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Abstract

Internal Heat: Exploring how Planetary Surfaces are Shaped

Jacob Nunes Henriques Abrahams

This thesis consists of three loosely related projects exploring the physics of planetary

bodies. The throughline in this research is that I explore how a planetary body’s interior

influences its exterior – in particular how heat migrating outward drives evolution and

leaves detectable traces of that evolution.

Chapter One describes a novel form of volcanism – volcanism on iron bodies, which we

call ferrovolcanism. We predict that metallic bodies were able to host volcanism, making

metal the third major type of crustal material capable of being volcanic, in addition to ice

and silicate planets. We discuss the potential for its observation by the Psyche mission, its

role in the evolution of metallic bodies, and its potential influence on the metallic meteorite

record.

Chapter Two lays out a way to significantly improve Europa Clipper’s ability to mea-

sure Europa’s global shape, without requiring any extra measurements. By using stellar

occultations, measurements that Europa Clipper was already planning to collect, we can

supplement radar altimetry to obtain more complete global coverage of Europa. We demon-

strated the potential for this combined dataset to significantly improve global fits, which

would allow Europa Clipper to better constrain the thickness, rheology, and history of Eu-

ropa’s ice shell.

Chapter Three explores the relationship between rotation rate and tidal dissipation in

the interior of Jupiter’s moon Io. This is motivated by two separate lines of thinking: 1)

Io’s volcanoes appear to be offset in longitude from where tidal dissipation models predict

they should form, and 2) if a satellite is sufficiently fluid - plausible for Io because it is so

strongly heated - it is expected to rotate slightly faster than the synchronous rotation rate

we see across solar system satellites. We find that because of the rigidity of its lithosphere,

we do not expect Io to rotate nonsynchronously on geophysically relevant timescales.

xi
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Chapter 1

Ferrovolcanism: Iron Volcanism

on Metallic Asteroids

This chapter is a slightly modified reprint of work previously published as: Jacob

N. H. Abrahams and Francis Nimmo (2019). “Ferrovolcanism: Iron Volcanism on Metallic

Asteroids”. In: Geophysical Research Letters 46, 2019GL082542. doi:

10.1029/2019GL082542.

Abstract

Metallic asteroids, the exposed cores of disrupted planetesimals, are expected to have

been exposed while still molten. Some would have cooled from the outside in, crystallizing

a surface crust which would then grow inward. Because the growing crust is expected to

be more dense than the underlying melt, this melt will tend to migrate toward the surface

whenever it is able. Compressional stresses produced in the crust while it cools will be

relieved locally by thrust faulting, which will also provide potential conduits for melt to

reach the surface. We predict iron volcanism to have occurred on metallic asteroids as

they cooled and discuss the implications of this process for both the evolution and the

modern appearance of these bodies.

1
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1.1 Introduction

Three major types of crustal material are observed in the solar system. The most familiar,

silicate crust, is found on the terrestrial planets and their moons, most asteroids, and on Io.

The other common type of crust is formed from ices, primarily water ice, on the surfaces of

most outer solar system moons, some asteroids, and most Kuiper belt objects. In addition to

ice and silicates, a less common third type of crust is present in the solar system: metallic core

material left behind following collisional disruption of the mantle of a differentiated body

(Asphaug et al. 2006; Yang et al. 2007). These bodies have been detected in the asteroid belt

(Matter et al. 2013; Neeley et al. 2014) and contribute substantially to the meteorite record

(Hutchison 2004). However, our understanding of their surfaces is very limited – the first

detailed images of a metallic asteroid will come from the Psyche spacecraft, which is scheduled

to launch in 2022 (Lord et al. 2017).

Volcanism occurs throughout the solar system in a variety of different forms (e.g. Lopes

and Gregg 2004; Wilson 2009). All terrestrial planets (and Io) exhibit silicate volcanism, and a

number of icy bodies display either geomorphic signs of cryovolcanism (Moore 2001; Schenk

et al. 2001) or directly observed plume behavior (Porco et al. 2006; Roth et al. 2014). In this

paper we explore the question of whether metallic bodies can host their own novel style of

volcanism. Metallic volcanism should bear most resemblance to silicate volcanism, where the

melt is buoyant relative to the solid matrix. This is in contrast to cryovolcanism, where the

melt is more dense and mechanisms other than buoyancy are needed to aid its ascent (e.g.

Manga and Wang 2007; Crawford and Stevenson 1988). The main differences between iron

volcanism and silicate volcanism are the lower viscosity of liquid metal, the higher ductility of

solid metal, metal’s higher resistance to fracture and the likely absence of a low-density crust

able to stall fluid migration. In addition, our analysis is concerned with a body hosting an iron

‘magma ocean’, where the entire interior is molten, rather than broad regions of low melt

fraction or magma confined to small chambers.

All but the smallest differentiated bodies will have partially molten iron cores for at least

the first ∼100 million years of the solar system, the period in which their mantles are most

likely to be removed (Bottke et al. 2005). When a fully molten core is then exposed to space,

it will rapidly form a quench crust on the surface. This new crust will either sink, exposing

2



new melt to space and rapidly freezing the whole body, or it will be supported by its own

strength and crystallize slowly from the outside in. Crucially, observations of cooling rate-Ni

correlations indicate that some asteroid bodies crystallize from the outside-in (Yang et al.

2007; Yang et al. 2008; Chabot and Haack 2006), which is the mode of solidification of interest

to this work. These observations show that, within the IVA meteorite family, the samples with

the fastest cooling rates have the lowest incompatible element contents, implying that the

shallowest material crystallizes first i.e. top-down solidification. For the purpose of this paper

we accept this empirical observation; further aspects of solidification are addressed in

Scheinberg et al. (2016) and Neufeld et al. (2019). Proceeding with the assumption that bodies

with self-supporting solid crusts occur, we predict that in such bodies the buoyant melt

beneath the crust will periodically be able to erupt, influencing their cooling and creating

volcanic features on the surface.

The aim of this manuscript is to investigate the basics of metallic volcanism. Because iron

volcanism is a novel concept, and many of the important parameters are poorly constrained,

we take an order-of-magnitude approach whenever possible and are only seeking to make

approximate predictions for the real behavior. First we discuss the thermal and mechanical

evolution of an initially molten metallic asteroid. Then we address the ability of melt to reach

the surface and challenges to that migration. We conclude by discussing some features of how

metallic volcanism may present itself, and the need for continuing work anticipating its

morphology, looking for it in current records, and collecting additional data.

1.2 Thermal Evolution

1.2.1 Thermal evolution prior to disruption

Bodies formed in the first ∼2.5 Myr of the solar system will possess enough short lived

radionuclides, particularly 26Al, to melt and separate metals and silicates (Goldstein et al.

2009; Hevey and Sanders 2006). In the absence of mantle convection (Tkalcec et al. 2013) or

silicate melt advection, the core will not begin to cool significantly until a conductive cooling

wave has propagated to the base of the mantle. For a thermal diffusivity of ≈10−6 m2/s

(Carslaw and Jaeger 1959), even a 60 km mantle has a thermal timescale of 100 Myr. Since 16

3



Figure 1.1: Cartoon depicting the volcanic cycle we describe. Beginning in the top-left is the
typical state of the crust, where compressional stress prevents the melt at depth from reaching
the surface. Volcanism then begins with a faulting event and the resulting decreased local
compressional stress in the crust is no longer larger than hydrostatic pressure. Next, the liquid
interior forces open the fault and melt migrates through the newly formed dike. Finally, melt
reaches the surface and the now-depressurized ocean is no longer able to support the crust,
causing the crack to close again. Subsequent crustal growth increases contraction in the crust
slowly until faulting can occur again.

Psyche, the largest metallic asteroid, has an average radius over 100 km (Shepard et al. 2017)

its mantle thermal timescale prior to disruption will have exceeded this value. Because

disruption most likely occurred during terrestrial planet accretion (Bottke et al. 2005), the

cores of proto-Psyche and other similar-sized asteroids will have been molten when disruption

occurred.

1.2.2 Thermal evolution after disruption

After disruption (and any requisite reaccretion, which will be rapid - on orbital timescales)

the body of interest will be a molten, hydrostatic spheroid exposed to space. Initially, a

quench crust will form very rapidly–a millimeter thick crust can form in ∼minutes–but crustal

growth slows down substantially once conduction replaces radiation as the rate-limiting step.

Preventing fresh crust from immediately sinking until a self-supporting crust can form is
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beyond the scope of this paper, but as discussed in Section 1.1, the meteorite record shows

that this took place on some metallic bodies. Moreover, crystallization from the top down,

rather than from the bottom up, is expected based on the expected liquidus and adiabat slopes

(Williams 2009). Once a strong crust forms, in the absence of core superheat and volcanism its

thickness h will grow according to the Stefan solution (Turcotte and Schubert 2014),

approximated by h ≈ 20 km(t/1 Myr)1/2. For these very approximate values, the time to form

a 20 km crust is roughly one Myr.

This evolution can be more complicated if the simple top-down conductive cooling of the

Stefan problem does not apply (Scheinberg et al. 2016). Advection is one way to modify this

picture, but as discussed later fluid eruption is not expected to significantly alter the thermal

behavior. Delamination at the base of the crust can also modify the thermal evolution of the

body by maintaining a thinner crust. However, although delamination is likely to occur,

Neufeld et al. 2019 show that neither it nor core superheat significantly modify the overall

thermal evolution of the body, and that the Stefan assumption is generally justified.
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Figure 1.2: Evolution of an initially molten spherical iron body. Solid lines show the thickness of
solid crust as a fraction of body radius and dashed lines show smoothed strain rate due to surface
contraction. Red lines are for a 100 km radius body and blue lines are for a 200 km radius body.
This model uses the approach of Nimmo and Spencer (2015) to numerically solve the Stefan
problem with the surface pinned to 200 K, the liquid interior at 1200 K and other parameter
values given in Table 1.1. Models taking core superheat and delamination into account (Neufeld
et al. 2019) yield similar results

.

5



1.3 Volcanic Cycle

Having discussed thermal evolution, we now move on to a discussion of how metallic

volcanism would arise. The eruption process we describe takes place in three major stages,

depicted in cartoon form in Figure 1.1. As the crust solidifies, the decrease in volume

associated with the phase change results in radial contraction and compression. The second

stage occurs when this stress exceeds the friction on existing faults, those faults move, and

local low-stress regions surrounding the faults arise. The interior melt is then able to force

open these cracks and migrate through them. The third stage describes when the liquid

interior, which now has a decreased volume, causes sufficient contraction to close the cracks

again and re-establish local compression.

1.3.1 Stage 1: Stress evolution due to bulk solidification

New solid will occupy a smaller volume than the melt from which it formed, and the

resulting radial contraction generates compression. The deeper, hotter solid (the deeper ∼half

of the crust) will be ductile and able to viscously relax away this stress, while the colder upper

layers will either deform elastically or undergo brittle failure. Because the crust will be in

compression, volcanism will tend to be suppressed. To erupt, melt needs to force open cracks

which are being held together by compressive stresses. It is important to note that both

Mercury and the Moon host volcanism despite globally compressive stress environments (Head

and Wilson 1992; Klimczak et al. 2018), so silicate volcanism can - at least locally and

temporarily - overcome compression.

For a nominal 10 km crust with a linear thermal gradient, that gradient is dT
dz ≈ 10−1 K/m.

This corresponds to a radial contraction (due to crystallization) of ḣ∆ρ
ρ =

k dT
dz

Lρ
∆ρ
ρ ≈ 10−10 m/s,

where L is latent heat and k is thermal conductivity. Note that part of the contraction is due

to the entire crust cooling as the thermal profile gets longer, which has a similar magnitude to

the contraction due to crystallizing so we fold it into our already very approximate ∆ρ. This

volume loss corresponds to a strain rate of ϵ̇ = ḣ∆ρ
ρ /R ∼ 10−15 s−1. This strain rate will

evolve substantially with the crustal thickness; output from a simple numerical model of

solidification-derived strain yields comparable results and is depicted in Figure 1.2.
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1.3.2 Stage 2: Dike Formation

1.3.2.1 Dike Opening in Brittle Crust by Magma Ocean Overpressure

Light fluid underlying a dense crust will experience an upwards buoyancy pressure. This

pressure is given by

Pex = gh∆ρ (1.1)

where h is the thickness of the crust and ∆ρ is the density contrast between the crust and the

liquid interior. This quantity is likely of order a few percent of ρ and is a combination of

contraction due to crystallization, contraction due to cooling, and light element exclusion

during crystallization. For an eruption to occur, this excess pressure must exceed

compressional stresses in the elastic crust. Assuming the crust is already fractured, the stress

to move a lithospheric fault (i.e. the maximum differential stress that can be present in the

lithosphere) for the nominal crustal thickness of 10 km is given by Turcotte and Schubert

(2014)

σmax =
2fsρgh

(1 + f2
s )

1/2 − fs
(1.2)

≈ ρ

4
gh ≈ 2 MPa (1.3)

where fs ≈ 0.65 is the coefficient of friction on crustal faults. This indicates that the

lithosphere is able to support compressional stresses about ρ/4
∆ρ ≈ 10 times larger than the

excess hydrostatic pressure produced by its weight on the molten interior. However,

contraction can easily exceed this stress and cause faults to fail. With E as Young’s Modulus,

the strain required is σmax

E ≈ 2×106

1011 = 2× 10−5, which accumulates in 2×10−5

10−15 s−1 ≈ 1 kyr, so

faults will frequently move and relieve stress. Assuming that fault motion is able to relieve

most of the accumulated stress (Fulton et al. 2013) within a local area, the excess fluid

pressure can then force cracks open during such periods.

1.3.2.2 Fracture Initiation in Ductile Crust

We argued above that melt ascent through the brittle section of the crust is possible,

locally and temporarily, despite the overall compressional stress environment. However, the
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melt needs to be able to first ascend into the brittle region of the crust, which requires

propagation through the nominally ductile lower crust. If partial melt is present in this region,

porous flow may feed shallower, macroscopic dikes (Rubin 1998). Below we will discuss the

initiation of fractures at (or near) the base of the crust in the absence of partial melt, and then

their ability to propagate under the influence of inflowing melt.

