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Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Patipan Uttayarat§

Department of Physics, University of Cincinnati, Cincinnati, OH 45220 USA and

Department of Physics, Srinakharinwirot University, Wattana, Bangkok 10110 Thailand

Abstract
We perform an isospin analysis of B decays to two pseudoscalars. The analysis extracts appropriate

CKM and short distance loop factors to allow for comparison of non-perturbative QCD effects in the

reduced matrix elements of the amplitudes. In decays where penguin diagrams compete with tree-level

diagrams we find that the reduced matrix elements of the penguin diagrams, which are singlets or doublets

under isospin, are significantly enhanced compared with the triplet and fourplet contributions of the

weak Hamiltonian. This similarity to the ∆I = 1
2 rule in K → ππ decays suggests that, more generally,

processes mediated by Hamiltonians in lower-dimensional isospin representations see enhancement over

higher-dimensional ones in QCD.

I. INTRODUCTION

One of the longstanding puzzles in flavor

physics is the ∆I = 1/2 rule. An isospin-1
2

neu-

tral kaon may decay into two pions in either an

isospin-0 or isospin-2 (s-wave) state with ampli-

tude A0 or A2, respectively. Empirically,

ReA0

ReA2

= 22.5 . (1)

The ∆I = 1/2 rule is the statement that the

amplitude A0, mediated by the part of the weak

Hamiltonian that transforms as an I = 1/2 ten-

sor, is much larger than A2, mediated by the

larger I = 3/2 tensor.

∗ bgrinstein@ucsd.edu
† dcstone@physics.ucsd.edu
‡ david.pirtskhalava@sns.it
§ uttayapn@ucmail.uc.edu

There is no satisfactory understanding of this

rule. In Refs. [1–3] and, more recently, Ref. [4]

the rule was investigated in chiral perturbation

theory, in the large Nc limit. However, it was ar-

gued in Ref. [5] that for QCD, Nc = 3 is not large

enough for this limit to be useful. More recent

studies using Monte Carlo simulations of QCD in

the lattice have addressed the ∆I = 1/2 rule [6];

a very recent study on the lattice of the validity

of the vacuum insertion approximation was done

in [7]. The ratio in (1) is still twice as large as

any values obtained on the lattice with unphys-

ical quark masses, but it is expected that simu-

lations at physical quark masses will reproduce

the empirically observed ratio and shed light on

the origin of the enhancement [8]. This begs the

question– does this enhancement occur in sys-

tems other than the K → ππ system?

There is evidence that answers this question

in the affirmative. Identifying any patterns of
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enhancements will give new insights into the

long distance dynamics of QCD. For example,

the SU(3) analysis of D → KK, ππ decays re-

veals a similar enhancement. In that system, the

D0 → K+K− and D0 → π+π− amplitudes may

be written as [9]

A(D0 → K+K−) = (2T + E − S)Σ

+ 1
2
(3T + 2G+ F − E)∆

A(D0 → π+π−) = −(2T + E − S)Σ

+ 1
2
(3T + 2G+ F − E)∆

where Σ ≡ 1
2
(V ∗csVus − V ∗cdVud) and ∆ ≡

1
2
(V ∗csVus + V ∗cdVud). S, E and F are the invari-

ant matrix elements between a D meson and a

meson pair in an octet of the 6̄, 15 and 3 compo-

nents of the weak Hamiltonian, respectively, G

of the 3 to a singlet pair and T of the 15 to a me-

son pair in the 27. Note that Σ ≈ λ = sin θC ,

while |∆| ∼ λ5, so that |∆|/Σ ∼ 10−3. Ne-

glecting ∆ one would have Γ(D0 → K+K−) =

Γ(D0 → π+π−) in the SU(3) limit. Experimen-

tally Γ(D0 → K+K−)/Γ(D0 → π+π−) ≈ 3 re-

quires both the Σ and ∆ terms in the ampli-

tude to contribute with similar strengths. Bar-

ring accidental cancellations this means that the

matrix elements G and F are significantly en-

hanced. Since ∆ has a large phase, significant

CP-violation in these decays was predicted [10]

and recently confirmed by experiment [11–13].

