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Abstract

Data-driven Methods for Evaluating the Perceptual Quality and Authenticity of Visual Media

by

Ekta Prashnani

Data-driven approaches, especially those that leverage deep learning (DL), have led to signif-

icant progress for many important problems in computer vision and image/video processing

over the last decade – fueled by the availability of large-scale training datasets. Typically, for

supervised DL tasks that assess the unambiguous aspects of visual media – such as classifying

an object in an image, recognizing an activity in a video – large-scale datasets can be reli-

ably captured with human-provided labels specifying the expected right answer. In contrast,

an important class of perceptual tasks deserves special attention: assessing the different as-

pects of the quality and authenticity of visual media. DL for these tasks can enable widespread

downstream applications. However, the subjective nature of these tasks makes it difficult to

capture unambiguous and consistent large-scale human-annotated training data. This poses an

interesting challenge in terms of designing DL-based methods for such perceptual tasks with

noisy/limited training data – which is the focus of this dissertation. We first explore DL for

perceptually-consistent image error assessment, where we want to predict the perceived error

between a reference and a distorted image. We begin by addressing the limitations of existing

training datasets: we deploy a novel, noise-robust scheme to label our proposed large-scale

dataset which is based on pairwise visual preference to reliably capture the human percep-

tion of visual error. We then design a learning framework to leverage this dataset and obtain

state-of-the-art results in perceptual image-error prediction. Perceptual metrics have been vi-

tal to the advancement of deep generative models for images and videos – which, although

promising, also poses a looming societal threat (e.g., in the form of malicious deepfakes). In a
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separate chapter, we therefore explore a complementary question: given a high-quality video

without any human-perceivable artifacts, can we predict whether it is authentic? Within this

context, we specifically focus on robust deepfake detection using domain-invariant, general-

izable, input features. Lastly, we find that for certain perceptual tasks, such as modeling the

visual saliency of a stimulus, the only way to overcome the ambiguity/noise in the training

data is to query more humans, e.g., using a gaze tracker. This tends to be onerous - especially

for video-based stimuli. Hence, most existing datasets are limited in their accuracy. Consid-

ering that noise-robust dataset capture in this case can often be impossible, we design a noise-

aware training paradigm for video and image saliency prediction that prevents overfitting to

the noise in the training data and shows consistent improvement compared to traditional train-

ing schemes. Further, since the existing video-saliency datasets do not capture video-specific

aspects such as temporally evolving content, we design a novel videogame-based saliency

dataset with temporally-evolving semantics and multiple attractors of human attention. Over-

all, through this dissertation, we make critical strides towards robust DL for visual perceptual

tasks related to visual quality and authenticity assessment.
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Chapter 1

Introduction

Visual media, such as images and videos, are indispensable for effective communication, enter-

tainment, education, and creative expression. To facilitate a satisfactory perceptual experience

for the end-users, accurately quantifying the different aspects of visual quality consistent with

human visual perception is a vital, and actively-researched, problem for systems that capture,

generate, or transmit such media. Unlike many computer vision and image/video processing

problems that have a well-defined expected outcome (e.g. detecting an object in an image),

designing models to automatically quantify the visual quality aspects of images/videos is in-

herently ambiguous because the human opinions for these can be divergent. Consequently, the

accuracy of the existing datasets that aim to capture the human perception of visual quality in

their ground-truth labels (such as by recording humans rating for the quality of an image) and

that of the data-driven models that leverage such datasets for training is limited. In this dis-

sertation, we rethink some of the traditional practices: instead of expecting consistent human-

provided labels for the quality-evaluation tasks, we propose to leverage the degree of consensus

between human responses as a key feature to design novel datasets and/or training schemes for

the data-driven models. We want to use the divergent human responses for such tasks to our

advantage, instead of being limited by their inconsistencies, in a few different ways: we avoid
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Introduction Chapter 1

noise-prone human-opinion-based labeling schemes in favor of capturing probabilistic labels

for human visual preference, we design novel training frameworks to leverage human consen-

sus, and we incorporate the level of reliability of the human-provided data to robustly train

a model. Overall, we explore three problems related to visual perceptual quality evaluation

in this work: perceptually consistent image error prediction, visual saliency prediction, and

deepfake detection. We now briefly introduce the specific perceptual quality evaluation tasks

considered in this work, and highlight our contributions.

The term “quality” for visual media can encompass a broad range of factors such as aes-

thetics [1,2], scene composition [3], level of distortion [4] or visual saliency [5]. In this thesis,

we focus on two fundamental aspects that are ubiquitously applied for improving the percep-

tual experience of visual media. First, we want to design a perceptually-consistent method to

predict the perceived error of a distorted image when compared to a pristine reference. We

show how relaxing the dependence on human opinion-based labels, and instead leveraging the

level of consensus within a population using our novel learning framework and dataset can sig-

nificantly benefit data-driven models for this task. Second, we want to accurately predict visual

saliency in a video or an image (i.e., the probability that a given region in a video frame/image

will attract human visual attention). Perceptual metrics have been vital to the advancement of

deep generative models for images and videos aiming to create realistic-looking artificial visual

content with no human-perceptible artifacts (a popular choice for artificial content is to gener-

ate artificial human faces with various expressions and facial movements [6]). While promis-

ing, this trend poses an interesting complementary question: given a high-quality video/image,

with no visible artifacts or distortions, can we design algorithms to evaluate it for its authentic-

ity? This question is particularly relevant to answer within the context of detecting deepfakes,

given the hyper-realistic results obtained from recent deepfake generation methods [6], and the

ease of access of such methods to anyone with a malicious intent. In a separate chapter, we

explore robust deepfake detection techniques for high-quality videos with no visible artifacts.

2



Introduction Chapter 1

Although capturing human responses indicating whether a given video is not authentic is vir-

tually impossible in this case since there are no visible indicators, most existing datasets used

to train data-driven methods come with the prior knowledge of the source of video (authentic

or obtained from a generative model). The challenge lies in designing methods that can de-

tect deepfakes from novel generative models not featured in a training dataset. To this end,

we leverage domain-invariant, robust, input representations and demonstrate state-of-the-art

generalization to detecting the outputs from novel/unseen deepfake generative models.