One problem that has to be overcome to form a fracture is the ductility of the iron near the

base of the crust. Near its melting point, solid iron has a viscosity of ∼ 1011Pa · s (Frost and

Ashby 1982) and thus a viscoelastic response (Maxwell) timescale of 1 s, so for it to respond in

a brittle fashion, the strain rate has to exceed 1 s−1. The other major difficulty is the fact that

iron has a high tensile strength, on the order of 100 MPa (Ashby 1999, Figure 4.4), so large

stresses are needed for fractures to form. These factors make fracture propagation much more

challenging than the equivalent problem in silicate settings (Jellinek and DePaolo 2003;

Karlstrom and Richards 2011, e.g.).

The most likely way to generate large stresses quickly is from cratering. Peak pressures on

the order of hundreds of MPa occur to depths of 10 to 100 times the impactor radius,

depending on the impact velocity (Melosh 1989, Section 5.2). Thus, for impactors with radii

around 1 km, fractures should extend through to the base of the crust while it is still only tens

of kilometers thick. The role of impacts in volcanism is observed elsewhere in the solar system,

particularly on Mercury where volcano occurrence is strongly associated with craters

(Klimczak et al. 2018).

1.3.2.3 Dike Propagation

Once a fracture has formed, it will propagate if the forces trying to extend it exceed the

forces resisting that extension. The fluid in the fracture is buoyant, generating stresses which

tend to elongate the dike. The stress from buoyancy grows with dike length, so this force

becomes more important in longer dikes. Strength in the host material serves to limit growth,

because fracturing at the tip of the dike is required for its extension (Rubin 1995). A

compressional background stress increases the buoyancy required for a dike to propagate.

Crawford and Stevenson (1988) derive an expression for the minimum length a dike must reach

before pressure from melt buoyancy can fracture the crust and force the crack to open further.

8



A dike will propagate itself when

Kc = (πlcrit)
1/2 [T + 2g∆ρlcrit/π] (1.4)

Here T is the local stress in the crust, defined here to be positive for tensile stress, Kc is the

fracture toughness, and lcrit is the minimum length for a dike to become self propagating. To

propagate itself vertically against 100 kPa of compressive stress (∼5% of what faults can

support), a dike would have to be 11 km long. If, on the other hand, there were 200 kPa of

extensional stress, this critical length is less than 1 km. At T = 0 the expression reduces to the

result from Lister and Kerr (1991),

lcrit =

(
Kc

∆ρg

)2/3

≈ 7 km (1.5)

Even modest compressional stresses therefore result in critical crack lengths larger than the

thickness of the entire crust. We thus conclude that the only time dike propagation is likely to

occur is immediately after a faulting event has reduced the local compressional stress to

approximately zero.

Dikes will be much more easily able to propagate if there is local tensile stress. There are

at least two ways to generate local tensile stress which we expect to be present. One is impact

craters. However, although we do not rule these out entirely, craters which are sufficiently

large to generate rebound and tensile stresses near the base of the crust are likely to be

uncommon. An alternative is for material to delaminate (i.e. detach and descend as a diapir)

from the base of the crust, imparting rapidly-changing stresses to the material immediately

above. Solid material tends to delaminate from the crust because it is more dense than the

melt immediately below it, and at the base of the crust temperatures are high enough, and

thus viscosities low enough, for material to flow. Delamination has been discussed on Io

(Kirchoff and McKinnon 2009), as well as on metallic asteroids (Neufeld et al. 2019), and in

the latter case is expected to recur on timescales of a few tens of kyr. The stress will vary in

and around the diapir, but Kirchoff and McKinnon (2009) point out that its magnitude is

roughly σ ∼ ∆ρgλ where λ is the thickness of the layer being shed.

Based on Neufeld et al. (2019), the diapirs will have a length scale of about 1 km. Thus,
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delamination will generate stresses of order 100 kPa. Delamination also has the advantage of

being a recurrent phenomenon, so the base of the crust is constantly being stressed and

unstressed.

Assuming fluid injection timescales of tens of kyr, the bottom 60% of the crust is expected

to be dominated by viscous processes, potentially leading to the growth of larger intrusions

than the initial dikes (cf. Karlstrom et al. 2017). Such intrusions, however, would still be

buoyant relative to the solid crust, and thus likely to ascend promptly rather than being stored.

1.3.2.4 Dike Refreezing During Ascent

Melt forced upward through a crack will lose heat to crack walls and eventually refreeze.

For eruptions to occur, the timescale of freezing needs to be longer than the timescale of melt

ascent (e.g. Petford et al. 1994). Given the low viscosity of iron, the flow may be turbulent, in

which case for a dike of width D the ascent velocity is given by (Wilson and Head 2017):

u =

√
D

g

fd

∆ρ

ρ
(1.6)

where fd is the coefficient of drag on the crack walls. To refreeze, we need the dike walls to

absorb a heat per area of DρL, where L is the latent heat of freezing. For eruption timescale t

and thermal diffusivity κ, this will propagate a distance
√
κt =

√
κh/u into the walls, carrying

away a heat per area of Cpρ∆T
√
κt, where Cp is the heat capacity of the walls. Setting these

equal gives the width of the smallest crack that will refreeze

Dmin =

((
Cp∆T

L︸ ︷︷ ︸
∼10−1

)4
(κh)2

g︸ ︷︷ ︸
∼ 1m5

fd︸︷︷︸
∼10−1

ρ

∆ρ︸︷︷︸
∼101.5

)1/5

≈ 0.3 m (1.7)

where here we have taken h=10 km, g=0.1 m s−2. This minimum width is similar to Earth,

where basalt has a minimum width of 1 meter (Rubin 1995), so reasonable width cracks are

able to avoid refreezing. Assuming a viscosity of 10−2 Pa · s, these values give us a Reynolds

number greater than 103, so using the turbulent velocity is appropriate.
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1.3.3 Stage 3: Dike Closing, Reestablishing Compressional Regime

1.3.3.1 Eruption Volume

Eruptions are self-limiting processes, because compressional stress reaccumulates as the

liquid volume reduces and the crust subsides. An eruption will stop when the stress in the

crust is equal to the excess pressure in the ocean (gh∆ρ). If, at the beginning of an eruption,

the difference between the ocean excess pressure and the local crustal stress is Pnet, then

assuming the interior melt only compresses elastically (i.e. has zero volatile content), a

corresponding strain of ϵ = Pnet

E will accumulate. Treating the eruption as a layer covering the

entire body with thickness δ, then ϵ ≈ δ
R . If we assume that faulting has relieved all

compressional stress in the crust, Pnet = gh∆ρ and

δ =
gh∆ρR

E
=

4
3πGhρ∆ρR2

E
(1.8)

= 0.3 m×
(

∆ρ

150 kg/m
3

)(
R

100 km

)2(
h

10 km

)(
1011 Pa

E

)
(1.9)

If some stress remains in the crust this value will be diminished somewhat. The nominal value

of δ implies an eruption volume Verupt of 40 km3.

Eruptions will advect heat equal to Verupt ρ(Cp∆T + L) ≈ 1020 J. With a surface thermal

gradient of 0.1 K/m this is roughly 10 years of global conductive heat loss. The importance of

advection thus depends on how frequently those eruptions occur relative to this 10 year value.

1.3.3.2 Eruption Interval

After an eruption, compressional crustal stress will be reestablished and the crust will once

again need to accumulate σ ≈ ρgh
4 ≈ ρ2hGR stress (as discussed in stage 2, above) before this

particular fault will fail again. New solid plated onto the base of the crust with thickness ∆h,

will create a strain

ϵ =
∆h

R

∆ρ

ρ
(1.10)

which can be rearranged to solve for the thickening required to cause the next failure
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∆h =
π
3 ρ

3R2hG

∆ρE
≈ 150 m×

(
150 kg/m

3

∆ρ

)(
R

100 km

)2(
h

10 km

)(
1011 Pa

E

)
(1.11)

Using ∆t = 2h∆h
κ we end up with failure every few kyr. The fact that this is large

compared to the 10 years above means that eruptions do not play a significant role in the

thermal evolution of the body.

This process differs from volcanic stress accumulation on Earth. On Earth, magma

chamber stresses can transition from elastic/brittle- to viscously-accommodated as the thermal

environment around the magma chamber changes (Jellinek and DePaolo 2003). In our case,

stress arises from global volume changes associated with solidification, and the thermal

environment across the crust changes only very slowly: viscous relaxation is always rapid at

the base of the crust (Sec 3.2.2), and always negligible at the surface.

Note that in both of the previous sections we treated these processes as if all of the planet’s

stress accumulation and relief occurs on a single fault, which is certainly not the case. In

reality, faulting and erupting depends fundamentally on local stress evolution, so global stress

does not directly capture these events. The value of treating eruptions this way is that it

captures the relative volumes of erupted and deeply crystallized material, and thus reflects the

role of eruptions in the body’s overall thermal evolution.

1.3.3.3 Total Erupted Volume

A useful value to look at is the erupted layer thickness, δ, divided by the thickness of

plating needed for eruption, ∆h,

δ

∆h
=

4
3πGhρ∆ρR2/E
π
3 ρ

3R2hG/∆ρE
(1.12)

=

(
2
∆ρ

ρ

)2

≈ 10−3 (1.13)

Importantly, most of the uncertain parameters that went into δ and ∆h cancel (note that the

E in the numerator and the denominator only cancel if the liquid and solid have similar elastic

moduli, which may not be the case in the presence of volatiles, as discussed below). This

means that although erupted volumes and frequencies are very uncertain, the total amount of
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material that can be erupted is much better constrained. This value is an upper limit, because

it reflects the volume fraction of the body to participate in eruptions if every faulting event

relieves all local compressional stress and leads to an eruption. The real value is likely to be

smaller. One thousandth of the body as an upper limit on material erupted means that

eruptions will not play a major role in thermal and stress evolution, serving only to modify the

surface. This is in contrast to, for example, Io, where volcanism is the dominant source of heat

transfer (e.g. Moore et al. 2016).

1.4 Role of Volatiles

There are two important ways that volatiles can alter the behavior of iron volcanism. The

first is the fact that they will be excluded from the crystallizing solid, making the melt more

buoyant than implied by just the phase transition and thermal contraction. Sulfur in

particular is likely to be present (Chabot and Haack 2006) and can be expected to play this

role, but its concentration is a major unknown. In an extreme case, native sulfur might erupt,

in a similar manner to the sulfur volcanism proposed for Io (Sagan 1979; Williams et al. 2001),

but eruption of an Fe-S alloy is much more likely. Any light elements present in the melt

should serve to enhance volcanism, but how significant a role this plays is difficult to predict.

The second way that volatiles can be important parallels a role they play in silicate

magmatism, and likely play in cryovolcanism. As pressure is relieved during eruptions,

volatiles may exsolve and form bubbles, lowering the density of the melt column, accelerating

its ascent and also increasing its compressibility (Bower and Woods 1997). This process is

difficult to predict because it not only requires knowing the initial volatile content of the iron,

but also the tendency of those volatiles to exsolve. Further complicating this is the fact that

mantle stripping is a violent process (Asphaug et al. 2006) which may have already exposed

the bulk of the core to vacuum, removing volatiles which could provide a bubble source. We

therefore do not pursue this issue any further here.

13



1.5 Geomorphic Implications and Potential Constraints

from Observation

Identifying iron volcanoes on metallic asteroids may prove to be challenging. Searches for

cryovolcanism motivate caution in interpreting features as volcanic in origin: Moore and

Pappalardo (2011) provide a summary of several past mistaken identifications of cryovolcanism,

an important warning for further searches for volcanoes. In addition, any such volcanoes have

had more than 4 billion years to be modified. 16 Psyche, for example, is far from hydrostatic

(Shepard et al. 2017), and if not a rubble pile must at least be heavily altered by impacts.

In the event that metallic volcanoes can be identified using present-day observations, they

will likely be very informative. For example, it is likely that volcanoes will be spatially

associated with impact craters, analogous to what is seen on Mercury (Klimczak et al. 2018),

and the degree of this association will inform the stress evolution of the crust. A

rapidly-cooling metallic flow may acquire a remanent magnetic field, if an internal dynamo is

active at that time (Bryson et al. 2015). Similarly, the style of volcanism on the body alone

provides substantial insight. Because there is no analog to the buoyant continental crust on

Earth, the development of large mid-crustal magma chambers and calderas is less likely on

iron asteroids. If the volcanism is effusive, the structures it builds will constrain erupted

volume and viscosity. If the volcanism is explosive, the eruptive behavior will depend on the

volatiles present and the reservoir conditions (Bower and Woods 1997; Lu and Kieffer 2009)

and will have major implications for light element incorporation in cores, volatile retention

during mantle stripping, and devolatilization during subsequent evolution. We caution,

however, that in the latter case the eruption velocity could easily exceed the escape velocity

(≈200 m/s) making identification of volcanic deposits more challenging than on e.g. Mercury.

1.6 Evidence in the Meteorite Record

A key prediction that follows from metallic volcanism is that bodies hosting it will have

two end-member types of solids which experienced very different histories. Material

crystallizing onto the bottom of the crust will cool slowly and will exhibit an inverse
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correlation between cooling rate and light element content. Erupted material will crystallize

very quickly, and unless it is reheated will show ∼instantaneous cooling. This quenching will

prevent elemental fractionation, so erupted material will record the (non-volatile) element

abundances of the liquid interior at the time it was erupted. Incompatible element (Ga, Ge, Ir,

etc.) concentrations will be much larger than contemporaneously formed deep solids. These

meteorites would likely be some of the most incompatible element enriched material in their

meteorite family. If volatile exsolution is involved, the quenched solids would likely contain

vesicles. However, because erupted material is a small volume fraction of the body, the

quenched meteorites will likely be rare. Although a detailed analysis is beyond the scope of

this paper, it is plausible that the modern meteorite record can serve as a test of this paper’s

predictions.

It is important to note that there are two important differences between how silicate and

iron cooling and crystallization are recorded in hand specimens. First, the texture of iron

specimens is controlled by sub-solidus processes (Wasson 1985; Hutchison 2004), so no textural

evidence of how crystallization occurred is retained. Sub-solidus textures can, however, be

used to determine cooling rates (Sec 1). Second, chemical evidence of the crystallization

process (e.g. dendrites) may be retained, but is predicted to vary on length-scales much larger

than available iron meteorite specimens (Haack and Scott 2009), so no spatial information on

this process is available.

1.7 Conclusions

We predict that many metallic asteroids will have hosted volcanic activity while solidifying.

