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Longitudinal Single-Bunch Instability in the ILC Damping Rings:
Estimate of Current Threshold

Marco Venturini∗
Lawrence Berkeley National Laboratory, University of California, Berkeley, California, 94720

(Dated: June 25, 2008)

Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping
rings (DRs) has been indicated as a high-priority activity toward completion of an engineering
design. In this paper we report on a first estimate of the current thresholds for the instability
using numerical and analytical models of the wake potentials associated with the various machine
components. The numerical models were derived (upon appropriate scaling) from designs of the
corresponding components installed in existing machines. The current thresholds for instabilities
were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For
the DR baseline lattice as of Feb. 2007 we find the critical current for instability to be safely above
the design specifications leaving room for further optimization of the choice of the momentum
compaction.

PACS numbers: 29.27.Bd, 41.60.Ap

I. INTRODUCTION

In order for the International Linear Collider (ILC) to meet the luminosity goal it is essential that properly damped
and stable bunches be extracted from the damping rings (DRs). Past experience has taught that instabilities affecting
the longitudinal phase space of beams exiting the DRs can result into significant beam quality degradation along
the linac. Although a weak instability could perhaps be tolerated, as was the case for the SLC damping rings after
replacement of the original vacuum chamber, a desirable approach is to seek to avoid conditions for longitudinal
single-bunch instabilities altogether. Characterization of these instabilities, therefore, is critical and indeed has been
indicated as a high-priority item in the R&D agenda toward completion of the Engineering Design Report (EDR) as
it carries implications regarding specification of the machine components and choice of the lattice parameters.

There are two aspects to this activity: modelling of the relevant sources of the impedance and study of the beam
dynamics based on that modelling. The accuracy of the instability estimates depends on that of the impedance
modelling, which in turn would require detailed designs of the most significant machine components. A complete
technical design of these components is not expected to become available until the end of the work period for the
EDR. Some estimate, albeit approximate, of the instability threshold is however desirable while the DR design is
being finalized and can provide useful guidance toward the selection of a workable set of machine parameters. To this
end we have initiated a study to characterize the longitudinal single-bunch instability based on approximate models
of relevant impedance sources derived from the design of components in existing machines (suitably scaled to meet
the DRs basic requirements).

In this report we summarize the results of studies that were completed as of Dec. 2007 [9] making use of numerical
models of impedances for the rf cavities and the beam position monitors (BPMs) and analytical models for resistive
wall (RW), which are believed to represent the main contributors to the total impedance. We calculated the current
thresholds associated with these models for the current DR baseline lattice using a Vlasov solver we have developed
specifically for the study of longitudinal dynamics in beams. A preliminary report of our studies was presented in [1].

Our results show that the estimated current thresholds are abundantly above the machine design current and
suggest that there is latitude for optimizing the choice of the basic lattice design parameters. In particular, it appears
that a conservatively specified large momentum compaction could stand a significant reduction without compromising
the stability of longitudinal dynamics.

The content of the paper is as follows. After reviewing the basic equations of motion for the longitudinal dynamics
in Sec. II, we present the impedance models and report on the calculation of the instability thresholds in Sec. III. In
Sec.’s IV and V we compare the more accurate calculation of the instability thresholds determined using the Vlasov
solver to a rough estimate based on the Keil-Schnell-Boussard criterion (or Boussard criterion, for short) providing a
context to interpret erroneous early estimates that during the the lattice configuration studies [2] had indicated the
possibility of an alarmingly large instability.