If SU(3)-breaking effects are included, the ra-

tio Γ(D0 → K+K−)/Γ(D0 → π+π−) ≈ 3 can be

attained with only a “mild” enhancement of F

and G relative to the other reduced matrix ele-

ments of about an order of magnitude [14–19].

The enhancement in F and G is similar to that

of the ∆I = 1/2 rule in that it appears in matrix

elements of the smallest SU(3)-representation

of the Hamiltonian. In this case, the domi-

nant contributions are from the 3 Hamiltonian

(as opposed to the 6̄ and 15), whereas for the

∆I = 1/2 rule the dominant piece is from the

I = 1/2 Hamiltonian (as opposed to the I = 3/2

piece).

In this work we investigate the possibility of

similar enhancements in B decays. We will show

that an isospin analysis of B → Kπ decays and

CP-asymmetries shows a marked enhancement

of amplitudes mediated by the weak Hamilto-

nian in the lowest isospin representation. An

analysis of B → ππ decays shows that, although

there is little enhancement of doublet versus

fourplet amplitudes, the matrix elements of pen-

guin contributions (which are purely ∆I = 1/2)

are still enhanced to produce the observed data.

Both these analyses support the general rule

that amplitudes mediated by the piece of the

weak Hamiltonian in the smallest representation

of the symmetry group are enhanced.

It should go without saying that we have

no dynamical explanation of the enhancement.

This comes as no surprise, since the very ∆I =

1/2 rule has resisted explanation for more than

a half century. But we hope that insights pro-

vided by this new, generalized rule may even-

tually lead to a global understanding of these

enhancements.

II. ISOSPIN ANALYSIS

The strong interactions, to a good approx-

imation, obey isospin symmetry. In hadronic

spectra and decays isospin violating effects are

no larger than a few per cent. We study the

amplitudes for the decay of B-mesons to two

light scalar mesons using isospin symmetry, un-

der which kaons and B-mesons transform as

doublets and pions as a triplet. The possible

two-body final states are easily classified ac-

cording to their transformation properties un-

der isospin. We also need the transformation

properties of the effective Hamiltonian responsi-

ble for the weak decay. The effective Hamilto-

nian is given in terms of four-quark operators,

whose transformation properties are readily de-
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termined.

A. B → Kπ

The effective Hamiltonian density for the

∆B = −1, ∆S = −1 decays, to leading order in

the Fermi constant GF , can be written as [20, 21]

H =
GF√

2

[
λu (C1Q1 + C2Q2)− λt

6∑
i=3

CiQi

]
.

(2)

Here λq ≡ V ∗qbVqs are CKM factors and Ci’s are

the Wilson coefficients. The “tree” (Q1,2) and

“penguin” (Q3−6) operators are defined as

Q1 =
(
b̄aub

)
V−A (ūbsa)V−A ,

Q2 =
(
b̄u
)
V−A (ūs)V−A ,

Q3 =
(
b̄s
)
V−A

∑
q=u,d

(q̄q)V−A ,

Q4 =
(
b̄asb

)
V−A

∑
q=u,d

(q̄bqa)V−A ,

Q5 =
(
b̄s
)
V−A

∑
q=u,d

(q̄q)V+A ,

Q6 =
(
b̄asb

)
V−A

∑
q=u,d

(q̄bqa)V+A (3)

where (q̄q)V±A is shorthand for q̄γµ(1 ± γ5)q.

Both the coefficients Ci and the matrix elements

of the operators Qi depend on an arbitrary

renormalization point µ but their combination

in the Hamiltonian, Eq. (2), is µ-independent.

QCD-penguins arising from u and c quark loops

combine into terms precisely of the form of top-

quark penguins, since λc + λu = −λt. We have

also neglected electroweak penguins (EWP), op-

erators Q7−10 in Ref. [20]. These introduce

new isospin triplets into the Hamiltonian with

a λt coefficient, suppressed relative to the top-

penguins by α/αs. We have ignored EWP con-

tributions out of pragmatism: were we to in-

clude their effects in our fits the number of un-

known matrix elements would exceed the num-

ber of measured data. But our pragmatism is

informed: the coefficients of EWP in the effec-

tive Hamiltonian are suppressed relative to QCD

penguins roughly by a factor of α/αs, or about

7% if evaluated at µ = MZ and smaller at mb.

As will become evident, the approximation is

supported by the very good fit of the model to

both B → Kπ and B → ππ processes.