For all the three problems considered in this work – perceptually consistent image error pre-

diction, visual saliency prediction, and deepfake detection – we adopt a data-driven approach to

design our proposed models. Specifically, we train deep neural networks for each of the tasks

using, when applicable, our proposed novel training paradigms leveraging human consensus

(as briefly mentioned above) and/or our proposed novel datasets. The universal function ap-

proximation capability of deep neural networks (DNNs) have made them favorable choices for

the various computer vision and image/video processing problems (including those pertaining

to evaluating the perceptual quality aspects), especially with the availability of large-scale train-

ing datasets that allow for learning complex functions. Training DNNs for perceptual quality

evaluation, while very promising, reinforces the need to adopt robust data-capture strategies,

input feature design, and training schemes to avoid suboptimal optimization of the DNNs. Our

proposed approaches to these problems lead to critical strides in these directions.

We now discuss an overview of each of the three problems, along with a discussion of

the challenges that need to be overcome to leverage deep learning. In Section 1.1 we moti-

vate our key contributions, followed by an in-depth introduction to each of the problems in

Sections 1.2, 1.3, 1.4, and a summary of our contributions in Section 1.5.

3



Introduction Chapter 1

image A reference image image B

Figure 1.1: Which of the two images, A or B, is visually closer to the reference? These im-

ages from the LIVE image quality assessment dataset are labeled with human opinion scores

that are aimed at reflecting the visual quality of the two images [7]. While the actual human

visual preference would clearly favor image B over A for this question, opinion-score based

ground-truth labels for images A and B incorrectly suggest that image B is of a higher quality

that image A. Training or testing data-driven perceptual image error prediction methods with

such inaccurate datasets can result in suboptimal convergence/conclusions. Such inconsisten-

cies in the ground-truth labels can be attributed to noise-prone data capture schemes that do

not capture human visual preference accurately.

1.1 Motivation

Leveraging data-driven methods for the three problems considered in this work is both

promising and challenging. Compared to methods that use hard-coded, pre-determined mod-

els, data-driven approaches provide the flexibility to learn much more complex and accurate

functions. However, to successfully deploy a data-driven model, two key challenges need to

be overcome: 1) addressing the issue of reliably collecting and utilizing large-scale datasets,

despite the subjective nature of these tasks and 2) achieving good generalization outside of the

training set. While these challenges are universal to most data-driven models, they are par-

ticularly difficult to overcome specifically within the context of perceptual quality assessment

4
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tasks, given the inherent ambiguity and difficult of data capture for these tasks. For example,

for popular computer vision problems such as detecting an object in an image, activity recogni-

tion in a video, reconstructing the 3D scene structure, the correct ground-truth answer/expected

outcome from a trained model is unambiguous. Consequently, we can train deep neural net-

works with the aim to predict these unambiguous, human-provided labels. We cannot say the

same for the datasets and models for the different perceptual quality aspects of visual media

since it is unclear what an expected ground-truth outcome for these tasks is. The current data

capture schemes are either too noise-prone, or lack sufficient representation of real-world data

distribution (leading to poor generalization).

As an example, consider the images shown in Figure 1.1, from the LIVE image-quality

assessment dataset [7]. Each of the images in this dataset is labeled with a “differential mean

opinion score” (DMOS) – which is expected to reflect the human visual preference. DMOS de-

rived from the difference between the human-provided ratings for the reference image and the

distorted versions of the reference image on a scale of 1 to 100. The DMOS for each distorted

image is regarded as the “ground-truth” label for its visual error compared to the pristine refer-

ence image. Utilizing such a rating-based approach for deriving the ground-truth quality labels

from human responses has been a standard practise in the community. Figure 1.1 demonstrates

that such a DMOS-based labeling of images derived from human ratings is a process that can

be very inaccurate: the labels do not reflect the actual human visual preference. We posit that

the errors in the labeling process arise because of the inconsistency across different human sub-

jects for such rating strategies within a population of human subjects: factors that lead them

to highly rate an image can vary a lot. Conceivably, using such opinion-score-based labels as

ground-truth for training data-driven models can inevitably lead to suboptimal performance of

trained models.

As another example, consider the task of training a DL model for visual saliency prediction

for videos. To estimate a high-accuracy ground-truth visual saliency map for video frames,

5
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the gaze locations of human subjects are recorded while they view a video stimulus. The

underlying saliency map is For a sufficiently complex scene, each subject would have very

different gaze behavior. Capturing an accurate per-frame visual saliency map in these cases

would require recording a sufficiently large number of observers to obtain a good estimate

of what the true visual saliency for the scene looks like. This can be difficult or impossible,

leading to varying per-frame accuracy across saliency maps estimated for a video from human

gaze data.

Lastly, consider the task of training a DL model for deepfake detection – where the deep-

fakes show no perceptual artifacts. While human annotations classifying a video as deepfake

might be hard to obtain (since it might be tough to confidently classify a video as deepfake

given their high quality – see Fig. 1.4), a knowledge of the source of the input video (i.e.,

whether is originated from a generative model or not), is most often available with existing

datasets. Therefore, in theory, given that no human intervention might be needed for anno-

tating deepfake datasets, one could generate large-scale datasets containing results of several

deepfake generators. In practice, since the field of research on deepfake generation itself has

been evolving rapidly [6], it is difficult to create a dataset that is representative of all existing

generator mechanisms. As a result, existing deepfake detection approaches show poor general-

izability to unseen deepfake generation methods when trained on datasets containing deepfakes

generated from a handful of generator models – since, it is hard to incorporate the large variety

of deepfake generators in a single dataset.

Overall, while designing reliable DL models for evaluating these perceptual quality or au-

thenticity aspects of visual media is a promising research direction, existing solutions are con-

strained by challenges imposed by unreliable data capture schemes or lack of sufficient data.