Overall, metallic volcanism should bear more resemblance to silicate volcanism than

cryovolcanism. This is because, like silicates, the melt is buoyant, and the thermal conditions

under which melt travels through dikes are similar. However, fracture initiation is more

difficult in metallic systems because of the ductility and tensile strength of iron, while fracture

growth is opposed by the large fracture toughness of iron and the background compressional

environment. Nonetheless, we predict that metallic volcanism is possible in areas where

cratering has generated fractures and the local stress has been reduced by faulting.

The details of the hypothesized processes will require substantial further theoretical
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investigation. Geomorphological examples of iron volcanoes would make for particularly

striking confirmation, but will likely be very difficult, if not impossible, to unambiguously

identify. More likely, testing of this hypothesis will come from the meteorite record, either by

explaining existing anomalies in the record or predicting the characteristics of future

meteorites.

Table 1.1: Parameters Used

Description Value Source
κs Silicate thermal diffusivity 1.1× 10−6 m2/s (Carslaw and Jaeger 1959)
κm Metal thermal diffusivity 1.2× 10−5 m2/s (Carslaw and Jaeger 1959)
Tm Melting point 1200 K Assumed
Ts Temp. due to solar irradiation 200 K Assumed
L Latent heat 2.7× 105 J/kg (Haack et al. 1990)
Cp Specific heat capacity 569 J/kg·K (Carslaw and Jaeger 1959)
Q Activity energy 2.5× 105 J/mol (Frost and Ashby 1982)
Rg Gas constant 8.314 J/mol·K
R Body Radius 100 km Assumed
g Acceleration due to gravity [m/s2]
ρ Density 7400 km/m3 (Carslaw and Jaeger 1959)
∆ρ Density contrast, melt vs solid ≈ ρ/40 Assumed, very approximate
h Crust thickness [m]
he Brittle crustal layer thickness h/2 Calculated, approximate
P Pressure [Pa]
fs Coefficient of friction on faults 0.65 (Turcotte and Schubert 2014)
f Drag coefficient in dikes 0.1 Assumed
σ Stress [Pa]
ϵ Strain dimensionless
ϵ̇ Strain Rate [s−1]
K Bulk Modulus 1011 Pa (Ahrens and Johnson 1995)
Kc Fracture Toughness 107 Pa·m1/2 (Ashby 1999, Figure 4.7)
D Dike width [m]
∆h Crystallized layer thickness [m]
δ Erupted layer thickness if global [m]
lcrit Dike Critical Length [m] (Crawford and Stevenson 1988)
λ Diapir Thickness [m]
Note that entries without values or without sources are outputs we are finding. Brackets
indicate units when a specific value is not relevant.
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Chapter 2

Improved determination of

Europa’s long-wavelength

topography using stellar

occultations

This chapter is a slightly modified reprint of work previously published as:

Jacob N.H. Abrahams et al. (2021). “Improved Determination of Europa’s Long-Wavelength

Topography Using Stellar Occultations”. In: Earth and Space Science 8.7. doi:

10.1029/2020EA001586.

Abstract

Europa Clipper will arrive at Jupiter at the end of this decade and will explore Europa

through a series of flybys. One of its many goals is to characterize Europa’s topography

and global shape using the EIS and REASON instruments. In addition, Europa Clipper’s

UV Spectrograph will observe stars pass behind (be occulted by) Europa. The

spectrograph has sufficiently precise timing, corresponding to a topographic precision of

order meters, that these occultations can also serve as altimetric measurements. Because

of gaps in the REASON radar altimeter coverage imposed by the flyby geometries, the
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Figure 2.1: Map of radar altimetry profiles at altitudes <500 km (densely spaced black dots) and
likely occultation opportunities (green for ingress and red for egress, individual chords connected
by a blue line) for trajectory 19F22. Notably, the radar measurements are concentrated around
the subjovian and antijovian points. This results in global shape fits with large misfits at wave-
lengths smaller than the size of the gaps. The occultation measurements are able to fill in some
of these gaps, significantly improving global coverage. Note that this map is based on proposed
trajectories that are still evolving, but the general trend of altimetry profiles being concentrated
at the sub- and anti-jovian points and occultations being more uniformly distributed comes from
inherent orbital constraints. There are 109 total occultations and 283571 radar measurements
across 46 separate tracks. Background map created by Björn Jónsson.

addition of ∼100 occultations results in a substantial improvement in the recovery of

Europa’s long-wavelength shape. Typically five extra spherical harmonic degrees of

topography can be recovered by combining occultations with radar altimetry.

2.1 Introduction

Europa’s global shape is only poorly constrained, with our best models inferred from four

Galileo limb profiles (Nimmo et al. 2007). Obtaining more precise global and regional

topography is important if we want to understand Europa’s internal structure and the state of

its ice shell (Hemingway et al. 2013; Ojakangas and Stevenson 1989), and is an objective of the

Europa Clipper mission (Pappalardo et al. 2019). The primary instruments for determining

Europa’s global shape are the radar instrument REASON (Radar for Europa Assessment and
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Sounding: Ocean to Near-surface) (Blankenship et al. 2018) and the visible imager EIS

(Europa Imaging System) (Turtle et al. 2019). The main limitation in fitting global shape is

the fact that neither the radar tracks (black dots in Figure 2.1) nor the EIS limb profiles have

complete global coverage, instead having gaps around the poles and longitudes near 90◦ and

270◦ as a consequence of Europa Clipper’s resonant flyby geometry. Filling in those gaps has

the potential to dramatically improve our ability to fit the global shape and its time variation.

A similar problem was encountered by the MESSENGER mission to Mercury, and a similar

solution was employed: sparse radio occultation measurements of southern hemisphere

topography were used to augment dense altimetric measurements of the northern hemisphere

(Perry et al. 2015).

In this paper we focus on combining occultations with REASON altimetry to demonstrate

the utility of stellar occultations for filling in data gaps and improving our knowledge of

Europa’s shape. In reality, EIS limb profiles will also contribute, despite suffering from similar

gaps to REASON; to keep our analysis simple, and to explore the important role of the radar

altimetric cutoff, we do not consider their contributions further below.

Europa Clipper’s UV Spectrograph (UVS) (Retherford et al. 2015) will observe stars as

they pass behind Europa, with the primary goals of studying potential plumes and a tenuous

atmosphere. Notably, however, the instrument’s maximum temporal resolution is ∼1

millisecond. Because the apparent velocity of stars relative to Europa is of order 1 km/s, the

timing of an occultation is equivalent to a measurement, with an uncertainty on the order of

meters, of the relative positions (in the direction of travel) of Europa, Europa Clipper, and the

star. If the spacecraft and star positions are well known, this is equivalent to a ∼1 m

resolution measurement of the position of Europa’s surface. Alternatively, if the star’s

disappearance and reappearance are both observed, then the spacecraft and star position

uncertainty mostly cancel out and the duration of the occultation is equivalent to a ∼1 m

resolution measurement of a chord across Europa. In this paper we focus on two-sided

occultations, chords, which allow us to ignore uncertainties in spacecraft tracking and stellar

catalogues. In reality, many occultations will likely be one-sided; in this case, the analysis

would proceed in a similar fashion to that described below, but the effect of these extra

uncertainties would need to be considered.

Stellar occultations have the significant benefit of being well distributed across the satellite,
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meaning they fill in a lot of the radar profiles’ gaps, as shown in Figure 2.1. Although the

actual spacecraft tour will differ from those used in this figure, the spatial distribution of the

two data sets will remain qualitatively the same. As mentioned above, in this paper we only

consider chords, where we know the time of the star’s disappearance and reappearance.

Ice shell structure, and therefore global shape, is a high priority target for Europa Clipper

because it is key to understanding several fundamental features of a planetary body. For

example, Ojakangas and Stevenson (1989) predicted long-wavelength variations in ice shell

thickness (and thus topography) on Europa, caused by spatial variation in tidal heating. This

was then investigated by Nimmo et al. (2007) who were able to place upper limits on the

amplitude of shell thickness variations using Galileo data. Measurements by Europa Clipper

will further refine those constraints, and may be able to detect any nonzero shell thickness

variations. A positive detection of the predicted long-wavelength variations would help

constrain Europa’s shell thickness and rate of heating. If no such variations are detected, then

either the shell must be very thin or the base of the shell must have such a low viscosity that it

can erase variations as they form.

Measurements of a body’s long wavelength shape, typically expressed in terms of spherical

harmonic coefficients of degree l and order m, are useful for at least two additional reasons.

First, the topographic roughness spectrum of a body may itself contain information about

geophysical parameters of interest, such as elastic thickness (Araki et al. 2009; Nimmo et al.

2011), interior rheology (Fu et al. 2017), and surface structure (Ermakov et al. 2019). Second,

the ratio of a body’s gravity to topography at different values of l - the admittance - captures

key information about its structure, and has been employed very successfully around the solar

system. For example, admittance has been used to infer the rigidity and weathering of Titan’s

ice shell (Hemingway et al. 2013), the thicknesses and densities of the crusts of Mercury (Sori

2018) and Enceladus (Iess et al. 2014; Hemingway and Mittal 2019), and the compensation

state and subsurface rheology on Ceres (Ermakov et al. 2017; Ruesch et al. 2019).

Finally, measuring Europa’s diurnal tidal deformation would be helpful in understanding

ice shell thickness and rheology (Moore and Schubert 2000; Wahr et al. 2006; Steinbrügge

et al. 2018), and the high precision of occultations suggests they could be helpful in identifying

tides. Surface deformation is particularly valuable to measure because it yields one Love

number, h2. When h2 is combined with a second Love number, k2 (derived from gravity
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moments), it becomes possible to obtain a substantially better estimate of the shell thickness

than is possible with either measurement alone. Wahr et al. (2006) lay out this process in

detail for Europa. REASON will seek to constrain Europa’s tides by looking for

time-dependence at the points where radar tracks intersect (Steinbrügge et al. 2018). It would

be very valuable if UVS occultations can also help constrain Europa’s tides, so we conducted a

preliminary search for tides, but as discussed later we find that our expected ∼hundreds of

stellar occultations are not sufficient alone to fit tides.

The primary challenge for studying Europa’s global shape with radar altimetry is the fact

that Europa Clipper will orbit Jupiter and only study Europa during flybys. This means that

the measurements it is able to make are limited by orbital dynamics . In particular, Europa

Clipper’s closest approaches are clustered around Europa’s subjovian and antijovian points,

resulting in coverage gaps at the centers of the leading and trailing hemispheres, and towards

the poles (Figure 2.1). As we describe later in this paper, gaps of this nature greatly restrict

our ability to determine spherical harmonic coefficients. A good rule of thumb is that a gap of

X degrees results in a maximum possible recovered degree of lmax ≈ 360◦/X. The great

advantage of occultation profiles is that they fill in these gaps and thus allow topography to be

recovered to higher degrees. The number of available UVS occultation events increases with

proximity to Europa, but in principle the occultation measurement works equally well at

infinite distance, enabling much more uniform global coverage.

In this paper we explore how combining UV Spectrograph occultations with radar

altimetry can improve global shape fits. We demonstrate that adding occultations increases

the maximum degree that can be fit and decreases the typical misfit in general.

2.2 Methods

To explore whether occultation data can help characterize Europa we 1) take an assumed

shape model (Section 2.3.1.4), 2) generate synthetic radar and occultation data from it, and

then 3) explore our ability to retrieve our original shape model using those synthetic data. In

order to identify what is important for shape fitting, we fit a shape model in three different

ways: using only radar data, only occultation data, and both datasets combined (Figure 2.2).

In addition, we explore adding tides to our data (Section 2.3.2), and what happens when we
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Figure 2.2: Illustration of fits at two different degrees. The top panel shows the map with
which we generate our synthetic data. The first row shows that same map, but truncated at
spherical harmonic degrees 5 and 8. Then the next three rows are misfit maps for fits using only
radar data, only UVS chords, and with both datasets simultaneously. For each of those fits, we
prescribe a degree out to which we want to fit (5 or 8 for this plot) and then attempt to fit all
degrees and orders up to that degree. Note that the left and right column misfit maps have
different color scales and the degree 8 fits all have ∼2-3 times larger errors than their degree 5
counterparts.
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modify our shape model, our measurement locations, and our measurement precision (Section

2.3.1). We assume that when they are usable (Section 2.3.1.3) radar data are perfectly precise,

and we generally make the same assumption for occultation chords – see Section 2.3.1.2 for

discussion and testing of these assumptions.

We use least-squares to find the set of spherical harmonics that best fit our synthetic data,

in a similar fashion to Nimmo et al. (2011). Generically, this involves solving the matrix

equation

x̂ =
(
AT ·A

)−1

·AT · z (2.1)

where x̂ is the vector of coefficients that we want to fit and z is a vector of measurements. For

our work, x̂ = {C00, C10, C11, S11, · · · , CNN , SNN}, the spherical harmonics we want to fit, and

z = {c1, c2, c3, · · · , cM}, the set of measured occultation chord lengths. The elements of the

matrix A are defined by Aij =
∂zi
∂xj

. Further details for computing A and our spherical

harmonic conventions are in Appendix A. Each term in the matrix A can be well

approximated analytically, and we solve Equation 2.1 numerically.

If the topographic power spectrum is known a priori, an additional damping term can be

added to Equation 2.1 to avoid large oscillations in areas with no data coverage (Nimmo et al.

2011). We did not apply such a term here because we are interested in how well we can recover

topography without imposing additional assumptions.

We can also, optionally, include an extra term in x̂ corresponding to tidal amplitude, and

attempt to fit Europa’s time-varying shape as it deforms over its orbit, as discussed further in

Section 2.3.2.

Because we do not yet know Europa’s real shape precisely enough, this paper fits synthetic

data intended to approximate what Europa Clipper will encounter. We assume Europa’s shape,

calculate what the radar and occultation measurements would be for that assumed shape, and

then run our fitting script on those synthetic measurements. The primary shape we assume is

designed to match the power spectrum in the global fits in Nimmo et al. (2007). Our nominal

shape model is discussed more in Section 2.3.1.4 and is shown in the first panel of Figure 2.2.
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Figure 2.3: A) Average misfit as a function of the total degree we attempt to fit for our nominal
shape model. Combining UVS chords with radar data marginally improves fits in general, and
significantly extends the total degree that can be well fit. In panel B) we assume there is some
cutoff misfit considered “acceptable”, and as a function of that cutoff we show the maximum
spherical harmonic degree that the individual and combined datasets are able to achieve. We run
a suite of fits, varying our shape models according to Section 2.3.1.4, and plot each individual
run as a faint line. The ensemble average is plotted with the solid lines.

