Lawrence Berkeley National Laboratory Recent Work

Title
THE K+-p INTERACTION AT 455 Mev
\section*{Permalink}
https://escholarship.org/uc/item/0bj758sg

Authors

Stubbs, Theodore F. Bradner, Hugh
Chinowsky, William
et al.
Publication Date
1961-07-11

UNIVERSITY OF CALIFORNIA

Ernest O. Saurence Radiation Saboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

TKE $K^{*}-p$ INTERACTION AT 455 Mev
Theodore F. Stubbs, Hugh Bradner, William Chinowaky, Gerson Coldhaber and Sulamith Coldheber
and
William Slater, Donald M. Stork, and Harold K. Ticho

$$
\text { July 11, } 1961
$$

THE $\mathrm{K}^{+}-\mathrm{p}$ INTERACTICN AT $455 \mathrm{Mev}^{*}$ Theodore F. Stubbs, Hugh Bradner, William Chinowsky, Gerson Goldhaber, and Sulamith Goldhaber Lawrence Radiation Laboratory and Department of phymics University of California, Berkeley, California and

Department of Dhysics Univereity of California, Los Angeles, California

July 11. 1961

We have undertaken a systematic study of the interaction of positive \mathbb{K} mesons with hydrogen and deuterium in the energy interval from 0 to 455 Mev . Some preliminary results have already been reported. In this note we present the results obtained for the elastic and inelagtic $K^{\dagger}-p$ interaction at 455 Mev . Previous investigations of K^{+}intersctions in nuclear emulsion ${ }^{2}$ and propane ${ }^{3}$ have yielded measurements of difforential and total cross sections for the procese $\mathbb{K}^{+}+p \rightarrow \mathbb{K}^{+}+p$ in the energy interval 40 to 300 Mev . The differential cross section at $225 \mathrm{Mev},^{4}$ as well as the total cross aectione in the range $175 \mathrm{Mev}<\mathrm{E}_{\mathrm{K}}<8 \mathrm{Bev}$, have been measured by counter techniques. ${ }^{5,6}$ The features of the $K^{+}-p$ scaftering from 80 to 300 Mev are: (a) the total cross section is approximately 14 mb, varying little, if at all, with energy; and (b) the angular distribution is isotropic.

The Lawrence Radiation Laboratory 15 -inch hydrogen bubble chamber was exposed to a separated beam of K^{\dagger}. mesons produced by the 6 -Bev clrculaking protons of the Bevatron (Fig. 1). The syatem was designed for a momentum of $645 \mathrm{Mev} / \mathrm{c}$. With adjustment of the magnet parameters it was possible fo obtain the higher momentum of $810 \mathrm{Mev} / \mathrm{C}\left(\mathrm{T}_{\mathrm{K}}=455 \mathrm{Mev}\right)$. A mass-resolution curve at $810 \mathrm{Mev} / \mathrm{C}$ for the separation system is shown in Fig. 2. The background of

1ight particles (pione, muons, and electrons) was approximately 10%; the pion component is analyzed in more detail below.