As far as the group theory analysis of rates

and CP asymmetries is concerned, different four-

quark operators contributing to the Hamiltonian

can be distinguished solely by their isospin quan-

tum numbers and CKM factors. The Hamilto-

nian can therefore be compactly written in terms

of the isospin representations in the following

way:

H = V ∗ubVus
(
1 + [3]11

)
+
αs
8π

V ∗tbVts 1′ , (4)

where 1 (1′) denotes the singlet coming from

the tree (penguin) operators, [3]11 represents the

triplet operator, and αs the strong coupling con-

stant evaluated at MZ . We choose to normalize

the singlet penguin operator with an agnostic

factor of αs/(8π) to make explicit the loop factor

associated with it. This normalization does not

affect the results of this paper, but it is a useful

choice that, näıvely, would give reduced matrix

element values of the same order of magnitude

for every contribution. We introduce shorthand

for the reduced matrix elements, as follows:

〈2̄|1|B〉 ≡ Pb, 〈2̄|1′|B〉 ≡ Pa,

〈2̄|3|B〉 ≡ T, 〈4̄|3|B〉 ≡ S . (5)

While we cannot compute Pa, Pb, S and T from

first principles, we can determine them by fitting

to experimental measurements of decay rates

and CP asymmetries.

In terms of the reduced matrix elements in

Eq. (5), the isospin decomposition of the decay

3



Mode B (10−6) ACP Cf Sf

B+ → K+π0 12.9± 0.5 0.037± 0.021 – –

B+ → K0π+ 23.8± 0.7 −0.014± 0.019 – –

B0
d → K0π0 9.9± 0.5 – 0.00± 0.13 0.58± 0.17

B0
d → K+π− 19.6± 0.5 −0.087± 0.008 – –

TABLE I: Data available in B → Kπ decays [22]. The C and S parameters are measured for

decays into the final CP eigenstate, B0
d → K0

sπ0. The amplitude for B0
d → K0π0 on the other

hand is given as A(B0
d → K0π0) =

√
2 A(B0

d → K0
sπ

0).

amplitudes is

A(B+ → K+π0) = V ∗ubVus
1√
2

(Pb + T + 2S)

+
αs
8π

V ∗tbVts
Pa√

2
,

A(B+ → K0π+) = V ∗ubVus (Pb + T − S)

+
αs
8π

V ∗tbVts Pa ,

A(B0 → K0π0) = V ∗ubVus
1√
2

(−Pb + T + 2S)

− αs
8π

V ∗tbVts
Pa√

2
,

A(B0 → K+π−) = V ∗ubVus (Pb − T + S)

+
αs
8π

V ∗tbVts Pa . (6)

There is a contribution proportional to V ∗ubVus to

the amplitude A (B+ → K0π+). The only con-

tribution to this process stems from the annihi-

lation diagram, shown in Fig. 1. There is ex-

tensive literature on annihilation diagram sup-

pression with respect to W -emission diagrams

[23, 24]. To evaluate this expectation, denote the

matrix element associated with the annihilation

diagram by M ≡ Pb+T −S and let |M | = x|Pa|
so that x measures the relative importance of

annihilation in comparison to the top-loop pen-

guin. The value of x for which the annihilation

and penguin contributions to B+ → K0π+ are

of the same order can be estimated as

x =
αs
8π

∣∣∣∣ V ∗tbVtsV ∗ubVus

∣∣∣∣ ' 0.24 . (7)

B+

K0

π+

FIG. 1: Leading order diagram contributing to

the B+ → K0π+ process.

Results of the fit

The available decay data for B → Kπ are

collected in Table I; the observables are defined

in Appendix A. Performing a χ2 fit of matrix

elements in Eq. (6) to the data, we find val-

ues for the matrix elements that match the ob-

served data with a 95% confidence level. These

minima are illustrated with 68% and 95% confi-

dence levels in the |Pa| vs. |Pb| and |Pa| vs. |T |
planes, respectively, in Fig. 2. The best fit has

{|Pa|, |Pb|, |T |, |S|} ' {0.237, 7.2× 10−3, 8.4×
10−3, 2.2 × 10−3} MeV with a chi-squared of