In this thesis, we propose strategies to overcome these issues at three levels: 1) designing novel

datasets in a noise-robust manner, 2) proposing noise-aware optimization strategies when the

dataset inaccuracies are hard to overcome (e.g., when sufficient human data is impossible to

6
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capture), and 3) designing domain-invariant input features provided to a DL model, that enable

out-of-domain generalization despite limited training samples.

1.2 Perceptual Image Error Prediction

image A reference image image B

Figure 1.2: Which of the two images, A or B, is visually closer to the reference? In this

example, we show a reference undistorted image and two distorted versions of reference (A and

B). When querying a population of human subjects, 82% vote for image B to be the visually

closer one to the reference. However, popular existing methods for image error prediction

such as PNSR, SSIM [8], FSIMc [9], VSI [10], predict that image A is visually closer to the

reference. This is because the handcrafted features/statistics used by these methods fail to

capture the nuances of human perceptual quality assessment. An alternative is to use deep

learning to design for more perceptually consistent image error prediction. However, methods

that use deep learning [11] fall short of providing a perceptually accurate solution (e.g., for the

case above, recent deep learning approaches also incorrectly predict image B to be visually

closer to the reference), due to lack of large-scale noise-free training datasets. One of the

contributions of this thesis is to design an accurate large-scale training dataset for this task, and

a novel learning framework to leverage this dataset.

7



Introduction Chapter 1

Given a reference (undistorted) image and a distorted version of the reference image (where

distortions could be an aesthetic manipulations of the content, say by applying a color filter,

adding gaussian noise or blurring the image), we want to predict the perceived error between

the two. A typical pipeline to achieve this involves feature extration from corresponding sub-

regions of a distorted image and a reference image, followed by a fidelity measure computation

that is aggregated to predict the overall perceived error. Popular/traditional image error pre-

diction approaches such as SSIM [8], FSIM [9] or VSI [10] predict the perceived error by

accumulating deviations in pixel or patch-level statistics or handcrafted features. While com-

putationally efficient and intuitive, these approaches often lead to inaccuracies. For example,

see Figure 1.2: as per the existing image error prediction methods, image A is predicted to be

closer to the reference, while querying human subjects reveals that, in fact, image B is perceptu-

ally closer to the reference. Predicting the perceived error between a reference and its distorted

version is therefore a challenging task: pixel/patch/feature-level statistics can often fall short

of capturing the nuances of human visual perception and can consequently lead to results that

are inconsistent with human perceptual preferences. This has motivated the promising trend

of adopting DL-based approaches for perceptual image error prediction [11]: leveraging the

expressivity of deep neural networks [12], the expectation is to design perceptual error predic-

tors that can provide a higher level of consistency with human perceptual preferences. A key

bottleneck in achieving this goal stems from the lack of accurate training datasets. For exam-

ple, consider the images shown in Figure 1.1 from the LIVE dataset [7], which captures human

perceptual of visual quality. A visual inspection of the image pair clearly indicates that the

distorted image B is visually closer to the reference image. However, existing human-response

collection for capturing human perceptual preferences fail to capture this: the ground-truth

labels for this image, obtained by recording human opinion scores, state that image A is better

(i.e. visually closer to the reference) compared to image B.

To fully leverage DL for the task of perceptual image error prediction, we first propose to
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rethink the manner in which human responses are recorded. Traditionally, existing datasets

for this task capture per-image labels asking humans to rate an image on a quality scale. This

process is prone to inaccuracies, since the quality perception (and therefore the quality scale)

for each human subject can vary. In contrast, it is far easier to ask humans to choose the

distorted image that is visually closer to the reference from a pair of distorted images. We

therefore adopt a pairwise-preference labeling strategy to design a novel large-scale dataset

for training DL-based image-error prediction models. Instead of asking humans to rate each

image on a quality scale, we show pairs of distorted images and the corresponding reference

image to humans and ask them to select the distorted image that is visually closer. To lever-

age this novel dataset, we then design a pairwise learning framework (PLF), which uses the

pairwise-preference labels to train the image error predictor. A noteworthy point is that: al-

though during training our DL model predicts the probability of preference between two given

distorted images, the test-time deployment of our DL-based image error prediction metric fol-

lows the standard approach of predicting the perceptual error between a single distorted image

and a pristine reference. With PLF, we leverage our novel pairwise-preference-based dataset

during training, but are able to predict per-image perceptual error during inference. Overall,

our proposed dataset and learning framework enable us to surpass the critical limitations of

existing methods by first overcoming the limitation imposed by noise in labeling schemes, and

then designing a learning framework to leverage pairwise-preference training for image error

prediction.

1.3 Noise-Aware Visual Saliency Prediction

For a given image or a video, another important aspect of its perceived quality is the visual

saliency of the scene content, that indicates the likelihood of attracting human visual attention

for any given region of the image or the video. Typically, a saliency map for any given video

9
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Figure 1.3: Three frames from a video in the DIEM video-saliency dataset [13], showing an

overlay of a heatmap indicating the visual saliency for the frames (estimated from gaze data of

95 human subjects captured while they watch the video). Depending on the scene content, the

level of consensus in the gaze behavior of human observers varies: leading to varying degree

of multi-modality in the measured saliency maps.

frame or an image is represented in the form of a probability map for each pixel, where the

per-pixel values indicate the probability of attracting human visual attention. Automatically

predicting such a visual saliency map for a scene can be leveraged for applications such as

optimizing communication bandwidths, optimally rendering visual content, or placing adver-

tisements during videos. As with perceptual image-error prediction (Section 1.2), leveraging

deep learning for this task is both challenging and promising, compared to the classical non-

DL counterparts [14]. To train a data-driven methods for predicting the visual saliency of a

scene, one way to create the “ground-truth” saliency maps in the training dataset is to record

the human gaze locations using eye trackers while the human subjects observe many visual

stimuli (images or videos) with a variety of content (such as natural scenes, trailers, etc.). In

such cases, the recorded human gaze is regarded as proxy for human visual attention. Intu-

itively, the quality of the saliency maps estimated from human gaze data would then depend on

the amount of gaze data captured – which poses a challenge when sufficient gaze data is not

available or impossible to capture.