∗ mventurini@lbl.gov
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TABLE I: Relevant Parameters for the ILC DRs – Feb. 2007 Baseline Design

Description Notation Value
Energy E0 5.0 GeV
Ring circumference C 6695.057 m
Pipe radius (except wiggler sections) ba 2.5 cm
Pipe radius in wiggler sections bw 2.3 cm
Conductivity of pipe (Al) σ 3.5× 107 Ω−1m−1

Momentum compaction α 4.2× 10−4

Synchrotron tune νs 0.064
Natural bunch length σz0 9.0 mm
Natural rms relative energy spread σδ0 1.28× 10−3

Longitudinal damping time τd 12.9 ms
Harmonic number hn 14516

rf voltage V̂rf 24 MV
rf phase φs 151 deg
rf frequency ωrf/2π 650 MHz
Number of cavities 18
Total length of wiggler straights Lw 300 m
Bunch population N 2× 1010

II. EQUATIONS OF MOTION

The longitudinal motion is described by the coordinates z, the position with respect to the synchronous particle,
and ∆E/E0 = (E −E0)/E0 the relative deviation from the design energy. Denote with T0 the revolution time for an
on-energy particle, C the ring circumference, β0 the relativistic factor (cβ0 = C/T0), and η = α − 1/γ2

0 the slippage
factor, where α is the momentum compaction and γ0 the relativistic factor. The equations of motion then read

dz

dt
= − cη

β0

∆E

E0
, (1)

d

dt

(
∆E

E0

)
= −eV (z)

T0E0
, (2)

where V (z) = Vrf(z) + Vc(z) is the voltage difference experienced by a particle through one machine revolution. The
term Vrf(z) represents the contribution from the rf cavities. In linear approximation

Vrf(z) = −z
hn

R
V̂rf cos φs, (3)

where V̂rf is the peak rf-voltage, φs the synchronous phase, hn = ωrf/ω0 the harmonic number, and R the ring average
radius. At small currents only Vrf contributes to the voltage. Combining (1), (2), and (3) yields z̈ = −ω2

sz, with the
synchrotron frequency ω2

s = ω2
0(ehnV̂rf |η cosφs|/2πE0β

2
0), where ω0 = 2π/T0 is the revolution frequency.

Collective effects are described by a beam induced voltage Vc. The interaction between particles can occur directly
through radiation or Coulomb forces, or can be mediated through the surrounding machine environment (wake fields).
Either way, Vc can be modelled in terms of a “wake potential” function W (z − z′)

Vc(z) = −eN

∫
W (z − z′)ρ(z′)dz′, (4)

where N is the number of particles per bunch and ρ(z) the longitudinal density with normalization
∫

ρ(z)dz = 1.
W (z − z′)/C has the meaning of longitudinal electric field per unit charge (averaged along the ring circumference C)
at point z due to a unit charge located at point z′, i.e. W (z− z′) has dimensions of voltage over charge; in this paper
we set the sign of W (z − z′) by the convention that a positive value corresponds to energy gain (this is opposite of
Chao’s definition [3], where a positive sign corresponds to energy loss).

The frequency-domain companion of the wake potential is the impedance defined as

Z(k) = − 1
cβ0

∫ ∞

−∞
dzW (z)e−ikz. (5)
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FIG. 1: Wake potential for resistive wall (red curve), the 18 rf cavities (blue curve), 908BPMS (green curve), and their sum
(black curve).

Conversely

W (z) = −cβ0

2π

∫ ∞

−∞
dkeikzZ(k). (6)

Introduce the scaled coordinates q = z/σz0 and p = −(∆E/E0)/σδ0, where σz0 and σδ0 are the rms beam length and
relative energy spread at equilibrium at low current. At equilibrium σδ0 and σz0 are related by νsβ0(σz0/R) = |η|σδ0

where νs = ωs/ω0 is the synchrotron tune. Using the scaled time τ = ωst as the independent variable the equations
of motion can be rewritten as

dq

dτ
= p, (7)

dq

dτ
= −q + IcF (q, ρ̃(q)), (8)

where we have introduced the current parameter

Ic =
e2N

2πνsE0σδ0
, (9)

and written the collective force contribution as

F (q, ρ̃(q)) = −
∫ ∞

−∞
W̃ (q − q′)ρ̃(q′)dq′, (10)

where W̃ (q) = W (z/σz0) and ρ̃(q) = ρ(z/σz0)σz0 are the wake function and bunch density expressed in terms of the
scaled longitudinal distance q.