χ2 = 1.70 for two degrees of freedom (a com-

mon phase in the reduced matrix elements is

unobservable). The ∆I = 0 contribution to the

amplitudes, from the Hamiltonian in the singlet

representation, is given by the quantity

a∆I=0 = Pb +
αs
8π

V ∗tbVts
V ∗ubVus

Pa (8)

and the ∆I = 1 contribution, from the triplet

Hamiltonian, by

a∆I=1 = {T + 2S, T − S}. (9)

4



(a) (b)

FIG. 2: Fit to data of the reduced matrix elements for B → Kπ. The figures show the 68%

(green) and 95% (yellow) CL regions in the |Pa| vs |Pb| and |Pa| vs |T | planes. The raggedness of

the contours is an artifact of the numerical computation.

for (B+ → K+π0, B0 → K0π+) and

(B+ → K0π+, B0 → K+π−) respectively.

For the best fit then, we find∣∣∣∣a∆I=0

a∆I=1

∣∣∣∣ = {4.8, 9.9} (10)

which is reminiscent of the ∆I = 1
2

rule from

K → ππ decays.

A second, slightly higher χ2-minimum has

{|Pa|, |Pb|, |T |, |S|} ' {0.075, 0.052, 7.3 ×
10−3, 2.4 × 10−3} MeV with a chi-squared of

χ2 = 1.80 and∣∣∣∣a∆I=0

a∆I=1

∣∣∣∣ = {5.2, 12.6} . (11)

Both of these minima have significant en-

hancement of the penguin singlet, Pa, over the

triplet matrix elements, T and S. In the best fit

case, however, the other singlet matrix element,

Pb, does not show significant enhancement over

the triplet matrix elements. Consequently, the

annihilation diagram contribution is negligible

in the best fit (|M | = 0.013 MeV or, equiva-

lently, x = |M/Pa| = 0.055, to be compared

with Eq. (7)) but provides a larger contribution

than that of the penguin diagram in the second

best fit (where |M | = 0.055 MeV or, equiva-

lently, x = 0.732).

For completeness we note that there are two

additional minima corresponding to χ2 = 3.04

and 4.34. These two minima are less favorable,

so we ignore them in the rest of our study.

In all but the least favored minimum, there is

significant enhancement of |Pa| over the triplet

Hamiltonian matrix elements. Moreover, the to-

tal contribution from the ∆I = 0 Hamiltonian,

a∆I=0, enjoys an enhancement over the ∆I = 1

contribution, a∆I=1. More precise data will be

welcomed to distinguish between these minima,

which would also decide the role of the annihi-

lation diagram in these decays.
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(a) (b)

FIG. 3: Fit to data of the reduced matrix elements for B → ππ. The figures show the 68%

(green) and 95% (yellow) CL regions in the |Qπa| vs |Qπb| and |Qπa| vs |U | planes. The

raggedness of the contours is an artifact of the numerical computation.

B. B → ππ

The isospin analysis for ππ final states is anal-

ogous to that for K decays, where the ∆I = 1
2

rule was discovered. Operator contributions are

of the form in (3), but for ∆S = 0 processes.

The Hamiltonian decomposes under isospin as

2̄× 2× 2̄ = 2̄ + 2̄ + 4̄ so that

H = V ∗ubVud
(
[2̄]2 + [4̄]12

1

)
+
αs
8π

V ∗tbVts [2̄′]2 ,

(12)

The final states transform as (3×3)S = 1+5, so

the non-vanishing reduced matrix elements are

〈1|2′|B〉 = Qπa, 〈1|2|B〉 = Qπb, 〈5|4|B〉 = U

(13)

and the decay amplitudes relevant to the pro-

cesses in Table II are

A(B+ → π+π0) =

√
3

2
V ∗ubVud U ,

A(B0 → π0π0) = V ∗ubVud
1√
3

(
Qπb −

√
2U
)

+
αs
8π

V ∗tbVtd
1√
3
Qπa ,

A(B0 → π+π−) = V ∗ubVud
1√
3

(√
2Qπb + U

)
+
αs
8π

V ∗tbVtd

√
2

3
Qπa . (14)

Results of the fit

The data available in this decay channel are

listed in Table II. We perform a χ2-fit of the

model, Eq. (14), to the data. The result of the

fit is illustrated with 68% (green) and 95% (yel-

low) CL regions in the |Qπa| vs |Qπb| and |Qπa| vs

|U | planes, respectively, in Fig. 3. For the best

fit to the data we obtain {|Qπa|, |Qπb|, |U |} '
{0.35, 8.8× 10−3, 5.8× 10−3} MeV with a chi-

squared of χ2 ' 1.39 for 2 degrees of freedom.

