT, (+)-

methamphetamine released preloaded [3H]DA with EC50 = 435 nM (Eshleman et al. 2017) 

or EC50 = 1.56 μM (Simmler et al. 2013). By contrast, in rat brain synaptosomes, (+)-

methamphetamine induced [3H]substrate efflux through DAT with EC50 values ranging from 

8.5 nM to 28.0 nM (Rothman et al. 2001; Nagai et al. 2007; Baumann et al. 2012). Although 

uptake assays have been used to assess interactions between aminoindans and monoamine 

transporters (Johnson et al. 1991a), those assays also tend to underestimate the potency of 

substrate releasers (Bhat et al. 2017). In the present studies, the monoamine-releasing 

properties of 2-AI, 5-MeO-AI, MMAI, and MDAI were compared using in vitro release 

assays for DAT, NET, and SERT in rat brain synaptosomes. In addition to their transporter 

interactions, aminoindans also bind to monoamine receptors (Marona-Lewicka and Nichols 

1994; Iversen et al. 2013; Simmler et al. 2014b). Existing binding studies with 2-AI, MMAI 

and MDAI, however, have only focused on a small subset of 5-HT, DA, and NE receptor 

subtypes. Therefore, comprehensive binding studies were performed to assess the affinity of 

aminoindans at 5-HT, DA, and NE receptor subtypes. The aminoindans were found to act as 

substrate-type monoamine releasers with differing patterns of selectivity for SERT, DAT, and 

NET. Consistent with previous reports indicating that certain 2-aminoindan derivatives bind 

to α2-adrenoceptors (Iversen et al. 2013; Simmler et al. 2014b), 2-AI, 5-MeO-AI, MMAI 

and MDAI had moderate to high affinity for α2-adrenoceptor subtypes.
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2. MATERIALS AND METHODS

2.1. Animals

Male Sprague-Dawley rats (300–400 g, Envigo, Frederick, MD, USA) were housed 2 per 

cage and maintained on a 12 h light-dark cycle. Food and water were provided ad libitum. 

Animal use procedures were conducted in accordance with the NIH Guide for the Care and 

Use of Laboratory Animals, and the Animal Care and Use Committee of the Intramural 

Research Program of the National Institute on Drug Abuse (Baltimore, MD, USA).

2.2. Drugs

2-Aminoindan (2-AI) hydrochloride, 5-methoxy-6-methyl-2-aminoindan (MMAI) 

hydrochloride, and 5,6-methylenedioxy-2-aminoindan (MDAI) hydrochloride were obtained 

from Cayman Chemical (Ann Arbor, MI, USA). 5-Methoxy-2-aminoindan (2-MeO-AI) 

hydrochloride was obtained from Key Organics Ltd (Cornwall, UK).

2.3. Transporter Release Assays

Rats were euthanized by CO2 narcosis and the brains were removed and processed to yield 

synaptosomes. Briefly, caudate tissue (for DAT assays) or whole brain minus cerebellum and 

caudate (for NET and SERT assays) was homogenized in ice-cold 10% sucrose containing 1 

μM reserpine. After 12 strokes with a Potter-Elvehjem homogenizer, the homogenates were 

centrifuged at 1,000 × g at 4°C for 10 min and the supernatants (i.e., synaptosomal 

preparations) were retained on ice. Transporter assays were carried out as described 

previously (Baumann et al. 2013; Solis et al. 2017). For the release assays, 9 nM [3H]1-

methyl-4-phenylpyridinium ([3H]MPP+) was used as the radiolabeled substrate for DAT and 

NET, whereas 5 nM [3H]5-HT was used as the radiolabeled substrate for SERT. All buffers 

used in the release assays contained 1 μM reserpine to block vesicular uptake of substrates. 