The beam distribution function f(q, p) in phase space evolves according to the Vlasov-Fokker-Planck equation
with the Vlasov part (LHS of equation) accounting for rf focusing and collective effects and the Fokker-Planck part
modelling radiation damping and quantum excitations:

∂f

∂τ
+

∂f

∂q
p +

∂f

∂p
[−q + IcF (q, f, τ)] =

2
ωsτd

∂

∂p

(
pf +

∂f

∂p

)
, (11)

where τd is the longitudinal damping time. We are interested in determining stability of equilibrium beam distributions
that are solutions of (11). Eq. (11) admits equilibria in the form f0(q, p) = ρ̃0(q) exp(−p2/2)/

√
2π (Häıssinski

solutions) with ρ̃0(q) satisfying the Häıssinski equation ρ̃′0 = (−q + IcF )ρ̃0.
In the following we will investigate stability by solving numerically (11) using the methods described in [5] starting

from a Häıssinski distribution. In the present analysis we will neglect the Fokker-Planck part of the equation.
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FIG. 2: Wake from resistive wall and rf cavities convoluted with the nominal σz0 = 9 mm bunch.

III. IMPEDANCE MODELS AND CALCULATION OF INSTABILITY THRESHOLDS

A. Impedance Models

We have considered three distinct models of short-range wake potentials of increasing level of completeness.

• The first model consists of the wake potential due to the rf cavities only. These are expected to be the single
largest source of impedance for the damping rings. The current design for the DRs calls for installation of 18
superconducting cavities at 650 MHz, a convenient harmonic of the 1.3 GHz frequency of the main linac rf
structures. Examples of installed superconduncting rf cavities in colliders are at KEKB and at Cornell CESR.
Because both sets of cavities operate in the neighborhood of 500 MHz frequency and have tapers connecting
to beam pipes with aperture different from that of the DRs, their design is not immediately usable for our
purposes and requires some scaling to match both the 2.5 cm DR pipe radius at the end of the tapers and the
design frequency. For our study we adopted the CESR cavity model. The wake functions for the cavities were
determined by evaluating the longitudinal electric field driven by a finite size (0.5-mm rms gaussian) rigid charge
source using a 2D numerical model [7]. Because of the finite length of the driving source used in the calculation
causality is violated and the wake functions are non-zero for z > 0, see blue curve in Fig. 1. Notice that in our
study we did not attempt to restore causality by artificially removing (or moving) the z > 0 part of the wake,
as is sometimes done.

• The second model of wake potential consists of the sum of the contribution from the rf cavities and the resistive
wall effect from the vacuum chamber. Resistive-wall effects were modelled using an analytical formula [3]
valid for an infinitely long, straight vacuum chamber with circular cross section of radius b. Specifically, the
longitudinal electric field caused by the finite conductivity of the pipe wall at z < 0 due to a charge e at z = 0
is given by

Erw
z (z, b) = −4Z0ce

πb2

(
1
3
eu cos(

√
3u)−

√
2

π

∫ ∞

0

x2eux2

x6 + 8
dx

)
, for z ≤ 0, (12)

with u = z/(2χ)1/3b and χ = 1/Z0σb where σ is the conductivity of the vacuum chamber. For Aluminum at
room temperature σ = 3.5× 107 Ω−1m−1. We distinguish between the wiggler sections (where the pipe radius
is bw) and the rest of the machine (with pipe radius ba) and for z < 0 write the wake function for the resistive
wall as:

W rw(z) = LwErw
z (z, bw)/e + (C − Lw)Erw

z (z, ba)/e, (13)

(obviously W (z) = 0 for z > 0). However, we did not use directly (13) in our calculation. Instead, we first
carried out a convolution with a 1-mm rms gaussian source in analogy with the way the wake functions for the
other components of the vacuum chamber were determined. The plot of the RW wake so calculated is reported
in Fig. 1 as the red curve. In Fig. 2 we report the profile of the same wake convoluted with a 9 mm gaussian
bunch (red curve) an by comparison the convolution of the rf cavities wake with the same 9 mm bunch.
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FIG. 3: Longitudinal wake potential contributed by 908 BPMs.