2.3 Results

Figure 2.2 illustrates our nominal shape model, as well as that shape model truncated at

two different spherical harmonic degrees and our attempts to fit those truncated shape models.

Broadly, we are able to fit low degrees and our fits degrade at higher degrees. As expected, the

errors in the radar-derived shape model are largest around the leading and trailing

hemispheres, where there are no observations. Combining radar with occultation data

decreases the misfit in general, because we are using more data. More importantly though, it

increases the maximum spherical harmonic degree that can be fit at all because the occultation

chords fill in the radar altimetry gaps.

Figure 2.3 shows that combining occultation data with radar data allows significantly better

fits than either dataset alone. In particular, Figure 2.3a shows the radar-derived topography

breaks down above l = 9, which is consistent with the existence of gaps approximately 45◦

wide in the radar coverage (Figure 2.1). The addition of occultation points filling in these gaps

allows the topography to be recovered up to l = 12. Similarly, Figure 2.3b shows a consistent

improvement of roughly 5 extra spherical harmonic degrees when occultations are added to the

radar data. Finally, Table 2.1 lists the uncertainties in some recovered low-order spherical

harmonics, again showing the improvement obtained by adding in the occultation points.
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C20 C22 C40 C44

Actual (m) -581 594 -43 42
Radar only uncertainty (m) 35 36 42 30
Chord only uncertainty (m) 45 87 25 53
Combined uncertainty (m) 18 26 22 21

Table 2.1: Precision for our fits for important spherical harmonic coefficients. ”Actual” refers
to the injected spherical harmonic amplitude. Uncertainties are determined by finding the RMS
misfit for individual coefficients over a suite of model runs in which we randomly perturb the
input shape model and then fit up to degree and order 5.

2.3.1 Sensitivity to Inputs

2.3.1.1 Number of Occultations

The number of stellar occultations that UVS can observe is highly dependent on tour

geometry and data downlink allocation, so it is likely that we receive a different number

(possibly a very different number) of occultations than the 109 in our assumed mission plan

(trajectory “19F22”). We find that in general, fit quality scales approximately with the square

root of the number of occultations. For fits using only chords, the maximum degree that can

be fit also scales with the square root of the number of chords, but that effect is more minor

for combined (occultation and radar) fits. Overall, more chords unsurprisingly makes for

better fits, but while many tours have roughly 200 (rather than the baseline 100) occultation

opportunities, it is unlikely that we will collect enough chords to dramatically change the

conclusions of this paper.

2.3.1.2 Precision of Measurements

For the bulk of this work, we assumed that measurements were perfectly precise. The

motivation for this assumption is that for global fits, we expect our misfit to arise primarily

from gaps in global coverage, rather than poor data quality where we have data. That said, it

is of course true that at some point, measurement uncertainty will become important. To

determine the level where measurement precision becomes the dominant source of error, we

inject noise into our data.

Figure 2.4 shows the impact of varying the UVS measurement precision. Notably, fit

quality only really begins to degrade when the uncertainty reaches 300 m, and shifts

significantly with an uncertainty of about 1 km. The main source of uncertainty in the length
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A

Figure 2.4: The effect of measurement precision on retrievals. We inject random noise into
the length of each occultation, and then observe the misfit. Panel a is trying to fit shape up
to degree/order 5, and panel b is trying to fit shape up to degree/order 8. Each faint line is
an individual set of chords with varying amounts of noise added, and the dark lines are the
ensemble average. We do not inject noise into the radar data; perfectly precise radar retrievals
are indicated by the dotted lines for comparison.

of a chord is how precisely timed the stellar ingress and egress are. UVS can collect data at a

cadence of up to 1 ms in its pixel-list mode or up to 10 ms in its histogram mode (Retherford

et al. 2015). If the spacecraft is moving at 10 km/s relative to Europa, even the 10 ms cadence

is only an uncertainty of 100 m. If, instead of collecting chords, observations are only made on

one side of an occultation, then the spacecraft position, spacecraft pointing, and stellar

position can be significant sources of error, and uncertainties in those quantities would need to

be under ∼1 km for UVS occultations to be useful topographic constraints. Overall,

occultation timing precision is not expected to degrade global shape fits for two-sided

occultations. For one-sided occultations further analysis would be needed, because of the

potential role of spacecraft and satellite position uncertainties.

2.3.1.3 Altitude Cutoff for Radar

One of the biggest uncertainties in this work is the range to which useful radar altimetric

returns will be obtained, and thus the total length of each altimetry profile. Over the course of

a single flyby, Europa Clipper’s distance from Europa varies significantly. It is not yet clear

within what distance REASON will be able to get a reliable surface return from Europa,

because that altitude cutoff depends on the characteristics of Europa’s surface, but the

baseline for the instrument is 1000 km (pink in figure 5). Steinbrügge et al. (2018) discuss

REASON’s performance in detail, but, broadly, the effective altimetric range is determined by
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a combination of the signal-to-noise ratio of the instrument, and the fact that when using the

radar instrument as an altimeter, the “surface” that the radar detects is not necessarily the

sub-spacecraft point. Instead, it is the nearest region on Europa’s surface which is locally flat

and oriented properly with respect to the spacecraft. For example, a mountain near (but not

on) the spacecraft trajectory can plausibly be closer to the spacecraft than the surface directly

below the spacecraft, and depending on the orientation of its flanks it may produce a

misleading return. Further uncertainties arise from the ionosphere of Europa which delays the

radio signal (Grima et al. 2015) leading to systematic errors unless corrected by using both

frequencies available to the REASON instrument (Scanlan et al. 2019). As a result, the exact

performance of radar altimetry depends on uncertain characteristics of Europa and cannot be

fully known until arrival. We incorporate these limitations, in a simplified form, by assuming

that there is some distance inside of which REASON becomes a reliable altimeter.

For the nominal plots in this work, we assume an altitude cutoff of 500 km. This is an

arbitrary choice, and different from REASON’s baseline of 1000 km. We chose 500 km

primarily because that is the altitude where radar altimetry and occultation chords have

roughly the same performance for fitting global shape, allowing the improvements from

combining datasets to be most easily seen. Figure 2.5 illustrates what happens when we vary

this assumption. In general, the higher the radar altitude cutoff, the better the fits. However,

although radar data alone perform better when they extend to higher altitudes, we observe

that adding the occultation chords always helps. Thus, although it is hard to accurately

predict Europa Clipper’s ability to fit global shape using radar alone, it is clear that regardless

of the radar performance, occultation chords should always improve those fits.

2.3.1.4 Shape Model Used

To explore the value of occultation chords, we need simulated data to fit, which requires a

shape model to generate those data. Without a good current model of Europa’s global shape,

we needed to assume one. Our nominal topographic model consists of three components. The

first is the degree-two shape arising from tidal and rotational distortion alone. The second is

topography arising from shell thickness variations due to tidal heating, resulting in power at

both l=2 and l=4. These two components are the same as the nominal model in Table 3 of

Nimmo et al. (2007). The final component consists of randomly-generated topography up to
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Figure 2.5: Varying the altitude at which the radar data are cut off, showing the evolution of
misfit as a function of the degree included in the fit for radar data collected below 200 km, 500
km, and 1000 km. The 1000 km data have roughly twice as many total data points, and the
200 km data have roughly half as many. Radar alone fits the shape better if higher altitude
data are included, but regardless of the cutoff, UVS chords always improve the radar fits. One
noteworthy feature is the fact that the fits at degrees 0 and 1 are quite bad, and they improve
significantly at degree 2, demonstrating the significance of Europa’s permanent tidal bulge.

l=180 (≈ 50 km wavelength) and assuming a power-law slope of -1, based on Europa limb

profiles (Nimmo et al. 2011). Our model does not include short-wavelength roughness because,

as shown in Figure 2.4, topography with an amplitude less than about 100 m does not impact

our fit quality.

One potential problem with occultations, as with limb profiles, is that they record the

highest point in the line of sight, which may not be at the expected location (on the limb)

Perry et al. 2015, e.g. A synthetic analysis by Nimmo et al. (2010) showed that for the icy

satellite Rhea this effect did not bias the recovery of long-wavelength topography appreciably.

Since Europa is much smoother than Rhea, we expect the same result to hold here.

To ensure we are not just fitting pathologies in one particular model, we test a few different

modifications. First, we take our nominal power spectrum, and randomly generate spherical

harmonic coefficients that match it, and run our model on a suite of these randomly generated

Europas. In addition, we take those power spectra and increase or decrease their amplitudes

(preserving their slopes) beyond degree 3, in order to explore whether more or less topography

impacts our fits. Finally, we ran our model on a global map of Earth’s Moon, rescaled to match

Europa’s radius and tidal bulge. Our results across all of these modifications were broadly

similar, so we consider our results robust to variations in the specific shape model chosen.
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2.3.2 Diurnal Tide Fits

Europa Clipper’s ability to fit Europa’s diurnal tides, and the potential for stellar

occultations to improve those fits, is a very important question but requires detailed radar

models that lie outside the scope of this paper. We restrict our analysis to whether occultation

data alone can detect tides, and find the answer is most likely no. To do this, we inject a time

varying signal into the degree 2 harmonics in our shape model and propagate it into our

synthetic data, and we modify the vector we are trying to fit (x̂ in Section 2.2) so that in

addition to a set of spherical harmonics, it contains a parameter for the tidal amplitude. Then

we can compare our best fit tidal amplitude to our injected tidal amplitude and assign a misfit.

Figure 2.6 shows the distribution of those misfits. Europa’s diurnal tidal deformation is

expected to have an amplitude of 30 m (Moore and Schubert 2000), and our tidal retrieval

misfits are normally distributed with a standard deviation of roughly 60 m, so we cannot

reliably detect tidal deformation and we certainly cannot precisely constrain its amplitude.

The main reason for this is that no two occultations are likely to occur at the same location

(unlike radar data, which can specifically look at the intersections of radar tracks), so there is

a degeneracy between local topography and global deformation. We find our tidal misfit

decreases with the square root of the number of occultations and with the square root of the

amplitude of Europa’s topographic power spectrum. Thus, if we get many more chords than

we expect, or if Europa has much less topography than expected, occultations have the

potential to detect tides (though this would probably take on the order of 1000 occultations,

and a meaningful constraint on their amplitude would take significantly more). Occultations

alone probably cannot significantly constrain Europa’s tidal deformation.

Ultimately, the important question is not whether occultation data can constrain tides, but

whether all of Europa Clipper’s altimetry can combine to constrain tides. However, unlike

previous topics in this paper, our simple model of the radar data as perfectly precise

measurements is inadequate. For the bulk of this work, we have taken the conservative

assumption of perfectly accurate radar data and demonstrated that, even in this case,

occultation chords can still improve the global shape recovery. However, detecting diurnal tidal

deformation with perfect radar data is not difficult – the reason tides are likely to be difficult

to detect is that the uncertainty in the radar altimetry is significantly more complicated than
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Figure 2.6: Injecting diurnal tidal deformation into the synthetic occultation data, and trying
to retrieve its amplitude. Histogram shows the misfit in tidal retrievals, and the red dotted
lines show the expected real amplitude of Europa’s tides. This distribution is independent of
the injected tidal amplitude across a range of amplitudes from one meter to tens of kilometers.
These results indicate that UVS occultations alone are not sufficient to reliably detect Europa’s
tides. Note that “frequency” refers to the fraction of the trials in each bin, it does not integrate
to 1.

just instrument noise (Steinbrügge et al. 2018). This means that testing whether occultation

data can help radar data to detect tidal deformation requires a much more complete radar

model that captures the limitations of the radar data, as well as a recreation of the treatment

of “cross-over” data that the REASON teams plans. We recommend that future work explore

whether occultation and radar data combined allow higher quality tide retrievals, but do not

pursue that goal here.

2.4 Discussion and Conclusions

The goal of this work is to highlight the value of stellar occultations for global shape fits, in

order to inform future trajectory selection, data volume prioritization, and ultimately to help

improve the quality of Europa Clipper mission products. Because these are measurements that

were already planned for other purposes, this work shows that we can improve Clipper’s ability

to constrain Europa’s ice shell without any modifications to the mission architecture. The

primary value of occultations is the fact that they are fairly uniformly distributed across

Europa. This means they have little value for studying local topography, but are perfectly

suited for constraining Europa’s long-wavelength global shape.

An additional tool to constrain Europa’s shape, which has not been included in this

analysis, is the Europa Imaging System (EIS) instrument (Turtle et al. 2019) which will image,
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among other things, the limb of Europa in order to produce topographic profiles. These limb

profiles have the advantage of being linear profiles, rather than point measurements like

occultations, and suffer somewhat less from gaps than do the radar profiles. However, the

precision of each limb measurement, conservatively 0.2 pixels, is worse by more than an order

of magnitude compared to the occultation precision. In any event, limb profiles have the

potential to provide further geographically disjoint data, and further improvements to the

long-wavelength shape of Europa.

We find that stellar occultations from UVS are very valuable for fitting Europa’s global

shape. Future work can further refine our understanding of the value of these chords and how

best to use them to understand topography. For a very wide range of radar performances,

stellar occultations improve the quality of long-wavelength fits, provide an independent check

on data collected by other instruments, and improve the spatial resolution that global fits will

be able to achieve.
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Chapter 3

A theoretical investigation of

non-synchronous rotation on Io

This chapter is a slightly modified reprint of work currently in review as: Jacob N H Abrahams

et al. (2022). “A theoretical investigation of non-synchronous rotation on Io”. In: In Review.