10
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As mentioned in Section 1.1, the challenges to effectively train DL models for saliency pre-

diction stem from the fact that gaze behavior of different human subjects can be different and

it is difficult to capture sufficient human gaze data for a large-scale dataset of images/videos.

Moreover, the human gaze behavior is also governed by scene content: which means that the

amount of gaze data sufficient to accurately estimate saliency for one scene may be different

from that of another scene. As an example, consider three different frames from a video in

an existing saliency dataset [13], shown in Figure 1.3, with an overlay of the human-captured

saliency maps (for this specific video, the gaze data from 95 observers was recorded to estimate

the saliency map – and shown to be sufficient for reliably estimating gaze data in Chapter 3).

When the frame contains only one object of interest (as with the leftmost frame in Figure 1.3,

the saliency map is unimodal: indicating that all the human subjects look at the particular ob-

ject of interest. Conceivably, capturing an accurate saliency map is easier in such cases when

there is a consensus in human gaze behavior – since this implies that the gaze data from just a

few observers is representative of the gaze behavior of a larger population and is therefore suf-

ficient to estimate an accurate saliency map for this frame. In contrast, when there are multiple

objects of interest (as shown in the two frames on the right in Figure 1.3), the human-captured

saliency map is more distributed: indicating a lack of consensus in human-captured gaze. A

saliency map estimated from the gaze data of just a few human subjects in such a case would

be an inaccurate representation of the complete saliency map – since the likelihood of missing

some important regions is higher when gaze data from a few observers is used in this case. The

problem is particularly acute in case of videos with dynamic content, since, for gaze data from

a fixed number of observers, the accuracy of the estimated per-frame saliency maps can vary

as the scene content evolves with time.

The traditional DL-based training approaches for predicting saliency maps directly mini-

mize the discrepancy between the measured and predicted saliency maps. While this practice

works well when the measured saliency maps captured using gaze data maps are accurate, it

11
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leads to overfitting and suboptimal convergence when saliency maps are inaccurate / noisy due

to the presence of insufficient gaze data. As we will see in Chapter 3, this traditional training

strategy can lead to suboptimal convergence and significant overfitting when insufficient gaze

data/videos are available for training. In theory, this problem can be alleviated by capturing

more gaze data to estimate more accurate saliency maps. But in practice, it may be virtually

impossible to capture a large amount of gaze data. Indeed, for certain applications such as

predicting the visual saliency maps from a car driver’s perspective, getting more than one gaze

location per frame is not possible [15].

To overcome this bottleneck, we propose a noise-aware training paradigm for visual saliency

prediction. This paradigm combines Instead of directly minimizing the discrepancy between

the predicted and the measured saliency maps, we propose to first estimate the level of reliabil-

ity of a measured saliency map based on the consensus between the already-captured human

gaze data for any given frame – a strategy that we term Noise-Aware training (NAT) for saliency

prediction. When human gaze data is scattered for a given frame, it indicates a more complex

underlying ground-truth saliency map – implying that saliency map estimated from the gaze

data of just a few observers would be a less reliable approximation of the true saliency of the

scene. Similarly, when human gaze data for a given frame is more concentrated (on one or

more regions of interest), the gaze-based estimated saliency maps can be regarded as a more

reliable approximation of the true underlying saliency map for a scene. Overall, we use the

level of consensus in the captured gaze locations to appropriately weigh the contribution of

each input frame and its measured saliency map during training. In Chapter 3, we analyze

this choice empirically, to motivate our proposed approach for training saliency predictors, and

derive a novel loss function. We then proceed to evaluate this proposed approach across multi-

ple datasets (both, the existing datasets and also our proposed novel videogame-based saliency

dataset), discrepancy measures, and DL architectures to demonstrate its applicability across

a broad range of optimization strategies for training saliency predictors. While NAT is most

12
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beneficial for video saliency predictors, where the problem of insufficient gaze data is more

evident, we demonstrate how NAT can also benefit image saliency prediction when insufficient

gaze data is available.

1.4 Generalizable Deepfake Detection

Figure 1.4: Deepfakes are generated by either facial re-enactment algorithms (which involve

animating the facial features of a target identity using the source video of another person –

shown here from FaceForensics++ dataset [6]) or face swap algorithms (which morph the

face shown in source video to match that of a target identity – shown here from CelebDFv2

dataset [16]. The advancements in deep generative models for facial images has led to a rapid

improvement in the quality of the generated deepfake videos – making it difficult to spot arti-

facts due to the generation process. Such methods can pose a societal threat, if used maliciously

to propagate misinformation.

13
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The impressive progress in DL for generating realistic artificial faces [17,18] and its seam-

less public access (e.g., via cellphone apps [19,20]) has benefited areas such as art or communi-

cation. As a consequence, generating “deepfakes” (DF) has gained recent popularity. Typically,

deepfakes are generated by either facial re-enactment algorithms (which involve animating the

facial features of a target identity using the source video of another person) or face swap al-

gorithms (which morph the face shown in source video to match that of a target identity), as

briefly highlighted in Fig. 1.4. The rapid progress in both these classes of DF generation ap-

proaches [6] has also ushered in an active pursuit of research in DF detection [21–23], given the

threat posed by malicious deepfake (DF) generation which can have a lasting negative impact

on society/individual [24, 25].