Two additional regions with a good fit to the

data are found, one with {|Qπa|, |Qπb|, |U |} '

6



Mode B (10−6) ACP Cf Sf

B+ → π+π0 5.5± 0.4 0.03± 0.04 – –

B0 → π0π0 1.91±0.22 – −0.43± 0.24 –

B0 → π+π− 5.12± 0.19 – −0.38± 0.15 −0.65± 0.07

TABLE II: Data available in B → ππ decays from Ref [22].

{0.82, 3.9 × 10−3, 5.8 × 10−3} MeV for a chi-

squared of χ2 ' 2.07 and the other with

{|Qπa|, |Qπb|, |U |} ' {0.82, 7.7 × 10−3, 5.8 ×
10−3} MeV for a chi-squared of χ2 ' 3.38. Since

the last minimum is less favorable, we will ignore

it. The contribution to the amplitudes from the

Hamiltonian in the doublet representation is

a∆I=1/2 = Qπb +
αs
8π

V ∗tbVtd
V ∗ubVud

Qπa (15)

and from the fourplet Hamiltonian

a∆I=3/2 = U. (16)

We find no enhancement of the ∆I = 1/2 ampli-

tude with respect to the ∆I = 3/2 amplitude.

To wit, for the best fits (next favorable mini-

mum) we find∣∣∣∣a∆I=1/2

a∆I=3/2

∣∣∣∣ = 1.04 (1.05). (17)

There is little enhancement of the reduced ma-

trix element corresponding to the tree-level dou-

blet Hamiltonian, Qπb, with respect to the tree-

level quadruplet U . However, the large enhance-

ment of the penguin doublet reduced matrix el-

ement Qπa over U is analogous to that in the

K → ππ decays, which has identical isospin

analysis to the B → ππ case. That a similar

enhancement exists in the B system —both in

Kπ and ππ final states— is striking, and cries

out for a dynamical explanation of the role of

flavor symmetries in these enhancements.

C. B → KK

At leading order, decays of B mesons to kaons

proceed via the ∆S = 0 Hamiltonian in (12).

The K (K̄) transforms as a 2 (2̄) under isospin,

so the final states decompose under isospin as

2× 2̄ = 1 + 3.

The reduced matrix elements are then

〈1|2(′)|B〉, 〈3|2(′)|B〉 and 〈3|4|B〉, giving nine

parameters to accommodate the seven data en-

tries listed in Table III. Even with a measure-

ment of C and S in B0 → K+K− in hand the

matrix elements could not be determined unam-

biguously, but with precise KK data it may be

possible to distinguish the physical solution from

others.

III. SHORT DISTANCE QCD EFFECTS

How much of the enhancement in the lower

dimensional isospin representation matrix ele-

ments can be attributed to computable short

distance QCD effects? Comparing the effective

Hamiltonian in Eq. (2) against the decay ampli-

tudes in Eq. (6), we see that

αs
8π
Pa = 〈Kπ|

6∑
i=3

Ci(mb)Qi|B〉

= |C6(mb)|〈2|1′|2〉.
(18)

Our analysis cannot yield information about the

matrix elements of each of the operators Q3,...,6.

The last step in (18) defines the matrix element

of the sum of the operators, 〈2|1′|2〉, after ex-

tracting the magnitude of the largest Wilson co-

efficient, |C6|.

7



Mode B (10−6) ACP Cf Sf

B+ → K+K
0

1.19± 0.18 0.04± 0.14 – –

B0 → K+K− 0.13± 0.05 – – –

B0 → K0K
0

1.21± 0.16 −0.6± 0.7 0.0± 0.4 −0.8± 0.5

TABLE III: Data available in B → KK̄ decays [22].