Abstract

We investigate the potential for Io to be rotating slightly nonsynchronously. This is

motivated by 1) observations that Io’s volcanism appears to be offset from where heat is

likely being generated, plausibly caused by nonsynchronous rotation on million year

timescales, and 2) the fact that Io is strongly heated and will likely behave more like a

fluid body than most solar system objects. We combine analytical tidal torque

calculations with a mix of analytical and numerical tidal dissipation models to explore the

range of plausible rotation rates for Io. We find that the primary control on Io’s rotation

rate is the strength of its lithosphere, and we expect that its lithosphere is strong. If the

lithosphere is weak, the nonsynchronous rotation rate will depend on the interior

temperature and periods in the range of Myr to 100s Myr are very plausible. If, as

expected, the lithosphere is strong, Io will not rotate nonsynchronously.
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3.1 Introduction

By far the most volcanic body in the solar system, Io offers unique insights into tides,

volcanism, and the behavior of young silicate planets (Kleer et al. 2019). Unlike planets, whose

thermal state and angular momentum budgets are mostly independent of each other, Io’s

current behavior is controlled entirely by its current and recent relationship to Jupiter. Io’s

rotation rate is determined by tidal torques from Jupiter, and its thermal budget is set by

those same tides (with the energy ultimately supplied by Jupiter’s rotation via the Laplace

resonance). This link means that a measurement of either Io’s rotation or its volcanism is a

probe into the other, and both can provide information about Io’s interior.

Tidal heating is a result of tides periodically straining a body and the change in that strain

producing heat. Because tidal strains are not uniformly distributed across a body, tidal

heating will tend to produce heat in particular spatial patterns (Beuthe 2013). Observations of

Io’s volcanism suggest that Io’s volcanic centers do not align with where tidal heat is expected

to be produced. Instead, they appear to be offset from predicted patterns of heat production

by a few tens of degrees (Hamilton et al. 2013). Suggested explanations for this observation

include non-synchronous rotation, tidal heating in a subsurface magma ocean, or variations in

the local stress state controlling magma ascent (Hamilton et al. 2013; Kirchoff et al. 2011), but

thus far it is difficult to confirm any of them. In this paper, we explore whether

nonsynchronous rotation on Io is plausible on a similar timescale to volcano building, and thus

could be the cause of the offset in volcanism.

In this scenario, heat would be produced by tides in some longitudinal pattern, and the

resulting magma rotated (relative to the tidal axis) away from that pattern. Because volcanoes

integrate magma production over time, this would result in volcanism centered away from

where heat is being produced at present. The exact location would depend on the volcano

formation rate, meaning different styles of volcanism may be offset differently. If it is the case

that Io’s volcanism pattern is offset by nonsynchronous rotation (NSR), the volcanism serves

as a measurement of Io’s NSR rate. This in turn tells us about Io’s interior structure and

rheology, because they determine the nonsynchronous rotation rate.

Torques from a central body on a satellite will tend to drive it toward a spin-orbit

resonance, where the orbiting body’s rotation period is at or near a rational multiple of its
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orbital period (Murray and Dermott 1999). That rational multiple is usually one (with the

notable exception of Mercury) which is referred to as “synchronous” rotation. So far, all

observations of rotation rates of major satellites conform to this expectation.

However, if the orbiting body is not perfectly rigid and is on an eccentric orbit, the body’s

rotation rate should be close to, but slightly faster than, synchronous (Greenberg and

Weidenschilling 1984). Qualitatively, this could be caused by a combination of two factors.

First, an eccentric orbit means that tidal torques vary in strength over an orbit (strongest at

closest approach) and that orbital velocity changes over the course of an orbit (fastest at

closest approach). This means that the average torque on an eccentric orbit is biased toward

the faster part of the orbit, resulting in rotation faster than synchronous. Second, tidal torques

only act on a body’s non-spherical shape. In a rigid body, that non-spherical shape can be

topography or a frozen-in tidal bulge, and will rotate with the body as a whole. In the case of

a fluid body, that nonspherical shape is constantly being excited by tides, so its orientation is

partially independent of the satellite’s bulk rotation. One way to think about the potential for

nonsynchronous rotation in a solid body is that it is the body’s frozen-in tidal bulge that tides

grab onto in order to maintain synchronicity, and as a result, that torque is stressing

specifically the frozen-in shape. If that tidal bulge is not perfectly rigid, on long enough

timescales the sustained stress will cause the tidal bulge to slowly deform, which will appear as

the satellite slowly rotating under that bulge (see e.g. Leconte 2018; Correia et al. 2014).

Because Io is so strongly tidally heated, its interior is likely more fluid than many satellites

(if not outright molten (Khurana et al. 2011)). This makes it a particularly strong candidate

for observing nonsynchronous rotation. So far, searches for nonsynchronous rotation of Io have

not observed any, and have ruled out nonsynchronous rotation periods shorter than a few kyr

(Hoppa et al. 1999). We are interested in nonsynchronous rotation on volcano-building

timescales, which is likely of order Myr (similar to the upper bound on Io’s surface age

(McEwen et al. 2004)), so previous searches were not sensitive enough. Future rotation rate

observations will hopefully be able to use a longer baseline and more precise measurements to

lower the detection threshold and test the conclusions of this work.

This work draws heavily on Kleer et al. (2019)’s discussion of what Io’s interior may be. In

particular, their Figure 1.6 sketches four candidate Ios that capture a few key uncertain

properties of Io’s interior. The range of possible structures feeds into our work because a
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magma ocean would significantly change how Io responds to torques, a “magma sponge” would

entail a rheologically weak mantle, and where heat is generated in Io will influence its

temperature profile and in turn its viscosity profile. The potential for a magma ocean

motivates our analysis of what happens if the outer layers of Io are decoupled from the

interior. In addition, the possibility of a “magma sponge” means we consider a wide range of

interior viscosities, including some quite low for solid rock.

We seek to connect nonsynchronous rotation to Kleer et al. (2019)’s candidate Io models in

two ways: First, we can find the range of nonsynchronous rotation periods permitted by their

models, constraining the range of rotation rates that are plausible for Io. This allows us to ask

whether nonsynchronous rotation can cause volcanoes to be offset. Unfortunately, this turns

out to be a fairly weak constraint – there are enough free parameters in the problem that a

very wide range of nonsynchronous rotation periods are permitted. In light of this, the

primary focus of this work inverts the first question and asks what Io models are possible if we

treat offset volcanism as a measurement of nonsynchronous rotation with a period of ∼1 Myr.

If the observed volcanic patterns are caused by nonsynchronous rotation (which is not

guaranteed), such rotation should be detectable with future missions. This would provide a

strong constraint on the interior, and can potentially allow us to choose between candidate

models of Io.

3.1.1 Observational constraints

This work makes use of several existing sets of observations. Most important is Hamilton

et al. (2013)’s observation that Io’s volcanism, both patera floor units and hotspots, appear to

be offset from their expected locations by a few tens of degrees (note that the patera floor

units and hotspots do not have identical offsets). Kirchoff et al. (2011) also observe an offset

pattern of volcanism, although with a somewhat different distribution. We also use the

measurement from Lainey et al. (2009) of Io’s k2

Q , derived from observing secular evolution in

its orbit and inferring the amount of dissipation taking place. Table 3.1 lists the relevant

observational constraints.

A constraint to keep in mind is that Io’s surface is very young (McEwen et al. 2004). This

is inferred from the lack of impact craters in Galileo imagery. Given that observation, and

assumptions about the resurfacing rate, 20 km craters are expected to be erased over a few
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Name Symbol Value

Dissipation k2

Q = Im(k2) 0.015 ± 0.003

Eccentricity e 0.0041

Orbital Period P =
2π

n 1.77 days

Surface Gravity g 1.789 m/s2

Density ρ 3500 kg/m3

Rigidity µ 40 GPa

Table 3.1: Io’s basic physical and orbital properties. k2

Q comes from Lainey et al. (2009), and
we assume a rigidity that is reasonable for basalt.

hundreds of kyr, and the entire lithosphere is replaced on a timescale of about 10 Myr.

3.2 Methods – No Lithosphere

Io likely consists of a lithosphere overlying a (potentially partially molten) mantle, overlying

an iron core (Anderson et al. 2001). In the rest of this work we will generally neglect the core,

inclusion of which has no significant effect on our conclusions. A brittle or rigid lithosphere

significantly complicates nonsynchronous rotation, so first we analyze the situation where there

is no lithosphere and the mantle has uniform properties. This approach has three parts. First,

we analytically solve for the relationship between tidal response and rotation rate. Second, we

numerically solve for the relationship between interior structure and tidal response. Finally, we

explore the parameter space of likely Io interiors and rheological models to find which, if any,

are consistent with nonsynchronous rotation on the same timescale as volcano building.

3.2.1 Torque Balance

We begin with the equation for the averaged tidal torque over one orbit from Correia et al.

(2014)

T = −3Gm2
0R

5

2a6

∞∑
k=−∞

(
X−3,2

k (e)
)2

k2(ωk) sin
(
δ(ωk)

)
(3.1)

This is their equation 43 with C (the polar moment of inertia) removed from the

denominator to clarify that it is a torque. G is the gravitational constant, m0 is the mass of

36



the central body, R is the radius of the orbiting body, and a is the orbital semi-major axis.

X−3,2
k are Hansen coefficients, which capture the fact that the torques on an eccentric body

vary over its orbit, and they are analytically known functions of eccentricity. Hansen

coefficients allow us to treat the torques from an eccentric orbit as an infinite sum of torques

from circular orbits (see Hughes (1981) for their recurrence relations and Comstock and Bills

(2003) and Correia and Valente (2022) for modern demonstrations of their potential). k2(ωk)

are Love Numbers, which describe how strongly the orbiting body is deformed by tides, and

are frequency-dependent. δ(ωk) is the tidal ‘lag angle’, the angle between the orbiting

satellite’s actual tidal bulge and the direction that tides are trying to point the tidal bulge,

which is the satellite-planet axis. The lag angle represents how dissipative the body is. It is

strongly frequency dependent, and is equal to 1
2Q(|ωk|) , the tidal ‘quality factor’ (Macdonald

1964). ωk describe the frequency spectrum that the tides are being expanded in and they are

ωk = 2Ω− kn where Ω is the satellite rotational frequency, k is an integer, and n is the orbital

frequency. Because we are concerned with the small difference between synchronous rotation

and almost-synchronous rotation, we are particularly interested in the behavior of

ω2 = 2(Ω− n), which is zero for synchronous rotation and very small for slightly

non-synchronous rotation.

To explore equilibrium behavior, we set T = 0, and pull ω2 out of the sum

−
(
X−3,2

2 (e)
)2 k2(ω2)

Q(ω2)
=
∑
k ̸=2

(
X−3,2

k (e)
)2 k2(ωk)

Q(ωk)
(3.2)

The Hansen coefficients are strong functions of eccentricity, so if we expand them and then

only keep terms up to second order in eccentricity, most of the terms drop out. and we are

only left with 1 ≤ k ≤ 3 Here we also note that because Ω and n are extremely close,

Ω− n ≪ Ω, so we call Ω− n ≡ ωNSR, and we simplify 2Ω− n ≈ n and 2Ω− 3n ≈ −n. We use

k2(n) = k2(−n) and δ(n) = −δ(−n). This gives us
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−(1− 5e2)
k2(2ωNSR)

Q(2ωNSR)
=

1

4
e2

k2(n)

Q(n)
− 49

4
e2

k2(n)

Q(n)
+O(e4) (3.3)

k2(2ωNSR)

Q(2ωNSR)
= 12e2

k2(n)

Q(n)
(3.4)

This final equation is powerful. Astrometric measurements of Io’s orbital evolution (Lainey

et al. 2009) mean that we know at its orbital period, k2(n)
Q(n) is roughly 0.015, which means that

Io will rotate nonsynchronously at whatever frequency makes k2(ωNSR)
Q(ωNSR) = 3× 10−6. More

generally, any low-eccentricity body will rotate nonsynchronously with whatever frequency

satisfies this equation, and the Hansen coefficient expansion can easily be taken to higher

degrees for higher eccentricity bodies.

3.2.2 Rheology

Io will rotate nonsynchronously at whatever frequency makes its k2(ω)
Q(ω) equal to 3× 10−6.

Finding that frequency requires understanding Io’s rheology, a primary goal of this work. At

the long periods expected for NSR, k2 is of order unity, so we are mostly just solving for what

frequency makes Q ≈ 106. This depends on two things: 1) What is Io’s interior composition

and temperature structure? 2) What rheological model best describes Io? We need a

rheological model because we are extrapolating to periods much longer than any that have

been experimentally measured. This extrapolation is a danger in this work; for example

dissipation mechanisms may just be fundamentally different at very long periods, but is

unavoidable without much longer period empirical constraints.

Question 1 is uncertain, but as discussed in the introduction, Kleer et al. (2019) outline the

broad strokes of Io’s likely interiors, and distinguishing between the different possibilities they

lay out is the main thing needed to predict nonsynchronous rotation. This is also where the

converse question enters: if understanding Io’s interior can predict its rotation rate, measuring

Io’s rotation rate can predict its interior.

Question 2 is more challenging because different authors prefer different models (for

example, Ross and Schubert (1986), Moore (2003), and Tyler et al. (2015) use a Maxwell

rheology for Io, Bierson and Nimmo (2016) use an Andrade rheology for Io, and Jackson et al.

(2010) use an Extended Burgers model for laboratory measurements) and the choice of model
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has significant impact on our results. We explore the role of rheological models in Section 3.3.1.

In this work we primarily focus on Maxwell and Andrade models, discussed in detail in Bierson

and Nimmo (2016). Maxwell is the simplest realistic viscoelastic model, it is commonly used in

the literature, and it provides a baseline for our results. Andrade, on the other hand, typically

provides better fits to observations than Maxwell in both laboratory rheological experiments

(e.g Gribb and Cooper 1998) and previous work on Io specifically (Bierson and Nimmo 2016).

These better fits come at the cost of higher complexity and more free parameters.

In general, we first compute the body’s k2(ω) based on a particular layered interior and the

associated shear modulus layering. To incorporate the frequency dependence of viscoelastic

behavior, we use a complex shear modulus, µ∗(ω), in place of a regular shear modulus. This

gives us a complex k∗2(ω), which has the useful properties (Zschau 1978):

Re
(
k∗2(ω)

)
= k2(ω) (3.5)

Im
(
k∗2(ω)

)
=

k2(ω)

Q(ω)
(3.6)

The complex shear modulus is given by first computing a complex compliance (Bierson and

Nimmo 2016):

µ∗(ω) =
1

J∗(ω)
=

1

J1(ω)− iJ2(ω)
(3.7)

where i is the imaginary unit. In the case of a Maxwell rheology

J1(ω) =
1

µ
(3.8)

J2(ω) =
1

ωη
(3.9)

for real shear modulus µ, frequency ω, and viscosity η. Notably, in the high frequency

limit, J2 → 0 =⇒ µ∗ → µ, giving purely elastic behavior, and in the low frequency limit,

J2 → ∞ =⇒ µ∗ → iωη, giving purely viscous behavior. For an Andrade rheology, we instead

have
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Parameter Value

β 2× 10−12 Pa−1s−α

α 0.25
Eb 7× 105 J/mol
T 1400 K
Tr 1374 K

Table 3.2: Baseline parameters used in Andrade models. These are chosen to match Figure 1 in
Bierson and Nimmo (2016), which in turn draws heavily on Jackson et al. (2010).