Many DF detection methods are based on detecting subtle anomalies such as warping

artifacts [26], generation imprints [27], or biological inconsistencies (in heart-rate [28–31],

blink/gaze patterns [30, 32, 33]). Reliance on these subtle clues can make the DF detector

error-prone – since they can be lost/wrongly estimated in presence of spatial distortions or

even simple changes to generator architecture [34]. A recent alternative is to train DF de-

tectors to assess temporal semantic irregularities of facial regions [35, 36]. Realistic facial

temporal dynamics can be harder to synthesize or tamper imperceptibly – making for more

robust DF detectors. We contribute towards this promising trend by introducing PhaseForen-

sics, a phase-based approach to DF detection, which learns from the facial temporal dynamics

derived from local phase changes in frequency sub-bands. The reliance on phase makes our

approach more robust to appearance changes, leading to reliable/consistent accuracy despite

domain shifts (e.g., during cross-dataset tests). As a result, we observe state-of-the-art general-

ization of PhaseForensics to novel datasets. Another limitation of existing methods is that the

spatial distortions such as color adjustments or compression artifacts (that are routinely present

in internet media) confuse the existing DF detectors. Additionally, imperceptible adversar-

ial perturbations are also known to negatively impact the accuracy of DF detectors [37–40].
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Overcoming these issues is crucial for the real-world deployment of DF detectors and with our

proposed approach, we also take an important step in this direction.

Conceptually, the key insight that underlies our approach is explicitly leveraging motion-

related information to learn the high-level facial temporal dynamics. Traditionally, this is done

by either estimating motion vectors [41], or landmark trajectories [42] – both of which can be

error-prone/dependent on estimation accuracies. Therefore, instead of using such techniques

to estimate the facial dynamics, we adopt an Eulerian approach to estimating motion-based

features by leveraging the temporal phase changes across video frames in the corresponding

frequency sub-bands that are known to capture the motion field as per the Fourier Shift theo-

rem [43–45]. This surpasses the need for error-prone feature tracking or other motion estima-

tion techniques. Utilizing the phase from frequency sub-bands has two additional advantages:

it improves the robustness to appearance changes (e.g., contrast or scale changes) [43,45], and

improves the adversarial robustness of our proposed DF detector. Adversarial robustness is a

relatively under-explored, but crucial, aspect of the performance analyses of DF detectors. Re-

cent studies reveal that existing DF detectors tend to be vulnerable to adversarial attacks, which

can limit their applicability [37,38]. Typically, the adversarial attacks target the high-frequency

components of image inputs [46]. In the process of estimating phase variations to capture the

motion field, the input features estimated for PhaseForensics are obtained from the band-pass

components, discarding the higher frequencies. These input features enable our deep learning

model to learn from lower frequency components, thereby yielding adversarial robustness by

design, while also achieving state-of-the-art generalization across different DF datasets.

1.5 Overview of Contributions

This thesis makes the following major contributions:

• We propose a novel deep learning framework for improving the perceptual consistency
15
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of image error prediction algorithms, by leveraging the perceptual preference between

image pairs as training labels instead of the traditional noise-prone per-image opinion

scores. Using this paradigm, we design our proposed perceptually-consistent image error

prediction model.

• We design a novel pairwise-preference based large scale training dataset for training

models for image error prediction, which contains 200 pristine reference images (ob-

tained from Waterloo Space Exploration dataset [47]), and a total of 20,280 distorted

images, with pairwise probability of preference labels for 77,280 distorted image pairs

(obtained from querying 40 human subjects for each image pair). We motivate the design

choices of this dataset by a thorough analyses of its different components such as: choice

of image distortions, number of human subjects per pair, content of reference images.

• We propose a novel noise-aware training (NAT) paradigm for visual saliency prediction

to overcome the limitation of traditional training approaches that directly minimize the

discrepancy between the predicted and gaze-data-based measured saliency. We show

that this direct minimization leads to suboptimal convergence when the training data has

inaccuracies in the measured saliency maps due to insufficient gaze data and propose

a solution to account for the noise in the training saliency maps. We demonstrate the

effectiveness of NAT with experiments across 3 saliency datasets, 3 popular discrepancy

measures, and 3 neural-network architectures.

• Saliency datasets for videos feature largely-static scenes with limited dynamism / tem-

porally evolving content. Using such datasets, it is difficult to evaluate video-specific

aspects of models that predict visual saliency for videos. We propose a novel video-

game-based saliency dataset that overcomes this limitation by featuring highly dynamic

scene content, on which we also demonstrate the effective for NAT for video saliency

prediction.
16
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• We propose deepfake detection method that leverages semantic anomalies in the tempo-

ral dynamics of face regions. We capture these dynamics with an Eulerian approach to

motion estimation based on temporal phase changes, which provides stronger domain

invariance, and demonstrate state-of-the-art cross-dataset generalization, distortion ro-

bustness, and adversarial robustness (an under-explored aspect in deepfake detection).

1.6 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we introduce the per-

ceptual image error prediction task, discussing the existing state of the art, limitations of the

existing training datasets and DL-based methods, and a detailed discussion and analysis of

our proposed dataset and learning framework to overcome these issues. In Chapter 3 we dive

deeper into visual saliency prediction, and the proposed solution for overcoming the limita-

tions imposed by the difficulty of capturing sufficient data. We also provide the details of the

proposed dataset, and an analysis of the its content and gaze behavior of human subjects. In

Chapter 4, we discuss our proposed approach for designing domain-invariant input features

to enable state-of-the-art generalization (as demonstrated with cross-dataset evaluations) for

deepfake detection. We also elaborate upon the additional advantages of our proposed ap-

proach: robustness to commonly-occurring spatial distortions, and robustness to adversarial

perturbation (an aspect which is typically under-explored in deepfake detection). We conclude

in Chapter 5, with a discussion of the key insights gathered from this work and a the future

directions that this work can enable.
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Chapter 2

Perceptual Image-Error Assessment

through Pairwise Preference

2.1 Introduction

One of the major goals of computer vision is to enable computers to “see” like humans. To this

end, a key problem is the automatic computation of the perceptual error (or “distance”) of a

distorted image with respect to a corresponding reference in a way that is consistent with human

observers. A successful solution to this problem would have many applications, including

image compression/coding, restoration, and adaptive reconstruction.