The selectivity of release assays was optimized for a single transporter by including 

unlabeled blockers to prevent the uptake of [3H]MPP+ or [3H]5-HT by competing 

transporters. Desipramine (100 nM) and citalopram (100 nM) were added to the buffer for 

DAT release experiments. Citalopram (100 nM) and GBR 12935 (50 nM) were added to the 

buffer for NET release experiments. GBR 12935 (50 nM) and nomifensine (100 nM) were 

added to the buffer for SERT release experiments. Synaptosomes were preloaded with 

radiolabelled substrate in Krebs-phosphate buffer for 1 h (steady state). Release assays were 

initiated by adding 850 μL of preloaded synaptosomes to 150 μL of test drug. The release 

assays were terminated by vacuum filtration and retained radioactivity was quantified by 

scintillation counting. Effects of test drugs on release were expressed as % maximum 

release, with maximum release (Emax) defined as the release produced by tyramine at doses 

that evoke the efflux of all ‘releasable’ tritium by synaptosomes (10 μM tyramine for DAT 

and NET assay conditions, and 100 μM tyramine for SERT assay conditions; Rothman et al. 

2001). Effects of test drugs on release were analyzed by nonlinear regression using 

GraphPad Prism 6 (GraphPad Software, San Diego, CA) to calculate EC50 values.
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2.4. Radioligand Binding Assays

A screening at 29 receptor and transporter binding sites was performed by the NIMH 

Psychoactive Drug Screening Program (NIMH PDSP). Most of these screenings were 

performed with cloned human receptors; exceptions are listed in Table 2. Test compounds 

were dissolved in DMSO and were tested at 10 μM in competition assays against radioactive 

probe compounds. Sites exhibiting > 50% inhibition at 10 μM were tested in secondary 

assays at the identified receptor or transporter using 12 concentrations of the drug (0.1 nM – 

10 μM), measured in triplicate, to generate competition binding isotherms. Ki values were 

obtained from nonlinear regression of these binding isotherms from best-fit IC50 values 

using the Cheng-Prusoff equation (Cheng and Prusoff 1973). The radioligands used were as 

follows: [3H]8-OH-DPAT (5-HT1A), [3H]GR125743 (5-HT1B/1D), [3H]ketanserin (5-HT2A), 

[3H]LSD (5-HT2B/5A/6/7), [3H]mesulergine (5-HT2C), [3H]citalopram (serotonin 

transporter), [3H]prazosin (α1A/1B/1D), [3H]rauwolscine (α2A/2B/2C), [125I]pindolol (β1), 

[3H]CGP12177 (β2, β3), [3H]nisoxetine (norepinephrine transporter), [3H]SCH23390 (D1, 

D5), [3H]N-methylspiperone (D2/3/4), [3H]WIN35428 (dopamine transporter), [3H](+)-

pentazocine (σ1), and [3H]DTG (σ2). For more information, see: Besnard et al. (2012). The 

experimental protocols are available from the NIMH PDSP website (Roth 2013).

3. RESULTS

3.1. Effects on Monoamine Release

The aminoindans displayed efficacious releasing activity at DAT, NET, and SERT. As 

depicted in Figure 2, 2-AI, 5-MeO-AI, MMAI, and MDAI produced a dose-dependent 

increase in the efflux of [3H]MPP+ and [3H]5-HT from preloaded synaptosomes. Table 1 

summarizes the dose-response data for the 2-aminoindans, including the EC50 values and 

selectivity ratios for each compound. The unsubstituted parent compound 2-AI is a 

catecholamine-selective drug, with potent releasing actions at NET (EC50 = 86 nM) and 

DAT (EC50 = 439 nM) but not at SERT (EC50 > 10,000 nM). With regard to selectivity 

ratios, 2-AI displayed a DAT/NET ratio of 0.20 and a DAT/SERT ratio of > 22, confirming 

its selectivity toward catecholamine transporters. For comparative purposes, (+)-

amphetamine showed a DAT/NET ratio of 0.29 and a DAT/SERT ratio of 71 in previous 

synaptosomal release experiments (Rothman et al. 2001). Ring-substitution markedly 

increases potency towards SERT, creating agents that are at least 10-fold selective for SERT 

over DAT. MDAI is equipotent at SERT and NET, with 10-fold weaker effects at DAT, 

yielding a DAT/SERT ratio of 0.08. Compared to MDAI, 5-MeO-AI had a lower DAT/SERT 

ratio (0.05), and was moderately selective for SERT vs. NET and DAT. MMAI is a potent 

and selective 5-HT releaser, displaying a DAT/SERT ratio of > 0.003.