Similarly we can define

Pb = 〈Kπ|
∑
i=1,2

Ci(mb)Qi|B〉 = C−(mb)〈2|1|2〉,

T = 〈Kπ|
∑
i=1,2

Ci(mb)Q−|B〉 = C−(mb)〈2|3|2〉,

S = 〈Kπ|
∑
i=1,2

Ci(mb)Q−|B〉 = C−(mb)〈4|3|2〉,

(19)

where C± = C1 ± C2 and Q± = Q1 ± Q2. The

Q± operators do not have definite isospin. How-

ever, for the B → ππ case the corresponding

operator Q− is pure ∆I = 1/2, so using the Q±
basis is natural. Moreover, at 1-loop the opera-

tors Q± do not mix among themselves. Hence,

to estimate the matrix elements of the “tree” op-

erators we have extracted the coefficient C−. In

any case, since C± are of order 1, this introduces

little bias in our analysis.

For our analysis we take the numerical value

of Wilson coefficients at NLO in the NDR

scheme for Λ
(5)

M̄S
= 225 MeV from table 8 of [20].

We find that, for matrix elements from our best

fit,

|〈2|1′|2〉| ≈ 0.028 MeV,

|〈2|1|2〉| ≈ 0.006 MeV,

|〈2|3|2〉| ≈ 0.007 MeV,

|〈4|3|2〉| ≈ 0.002 MeV.
(20)

while for the secondary χ2 minimum

|〈2|1′|2〉| ≈ 0.009 MeV,

|〈2|1|2〉| ≈ 0.041 MeV,

|〈2|3|2〉| ≈ 0.006 MeV,

|〈4|3|2〉| ≈ 0.002 MeV.
(21)

The ∆I = 0 enhancement for both of these sets

of matrix elements, Eqs. (10) and (11), corre-

sponds to an enhancement of one or the other

singlet matrix element relative to the largest

triplet by a factor of between 4 and 7.

An analogous analysis can be performed for

B → ππ decays. We define

αs
8π
Qπa = 〈ππ|

6∑
i=3

Ci(mb)Qi|B〉

= |C6(mb)|〈1|2′|2〉.

Qπb = 〈ππ|
∑
i=1,2

Ci(mb)Qi|B〉 = C−(mb)〈1|2|2〉,

U = 〈ππ|C+(mb)Q+|B〉 = C+(mb)〈5|4|2〉,
(22)

The matrix element of the operator Q+ can be

determined because it is the only “tree” contri-

bution to a ∆I = 3/2 transition. We find that,

for matrix elements from our best fit,

|〈1|2′|2〉| ≈ 0.040 MeV, |〈1|2|2〉| ≈ 0.007 MeV,

|〈5|4|2〉| ≈ 0.006 MeV,
(23)

while for the secondary χ2 minimum

|〈1|2′|2〉| ≈ 0.094 MeV, |〈1|2|2〉| ≈ 0.003 MeV,

|〈5|4|2〉| ≈ 0.006 MeV .
(24)

IV. DISCUSSION AND CONCLUSIONS

There is a striking consistency in the reduced

matrix element enhancement that persists in

the B decay channels studied. As suggested

at the end of Section II B, this may be indica-

tive of the importance of flavor symmetries in

non-perturbative regimes in QCD, or perhaps in

8



new physics contributions (note we have only as-

sumed the quark model, CKM parametrization,

etc. of the Standard Model). The enhancement

of matrix elements with effective Hamiltonians

in lower-dimensional isospin representations is

only present when penguin diagrams can com-

pete against tree level weak exchanges, which

are also the processes where CP violation is pre-

dicted at lowest order. These are the B → Kπ

and B → ππ channels in this work.

In our estimates for hadronic matrix elements

in Eqs. (20), (23) and (24), but not (21), it is

the penguin contributions to the lowest isospin

change operator (∆I = 0 for B → Kπ and

∆I = 1/2 for B → ππ), rather than both pen-

guin and tree contributions, that are enhanced.