• Finally, the third model includes the contribution from 908 BPMs in addition to the wake potentials from the rf
cavities and the resistive wall. For the BPMs, we took as a model the design of the devices installed in PEP-II.
The PEP-II BPMs have four buttons of diameter 1.5 cm located on the wall of a 4.8 cm radius beampipe. In
our adaptation to the DRs the button diameter was scaled to 0.8 cm and the beam pipe radius to ba = 2.5 cm.
Similarly to the rf cavities the wake potential for the BPMs was determined numerically by solving for the
electromagnetic fields induced by a rigid gaussian source, in this case 1mm long (rms). A 3D field solver was
used for the BPMs (whereas exploitation of the azimuthal symmetry in the design allowed for use of a faster 2D
code for modelling of the rf cavities). The number of BPMs used in our study was chosen somewhat arbitrarily
and set equal to the number of quadrupoles in the lattice. The wakefield is shown in Fig. 3. The picture shows
a long tail resulting from the excitations of resonances with long time effects. The long tail is not of concern
for single bunch effects but it is likely to require careful investigation toward future optimization of the BPM
design in order to minimize the impact on coupled-bunch instabilities.

B. Current Threshold for Instability

In studying stability with the Vlasov solver we start from an equilibrium (Häıssinski solution). Above the instability
threshold we expect that small deviations from equilibrium result into an exponential growth, as predicted from linear
theory. In practice we found that the unavoidable small errors in the numerical determination of the equilibrium
density suffices to seed the instability. To determine the growth rate we follow the evolution of the second or third
moment of the energy density and fit an exponential curve against their envelope. The results of the growth rate
calculations are plotted in Fig. 4 for the three impedance models described above. The instability threshold is
defined by the intersection of the growth rate curves with the Im ω = 0 axis. Because we are neglecting radiation
damping this slightly underestimates the threshold for instability (the damping rate for the longitudinal motion is
1/τd = 0.077 msec−1). Notice the generally non-monotonic dependence of the growth rates on the bunch population.
In particular, or the impedance model accounting for the rf cavities and resistive wall (red curve in Fig. 4) this
dependence results into an ‘island of stability’ between N = 140 × 1010 and 155 × 1010 particles/bunch. This non-
trivial dependence appears to be caused by the variation of the shape of the Häıssinski equilibrium with current. As
the bunch population increases the potential well distortions will cause the equilibrium to become shallower countering
the otherwise expected increase of the growth rates with current. In the stability analysis reported in [1] for the rf
cavities + RW model of impedance we missed this island of instability and estimated the threshold to be in the
neighborhood of N = 150× 1010 part./bunch. In fact, Fig. 4 shows that for the rf cavities + RW model of impedance
the critical bunch population for instability is rather in the neighborhood of N = 120 × 1010 part./bunch. In a way
consistent with intuition the same figure shows that more complete impedance models yield estimates of lower current
thresholds for instability. In particular, notice that adding the wake potential from the 908 BPMs resulted in a net
erosion of stability of about 15%. This is in spite of the fact that the peak value of the total BPM contribution is less
than 3% than the peak value of the total (rf + RW + BPM) wake. This confirms previous observations [4] that fine
details in the shape of a wake potentials can have a significant impact on beam dynamics.
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FIG. 4: Instability growth rates corresponding to the three models of impedance discussed in the text as function of the bunch
population. The thresholds for instability as deduced from this figure are N = 142, 120 and 105×1010 part./bunch respectively
for the impedance model including the rf cavities only (green data), rf cavities + resistive wall (red data), rf cavities + resistive
wall + BPMs (blue data).