3.2. Binding Affinities

The binding affinities of the aminoindans for 29 receptors and binding sites are shown in 

Table 2. All compounds bound to α2 adrenoceptors with submicromolar or micromolar 

affinities but lacked appreciable affinity for α1- and β-adrenergic receptors (< 50% 

displacement at 10 μM). 2-AI had high affinity for α2A (Ki = 134 nM), α2B (Ki = 211 nM), 

and α2C (Ki = 41 nM) receptors. Compared to 2-AI, 5-MeO-AI and MMAI had 5-fold lower 

affinity for α2A and α2B and 30-fold lower affinity for α2C, indicating that 5-methoxy 
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substitution has a detrimental effect on α2 binding. Similar reductions in affinity for α2 

adrenoceptor subtypes occurred with MDAI. 2-AI and MDAI lacked affinity for 5-HT 

receptors (< 50% displacement at 10 μM), whereas the 5-methoxy-substituted compounds 5-

MeO-AI and MMAI had moderate affinity for 5-HT1A and 5-HT2B receptors. The presence 

of a 6-methyl-substituent apparently facilitates binding to 5-HT1B, 5-HT1D, and 5-HT7 

receptors because MMAI had moderate affinity for those sites whereas 5-MeO-AI had little 

or no affinity. With the exception of MDAI, which bound to SERT with a Ki of 4,822 nM, 

the aminoindans displayed low potency for inhibiting binding of high-affinity radioligands 

to or monoamine transporters (< 50% displacement at 10 μM). None of the compounds were 

active at dopaminergic receptors or σ binding sites.

4. DISCUSSION

All of the aminoindans tested stimulate monoamine efflux via transporters, albeit with 

varying degrees of selectivity for DAT, NET, and SERT. Based on the transporter data, the 

parent compound 2-AI is a selective substrate for NET and DAT, similar to (+)-amphetamine 

(Rothman et al. 2001). Ring substitution on 2-AI increased the potency of SERT-mediated 

release while reducing potency at DAT and NET. MDAI is a moderately selective releaser 

via SERT and NET, with 10-fold weaker effects on DAT, meaning it increases 5-HT release 

in a manner similar to MDMA but has somewhat weaker effects on DA release (cf., 

Rothman et al. 2001). 5-MeO-AI exhibited some selectivity for SERT-mediated release, 

having 6-fold lower potency at NET and 20-fold lower potency at DAT. Consistent with 

previous reports (Johnson et al. 1991a; Marona-Lewicka and Nichols 1994; Luethi et al. 

2017), MMAI is highly selective SERT releaser, with 100-fold lower potency at NET and 

DAT. In addition to their effects on monoamine release, the aminoindans had relatively high 

affinity for α2-adrenoceptor subtypes. The 5-methoxy substituted compounds (5-MeO-AI 

and MMAI) also bind to 5-HT1A and 5-HT2B receptors with moderate affinity.

The release data for the aminoindans correlate well with data from previous studies. Liechti 

and colleagues examined the effects of 2-AI, MDAI, and MMAI on monoamine release 

from HEK cells expressing cloned transporters (Simmler et al. 2014b; Luethi et al. 2017). At 

100 μM, 2-AI induced the release of preloaded [3H]DA and [3H]NE but not [3H]5-HT, 

MDAI released [3H]5-HT and [3H]NE whereas [3H]DA was not affected, and MMAI 

released [3H]5-HT selectively. Although full dose-effect curves for [3H]transmitter release 

were not reported by Liechti et al., we observed the same qualitative pattern of activity with 

2-aminoindans in our synaptosomal release assays. Thus, data from human transporters 

expressed in non-neuronal cells agree with our data from rat transporters in native tissue 

preparations. According to another group (Eshleman et al. 2017), MDAI released preloaded 

[3H]NE (EC50 = 0.57 μM), [3H]5-HT (EC50 = 2.9 μM), and [3H]DA (EC50 = 24 μM) from 

HEK cells expressing cloned transporters. These data confirm the ~10-fold selectivity of 