Because of its importance, this problem, also known as full-reference image-quality assess-

ment (FR-IQA) [48], has received significant research attention in the past few decades [4,49–

53]. The naı̈ve approaches do this by simply computing mathematical distances between the

images based on norms such as L2 or L1, but these are well-known to be perceptually inaccu-

rate [8]. Others have proposed metrics that try to exploit known aspects of the human visual

system (HVS) such as contrast sensitivity [54], high-level structural acuity [8], and mask-

ing [55, 56], or use other statistics/features [9, 57–66]. However, such hand-coded models are
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fundamentally limited by the difficulty of accurately modeling the complexity of the HVS and

therefore do not work well in practice.

METHOD A B

Humans 0.120 0.880

MAE 8.764 16.723

RMSE 15.511 28.941

SSIM 0.692 0.502

MS-SSIM 0.940 0.707

PSNR-HMA 27.795 19.763

FSIMc 0.757 0.720

SFF 0.952 0.803

GMSD 0.101 0.176

VSI 0.952 0.941

SCQI 0.996 0.996

Lukin et al. [67] 3.213 1.504

Bosse et al. [68] 31.360 36.192

Kim et al. [69] 0.414 0.283

PieAPP (error) 2.541 0.520

PieAPP (prob.) 0.117 0.883

Figure 2.1: Which image, A or B, is more similar to the reference R? This is an example of a pairwise

image comparison where most people have no difficulty determining which image is closer. In this

case, according to our Amazon Mechanical Turk (MTurk) experiments, 88% of people prefer image B.

Despite this simple visual task, 13 image quality assessment (IQA) methods–including both popular and

state-of-the-art approaches–fail to predict the image that is visually closer to the reference. On the other

hand, our proposed PieAPP error metric correctly predicts that B is better with a preference probability

of 88.3% (or equivalently, an error of 2.541 for A and 0.520 for B, with the reference having an error of

0). Note that neither the reference image nor the distortion types present were seen during training.

To address these limitations, some have proposed IQA methods based on machine learning

to learn more sophisticated models [70]. Although many learning-based methods use hand-

crafted image features [67, 71–78], recent methods (including ours) apply deep-learning to

FR-IQA to learn features automatically [68, 69, 79]. However, the accuracy of all existing
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learning-based methods depends on the size and quality of the datasets they are trained on, and

existing IQA datasets are small and noisy. For instance, many datasets [7, 80–85] are labeled

using a mean opinion score (MOS) where each user gives the distorted image a subjective

quality rating (e.g., 0 = “bad”, 10 = “excellent”). These individual scores are then averaged

in an attempt to reduce noise. Unfortunately, creating a good IQA dataset in this fashion is

difficult because humans cannot assign quality or error labels to a distorted image consistently,

even when comparing to a reference (e.g., try rating the images in Fig.1 from 0 to 10!).

Other datasets (e.g., TID2008 [86] and TID2013 [87]) leverage the fact that it is much

easier for people to select which image from a distorted pair is closer to the reference than to

assign them quality scores. To translate user preferences into quality scores, they then take a

set of distorted images and use a Swiss tournament [88] to assign scores to each. However, this

approach has the fundamental problem that the same distorted image could have varying scores

in different sets (see appendix A for examples in TID2008 and TID2013). Moreover, the num-

ber of images and distortion types in all of these datasets is very limited. The largest dataset we

know of (TID2013) has only 25 images and 24 distortions, which hardly qualifies as “big-data”

for machine learning. Thus, methods trained on these datasets have limited generalizability to

new distortions, as we will show later. Because of these limitations, no method currently exists

that can predict perceptual error like human observers, even for easy examples such as the one

in Fig. 3.1. Here, although the answer is obvious to most people, all existing FR-IQA methods

give the wrong answer, confirming that this problem is clearly far from solved.

In this paper, we make critical strides towards solving this problem by proposing a novel

framework for learning perceptual image error as well as a new, corresponding dataset that is

larger and of higher quality than previous ones. We first describe the dataset, since it motivates

our framework. Rather than asking people to label images with a subjective quality score,

we exploit the fact that it is much easier for humans to select which of two images is closer

to a reference. However, unlike the TID datasets [86, 87], we do not explicitly convert this
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preference into a quality score, since approaches such as Swiss tournaments introduce errors

and do not scale. Instead, we simply label the pairs by the percentage of people who preferred

image A over B (e.g., a value of 50% indicates that both images are equally “distant” from the

reference). By using this pairwise probability of preference as ground-truth labels, our dataset

can be larger and more robust than previous IQA datasets.

Next, our proposed pairwise-learning framework trains an error-estimation function using

the probability labels in our dataset. To do this, we input the distorted images (A,B) and the

corresponding reference, R, into a pair of identical error-estimation functions which output the

perceptual-error scores for A and B. The choice for the error-estimation function is flexible, and

in this paper we propose a new deep convolutional neural network (DCNN) for it. The errors

of A and B are then used to compute the predicted probability of preference for the image pair.

Once our system, which we call PieAPP, is trained using the pairwise probabilities, we can

use the learned error-estimation function on a single image A and a reference R to compute the

perceptual error of A with respect to R. This trick allows us to quantify the perceived error of

a distorted image with respect to a reference, even though our system was never explicitly

trained with hand-labeled, perceptual-error scores.

The combination of our novel, pairwise-learning framework and new dataset results in a

significant improvement in perceptual image-error assessment, and can also be used to further

improve existing learning-based IQA methods. Interested readers can find our code, trained

models, and datasets at https://github.com/prashnani/PerceptualImageError.

2.2 Pairwise learning of perceptual image error

Existing IQA datasets (e.g., LIVE [7], TID2008 [86], CSIQ [83], and TID2013 [87]) suf-

fer from either the unreliable human rating of image quality or the set-dependence of Swiss

tournaments. Unlike these previous datasets, our proposed dataset focuses exclusively on the
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Figure 2.2: Like all IQA methods, we assume distorted images can be placed on a linear scale based

on their underlying perceptual-error scores (e.g., sA,sB,sC) with respect to the reference. In our case, we

map the reference to have 0 error. We assume the probability of preferring distorted image A over B can

be computed by applying a function h to their errors, e.g., pAB = h(sA,sB).

probability of pairwise preference. In other words, given two distorted versions (A and B) of

reference image R, subjects are asked to select the one that looks more similar to R. We then

store the percentage of people who selected image A over B as the ground-truth label for this

pair, which we call the probability of preference of A over B (written as pAB). This approach

is more robust because it is easier to identify the closer image than to assign quality scores,

and does not suffer from set-dependency or scalability issues like Swiss tournaments since we

never label the images with quality scores.