IV. BOUSSARD ANALYSIS

The Keil-Schnell-Boussard criterion is often used to give an analytical estimate of the instability thresholds. It can
be stated in the form [10]

Nth =
Z0

[Z/n]

√
π

2
γησ2

δ0σz0

re
, (14)

where Nth is the critical bunch population for instability, re = 2.82× 10−15 the classical electron radius, and [Z/n] is
a real quantity (with dimensions of an impedance) related to the machine impedance. Generally the validity of the
criterion is strictly dependent on the functional form of the impedance and form factor of the beam density.

For coasting beams [Z/n] = |Z(n)/n|, where n is the harmonic number of the most unstable mode and Z(n) the
machine impedance. For bunched beams one has to provide some interpretation for the term[Z/n] . At least two
prescriptions can be found in the literature. Assume a beam with gaussian density and rms width σz0.

The first prescription has the form:

[Z/n] =
σz0

R

∞∑
n=−∞

∣∣∣Z(nω0)
n

∣∣∣e−(nσz0ω0/c)2

' σz0

R

∫ ∞

−∞

∣∣∣Z(k)
k

∣∣∣e−(kσz0)
2
dk, (15)

where ω0 = c/R is the revolution frequency and n = ω/ω0 = kR.
The second interpretation postulates that [Z/n] = |Z(k)/n|, with n given by the mode n = R/σz or k = 1/σz0.
According to the first interpretation, using in (15) the impedance for the wake potential from the 18 cavities we

find [Z/n] = 46 mΩ, which gives a threshold Nth = 22× 1010, about factor 10 larger than the design value but more
than a factor 6 smaller than the numerical calculation. The real and imaginary parts of the impedance for a single rf
cavity are reported in Fig.’s 6 and 7.

V. BOUSSARD CRITERION FOR A RESONATOR MODEL OF IMPEDANCE

To get a sense of the accuracy of the Boussard estimates (or lack thereof) we consider a simplified model of
impedance (that of a broadband resonator) and make a comparison between the instability thresholds as predicted
by the above formulations of the Boussard criterion and that calculated numerically by solving the Vlasov equation.

The broadband resonator model [3] is defined by the impedance

Zres(k) =
Rs

1 + iQ(kr/k − k/kr)
, (16)
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[Eq. (20)] and no. 2 [Eq. (22)]. Results from macroparticle simulations are courtesy of S. Heifets.

corresponding to a wake potential that vanishes for z > 0 and for z ≤ 0 is

Wres(z) = −cRs
kr

Q
ekrz/2Q

[
cos(k1z) +

sin(k1z)
(4Q2 − 1)1/2

]
(17)

where k1 = kr(1− 1/4Q2)1/2. Stability analysis in the presence of a broadband resonator is best carried out in terms
of the scaled (dimensionless) bunch population [6]

S ≡ Ic
ω0

Rs
Q =

2Nre

γνsσδ0

krRs

QZ0
. (18)

The threshold of instability Sth depends only on the two variables Q and Ω = krσz0. For Q = 1 the instability
threshold Sth is shown in Fig. 5 as a function of Ω as determined from macroparticle simulations (blue dots, [8]) and
the Vlasov solver used in the present study (red squares). The simulations results are contrasted to the prediction of
the Boussard criterion obtained using both the above prescriptions for [Z/n] (the two black curves in the picture).

Specifically from the first prescription we have

[Z/n]res =
Rsσz0

R

∫ ∞

−∞

dte−t2Ω2

√
t2 + Q2(1− t2)2

' √
π

σz0

R

Rs

QΩ
, (19)

where the approximate equality is valid for Ω & 0.5. The corresponding critical Sth is obtained by first inserting (19)
into (14) to obtain Nth and then inserting N = Nth in (18):

Sth =
2Nth

γνsσδ0

krRs

QZ0
=
√

2π
σz0

R

Rs

[Z/n]res
'
√

2QΩ. (20)