J1(ω) =
1

µ
+ β(ωλ)

−α
Γ(α+ 1) cos

(απ
2

)
(3.10)

J2(ω) =
1

ωλη
+ β(ωλ)

−α
Γ(α+ 1) sin

(απ
2

)
(3.11)

λ ≡ exp

(
Eb

Rg

(
1

Tr
− 1

T

))
(3.12)

where β describes the magnitude of anelasticity and α determines its timescale, Γ is the

gamma function, Eb is the activation energy, Rg is the gas constant, Tr is a reference

temperature, and T is the actual temperature. With 0 < α < 1, the high and low frequency

limits are the same as in the Maxwell case, but the behavior at frequencies near the Maxwell

time (=η/µ) can be quite different.

A variety of additional models exist, each preferred by different authors (for example

(Jackson et al. 2010) prefer Extended Burgers), where the primary difference is what anelastic

behavior should be added to a Maxwell model, as well as whether multiple viscous elements

should be included. In this paper we do not explore the diversity of models available, because

ultimately we find the elastic lithosphere controls rotation, not viscoelasticity. In the event of a

very weak lithosphere, a full treatment of this problem should consider other viscoelastic

models.

3.2.3 Interior Models

We are equipped to test arbitrarily layered Io models, but we end up not needing to

explore layered structures very deeply. We find that a small number of layers generally

reproduces the same results as a larger number of layers. Fewer layers allows much faster

40



computation, and when we add a magma ocean, having many layers causes numerical noise to

blow up, so in this paper we only use enough layers to capture the Io model we care about.

Generally that means a rigid surface layer, and a softer interior layer or two. See Figure B.1

for a figure demonstrating this.

Broadly, we want to explore the Io interior candidates outlined in Kleer et al. (2019).

Models are assumed to possess a uniform mantle and sometimes a rigid lithosphere. The

mantle has a density of 3500 kg/m3 and a baseline rigidity of 40 GPa.

To explore parameter space, first we test the impact of adjusting the viscosity of the

interior, which allows us to assess the impact of different temperature interiors. We extend this

to very low viscosities in order to begin to test the impact of a magma ocean directly. This

should also cover the behavior of a “magma sponge”, although exactly where in the viscosity

progression such a scenario should fit is not obvious.

3.2.4 Computing tidal response

With a rheology model and an interior structure chosen, we can proceed to compute a tidal

response. In particular, we want to compute the period dependence of k2(ω)
Q(ω) , which is a

property of the composition and rheological properties of the body of interest. For a uniform

or two-layer body, we use the analytical solution in the appendix of Harrison (1963) with

complex rigidities. For a general layered body, the problem needs to be solved numerically,

which we do using propagator matrices (Sabadini and Vermeersen 2004). This approach uses

the fact that in an individual layer, the tidal response can be solved analytically. However,

because the layers interact, one layer’s response is the next layer’s boundary condition (and

vice versa), so the entire body needs to be solved simultaneously. We have multiple computer

codes to perform this that are benchmarked against each other.

The primary code we use is written in Mathematica, which enables substantial flexibility in

mixing analytical and numerical approaches. It is the code used in Bills et al. (2008), modified

to handle viscoelasticity through a complex shear modulus using the approach in Equations

3.5-3.12. We benchmark this code against two others: the python code used in Bierson and

Nimmo (2016) (in turn based on Roberts and Nimmo (2008)), and the fortran code used in

Moore and Schubert (2000). The Bierson and Nimmo (2016) code has the advantage of being

designed for an Andrade rheology, so it can explicitly test those cases. The Moore and
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Schubert (2000) code is designed to handle the modified boundary conditions necessary to

include a fluid layer, so is useful for checking our magma ocean cases. Our primary code

cannot properly handle a fluid layer, and instead we approximate it by lowering the rigidity

and viscosities, so we check it against the code from Moore and Schubert (2000) to ensure that

approximation is accurate.

In addition, we benchmark our Mathematica code against Harrison (1963)’s analytical

two-layer results (based on work by Kaula (1963)). The two-layer numerical results agree well

with what we expect analytically.

3.3 Results – No Lithosphere

3.3.1 Rheology Model and Temperature Dependence

Armed with the ability to compute k2(ω)
Q(ω) , there are two particular periods we care about.

First, we are interested in Io’s orbital period, where k2(ω)
Q(ω) has actually been measured (Lainey

et al. 2009) as k2(n)
Q(n) = 0.015 ± 0.003, providing an observational anchor for our models. The

second period we care about is whatever period makes k2(ω)
Q(ω) = 3× 10−6, because that is where

we will have nonsynchronous rotation (see Section 3.2.1 above). In Figure 3.1 we plot k2(ω)
Q(ω) for

a variety of different models, and these two periods are indicated by the star and by where

each curve crosses the horizontal dashed line. Away from dissipation peak(s) (i.e. away from

the Maxwell time), we generally see a power law, with a negative slope of one at long periods

and a model-dependent positive slope at short periods (either the Andrade α, or one for a

Maxwell model). On this plot we can simply read off the nonsynchronous rotation period, the

x-coordinate where the curve crosses the dashed line.

Figure 3.1 shows the effects of adjusting a few key parameters in our model. The green

curve shows a uniform Maxwellian Io made of Earth upper mantle-like material, with a

viscosity of 1021 Pa·s and a rigidity of 40 GPa. The light green curve shows a ‘canonical’

Maxwellian Io, which dials down the viscosity (equivalent to dialing up the temperature) of the

mantle to 1015 Pa·s in order to fit the k2/Q constraint (the blue star). Notably, the canonical

Maxwell model is very close to the “ruled out” region, meaning that if the lithosphere does

turn out to be weak, future spacecraft (and possibly ground based) measurements of Io’s
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rotation rate can likely test that particular model. Comparing the dark green and orange

curves shows the effect of switching between a Maxwell and an Andrade model. Comparing

the orange and purple curves shows the effect of a hotter/lower viscosity interior of 1018 Pa·s

(note that the purple curve is mostly hidden by/matching the pink curve). Switching between

the purple and pink curves shows the effect of adding a 10 km rigid lid on top of the mantle,

discussed further in Section 3.4. This lithosphere has an effectively infinite viscosity and no

ability to relax viscously, unlike the viscous approximation discussed in Section 3.4.1 below.

      Ruled out by   spacecraft observations

Earth Mantle (Maxwell)
Canonical Io (Maxwell)
Earth Mantle (Andrade)
Hotter Mantle (Andrade)
Rigid Lid (Andrade)

Figure 3.1: The effects of adjusting a few key parameters in our model. The blue star indicates

the known orbital value of k2(ω)
Q(ω) from orbital evolution, the horizontal dashed line indicates the

necessary k2(ω)
Q(ω) for nonsynchronous rotation, and the vertical dashed lines mark the nonsyn-

chronous rotation period for each model. The gray box indicates the NSR periods that have
already been ruled out (Hoppa et al. 1999) by spacecraft observations.

Our choice of rheology model appears to have a strong effect at short periods, where the model

determines the power law slope, but little effect at long periods, where all models have a

negative unit slope. Because Maxwell models have (±)unit slopes on both sides of their

Maxwell times, our single tie-point at the tidal period (the blue star in Figure 3.1) is enough

to pin the position of the whole curve and basically fully constrain nonsynchronous rotation if

Io is actually a Maxwell material. However, because Andrade rheologies have shallower slopes

at short periods, a much wider range of possible viscosities are consistent with the orbital

observations, and the long period side of the curve is able to shift more freely in period (i.e.

they can be shifted left-right in Figure 3.1). This means that even though long-period behavior
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is identical between Maxwell and Andrade rheologies, the rheology model chosen is still

important because nonsynchronous rotation depends on the link between long-period and

tidal-period dissipation (equation 3.4).

3.3.2 Magma Ocean

A magma ocean significantly impacts a body’s tidal response. This is for two reasons –

first, it means there is a low-viscosity near-surface layer, which matters for interior Maxwell

frequencies, and has the potential to enable additional dissipation mechanisms (e.g. Chen et al.

2014). For our purposes, this is not central, because at very long periods a liquid and a warm

enough solid are both well above their Maxwell periods and behave in a fairly similar fashion.

In addition to its direct impact on dissipation, a magma ocean can also be important because

it may mean that surface layers are mechanically decoupled from interior layers. We discuss

this issue further below (Section 3.4.2.1).

In Figure 3.2 we show the first of these two effects by assuming the body is still

rotationally coupled, and dialing down the viscosity of the interior of the body to sweep from

fully solid to fully liquid. In the upper panel, we show the effect of lowering the viscosity of the

interior, below a 10 km thick Earth-mantle-like surface layer. In the lower panel, the 10 km

surface layer has the same rigidity but infinite viscosity, simulating a lithosphere. Both layers

in both panels are Andrade materials. The fully solid interior is the green curve in Figure 3.2

and corresponds to the orange curve in Figure 3.1. As the interior viscosity is dialed down, the

peak corresponding to its response shifts, but the aggregate behavior shows only a small

change: The green and orange curves show the fully-solid and fully-liquid limiting behavior,

and the fact that they are only moderately separated tells us that at least as long as the shell

is rotationally coupled to the interior (which we discuss in Section 3.4.2.1), the presence of a

magma ocean is not important for our results. The role of the lithosphere, on the other hand,

is crucial and is discussed in more detail below. The fact that almost all the curves intersect

the blue star, our one anchor point thanks to astrometry, reflects the fact the astrometric

constraint unfortunately does not tell us much beyond supporting an Andrade rheology.
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Figure 3.2: Testing a magma ocean by dialing down viscosity, in units of Pa·s. This is a two
layer Andrade model, where the interior has the viscosity listed in the legend, and there is a 10
km surface layer that in panel a has a viscosity of 1021 Pa·s, and in panel b has a viscosity of
102100 ≈ ∞ Pa·s. Note the uneven viscosity step size, and the different x-axis range from Figure
3.1. The latter case feeds into our discussion in Section 3.4, where we begin with this case of
a rigid lithosphere and explore its strength when the lithosphere is faulted. When we scan by
lowering the rigidity instead of the viscosity, or both rigidity and viscosity simultaneously, we
get somewhat different intermediate behaviors but the same endmembers. In the panel b we do

not reach k2(ω)
Q(ω) = 3× 10−6 until about 1015 yr (off the plot), which matches the result in Figure

3.3.

3.4 Effect of a Lithosphere

3.4.1 Method

A strong rigid lid is able to limit Io’s deformation (i.e. reduce k2(ω)
Q(ω) ) and, as discussed

later, possibly shut down nonsynchronous rotation entirely. If the lithosphere is unfractured

and purely elastic (no brittle or viscous deformation), its response to tidal stresses will

dissipate no energy, and will significantly limit the size of the tidal deformation in the interior.

However, if the lithosphere is weak, its impact on the tidal response will be diminished – for

example, in the case of the Earth, the lithosphere does not play an important role in true polar

wander (Tsai and Stevenson 2007), in part because the lithosphere is broken into plates.

Below we develop an approach to incorporating the effect of a fractured lithosphere on

non-synchronou rotation.

Because we analyze the rotational evolution via k2(ω)
Q(ω) , and compute that parameter with

viscoelastic tools, incorporating brittle and frictional deformation is challenging. To bridge

this, we want to parameterize the role of friction in the lithosphere as though it is a viscosity,

by introducing an “effective viscosity”. If we assume that the lithosphere can deform by
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movement on faults, and faults are widespread, then frictional dissipation on those faults acts

like a viscosity if we know the bulk strain rate and the stress on the faults. First, we discuss

the effect of a deformable lithosphere in the case of a solid mantle. We then go on to examine

the more complicated case of a lithosphere above a magma ocean.

Say the lithosphere has thickness D and is filled with faults of length l with a characteristic

spacing between them of d. Then, for Io radius R, there are roughly 4πR2

dl total faults, so 4πR2

d

total fault length and 4πR2

d D total fault surface area. If the lithosphere is undergoing a strain

rate of ϵ̇ then the velocity on each fault is dϵ̇. If the resisting stress due to friction is σ

(combining the normal stress and the coefficient of friction), the work being done on faults per

unit time per area is σdϵ̇. Then, the power dissipated in the entire lithosphere is

f1σdϵ̇× 4πR2

d D, where f1 is a geometric factor to account for our approximate lengths and

surface areas. We can describe our effective viscosity ηe as the viscosity which, if the entire

lithosphere were undergoing viscous creep, would dissipate the same power. In general, the

power dissipated through viscous creep is ηϵ̇2V for volume V = 4πR2D, so we can set the

frictional and viscous dissipations equal to find

σdϵ̇D
4πR2

d
= f2ηeϵ̇

24πR2D (3.13)

ηe = f2
σ

ϵ̇
(3.14)

This reduces to a normal-looking viscosity equation. However, σ here is due to friction – it

is the characteristic frictional stress on faults – and ϵ̇ is the relevant strain rate, which is

approximately the fractional size of Io’s tidal bulge divided by the nonsynchronous rotation

period. For polar radius c and tidal axis radius a, Io’s bulge size is a−c
a ≈ 10−2. Note that we

only made order-of-magnitude estimates here and this is a very approximate equation. To

account for that, we introduced f2, which accounts for the fact that we are treating frictional

dissipation as though it is a viscosity, which is at best approximate, but may introduce a larger

error depending on the actual physics it hides.

We then assume σ ≈ ffricρg
D
2 (using halfway through the lithosphere as a characteristic

stress), with a friction coefficient ffric, and allow f1 from before to include fault angles (both

the friction coefficient and fault angles are probably close to order unity), and note that
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ϵ̇ ≈ 10−2ωNSR = 2π×10−2

PNSR
for NSR period PNSR, then we get

ηe ≈ 1017 × f ×
(

D

10 km

)
×
(
PNSR

1 yr

)
Pa · s (3.15)

All the numerical factors, f1, f2, and ffric are wrapped into a single “lithosphere viscosity

factor” f here. The effective viscosity ends up only depending on a few things: the lithosphere

thickness; the nonsynchronous rotation rate; (implicitly) the size of Io’s tidal bulge; and

crucially, our uncertain numerical factor f .