The challenge is how to use these probabilistic preference labels to estimate the perceptual-

error scores of individual images compared to the reference. To do this, we assume, as shown

in Fig. 2.2, that all distorted versions of a reference image can be mapped to a 1-D “perceptual-

error” axis (as is common in IQA), with the reference at the origin and distorted versions

placed at varying distances from the origin based on their perceptual error (images that are
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more perceptually similar to the reference are closer, others farther away). Note that since each

reference image has its own quality axis, comparing a distorted version of one reference to that

of another does not make logical sense.

Given this axis, we assume there is a function h which takes the perceptual-error scores

of A and B (denoted by sA and sB, respectively), and computes the probability of preferring

A over B: pAB = h(sA,sB). In this paper, we use the Bradley-Terry (BT) sigmoid model [89]

for h, since it has successfully modeled human responses for pairwise comparisons in other

applications [90, 91]:1

pAB = h(sA,sB) =
1

1+ esA−sB
. (2.1)

Unlike the standard BT model, the exponent here is negated so that lower scores are assigned

to images visually closer to the reference. Given this, our goal is then to learn a function f

that maps a distorted image to its perceptual error with respect to the reference, constrained by

the observed probabilities of preference. More specifically, we propose a general optimization

framework to train f as follows:

θ̂ = argmin
θ

1
T

T

∑
i=1

∥h( f (Ai,Ri;θ), f (Bi,Ri;θ))− pAB,i∥2
2, (2.2)

where θ denotes the parameters of the image error-estimation function f , pAB,i is the ground-

truth probability of preference based on human responses, and T is the total number of training

pairs. If the training data is fitted correctly and is sufficient in terms of images and distortions,

Eq. 2.2 will train f to estimate the underlying perceptual-error scores for every image so that

their relative spacing on the image quality scale will match their pairwise probabilities (en-

forced by Eq. 2.1), with images that are closer to the reference having smaller numbers. These

underlying perceptual errors are estimated up to an additive constant, as only the relative dis-

tances between images are constrained by Eq. 2.1. We discuss how to account for this constant

by setting the error of the reference with itself to 0 in Sec. 2.3.

1We empirically verify that BT is consistent with our collected human responses in Sec. 2.5.1.
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To learn the error-estimation function f , we propose a novel pairwise-learning framework,

shown in Fig. 2.3. The inputs to our system are sets of three images (A, B, and R), and the

output is the probability of preferring A over B with respect to R. Our framework has two main

learning blocks, f (A,R;θ) and f (B,R;θ), that compute the perceptual error of each image. The

estimated errors sA and sB are then subtracted and fed through a sigmoid that implements the

BT model in Eq. 2.1 (function h) to predict the probability of preferring A over B. The entire

system can then be trained by backpropagating the squared L2 error between the predicted

probabilities and the ground-truth human preference labels to minimize Eq. 2.2.

At this point, we simply need to make sure we have an expressive computational model for

f as well as a large dataset with a rich variety of images and distortion types. To model f , we

propose a new DCNN-based architecture which we describe in Sec. 2.3. For the dataset, we

propose a new large-scale image distortion dataset with probabilistic pairwise human compar-

ison labels as discussed in Sec. 2.4.

2.3 New DCNN for image-error assessment

Before describing our implementation for function f , we note that our pairwise-learning

framework is general and can by used to train any learning model for error computation by

simply replacing f (A,R;θ) and f (B,R;θ). In fact, we show in Sec. 2.5.4 how the performance

of Bosse et al. [68]’s and Kim et al. [69]’s architectures is considerably improved when inte-

grated into our framework. Furthermore, once trained on our framework, the error-estimation

function f can be used by itself to compute the perceptual error of individual images with

respect to a reference. Indeed, this is how we get all the results in the paper.

In our implementation, the error-estimation block f consists of two kinds of subnetworks

(subnets, for short). There are three identical, weight-shared feature-extraction (FE) subnets

(one for each input image), and two weight-shared score-computation (SC) subnets that com-
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Figure 2.3: Our pairwise-learning framework consists of error- and probability-estimation blocks. The

error-estimation function f has two weight-shared feature-extraction (FE) networks that take in ref-

erence R and a distorted input (A or B), and a score-computation (SC) network that uses the extracted

features from each image to compute the perceptual-error score (see Fig. 2.4 for more details). Note that

the FE block for R is shared between f (A,R;θ) and f (B,R;θ). The computed perceptual-error scores

for A and B (sA and sB) are then passed to the probability-estimation function h, which implements the

Bradley-Terry (BT) model (Eq. 2.1) and outputs the probability of preferring A over B.

pute the perceptual-error scores for A and B. Together, two FE and one SC subnets comprise

the error-estimation function f . As is common in other IQA algorithms [9,10,68], we compute

errors on a patchwise basis by feeding corresponding patches from A, B, and R through the FE

and SC subnets, and aggregate them to obtain the overall errors, sA and sB.

Figure 2.4 shows the details of our implementation of function f . The three (weight-shared)

FE subnets each consist of 11 convolutional (CONV) layers (Fig. 2.4a). For each set of input

patches (Am, Bm, and Rm, where m is the patch index), the corresponding feature maps from

the FE CONV layers at different depths are flattened and concatenated into feature vectors

xm
A , xm

B , and xm
R . Using features from multiple layers has two advantages: 1) multiple CONV
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Figure 2.4: Our DCNN implementation of the error-estimation function f . (a) The feature-extraction

(FE) subnet of f has 11 convolutional (CONV) layers with skip connections to compute the features

for an input patch Am. The number after “CONV” indicates the number of feature maps. Each layer

has 3× 3 filters and a non-linear ReLU, with 2× 2 max-pooling after every even layer. (b) The score-

computation (SC) subnet uses two fully-connected (FC) networks (each with 1 hidden layer with 512

neurons) to compute patch-wise weights and errors, followed by weighted averaging over all patches to

compute the final image score.

layers contain features from different scales of the input image, thereby leveraging both high-

level and low-level features for error score computation, and 2) skip connections enable better

gradient backpropagation through the network.