Following the second prescription we have

[Z/n]res =
σz0

R

Rs

[1 + Q2(Ω− Ω−1)2]1/2
, (21)

yielding

Sth =
√

2π
[
1 + Q2(Ω− Ω−1)2

]1/2 '
√

2πQΩ, (22)

with the second equality valid for large Ω.
For this resonator model of impedance Fig. 5 shows that the Boussard criterion (in both formulations) gives a

considerably more pessimistic estimate of the instability threshold than the more accurate numerical simulations,
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Observe that wake potential for the single resonator model is not very dissimilar from the wake potential found
for the rf cavities, a leading source of machine impedance for the DRs. We can then try to fit the impedance of the
resonator model against the impedance calculated numerically for a rf cavity. The result from this fit is reported in
Appendix A and yields kr ' 244 m−1 and Q ' 0.8. The parameter Q is not too different from Q = 1 used for the
calculation of Fig. 5 and therefore, as an additional exercise, we can hope to relate the results shown in Fig. 5 to the
numerical calculations of Fig. 4 for the impedance model with rf cavities only (green curve).

From kr ' 244 m−1 and σz0 = 9 mm we obtain Ω = krσz0 ' 2.2. In Fig. 5, Ω ' 2.2 corresponds to a disagreement
of about a factor 11 ∼ 12 between simulations and Boussard’s criterion in formulation no. 1 (extrapolating a bit
beyond the last data point reported).

By contrast, numerical solutions of the Vlasov equation show that the current threshold in the presence of the 18
rf cavities is about a factor 6 larger than the Boussard value (see end of Sec. IV).

This confirms that for wake potentials close in shape to that of a single resonator the Boussard criterion can
exaggerate the impact of collective effects on beam stability by about an order of magnitude.

VI. CONCLUSIONS

Our calculations show that what we believe are the main sources of impedance for the ILC damping rings, namely
the rf cavities, resistive wall and the BPMs, would be responsible for a single-bunch longitudinal instability at about
N = 100 × 1010 part./bunch, i.e. a factor 50 above the design bunch population. This is still an incomplete model
of impedance and, as we have warned, marginal modifications to the profile of the wake potential either due to
components not yet considered or inadequacy of the models used could result in a noticeable impact on the beam
dynamics. However, we argue that the safety margin is sufficiently large to allow for a revision of the choice of
momentum compaction. The momentum compaction for the lattice considered here, α = 4.2 × 10−4, was set to a
fairly conservative large value in response to preliminary and very rough preliminary estimates carried out during the
lattice configuration studies [2] using a value of momentum compaction three times smaller. Those estimates were
inaccurate in two ways: they i) were based on rough models of impedance and ii) made use of the Boussard criterion.
Indeed, one of our goals in this report was to remind ourselves that outside its legitimate range of application the
Boussard criterion can yield a widely inaccurate estimate of the instability. Based on the present results it appears
that a significantly smaller momentum compaction, which would be beneficial for easing the demand on the rf system
in order to maintain an acceptably small bunch length, could be tolerated. Of course, due consideration to other
instabilities (e.g. those triggered by electron cloud) will have to be given before setting new lattice specifications.
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APPENDIX A: APPROXIMATION OF AN RF CAVITY AS A BROAD BAND RESONATOR
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FIG. 6: Fitting of the wake potential of a road band resonator against that of a single rf cavity.
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We report on an attempt to fit the parameters for the resonator impedance model against the numerical calculation
of the rf cavity wake. The fitting was done ‘by eye’, by trying to match the most prominent features of the wake
profile, black curve in Fig. 6. The broadband resonator for the wake shown in the picture (red curve) has parameters
Q = 0.8, kr = 244 m−1, and Rs = 300 Ω. Real and imaginary parts of the impedance are compared to those of the
rf wake in Fig. 7 and Fig. 8.

The [Z/n] factor evaluated for this impedance (Eq. 19) is [Z/n]res = 2.6 mΩ/cavity. By contrast for the numerical
rf wakes (Eq. 15) one finds: [Z/n]rf = 3.0 mΩ/cavity.
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