While we cannot select among the fits a priori,

in the best fits for both B → Kπ and B → ππ

the penguin dominates the total enhancement,

giving a factor of between 4 and 7. The pre-

cise value of the enhancement is immaterial: we

have made plausible assumptions to remove the

short distance QCD effects, but we don’t have

the means to do this precisely and unambigu-

ously. Moreover, the matrix elements Pa, . . . , U

are defined with convenient factors of
√

2 and√
3 which further adds to the ambiguity. But the

enhancement of amplitudes, Eqs. (10) (or (11)),

is unambiguous. Comparable enhancements in

the penguin matrix elements for B → Kπ and

B → ππ lead to a significant amplitude enhance-

ment in B → Kπ but very little enhancement in

B → ππ, but only because the latter is CKM-

suppressed relative to the former.
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Appendix A: Relevant Observables in B

Decays

Here we review the definition of various decay

observables employed in our analysis. We will

follow the convention of Ref. [22]. We denote

an amplitude for the B-meson, B, decaying to

final state f by Af . The CP-conjugated decay

is denoted by Af̄ . Since we are interested in the

s-wave 2-body decay of the B, the partial decay

width is given by

Γf =
1

8π

p∗
m2
B

|Af |2 (A1)

where p∗ is the magnitude of the 3-momentum

of one of the daughter particles. The branching

ratio, B, can then be computed from the above

partial width.

We are also interested in the CP-violating

properties of the decays. For decays of charged

Bs we can define the direct CP-violation as

ACP ≡
|Af̄ |2 − |Af |2

|Af̄ |2 + |Af |2
. (A2)

In the case of the neutral B0 decay where the

final state f is common to both B0 and B
0

de-

cays, we have to take into account B0−B0
mix-

ing in defining CP-violating parameters. This

occurs when f is a CP eigenstate, i.e. f̄ = ±f .

The two CP-violating parameters can be defined

as [25]

Cf ≡
1− |λf |2

1 + |λf |2
, Sf ≡

2Im(λf )

1 + |λf |2
, (A3)

where

λf =
V ∗tbVtd
VtbV ∗td

Af
Af

. (A4)

In case of B0 → K0π0 decay, neutral kaon mix-

ing contributes an extra factor of −V ∗cdVcs/VcdV ∗cs
in the definition of λf .

9



[1] W. A. Bardeen, A. Buras, and J. Gerard,

Phys.Lett. B180, 133 (1986).

[2] W. A. Bardeen, A. Buras, and J. Gerard,

Nucl.Phys. B293, 787 (1987).

[3] W. A. Bardeen, A. Buras, and J. Gerard,

Phys.Lett. B192, 138 (1987).

[4] A. J. Buras, J.-M. Gerard, and W. A. Bardeen,

(2014), arXiv:1401.1385 [hep-ph].

[5] R. S. Chivukula, J. Flynn, and H. Georgi,

Phys.Lett. B171, 453 (1986).

[6] T. Blum, P. Boyle, N. Christ, N. Garron,

E. Goode, et al., Phys.Rev.Lett. 108, 141601

(2012), arXiv:1111.1699 [hep-lat].

[7] N. Carrasco, V. Lubicz, and L. Silvestrini,

(2013), arXiv:1312.6691 [hep-lat].

[8] P. Boyle et al. (RBC Collaboration, UKQCD

Collaboration), Phys.Rev.Lett. 110, 152001

(2013), arXiv:1212.1474 [hep-lat].

[9] C. Quigg, Z.Phys. C4, 55 (1980).

[10] M. Golden and B. Grinstein, Phys.Lett. B222,

501 (1989).

[11] T. Aaltonen et al. (CDF Collabora-

tion), Phys.Rev. D85, 012009 (2012),

arXiv:1111.5023 [hep-ex].

[12] T. Aaltonen et al. (CDF Collabora-

tion), Phys.Rev.Lett. 109, 111801 (2012),

arXiv:1207.2158 [hep-ex].

[13] R. Aaij et al. (LHCb collaboration), (2013),

arXiv:1310.4740 [hep-ex].

[14] D. Pirtskhalava and P. Uttayarat, Phys.Lett.

B712, 81 (2012), arXiv:1112.5451 [hep-ph].

[15] B. Bhattacharya, M. Gronau, and J. L.

Rosner, Phys.Rev. D85, 054014 (2012),

arXiv:1201.2351 [hep-ph].

[16] T. Feldmann, S. Nandi, and A. Soni, JHEP

1206, 007 (2012), arXiv:1202.3795 [hep-ph].

[17] J. Brod, Y. Grossman, A. L. Kagan, and J. Zu-

pan, JHEP 1210, 161 (2012), arXiv:1203.6659

[hep-ph].