MDAI for 5-HT vs. DA release. In comparison, MDAI had 5- to 25-fold higher potency in 

our release assays, which is not surprising because HEK cells may not express critical 

elements of the protein machinery found in intact neurons that are implicated in the 

monoamine-releasing effects of amphetamines. Finally, Johnson et al. (1991a) used 

synaptosomal uptake assays to characterize the interaction of MDAI and MMAI with DAT, 

NET and SERT. There was a narrow margin of separation between the effects of MDAI on 
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[3H]5-HT uptake (IC50 = 512 nM) and [3H]NE uptake (IC50 = 1426 nM), whereas [3H]DA 

uptake was inhibited with 10-fold lower potency (IC50 = 5,920 nM). Conversely, MMAI 

inhibited the uptake of [3H]5-HT with an IC50 of 212 nM, which was 55-fold lower than the 

concentration required to inhibit [3H]NE uptake (IC50 = 11,618 nM) and 93-fold lower than 

the concentration required to inhibit [3H]DA uptake (IC50 = 19,793 nM). These data are 

consistent with the selectivity profile of MDAI and MMAI in our release assays.

Although we found little evidence of binding to DAT, NET, and SERT (in most cases there 

was < 50% displacement at 10 μM), this does not exclude the possibility that the 

aminoindans act as monoamine reuptake inhibitors. Indeed, as was noted above, MMAI 

inhibits synaptosomal [3H]5-HT uptake at submicromolar concentrations (Johnson et al. 

1991a). For substrate releasers, the concentration required to displace radioligand binding to 

the transporter is often 10- to 100-fold higher than the concentration required to inhibit 

neurotransmitter uptake (Simmler et al. 2013; Simmler et al. 2014a; Eshleman et al. 2017). 

For example, methamphetamine inhibits [3H]DA uptake with about 70-fold higher potency 

than it displaces [125I]RTI-55 binding to hDAT (IC50 = 0.0667 μM vs. Ki = 4.58 μM, 

respectively) (Eshleman et al. 2017). These potency differences likely occur because 

radiolabeled inhibitors stabilize monoamine transporters in the outward-facing conformation 

whereas substrate releasers shift transporters to the inward-facing conformation (Erreger et 

al. 2008; Sandtner et al. 2016; Bhat et al. 2017).

The release assays used in these experiments are based on the efflux of preloaded 

synaptosomal [3H]neurotransmitter via a transporter-mediated exchange process thought to 

involve the reversal of normal transporter flux (i.e., “reverse” transport) (Rudnick and Clark 

1993; Rothman and Baumann 2006b). Substrate-type drugs will deplete 

[3H]neurotransmitter from synaptosomes via this reverse transport mechanism in a 

concentration-dependent manner. Synaptosomes are sealed vesicle-filled nerve endings with 

their plasma membrane leaflets oriented in a manner akin to neurons in vivo (Gray and 

Whittaker 1962; Wilhelm et al. 2014). In contrast to assay systems involving non-neuronal 

cells transfected with transporter proteins, synaptosomes possess all of the cellular 

machinery necessary for neurotransmitter synthesis, release, metabolism and reuptake. 

Synaptosomes, however, do not model all of the effects of amphetamine-type agents because 

the use of reserpine removes any contribution of the vesicular monoamine transporter 

VMAT2 (SLC18A2) to the release process. In addition to acting as a substrate for plasma 

membrane monoamine transporters, amphetamine also binds to VMAT, resulting in the 

redistribution of monoamines from vesicular stores to the cytoplasm (Sulzer et al. 1995; 

Partilla et al. 2006; Freyberg et al. 2016). Although transporter substrates can induce 

monoamine release in the absence of VMAT binding (Fon et al. 1997), it is important to 

recognize that 2-aminoindans may have effects in intact nerve terminals that are not fully 

replicated in synaptosomes. Follow-up studies will be conducted to evaluate whether 2-

aminoindans are capable of interacting with VMAT. In addition to members of the solute 

carrier (SLC) family, several other presynaptic components are thought to contribute to the 

action of substrate releasers, for example monoamine oxidase (MAO), the trace amine-

associated receptor TAAR1, and protein kinases (Sulzer et al. 2005; Sitte and Freissmuth 

2015). It is important to determine how those targets contribute to the effects of aminoindans 

and other monoamine-releasing compounds.