The initial sample of events, chosen to satigfy geometric and incidentmomentum criteria, contained both inelaetic and elastic \mathbb{K}^{\dagger} interactions and also a background of ${ }^{4}$ interactions. Kinematical fitting procedure (with further evidence from estimates of bubble denstity of the secondary trackol provide means of separating the elastic from inclastic interactions with essentially complete cexteinty. The elatic pion acateringe are diatinguishable from K^{+}elastic scatteringe for $\cos \theta_{\pi}^{c m}<0.4$. To determine the total number of pion scatterings, we use the $T^{+}-p$ angular distribution ${ }^{7}$ to evaluate the number of such events in the remaining angular interval $0.4<\cos \theta_{\pi}^{c . m}<0.96$. This number (i.e., 31 events) is then subtracted from the group consistent with K^{+}-p elastic acatterings. The observed number of ${ }^{+}$inelastic interactions (i.e. 29 events) is in agreement with the sum of observed and inferred numbers of \boldsymbol{F}^{+}elastic interactions. The contamination of pion inelastic scatterings in the sample of $\mathrm{K}^{+}-\mathrm{p}$ elastic scatterings is thus negligable. We accepted only those scatterings with cos $\theta_{k} \mathrm{c} \cdot \mathrm{m} .<0.96$ in order to preclude any effecta of low efficiency for detecting amall-angle scattering. We find, then, a cotal of 1320 elastic K^{+}-p scatterings satisfying the above conditions. The total K^{+}path length was determined by chree independent methods: (a) From K^{+}decays into three charged secondaries (316 decays) and the known branching ratio. ${ }^{8} b_{1}=0.061 \pm .002$ for these decay modes; this yields a total path length of $(3.12 \pm .25) \times 10^{6} \mathrm{~cm}$.
(b) From K^{+}decays into one charged secondary with projected angle Gab >27.5 deg. This cutoff angle was introduced in order to avoid possible confusion with $K^{\dagger} p$ scatterings withour observable recoil. The decays included in this sample correspond to a fraction $b_{2}=0.29 \pm .01$ of all K^{+}decays. A total path length of $(2.03 \pm 0.14) \times 10^{6} \mathrm{~cm}$ is obtained by this method.
(c) Erom a direct count of tracks pasing chrough the chamber. After corrections for light-parefcle contamination, decays, and interactions, we obtain a total path length of ${ }^{3}(2.96 .46) \times 10^{6} \mathrm{~cm}$. The weighted average of the path lengths obtained by the shove three methods is $L_{\text {total }}=(2.97 \pm 0.09) \times 10^{6} \mathrm{~cm}$. Correcting for the scanning efficiency for elastic scatteringe $\epsilon_{s}=0.997$, and decays, $\epsilon_{d}=0.994$, and exixapolating the angular distribution (considered as flat) to $\cos \theta_{\mathrm{cm}}=1.0$, we obtain the total elastic gcattering cross ection, at 45545 Mev . o $0=13.0 \pm 0.7$ mb. This cross oction contains some Coulomb effects below cos $\theta_{\mathbb{K}} \mathrm{c} \cdot \mathrm{m} .=0.96$, and is to be compared with the purely nuclear crose sections as deduced from the phose shift analyses below. The error includes the uncertainties in the path-length determinarions and atatistical error in the number of scatterings. For the inelastic K^{+}. p interactions, discussed below, we obtain a cross section of inel $=1.0 \pm 0.2 \mathrm{mb}$. The differential crose section plotied in Fig. 3 whows only a small angular dependence. We analymed the data in terma of s and p wave gcattering for the elastic and rnelasticinteraction.

We can thum write the differential crose section as

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e Q}=\frac{1}{4 k^{2}}\left\{\frac{-i \alpha}{\sin ^{2} \theta / 2} \exp \left(-\cos \sin ^{2} \theta / 2\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\eta_{1} e^{2 i \delta} 11-\left.\eta_{1} \frac{e}{}_{2 i^{1} \delta}^{13}\right|^{2} \sin ^{3} \theta\right\} \tag{1}
\end{align*}
$$

and the inelastic cross section as

$$
\begin{align*}
& c_{\text {inel }}=\frac{\pi}{k^{2}}\left[\left(1 \cdot \eta_{1}^{2}\right)+\left(1-\eta_{1} i^{2}\right)+2\left(1-\eta_{13}^{2}\right)\right] \tag{2}\\
& \text { Here } \quad a=\frac{e^{2}}{\hbar v_{r e l}^{2}}
\end{align*}
$$

θ is the $c . m$. scattering angle, $\hbar k$ the $c . m$. momentum, and. $v_{r e l}$ the relative velocity ${ }^{10} ; \delta_{1}, \delta_{11}$ amd δ_{13} are the $s_{1 / 2}, p_{1 / 2}$, and $p_{3 / 2} T=1$ phase shifts, respectively, and $\eta_{1} \eta_{11}$ and η_{13} correspond to the imaginary part of these phase shifts. For simplicity we have assumed that the inelastic scattering occurs principally in one of the three scattering amplitudes. Solutions for the phase shifts were obtained by setting two of the absorbitive amplitudes η, equal to unity and obtaining the third one from (2). The solutions are rather insensitive as to which phase shift was chosen as complex. In Table I and Fig. 3 we give the solutions corresponding to $\eta_{1}=0.92 \pm 0.2$ and $\eta_{11}=\eta_{13} \equiv 1$.