3.4.2 Results

A perfectly elastic, unfractured lithosphere will not dissipate energy at all, and will

experience reduced tidal deformation relative to the no-lithosphere case. This limits the

amount of deformation in layers below it, and therefore the total amount of dissipation

possible in the interior. The pink curve in Figure 3.1 shows this effect. As expected, it shuts

down realistic nonsynchronous rotation, causing the nonsynchronous rotation period to be

many orders of magnitude longer than the age of the solar system.

However, a realistic lithosphere will be fractured, and motion on faults will allow both more

deformation and more dissipation. As discussed in Section 3.4.1, we can parameterize fault

motion as a viscosity, and use this value as an input parameter for our tidal response models.

Before exploring the numerical results, note that we should expect non-intuitive behavior.

This is because 1) the nonsynchronous rotation rate depends on the lithosphere’s viscosity (for

example, compare the two Maxwell curves in Figure 3.1 to see the effect of mantle viscosity),

and 2) the effective viscosity depends on the nonsynchronous rotation rate (as is shown in

Equation 3.15). In short: NSR period is roughly proportional to viscosity, and our effective

viscosity is linearly proportional to NSR period. The equilibrium NSR period is strongly

dependent on the uncertain factor f in Equation 3.15, so the interplay between NSR period

and viscosity is expected to be very strongly dependent on f . If it is small, the effective

viscosity of the lithosphere will be small at NSR periods, and the lithosphere will easily move.

If, on the other hand, f is large, the lithosphere will appear strong at NSR periods, and the

lithosphere will control those NSR periods. f effectively acts like a switch; when it is small,
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the lithosphere is invisible, and when it is large, the lithosphere behaves as though it is

unfractured. This effect is illustrated in Figure 3.3. Here we self-consistently solve for the

nonsynchronous rotation rate by simultaneously solving both the rotation rate (equation 3.4)

and viscosity equation (equation 3.15), and plot it as a function of f and lid thickness.

Figure 3.3 shows the crucial importance of this unknown parameter f : If it is smaller than

about 10−5, the lithosphere is irrelevant to nonsynchronous rotation and the deeper interior

determines the NSR rate; if it is larger, there is no nonsynchronous rotation. We discuss the

likely value of f further below.

In Figure 3.3 we also include the same calculation for Earth parameters, to illustrate the

crucial importance of gravity and radius in whether the lithosphere is able to suppress

dissipation. True polar wander on Earth has a similar timescale and total strain to our

hypothetical NSR on Io, so one might expect either both or neither to be possible. However,

due to Earth’s larger size (and thus larger surface gravity), there is no contradiction between

the apparent ease of true polar wander on Earth, and the difficulty of non-synchronous

rotation on Io.
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Figure 3.3: Solving for the nonsynchronous rotation period when a “lithosphere” is included
by giving the top layer the viscosity in Equation 3.15 – equivalent to finding the intersection
between the response curves and the dashed line in Figure 3.1 when the viscosity is allowed
to vary with period. The x-axis is f from Equation 3.15. The viscosity and the rotation rate
depend on each other, so we solve for them simultaneously to find a self-consistent result. All
these models use an Andrade rheology. The blue and yellow curves are Io for two different
lithosphere thicknesses, and what we can see is that for f anywhere near unity, the lithosphere
shuts down meaningful nonsynchronous rotation (i.e. 1010 yr on the y-axis is less than one extra
rotation over the age of the solar system). Notably, this would not be the case if Io was much
larger – the red and green curves are made by substituting in Earth’s radius and surface gravity
(but the body is still in Io’s orbital configuration), and we see that Earth’s larger size makes
rigidity much less important.
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3.4.2.1 Decoupled Shell

A major complication to this work comes from the fact that so far, we have assumed that

the body rotates uniformly. If, instead, the surface is decoupled from the interior and can

rotate at a different rate, we need to consider the rotation of that shell alone. Goldreich and

Mitchell (2010) explore the torque balance on a decoupled shell, so we work from their

approach.

Broadly, two important processes make up the decoupled shell situation. First, instead of a

whole body, the relevant gravitational torques are only coupled to the smaller shell so they are

weaker, but this is offset by the moment of inertia of the shell also being smaller than the

whole body. For Io, the result is a modestly different torque balance, but overall a similar

situation. Second, when the shell rotates over the interior, it needs to deform: the tidal shape

of the interior is effectively fixed, and the shell needs to change shape to accommodate this as

it rotates. If the shell has substantial rigidity, there will be a large elastic resistance to this

deformation, making rotation hard; if the shell behaves mostly like a fluid (because gravity is

strong), it will be relatively easy for it to change shape as it rotates over the interior. Goldreich

and Mitchell (2010) identify a parameter that they (and we) call R which captures this, and

for Io it is ≈ 0.1, so elasticity is (marginally) unimportant in the shell’s ability to decouple.

To analyze this quantitatively, first we follow Goldreich and Mitchell (2010)’s assumption

that their R parameter (introduced in their equation 11) is small, because although it is closer

to unity for Io than Europa, the long periods we are concerned with mean the lithosphere is

effectively thinner and will reduce R. Although they look different, equations 14 and 15 of

Goldreich and Mitchell (2010) are very similar to Correia et al. (2014)’s calculation at k = 1

and k = 3. We show in the Appendix that

θ̈G&M =
h2(n)

hf

50

ln
(

n
ωNSR

) θ̈Correia (3.16)

where h2 is the shape Love number and hf is it in the fluid limit (i.e. at very long periods).

Here θ̈ is the angular acceleration, the torque divided by the moment of inertia, and the
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difference arises because Goldreich and Mitchell (2010) consider a decoupled shell while Correia

et al. (2014) do not. This simple relationship results from a lot of cancellation, including the

fact that, for a thin shell, both the torque on a shell and the shell’s moment of inertia depend

linearly on its thickness. The h2(ω)
hf

term appears because the shell needs to deform as it

rotates over the interior, and h2 represents its ability to deform. The ln
(

n
ωNSR

)
term captures

the fact that lithosphere is effectively thinner on long timescales – the longer you wait, the

lower the temperature a material needs to be to deform viscously – and this term captures the

thickness difference between the long and short period lithospheres. h2(ω)
hf

50

ln
(

n
ωNSR

) is model

dependent, but broadly h2(n)
hf

is of order 10−1 and 50

ln
(

n
ωNSR

) ≈ 2. Therefore it will lower the

necessary k2(ωNSR)
Q(ωNSR) by about one order of magnitude, so from 3× 10−6 to 3× 10−7. Other

things being equal, this will increase the nonsynchronous rotation period by the same factor.

The main difference introduced by a decoupled shell, and the reason h2 (describing shape,

rather than gravitational potential) enters, is the fact that the shell needs to deform relative to

the interior – its physical shape matters rather than just its gravitational potential, because

the shell and interior ellipsoids must have their shapes conform as they rotate differentially.

3.5 Discussion

3.5.1 Rigid Lid

Given that what we are calling the “lithosphere viscosity factor” f (plotted in Figure 3.3)

has fairly little physical grounding, it is hard to justify it being far from unity, although it

certainly could be. This strongly suggests that the presence of any lithosphere, even a highly

faulted one, will prevent nonsynchronous rotation on Io.

Note that, in principle, this analysis is not unique to Io, and broadly should apply similarly

to true polar wander on Earth. Earth’s true polar wander period is roughly 100 Myr (Tsai and

Stevenson 2007), has amplitudes of many tens of degrees, and is overcoming a rotational/tidal

flattening of a similar amplitude to that of Io. However, as we show in Figure 3.3, Earth and

Io’s lithospheres have very different abilities to suppress dissipation. This is primarily

controlled by surface gravity, which is such a strong effect that even with less than one order of

magnitude difference in gravity, Earth and Io have predicted relaxation rates that differ by
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several orders of magnitude.

The strength of the lithosphere is the most important variable in this work. If Io’s

lithosphere behaves as a globally coherent rigid layer, nonsynchronous rotation will not occur.

If the lithosphere is sufficiently weak, as is the case on Earth (Tsai and Stevenson 2007), the

nonsynchronous rotation rate will depend on the viscosity of Io’s interior and may be

observable. We do not see a reason for it to be weak (equivalently, for f to be much less than

unity), and models of fault-derived topography on Io suggest a lithosphere capable of

supporting stresses of hundreds of MPa (Bland and Mckinnon 2016), but it is too early to rule

out a weak lithosphere entirely. More detailed explorations of how faults behave under Io

conditions is necessary to determine the lithosphere’s actual strength.
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One mechanism to relieve stress that we have not explored in detail is the fact that Io’s

lithosphere is advecting downward (Kirchoff et al. 2011), and once material gets deep enough

it will release any accumulated elastic stress. Shallower lithosphere material will need to take

up this stress, increasing the elastic strain, until that material also heats up and releases it.

This mechanism is only likely to relieve the small tidal lag angle on ∼Myr timescales (the

lithospheric turnover timescale), so it may serve to place an upper bound on the timescale

found in Section 3.4.1.

It is also possible that Io’s surface and its interior are able to rotate independently, and our

observations of the surface will only sample the behavior of the outer shell. This decoupling

has a roughly 1 order of magnitude effect on the expected rate of nonsynchronous rotation,

causing it to be moderately slower. This will be important for interpreting observations if

nonsynchronous rotation does occur, but relatively minor compared to the question of whether

the lithosphere allows nonsynchronous rotation at all.

3.5.2 Nonsynchronous rotation rates

If the lithosphere is in fact weak, nonsynchronous rotation is likely and will depend on the

temperature structure of Io’s mantle.

If Io’s interior is Maxwellian, it must have a viscosity near 1015 Pa·s, which is how it is

often modeled (discussed by Bierson and Nimmo (2016)). This viscosity would lead to a

nonsynchronous rotation periods of order 105 years. This is too fast to explain the observed

offset of volcanic features, but would likely be detectable with the next mission to Io.

If, as seems likely, the interior is non-Maxwellian, for example if it has Andrade behavior, it

is able to be colder/higher viscosity while still satisfying the measured k2/Q. If it is

moderately higher viscosity, with a value in the vicinity of 1018 Pa·s, nonsynchronous rotation

will occur on a timescale similar to that of volcano building. Nonsynchronous rotation in this

case will be harder to detect, and may require a mission to be designed carefully to detect slow

nonsynchronous rotation. If Io’s volcano offset is a result of nonsynchronous rotation, its

interior viscosity is likely close to 1018 Pa·s which in turn constrains its thermal state. This

viscosity value is not unreasonable, given that the warmest (and water-rich) regions of the

Earth’s upper mantle have viscosities in the range 1018−19 Pa s (e.g. Dixon et al. 2004). If Io’s

interior is even colder, with a viscosity closer to Earth’s upper mantle, nonsynchronous
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rotation will be slow, irrelevant to volcano building, and will probably be undetectable. Note,

however, that all these scenarios presume a weak lithosphere.

The presence of a magma ocean has fairly little direct impact on nonsynchronous rotation.

However, if it allows Io’s shell to rotationally decouple from the interior, it will probably slow

the nonsynchronous rotation rate by a factor of about 10, as discussed in Section 3.4.2.1.

3.5.3 Europa

This work focused on Io, but Europa is also a compelling place to look for nonsynchronous

rotation. It has a less rigid crust and a shell that is known to be decoupled from the interior,

opening up a similar but slightly different region of parameter space. It is beyond the scope of

this work, but applying similar techniques to Europa is likely valuable. It is probable that the

behavior of faults will again be important, so an understanding of the behavior of icy faults

will be essential for a full treatment of Europa.

3.6 Conclusions

On Io, the presence of an elastic/brittle lithosphere is the primary control of

nonsynchronous rotation. A detailed analysis of how faults can support tidal stresses on Io is

beyond the scope of this work, so we approximate this behavior by parameterizing fault

movement as a viscosity. We find that Io’s lithosphere is probably very strong, and should be

able to fully suppress nonsynchronous rotation. A productive next step to confirm this

behavior would be more focused modelling of the behavior of a lithosphere under these

conditions – a finite element lithosphere model, or another similar model that can realistically

assess how a fractured lithosphere will behave, is likely the best way to assess its strength on

these timescales.

Barring lithospheric fault behavior that we miss with our simple model, we expect Io’s

lithosphere to be relatively strong. This will prevent nonsynchronous rotation, regardless of

the rheology of the interior (including whether it is molten) or the ability of the lithosphere to

rotate independently.

If it does turn out that the lithosphere is weak, nonsynchronous rotation should occur, and

its rate will be directly determined by Io’s typical mantle temperature. If Io’s volcano
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distribution is influenced by nonsynchronous rotation, its mantle viscosity is of order 1018 Pa s,

comparable to the lowest mantle viscosities seen for Earth. If Io has a decoupled surface layer,

this viscosity is that of the upper layer’s ductile region.
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Kurt D. Retherford, Gregor Steinbrügge, and Erwan Mazarico (2021). “Improved

Determination of Europa’s Long-Wavelength Topography Using Stellar Occultations”. In:

Earth and Space Science 8.7. doi: 10.1029/2020EA001586.

Ahrens, Thomas J and Mary L Johnson (1995). “Shock Wave Data for Minerals”. In:

Minereral Physics & Crystallography: A handbook of Physical Constants 2, pp. 143–184.

Anderson, John D., Robert A. Jacobson, Eunice L. Lau, William B. Moore, and

Gerald Schubert (2001). “Io’s gravity field and interior structure”. In: Journal of

Geophysical Research: Planets 106.E12, pp. 32963–32969. doi: 10.1029/2000JE001367.

Araki, H. et al. (2009). “Lunar global shape and polar topography derived from Kaguya-LALT

laser altimetry”. In: Science 323.5916, pp. 897–900. doi: 10.1126/science.1164146.

Ashby, M. F. (1999). Materials selection in mechanical design. Oxford, England:

Butterworth-Heinemann.

Asphaug, Erik, Craig B. Agnor, and Quentin Williams (2006). “Hit-and-run planetary

collisions”. In: Nature 439.7073, pp. 155–160. doi: 10.1038/nature04311.

Beuthe, Mikael (2013). “Spatial patterns of tidal heating”. In: Icarus 223.1, pp. 308–329. doi:

10.1016/j.icarus.2012.11.020.