Halberstadt et al. Page 7

Psychopharmacology (Berl). Author manuscript; available in PMC 2020 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The subjective effects and abuse potential of substrate-type monoamine releasers vary 

depending on their transporter selectivity. Self-administration of monoamine releasers is 

driven primarily by DA efflux in the mesolimbic pathway (Wise 1996; Pierce and 

Kumaresan 2006) whereas the psychostimulant effects of amphetamines are mediated by 

their effects on NE release (Rothman et al. 2001; Sofuoglu et al. 2009; Hysek et al. 2011). 

By contrast, 5-HT release appears to produce MDMA-like entactogenic effects. The 

entactogenic effects of MDMA are blocked by pretreatment with the selective SERT 

inhibitors paroxetine and fluoxetine (Liechti et al. 2000; Farre et al. 2007; Tancer and 

Johanson 2007), which prevent carrier-mediated release of 5-HT without limiting access to 

catecholamine transporters or postsynaptic receptors. The relative catecholaminergic-

serotonergic effects of monoamine releasing agents appear to be an important determinant of 

their abuse potential; catecholamine-selective drugs have the highest reinforcing potency in 

self-administration and ICSS studies, with stimulant and reinforcing effects declining as 5-

HT releasing potency increases (Wee et al. 2005; Rothman and Baumann 2006a; Baumann 

et al. 2011; Bauer et al. 2013). Consistent with its reported amphetamine-like psychoactive 

effects in humans, 2-AI is a catecholamine-selective releaser, with minimal effect on 5-HT 

release. Based on the transporter data, MDAI and 5-MeO-AI may produce MDMA-like 

entactogenic and sympathomimetic effects but are likely to have less abuse liability than the 

latter agent. The effect of MMAI on monoamine release is reminiscent of m-

trifluoromethylphenylpiperazine (TFMPP) and fenfluramine, which are highly selective for 

5-HT release relative to DA and NE (Rothman et al. 2003; Baumann et al. 2005). Selective 

5-HT releasers such as TFMPP and fenfluramine lack euphoric effects in humans and can 

produce dysphoria at higher doses (Griffith et al. 1975; Foltin and Fischman 1991; Jan et al. 

2010); therefore, MMAI may have unpleasant effects, limiting its abuse liability. Indeed, 

whereas MDMA (Bilsky et al. 1990; Marona-Lewicka et al. 1996) and MDAI (Gatch et al. 

2016) produce conditioned place preference in rats, MMAI reportedly induces conditioned 

place aversion (Marona-Lewicka et al. 1996).

The effects of the aminoindans on monoamine release are consistent with their stimulus 

properties in rodents. 2-AI fully substituted for (+)-amphetamine, demonstrating that it 

produces an amphetamine-like interoceptive stimulus cue (Glennon et al. 1984). Another 

study reported only partial substitution by 2-AI in (+)-amphetamine-trained rats (Oberlender 

and Nichols, 1991); however, the range of 2-AI doses tested was limited by rate-depressant 

effects, and it cannot be excluded that 2-AI would have produced full substitution at higher 

doses. The discriminative stimulus cue evoked by MMAI appears to be mediated by 5-HT 

efflux; 5-HT releasers such as MDMA, S-(+)-N-methyl-1-(1,3-benzodioxol-5-yl)-2-

butanamine (S-(+)-MBDB), and (+)-fenfluramine fully substituted for MMAI, whereas (+)-

amphetamine and cocaine did not substitute, and MMAI discrimination was antagonized by 

5-HT uptake inhibitors as well as by depletion of endogenous 5-HT (Marona-Lewicka and 

Nichols 1994,1998). Likewise, MMAI fully substituted in rats trained to discriminate the 5-

HT releasing drugs MDMA and S-(+)-MBDB, but did not substitute in (+)-amphetamine-

trained rats (Johnson et al. 1991b). MDAI substituted for MDMA and S-(+)-MBDB 

(Nichols et al. 1990; Oberlender and Nichols 1990; Malmusi et al. 1996; Gatch et al. 2016), 

which is consistent with its effects on 5-HT efflux. Although MDAI did not substitute for 