The results of the phase-shift analyses are given in Table I. There are three sets of phase-shift solutions.

Set A: A dominant s-wave solution. The sign of the $s_{1 / 2}$ phase shift can be seen to be most probably negative in agreement with earlier results at lower energy. ${ }^{4,11}$ Set B: A dominant $p_{1 / 2}$ solution which is the Minami ambiguity corresponding to set A. A unique determination of the sign of δ_{11} from our data is not possible because Coulomb interference here occurs at smaller angles than for solution A. Set C: A combination of $p_{1 / 2}$ and $p_{3 / 2}$ amplitudes such as to reproduce near isotropy with an ambiguity in sign. This is the Fermi Yang ambiguity corresponding to solution B. If we consider the evidence for a repulsive (i.e., positive) nuclear potential from the emulsion data $(2,11)$ whose largest contribution comes from the forward scattering amplitude in the $T=1$ state; vis. V~- Re[. $\left.75 f_{1}(0)+.25 f_{0}(0)\right]$ we can infer the sign of the dominant phase shifts. For reasonable values of $f_{0}(0)$ this would rule out solutions A^{+}, B^{+}and C^{+}.

It should be noted here that for the dominant s-wave and $p_{1 / 2}$-wave solutions corresponding sets were obtained at $225 \mathrm{Mev}{ }^{3}$

Leotropy and little variation of the acatering cross section dominate the K^{+}- p intesaction throughout the energy interval up to 455 Mev . To ascribe the scattering to predominant repulsive -wave interaction even at 455 Mev (Set A^{-}) does imply an anomalously low p-wave interaction. A $p_{1} / 2$ solution (Minami amblguity) can clearly fit an isotropic distribution at any energy. The near constancy of the cross eection, however, over the large energy interval makes a dominant $p_{1 / 2}$ (Set B) or $P_{1 / 2}-p_{3 / 2}$ mixture (Set C) solution rather unlikely. At this point we would tike to emphasize that we have not explored combinatione of s. p_{0} and d waves, which will of course also reproduce the K^{+}- p scattering process. As is well known from the proton-proton interaction, certain combinations of several angular momentum statem can repreduce is otropic and energy-independent differential cross mections over appreciable energy intervale.

As can be seen from the inset in Fig. 3, a precise measurement of the ocattering at small angles can digtinguish between dominant s and dominant p solutions because of the difference in the respectio Coulomb inferference. Similarly, polarization meaeuremente of the recoil proton could determine the presence of a mixture of $p_{1 / 2}$ and $p_{3 / 2}$ amplitudes or possibly higher partial waves. Scattering in the ${ }^{8} 1 / 2$ and in the pure $p_{1 / 2}$ states, respectively, does not give rise to polarization.

Inclatic interactiong of positive K mesone with aingle pion production can proceed via three possible channela. Among the $1 \mathrm{f} \boldsymbol{j}$ inelastic scatferings recorded in the chamber, we observed examplee of all three modes of pion production. Table il summarizes the results.

These examples of Reaction I with subsequent ${ }^{K_{1}}{ }^{0}$ decay are readily identifiable; 25 were observed. For a $K_{1}{ }^{0}$ branching of $2 / 3$ into charged pions, these ovents should represent $1 / 3$ of all K^{0} mesons produced in Reaction 1. If all ambiguoue inelastic scatterings belong to channel ib, the observed ratio is consistent with that expected. In any event it is clear that Reaction 1 dominates strongly. It io intereating to note that if the K and π mesons were produced in a loral isotopic spin state of $T=1 / 2$, the ratio of the rates of Reactions 1 , II. and ill would be 2:1:0, while production of the meson and nucleon in the $T=3 / 2$ state wouid yield at ratio 9:2:1. The data are suggestive of dynamical effect which may be due to an enchancement in the in one of these isotopic spin states.