55

https://doi.org/10.1029/2019GL082542
https://doi.org/10.1029/2020EA001586
https://doi.org/10.1029/2000JE001367
https://doi.org/10.1126/science.1164146
https://doi.org/10.1038/nature04311
https://doi.org/10.1016/j.icarus.2012.11.020


Bierson, C. J. and F. Nimmo (2016). “A test for Io’s magma ocean: Modeling tidal dissipation

with a partially molten mantle”. In: Journal of Geophysical Research: Planets 121.11,

pp. 2211–2224. doi: 10.1002/2016JE005005.

Bills, B G, R R Ghent, D W Leverington, and F Nimmo (2008). “Internal Structure of Mars:

Viscosity Constraints from Short Period Tides and Loads”. In: 39th Lunar and Planetary

Science Conference 39.2008, p. 2016.

Bland, Michael T. and William B. Mckinnon (2016). “Mountain building on Io driven by deep

faulting”. In: Nature Geoscience 9.6, pp. 429–432. doi: 10.1038/ngeo2711.

Blankenship, Donald et al. (2018). “REASON for Europa”. In: 42nd COSPAR Scientific

Assembly. Vol. 42, B5.3–55–18.

Bottke, William F., Daniel D. Durda, David Nesvorný, Robert Jedicke, Alessandro Morbidelli,
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Steinbrügge, G., D. M. Schroeder, M. S. Haynes, H. Hussmann, C. Grima, and

D. D. Blankenship (2018). “Assessing the potential for measuring Europa’s tidal Love

number h2 using radar sounder and topographic imager data”. In: Earth and Planetary

Science Letters 482.2018, pp. 334–341. doi: 10.1016/j.epsl.2017.11.028.

Tkalcec, B. J., G. J. Golabek, and F. E. Brenker (2013). “Solid-state plastic deformation in the

dynamic interior of a differentiated asteroid”. In: Nature Geoscience 6.2, pp. 93–97. doi:

10.1038/ngeo1710.

Tsai, Victor C. and David J. Stevenson (2007). “Theoretical constraints on true polar

wander”. In: Journal of Geophysical Research: Solid Earth 112.5, pp. 1–10. doi:

10.1029/2005JB003923.

Turcotte, D L and Gerald Schubert (2014). Geodynamics. Cambridge, England: Cambridge

University Press.

Turtle, E. P. et al. (2019). “The Europa Imaging System (EIS): High-Resolution, 3-D Insight

into Europa’s Geology, Ice Shell, and Potential for Current Activity”. In: Lunar and

Planetary Science Conference. Lunar and Planetary Science Conference, p. 3065.

Tyler, Robert H., Wade G. Henning, and Christopher W. Hamilton (2015). “TIDAL

HEATING in A MAGMA OCEAN WITHIN JUPITER’S MOON Io”. In: Astrophysical

Journal, Supplement Series 218.2, p. 22. doi: 10.1088/0067-0049/218/2/22.

Wahr, J. M., M. T. Zuber, David E. Smith, and J. I. Lunine (2006). “Tides on Europa, and

the thickness of Europa’s icy shell”. In: Journal of Geophysical Research E: Planets 111.12,

pp. 1–10. doi: 10.1029/2006JE002729.

Wasson, John T. (1985). Meteorites: Their record of early solar-system history. New York,

United States: W. H. Freeman Press, p. 267.

Williams, David A., Ronald Greeley, Rosaly M.C. Lopes, and Ashley G. Davies (2001).

“Evaluation of sulfur flow emplacement on Io from Galileo data and numerical modeling”.

In: Journal of Geophysical Research E: Planets 106.E12, pp. 33161–33174. doi:

10.1029/2000JE001340.

64

https://doi.org/https://doi.org/10.1016/j.icarus.2016.08.011
https://doi.org/10.1016/j.epsl.2018.02.033
https://doi.org/10.1016/j.epsl.2017.11.028
https://doi.org/10.1038/ngeo1710
https://doi.org/10.1029/2005JB003923
https://doi.org/10.1088/0067-0049/218/2/22
https://doi.org/10.1029/2006JE002729
https://doi.org/10.1029/2000JE001340


Williams, Quentin (2009). “Bottom-up versus top-down solidification of the cores of small solar

system bodies: Constraints on paradoxical cores”. In: Earth and Planetary Science Letters

284.3-4, pp. 564–569. doi: 10.1016/j.epsl.2009.05.019.

Wilson, Lionel (2009). “Volcanism in the solar system”. In: Nature Geoscience 2.6,

pp. 389–397. doi: 10.1038/ngeo529.

Wilson, Lionel and James W. Head (2017). “Generation, ascent and eruption of magma on the

Moon: New insights into source depths, magma supply, intrusions and effusive/explosive

eruptions (Part 1: Theory)”. In: Icarus 283.2017, pp. 146–175. doi:

10.1016/j.icarus.2015.12.039.

Yang, Jijin, Joseph I Goldstein, and Edward R D Scott (2008). “Metallographic cooling rates

and origin of IVA iron meteorites”. In: Geochimica et Cosmochimica Acta 72,

pp. 3042–3061. doi: 10.1016/j.gca.2008.04.009.

Yang, Jijin, Joseph I. Goldstein, and Edward R.D. Scott (2007). “Iron meteorite evidence for

early formation and catastrophic disruption of protoplanets”. In: Nature 446.7138,

pp. 888–891. doi: 10.1038/nature05735.

Zschau, J. (1978). “Tidal Friction in the Solid Earth: Loading Tides Versus Body Tides”. In:

Tidal Friction and the Earth’s Rotation, pp. 62–94.

65

https://doi.org/10.1016/j.epsl.2009.05.019
https://doi.org/10.1038/ngeo529
https://doi.org/10.1016/j.icarus.2015.12.039
https://doi.org/10.1016/j.gca.2008.04.009
https://doi.org/10.1038/nature05735


Appendix A

Appendix to Europa Chapter

Computing A

To compute Aij we begin with the fact that the topography at any point (θ, ϕ) is given, in

spherical harmonics, by

h =

∞∑
l,m=0

Clm cos(mϕ)Plm(cos θ) + Slm sin(mϕ)Plm(cos θ)

. If our measurements were topographic points, rather than chords, computing A would be

simple. For example, A23 = ∂z2
∂x3

= ∂z2
∂C11

= cos(ϕ)P11(cos θ) which, crucially, contains no

elements of x̂ so x̂ can be calculated without assuming it a priori. However, because our

measurements are chords, we need to get the chord length itself in terms of spherical

harmonics. The chord length between two surface points h1 and h2 follows from treating them

as a triangle with the angle between them γ. The law of cosines gives us the length,

c =
√
h2
1 + h2

2 − 2h1h2 cos γ. Trying to compute an element of A reveals our problem

∂ci
∂Clm

=
∂ci
∂hi1

∂hi1

∂Clm
+

∂ci
∂hi2

∂hi2

∂Clm
(A.1)

=
hi1 − hi2 cos γ

ci
cos(mϕi1)Plm(cos θi1) +

hi2 − hi1 cos γ

ci
cos(mϕi2)Plm(cos θi2) (A.2)
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In general, the terms in fractions in equation A.2 inherently depend on the spherical harmonics

we are trying to fit. This means that it is impossible to compute elements of A which are

independent of x̂ and thus allow us to solve for x̂. One solution to this is to solve x̂ iteratively,

beginning with an assumed shape x̂0, using this to compute a new x̂1, and repeating until the

result converges. This approach has the advantage of being clear when a self consistent result

is found. Another approach is to note that for a hydrostatic planet (like Europa), topography

is a small perturbation on the overall radius and we can assume h1 ≈ h2 ≈ R, the planet’s

radius. Then, a bit of trigonometry tells us that h1−h2 cos γ
c ≈ R(1−cos γ)

2R sin γ
2

= sin γ
2 , and γ is

calculable from (θ1, ϕ1, θ2, ϕ2). This assumption, that h1 ≈ h2 ≈ R, allows us to calculate A

independent of x̂, as

Aij =
∂ci
∂Clm

=
∂ci
∂hi1

∂hi1

∂Clm
+

∂ci
∂hi2

∂hi2

∂Clm
(A.3)

= sin
γi
2

[
cos(mϕi1)Plm(cos θi1) + cos(mϕi2)Plm(cos θi2)

]
(A.4)

Note that this assumed zi was a Clm term and not an Slm term, but the result in the latter

case just swaps sin(mϕ) for cos(mϕ)
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Appendix B

Appendix to Io Rotation

B.1 Goldreich and Mitchell algebra

Goldreich and Mitchell (2010) compute eccentricity tides on a decoupled shell, their

equation 16

TG&M =
576

5
π

(
1 + ν

5 + ν

)
h2
t

Q
(qe)

2
µdR2 (B.1)

This is using their notation. Comparing this, the result for a decoupled shell, to our results

for a coherent body, is easiest if we can compare it to the solution from Correia et al. (2014).

As we used in our Equation 3.1 say

TCorreia = −3Gm2
0R

5

2a6

∞∑
k=−∞

(
X−3,2

k (e)
)2

k2(ωk) sin
(
δ(ωk)

)
(B.2)

Although the notations are very different, these two equations turn out to be almost

identical.

Manipulating the Goldreich and Mitchell (2010) equation first, we introduce and then

divide by their R factor, that describes the relative importance of elasticity and gravity.
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R ≡ Eelas

Egrav
=

32π

5

(
1 + ν

5 + ν

)
(1 + kf )

2

kf

µdR3

GM2
(B.3)

TG&M

R
=

576
5 π
(

1+ν
5+ν

)
h2
t

Q (qe)
2
µdR2

32π
5

(
1+ν
5+ν

)
(1+kf )2

kf

µdR3

GM2

(B.4)

=
18

h2
t

Q (qe)
2

(1+kf )2

kf

R
GM2

(B.5)

TG&M = 18
h2
t

Q
(qe)2

kf
(1 + kf )2

GM2

R
R (B.6)

Note that in their notation kt is equivalent to our k2(n) and kf is equivalent to

k2(0) ≈ k2(ωNSR) (and similarly for h2). Their Q is not explicitly frequency dependent, but can

be interpreted as the tidal frequency Q(n).

Like we did in the main text, we expand TCorreia to second order in e, but this time don’t

set it equal to zero. Instead we calculate it for synchronous rotation to match Goldreich and

Mitchell (2010), which means that the k = 2 (index in the sum, not love number) term is zero.

TCorreia ≈ −3Gm2
0R

5

2a6

3∑
k=1

(
X−3,2

k (e)
)2

k2(ωk) sin
(
δ(ωk)

)
(B.7)

= −3Gm2
0R

5

2a6

(
1

4
e2

k2(n)

Q(n)
− 49

4
e2

k2(n)

Q(n)

)
(B.8)

=
18Gm2

0R
5

a6
e2

k2(n)

Q(n)
(B.9)

Then returning to the Goldreich and Mitchell (2010) version, we note that

q = n2R3

GM = R3

GM
Gm0

a3 = R3

a3
m0

M and that 1 + kf ≈ hf .

TG&M =
18Gm2

0R
5

a6
e2

h2
t

h2
f

kf
Q

R (B.10)

TG&M = TCorreia
kf
h2
f

h2
t

kt
R (B.11)

So we see that Goldreich and Mitchell (2010)’s solution for the net torque on a synchronous

shell is almost identical to Correia’s solution for the torque on the whole body.
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Taking this at face value, we assume that if (Goldreich and Mitchell 2010) had kept higher

order terms, they would enter similarly, so we keep kf and hf as-is but replace kt and ht with

the general frequency-dependent k2(ωk) and h2(ωk). We also note that R is frequency

dependent, so we make that dependence explicit through the fact that d, the elastic thickness,

is frequency dependent (see below). Then we can write a (Goldreich and Mitchell 2010)

equivalent of the (Correia et al. 2014) equation but for a decoupled shell:

TCorreia = −3Gm2
0R

5

2a6

∞∑
k=−∞

(
X−3,2

k (e)
)2

k2(ωk) sin
(
δ(ωk)

)
(B.12)

=⇒ TG&M = −3Gm2
0R

5

2a6

∞∑
k=−∞

kf
h2
f

h2(ωk)
2

k2(ωk)
R(ωk)

(
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Then we can solve for when this equals zero like we did in Equation 3.4

h2
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) h2(n)

hf
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and the differences are fairly minor. The k2s are replaced by h2s and are squared in

Equation B.15 so we can pull them out for Equation B.16 (noting that h2(ωNSR) ≈ hf ) and see

that our result is almost the same as in Equation 3.4, and the necessary h2(ωNSR)
QNSR

is reduced by

a factor of h2(n)
hf

50

ln
(

n
ωNSR

) .
The step from Equation B.16 to Equation B.17 is because we include the frequency

dependence of R, the relative importance of elasticity and self gravity, through the elastic

thickness d. Io’s lithosphere has a temperature gradient with depth, which means there is a
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viscosity gradient with depth. The brittle-ductile transition, the depth below which material

will not have elastic strength, depends on both viscosity and frequency, so the effective

thickness of Io’s lithosphere is frequency dependent. Because viscosity is exponential in

temperature, we can take an order of magnitude approach to temperature and get a

sufficiently precise result.

Io’s mean surface temperature is 120 K. The viscosity of rock can be described as (Karato

and Wu 1993)

η = η0e
Ea
RT (B.19)

=⇒ ηn
ηωNSR

= e
Ea
RTn

− Ea
RTωNSR (B.20)
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1

50
ln

(
n

ωNSR

)
≈ dωNSR

dn
(B.26)

We used an activation energy of 300 kJ/mol for olivine, and assumed the long-period

brittle-ductile transition is about 800K (half the melting point). Note that the approximation

in equation B.26 is pretty rough. Because this is only an approximate calculation, we ignore

this order-unity error, but it is the most significant approximation in this calculation.
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B.2 Testing Multiple Layers
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Figure B.1: Testing the effect of having many layers. These models all have exponential viscosity
profiles with depth, with viscosities of 1015 Pa·s at the center and 1021 Pa·s at the surface. Two
layers means the deeper half of the body (by radius) is 1015 Pa·s and the surface half is 1021 Pa·s,
three layers means the middle third is 1018 Pa·s, and so on. We see the long period tail shift
slightly with more layers, but overall the behavior is very similar.
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