(+)-amphetamine (Oberlender and Nichols 1991), it did produce full substitution in cocaine-
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trained rats and 75% drug-appropriate responding in (+)-methamphetamine-trained rats 

(Gatch et al. 2016); therefore, there may be some overlap between the stimulus effects of 

MDAI and psychostimulants, as is the case with MDMA (Schechter 1986; Glennon 1989; 

Gatch et al. 2009). Data regarding the stimulus properties of 5-MeO-AI have not appeared in 

the literature.

All of the aminoindans tested in this study have moderate to high affinity for α2-

adrenoceptor subtypes. Consistent with our data, previous studies reported that 2-AI, MDAI, 

MMAI, and 5-iodo-2-aminoindan (5-IAI) bind to α2 receptors with affinity in the 

submicromolar or low micromolar range (Marona-Lewicka and Nichols 1994; Iversen et al. 

2013; Simmler et al. 2014b; Luethi et al. 2017). Activity in the series peaked with the 

unsubstituted compound 2-AI, which bound to the three subtypes with nanomolar affinity 

(α2A Ki = 134 nM, α2B Ki = 211 nM, and α2C Ki = 41 nM). In comparison, (+)-

amphetamine and (+)-methamphetamine have lower affinity for cloned human α2-

adrenoceptors labeled with [3H]rauwolscine (Ki values of 2.8 μM and 6.1 μM, respectively; 

Simmler et al. 2013). MDMA also binds to α2-adrenoceptors in frontal cortex homogenates 

with micromolar affinity (Ki = 3.2 μM vs. [3H]p-aminoclonidine) (Battaglia et al. 1988). 

Although aminoindans have higher affinity for α2-adrenoceptor subtypes compared to 

amphetamines, the significance of these interactions to the behavioral pharmacology of these 

compounds is unclear.

The interaction of aminoindans with 5-HT2B receptors is noteworthy. It is apparent that 

aromatic ring substitution enhances the binding of aminoindans to 5-HT2B receptor sites 

based on our finding that 5-MeO-AI and MMAI have higher affinity than 2-AI. Similarly, 

according to Iversen et al. (2013), 5-iodo-2-aminoindan (5-IAI) binds to the 5-HT2B receptor 

with high affinity (Ki = 70 nM vs. [3H]LSD). Although MDAI also displays ring-

substitution at the 5 position, it was shown herein and in previous studies (Iversen et al. 

2013) to have negligible affinity for the 5-HT2B receptor (< 50% displacement at 10 μM). 5-

HT2B activation has been linked to valvular heart disease induced by fenfluramine and ergot 

alkaloids such as methysergide, pergolide, cabergoline, and ergotamine (Fitzgerald et al. 

2000; Rothman et al. 2000; Roth 2007; Huang et al. 2009). Additionally, the 5-HT2B 

receptor may be responsible for the primary pulmonary hypertension observed in patients 

treated with fenfluramine or the anorectic aminorex (Rothman et al. 1999; Launay et al. 

2002). Our study did not determine whether 5-MeO-AI and MMAI act as agonists or 

antagonists at the 5-HT2B receptor but the fact that the drugs bind to this site raises the 

possibility that they may present some risk for cardiac and pulmonary toxicities. Indeed, 

abuse of substances with 5-HT2B agonist activity has been linked to cardiac valvulopathy 

and pulmonary hypertension. MDMA (Ki = 500 nM vs. [3H]LSD) and its N-demethylated 

metabolite MDA (Ki = 100 nM vs. [3H]LSD) act as 5-HT2B agonists (Setola et al. 2003); 

one study found an elevated incidence of valvular heart disease in a Belgian group of 

MDMA users (Droogmans et al. 2007). Abuse of 4-methylaminorex (McN-822, “U4Euh”) 

has been associated with the development of pulmonary hypertension in case reports (Gaine 

et al. 2000).