We wish to thank Professor Luis W. Alvarez and many members of his group for making the 15 -inch bubble chamber and analyzing facilities available to us. We are very grateful for the tireless efforts of the bubble chamber crew and the Bevation crew as well as our own scanning and measuring group, without whose assistance this experiment would not have been possible. We would also like to acknowledge the important contributions of Mr. Thomas O^{\prime} Halloran, and D'ìr. Wonyong Leeê.

FOOTNOTES AND REFERENCES

*This work was done under the auspices of the U. S. Atomic Energy Commisaion.

1. W. Chinowsky, G. Goldhaber, S. Goldhaber, W. Lee, T. O'Ralloran. T. F. Stubbs, W. Slater. D. H. Stork, and H. K. Ticho, in Proceedings of the International Conference on High Energy physics af Rochester, 1960, (Intericience Publishers, New York, 1961). p. \&51.
2. See for instance, J. E. Lannutti, G. Goldhaber, S. Goldhaber, W. W. Chupp, s. Giambuzai, C. Marchi, G. Cuareni, and A. Wataghin, Phye. Rev. 109, 2121 (1058); D. Keefe, A. Kernan, A. Montwill, M. Grilli, L. Guerriero, and G. A. Salandin, Nuovo cimento 12, 241(1959).
3. D. I. Meyer, M. L. Perl, and D. A. Glaser, Phys. Rev. 197, 279 (1957).
4. T.F. Kycia, L. T. Kerth, and R. G. Baender, Phys. Rev. 118, 553 (1960).
5. H. C. Burrowes, D. O. Caldwell, D. H. Erisch, D. A. Hill, D. M. Ritson, and \bar{k}. A. Schluter, Phys. Rev. Letters 2, 117 (1959).
6. G. Von Dardel, D. H. Friach, R. Mermod, R. H. Miburn, P. A. Piroue, M. Vivargent, G. Weber, and K. Winter. Phys. Rev. Letter 5 5, 333 (1960).
7. We have used unpublished date of Peter Newcomb and Wilson F. Powell (Lawrence Radiation Laboratory), on $\pi^{+\quad}$ interactione at $740 \mathrm{Mev} / \mathrm{c}$, it being assumed that this angular distribution is not oignificantly different from that at $812 \mathrm{Mev} / \mathrm{c}$. These data indicate an inelastic cross section approximately 25: of the total. We are grateful to the above authors for permission to use their data in advance of publication.
8. This number is a weighted everage of results quoted by L. B. Okun, Annual Review of Nuclear Science 2, 61(1959), and our own measurements on stopping K^{+}mesons. In both cases the branching ratio obtained for these decay modea was $b_{1}=0.061 \pm 0.003$.
9. The uncertainty in the path length by thio method comes from tibe repro ducibility of the count, the determination of the contamimation, and the statistics of the number of tracks.
10. Fiere $y_{r e l}={ }^{\prime}$ lah of the K meson. This is escentially the relativintic form given by F. Solmita [Phys. Rev. 94, 1799 (1954)] in the small angle region.
11. See ker instance, C. dgo, D. C. Ravenhall, J. J. Tiemamn, W. W. Chupp, G. Goldhaber, S. Goldhaber. J. E. Lannuti, and R. M. Thaler, Phys. Rev. 109, 2133(1958); M. A. Melkanoff. O. R. Prica, D. 转. Seork, and Ki. K. Ticho, Phya. Rev. 113. 1303 (1959); B. Sechi-Zorn and G. T. Zorn, Phys. Rev. 120. 1898 (1960).
12. P. Eberhard, M. Good, and H. K. Ticho. Rev. Sci. Ingtr. 32, 1054 (196f).
13. G. Coldhaber, S. Coldhaber, J. Kadym, T. Stubba, D. H. Stork, and F. K. Ticho, Separated $K^{\$}$ Beam" Lavrence Radiation Laboratory Internal Report Bev-483. Feb. 26, 1960 (unpublished).