[18] H.-Y. Cheng and C.-W. Chiang, Phys.Rev.

D86, 014014 (2012), arXiv:1205.0580 [hep-ph].

[19] G. Hiller, M. Jung, and S. Schacht, Phys.Rev.

D87, 014024 (2013), arXiv:1211.3734 [hep-ph].

[20] A. J. Buras, (1998), arXiv:hep-ph/9806471

[hep-ph].

[21] G. Buchalla, A. J. Buras, and M. E. Laut-

enbacher, Rev.Mod.Phys. 68, 1125 (1996),

arXiv:hep-ph/9512380 [hep-ph].

[22] J. Beringer et al. (Particle Data Group),

Phys.Rev. D86, 010001 (2012).

[23] L.-L. Chau, H.-Y. Cheng, W. Sze, H. Yao, and

B. Tseng, Phys.Rev. D43, 2176 (1991).

[24] M. Gronau, J. L. Rosner, and D. Lon-

don, Phys.Rev.Lett. 73, 21 (1994), arXiv:hep-

ph/9404282 [hep-ph].

[25] Here we ignore the effect of CP-violation in

B0 −B0
mixing which is less than 1%.

10

http://dx.doi.org/10.1016/0370-2693(86)90150-4
http://dx.doi.org/10.1016/0550-3213(87)90091-5
http://dx.doi.org/10.1016/0370-2693(87)91156-7
http://arxiv.org/abs/1401.1385
http://dx.doi.org/10.1016/0370-2693(86)91438-3
http://dx.doi.org/ 10.1103/PhysRevLett.108.141601
http://dx.doi.org/ 10.1103/PhysRevLett.108.141601
http://arxiv.org/abs/1111.1699
http://arxiv.org/abs/1312.6691
http://dx.doi.org/10.1103/PhysRevLett.110.152001
http://dx.doi.org/10.1103/PhysRevLett.110.152001
http://arxiv.org/abs/1212.1474
http://dx.doi.org/10.1007/BF01477308
http://dx.doi.org/10.1016/0370-2693(89)90353-5
http://dx.doi.org/10.1016/0370-2693(89)90353-5
http://dx.doi.org/10.1103/PhysRevD.85.012009
http://arxiv.org/abs/1111.5023
http://dx.doi.org/10.1103/PhysRevLett.109.111801
http://arxiv.org/abs/1207.2158
http://arxiv.org/abs/1310.4740
http://dx.doi.org/10.1016/j.physletb.2012.04.039
http://dx.doi.org/10.1016/j.physletb.2012.04.039
http://arxiv.org/abs/1112.5451
http://dx.doi.org/10.1103/PhysRevD.85.079901, 10.1103/PhysRevD.85.054014
http://arxiv.org/abs/1201.2351
http://dx.doi.org/10.1007/JHEP06(2012)007
http://dx.doi.org/10.1007/JHEP06(2012)007
http://arxiv.org/abs/1202.3795
http://dx.doi.org/10.1007/JHEP10(2012)161
http://arxiv.org/abs/1203.6659
http://arxiv.org/abs/1203.6659
http://dx.doi.org/10.1103/PhysRevD.86.014014
http://dx.doi.org/10.1103/PhysRevD.86.014014
http://arxiv.org/abs/1205.0580
http://dx.doi.org/10.1103/PhysRevD.87.014024
http://dx.doi.org/10.1103/PhysRevD.87.014024
http://arxiv.org/abs/1211.3734
http://arxiv.org/abs/hep-ph/9806471
http://arxiv.org/abs/hep-ph/9806471
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://arxiv.org/abs/hep-ph/9512380
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/ 10.1103/PhysRevD.43.2176, 10.1103/PhysRevD.58.019902
http://dx.doi.org/10.1103/PhysRevLett.73.21
http://arxiv.org/abs/hep-ph/9404282
http://arxiv.org/abs/hep-ph/9404282

	B decays to two pseudoscalars and a generalized I = 12 rule
	Abstract
	I Introduction
	II Isospin analysis
	A BK
	 Results of the fit
	B B 
	 Results of the fit
	C B KK

	III Short distance QCD effects
	IV Discussion and Conclusions
	 Acknowledgments
	A Relevant Observables in B Decays
	 References