In addition to their effects on cardiovascular physiology, 5-HT2B receptors have also been 

shown to modulate the effects of psychostimulant and entactogenic drugs. 5-HT2B receptor 
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activation reportedly plays a permissive role in the activity of 5-HT neurons in the dorsal 

raphe nucleus (Belmer et al. 2018). Indeed, selective 5-HT2B antagonists block MDMA-

induced release of 5-HT and DA and inhibit the hyperlocomotor and reinforcing effects of 

MDMA in mice (Doly et al. 2008; Doly et al. 2009). According to another report, the ability 

of amphetamine to increase nucleus accumbens DA outflow and locomotor activity is 

significantly attenuated in animals pretreated with the selective 5-HT2B antagonist LY 

266097 (Auclair et al. 2010). Additionally, 5-HT2B receptor gene variants have been linked 

to drug abuse (Lin et al. 2004; Tikkanen et al. 2015), which supports a potential role for this 

receptor in drug-induced rewarding effects. It is tempting to speculate that effects of 5-MeO-

AI and MMAI on serotonergic and dopaminergic neurotransmission may be modulated by 

their interaction with the 5-HT2B receptor.

In summary, aminoindans target plasma membrane monoamine transporters. The 

unsubstituted parent compound 2-AI increases DA and NE release in a manner analogous to 

(+)-amphetamine. 5-MeO-AI and MDAI, by contrast, produce MDMA-like effects on 5-HT 

and NE release, although they have less of an effect on DA release in comparison to the 

latter drug. MMAI increases 5-HT release selectively. Although these results are consistent 

with existing evidence indicating that 2-AI and MDAI have some abuse liability, self-

administration studies are ultimately necessary to assess whether these substances produce 

reinforcing effects. It is especially important to perform these studies with 5-MeO-AI 

because it is the active ingredient in a product (“Pace”) marketed online as a replacement for 

alcohol. Although some preliminary pharmacological data have been reported for 5-MeO-AI 

(Shimshoni et al. 2018), as far as we are aware the present studies are the first detailed 

investigation of this emerging drug. Additional studies with 5-MeO-AI are warranted given 

its ability to interact with monoamine transporters and 5-HT2B receptors.
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Figure 1. 
Chemical structures of aminoindans and related drugs. Abbreviations: 2-AI, 2-aminoindan; 

MDAI, 5,6-methylenedioxy-2-aminoindan; MDMA, 3,4-methylenedioxymethamphetamine; 

5-MeO-AI, 5-methoxy-2-aminoindan; MMAI, 5-methoxy-6-methyl-2-aminoindan.
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Figure 2. 
Dose-response effects of aminoindans on the release of [3H]MPP+ and [3H]5-HT from rat 

brain synaptosomes in vitro, under conditions optimized for NET, DAT, and SERT. Dose-

response curves were constructed by incubating various concentrations of each test drug 

with synaptosomes that had been preloaded with tritiated substrate ([3H]MPP+ for NET and 

DAT, [3H]5-HT for SERT). Test drugs were 2-aminoindan (2-AI), 5-methoxy-2-aminoindan 

(5-MeO-AI), 5-methoxy-6-methyl-2-aminoindan (MMAI), and 5,6-methylenedioxy-2-

aminoindan (MDAI). Data are mean±S.D. for 3 independent experiments performed in 

triplicate.
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Table 1.

Effects of 2-aminoindan analogues on the release of tritiated substrates via DAT, NET or SERT in rat brain 

synaptosomes

Drug DAT-mediated release 
EC50 (nM) (Emax)

NET-mediated release EC50 
(nM) (Emax)

SERT-mediated release 
EC50 (nM) (Emax)

DAT/NET 

ratio
a

DAT/SERT 

ratio
b

2-AI 439 ± 38 (106%) 86 ± 13 (95%) >10,000 n.d. 0.20 >22.78

5-MeO-AI 2,646 ± 565 (117%) 861 ± 118 (101%) 134 ± 13 (104%) 0.33 0.05

MMAI >10,000 n.d. 3,101 ± 728 (105%) 31 ± 5 (99%) >0.31 >0.003

MDAI 1,334 ± 226 (113%) 117 ± 17 (99%) 114 ± 15 (102%) 0.09 0.08

Data are mean ± S.D. for 3 independent experiments performed in triplicate

a
DAT/NET ratio = (DAT EC50)−1 ÷ (NET EC50)−1; a higher value indicates greater DAT selectivity

b
DAT/SERT ratio = (DAT EC50)−1 ÷ (SERT EC50)−1; a higher value indicates greater DAT selectivity
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Table 2.