Table 1. Phase ghifte for K^{\dagger}-Nucleon scattering at 455 Mev in the $T=1$ gtate (a)

Solution	Phase shifts (deg)			Probabinity from a x^{2} sit	$\sigma_{\text {el }}^{(\mathrm{mb})}$
	δ_{1}	${ }_{11}$	${ }_{13}$		
A^{-}	-47×1	0.5 ± 4.5	1.5 ± 2.5	. 15	12.2*0.4
A^{+}	令9 1	-0.5 21	$0 \leqslant 2$. 01	13.0*0.4
B^{*}	4.54.2	-45.5*1	-2.5 ± 1	. 92	12.6 ± 0.5
B^{+}	-1.5*1.5	46.5 \% 1	4 ± 1	. 73	13.0* 0.5
C^{*}	4.5* 2	14.5 $=1.5$	-28玉1	. 92	$12.5 * 0.5$
c^{+}	-1.5 ± 2	$-13.5 * 1.5$	29*1	. 73	13.0 ± 0.5

[^0](b) This is the nuclear elastic cross aection computed from the reapective phase shiftes leaving out the Coulomb cerms. The errors reflect the errora on the reopective phase shifto.

Inelastic interactions of pogitive K mesons with single pion production can proceed via three possible channele. Among the 102 inclastic scatter recorded in the chamber, we observod examplea of all three modea of pion production. Table II summarizes the reaults.

Table II. Pion production in $K^{+}-p$ Collisions

Channel	Number of Events
1 $\text { (a) } \begin{array}{r} K^{+}+p \rightarrow \\ L_{1}^{0}+\pi^{+}+p \end{array}$	25
(b) $K^{+}+p \rightarrow K^{0}+T^{+}+p$ \square_{2}^{0} or neutral decay of K_{1}^{6}	35
II $\mathrm{K}^{+}+\mathrm{p} \rightarrow \mathrm{E}^{+}+\pi^{0}+\mathrm{p}$	2 全
III $\mathrm{x}^{+}+\mathrm{p} \rightarrow \mathrm{K}^{+}+\mathrm{N}^{+}+\mathrm{n}$	9
Ambiguous - Ib or ML	10
Total ${ }^{(a)}$	102

(a) Included in this number are nine evente also consistent with ip inelastic scatterings.

FIGURE CAPTIONS

Eig. 1. Layout of the geparated K^{\dagger} beam. The beam design was similar to a separated $K^{\prime \prime}$ beam designed earlier (Ref. 12), and is described in detail in Ref. 13. The K^{+}beam from the target (T) is focused by the guadrupole O_{1} onto slit S_{1}. The momentum selection is effected by bending magnet $B M_{1}$, and the subsequeat mass separation by the crosesd electric and magnatic field in opectrometer Sp_{1}. The second state ito essentially a mirror image of the first. The steering magnet SM was introduced for additional freedom in the horizontal plane. $C_{\text {horiz }}$ and $C_{\text {vert }}$ are horizontal and vertical collimators respectively.
Fig. 2. Mass analysis of particles emerging from slot S_{1} in Fig. 1. This curve was obdained by getting spectrometer $\mathbb{S p}_{1}$ to transmit K mesons arid varying the magnetic field in apectrometer Sp_{2}. One thus obtains a mass analysis of particles leaving slit S_{1}. The final operating conditions for Sp_{2} are indicated by the arrow.
Fig. 3. The $K^{+}+\mathrm{H}$ elastic differential cross eection at 455 Mev . The resulta correspond so 1320 scattering events. The curven are computed from the various "best fit" phage shifts as given in Tablel. Sets B^{-}. C^{-}, and $B^{+} C^{+\quad}$ give essentially identical differential cross ection curves. For clarity, only Ser A^{\prime} and Set $B C^{-}$are shown in the main figure. The inget shows the small-angle behavior of all the phase-shift solutions.

[^0]: (a) The solutions given here are computed for $\eta_{1}=0.92 \quad \eta_{11}=\eta_{13}=1$. If we value $\eta_{11}=0.92$ and $\eta_{1}=\eta_{13}=11$ for example Solution A^{-}becomes $6_{1}=-45^{\circ}$ $\delta_{11}=3.5^{\circ} \cdot \delta_{13}=1.5^{\circ}$.