Summary of radioligand binding data for the 2-aminoindan analogues

2-AI 5-MeO-AI MMAI MDAI

Receptor Species
a Radioligand

Ki (nM)
b Ki (nM) Ki (nM) Ki (nM)

5-HT1A Human [3H]8-OH-DPAT > 10,000
c 2,503 ± 1,867 (3) 1,077 ± 590 (4) > 10,000

5-HT1B Human [3H]GR125743 > 10,000 > 10,000 2,777 ± 326 (3) > 10,000

5-HT1D Human [3H]GR125743 > 10,000 > 10,000 2,559 ± 980 (3) > 10,000

5-HT1E Human [3H]5-HT > 10,000 > 10,000 > 10,000 > 10,000

5-HT2A Human [3H]ketanserin > 10,000 > 10,000 > 10,000 > 10,000

5-HT2B Human [3H]LSD > 10,000 4,793 ± 2,994 (3) 902 ± 445 (3) > 10,000

5-HT2C Human [3H]mesulergine > 10,000 > 10,000 > 10,000 > 10,000

5-HT5A Human [3H]LSD > 10,000 > 10,000 > 10,000 > 10,000

5-HT6 Human [3H]LSD > 10,000 > 10,000 > 10,000 > 10,000

5-HT7 Human [3H]LSD > 10,000 > 10,000 1,008 ± 262 (3) > 10,000

α1A Human [3H]prazosin > 10,000 > 10,000 > 10,000 > 10,000

α1B Human [3H]prazosin > 10,000 > 10,000 > 10,000 > 10,000

α1D Human [3H]prazosin > 10,000 > 10,000 > 10,000 > 10,000

α2A Human [3H]rauwolscine 134 ± 31 (3) 751 ± 338 (3) 724 ± 477 (4) 322 ± 114 (3)

α2B Human [3H]rauwolscine 211 ± 81 (3) 1,555 ± 757 (3) 1,229 ± 483 (3) 1,121 ± 411 (3)

α2C Human [3H]rauwolscine 41 ± 26 (4) 1,224 ± 238 (3) 1,380 ± 769 (4) 363 ± 219 (4)

β1 Human heart
d [125I]pindolol > 10,000 > 10,000 > 10,000 > 10,000

β2 Human [3H]CGP12177 > 10,000 > 10,000 > 10,000 > 10,000

β3 Human [3H]CGP12177 > 10,000 > 10,000 > 10,000 > 10,000

D1 Human [3H]SCH23390 > 10,000 > 10,000 > 10,000 > 10,000

D2 Human [3H]NMSP > 10,000 > 10,000 > 10,000 > 10,000

D3 Human [3H]NMSP > 10,000 > 10,000 > 10,000 > 10,000

D4 Human [3H]NMSP > 10,000 > 10,000 > 10,000 > 10,000

D5 Human [3H]SCH23390 > 10,000 > 10,000 > 10,000 > 10,000

DAT Human [3H]WIN35,428 > 10,000 > 10,000 > 10,000 > 10,000

NET Human [3H]nisoxetine > 10,000 > 10,000 > 10,000 > 10,000

SERT Human [3H]citalopram > 10,000 > 10,000 4,822 ± 2,500 (3) > 10,000

σ1 Rat brain
d [3H](+)pentazocine > 10,000 > 10,000 > 10,000 > 10,000

σ2 Rat PC12 cells
d [3H]DTG > 10,000 > 10,000 > 10,000 > 10,000

a
The experiments were performed using cloned human receptors unless otherwise specified.

b
Data represent mean and S.D. from 3–4 independent experiments performed in triplicate (the number of experiments is indicated in parentheses).

c
< 50% displacement when tested at 10 μM in the primary binding assay.
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d
The experiment was performed using tissues or cells natively expressing the receptor.
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