Once these feature vectors are computed by the FE subnet, the differences between the

corresponding feature vectors of the distorted and reference patches are fed into the SC subnet

(Fig. 2.4b). Each SC subnet consists of two fully-connected (FC) networks. The first FC

network takes in the multi-layer feature difference (i.e., xm
R −xm

A ), and predicts the patchwise

error (sm
A ). These are aggregated using weighted averaging to compute the overall image error

(sA), where the weight for each patch wm
A is computed using the second FC network (similar to

Bosse et al. [68]). This network uses the feature difference from the last CONV layer of the

FE subnet as input (denoted as ym
R −ym

A for A and R), since the weight for a patch is akin to the

higher-level patch saliency [9, 10, 68] captured by deeper CONV layers.
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Feeding the feature differences to the SC subnet ensures that when estimating the percep-

tual error for a reference image (i.e., A = R), the SC block would receive xm
R −xm

R = 0 as input.

The system would therefore output a constant value which is invariant to the reference image,

caused by the bias terms in the fully-connected networks in the SC subnet. By subtracting

this constant from the predicted error, we ensure that the “origin” of the quality axis is always

positioned at 0 for each reference image.

To train our proposed architecture, we adopt a random patch-sampling strategy [68], which

prevents over-fitting and improves learning. At every training iteration, we randomly sample

36 patches of size 64×64 from our training images which are of size 256×256. The density

of our patch sampling ensures that any pixel in the input image is included in at least one

patch with a high probability (0.900). This is in contrast with earlier approaches [68], where

patches are sampled sparsely and there is only a 0.154 probability that a specific pixel in an

image will be in one of the sampled patches. This makes it harder to learn a good perceptual-

error metric.2 At test time, we randomly sample 1,024 patches for each image to compute the

perceptual error. We now describe our dataset for training the proposed framework.

2.4 Large-scale image distortion dataset

As discussed earlier, existing IQA datasets [7, 83, 86, 87] suffer from many problems, such

as unreliable quality labels and a limited variety of image contents and distortions. For exam-

ple, they do not contain many important distortions that appear in real-world computer vision

and image processing applications, such as artifacts from deblurring or dehazing. As a result,

training high-quality perceptual-error metrics with these datasets is difficult, if not impossible.

To address these problems (and train our proposed system), we have created our own large-

scale dataset, labeled with pairwise probability of preference, that includes a wide variety of

2See appendix A file for a detailed analysis.

27



Perceptual Image-Error Assessment through Pairwise Preference Chapter 2

Dataset Ref. images Distortions Distorted images

LIVE [7] 29 5 779

CSIQ [83] 30 6 866

TID2008 [86] 25 17 1,700

TID2013 [87] 25 24 3,000

Our dataset 200 75 20,280

Table 2.1: Comparison of the four largest IQA dataset and our proposed dataset, in terms of the number

of reference images, the number of distortions, and the number of distorted images.

image distortions. Furthermore, we also built a test set with a large number of images and

distortion types that do not overlap with the training set, allowing a rigorous evaluation of the

generalizability of IQA algorithms.

Table 2.1 compares our proposed dataset with the four largest existing IQA datasets.3 Our

dataset is substantially bigger than all these existing IQA datasets combined in terms of the

number of reference images, the number of distortion types, and the total number of distorted

images. We next discuss the composition of our dataset.

Reference images: The proposed dataset contains 200 unique reference images (160 reference

images are used for training and 40 for testing), which are selected from the Waterloo Explo-

ration Database [47, 92] because of its high-quality images. The selected reference images are

representative of a wide variety of real-world content. Currently, the image size in our dataset is

256×256, which is a popular size in computer vision and image processing applications. This

size also enables crowdsourced workers to evaluate the images without scrolling the screen.

However, we note that since our architecture samples patches from the images, it can work on

input images of various sizes.

Image distortions: In our proposed dataset, we have included a total of 75 distortions, with

a total of 44 distortions in the training set, and 31 in the test set which are distinct from the

3See Chandler et al. [4] for a complete list of existing IQA datasets.
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training set.4 More specifically, our set of image distortions spans the following categories:

1) common image artifacts (e.g., additive Gaussian noise, speckle noise); 2) distortions that

capture important aspects of the HVS (e.g., non-eccentricity, contrast sensitivity); and 3) com-

plex artifacts from computer vision and image processing algorithms (e.g., deblurring, de-

noising, super-resolution, compression, geometric transformations, color transformations, and

reconstruction). Although recent IQA datasets cover some of the distortions in categories 1

and 2, they do not contain many distortions from category 3 even though they are important to

computer vision and image processing. We refer the readers to the appendix A for a complete

list of the training and test distortions in our dataset.

2.4.1 Training set

We select 160 reference images and 44 distortions for training PieAPP. Each training ex-

ample is a pairwise comparison consisting of a reference image R, two distorted versions A

and B, along with a label p̃AB, which is the estimated probabilistic human preference based

on collected human data (see Sec. 2.4.3). For each reference image R, we design two kinds

of pairwise comparisons: inter-type and intra-type. In an inter-type comparison, A and B are

generated by applying two different types of distortions to R. For each reference image, there

are 4 groups of inter-type comparisons, each containing 15 distorted images generated using

15 randomly-sampled distortions.5 On the other hand, in an intra-type comparison, A and B are

generated by applying the same distortion to R with different parameters. For each reference

image, there are 21 groups of intra-type comparisons, containing 3 distorted images generated

using the same distortion with different parameter settings. The exhaustive pairwise compar-

4In contrast, most previous learning-based IQA algorithms test on the same distortions that they train on. Even
in the “cross-dataset” tests presented in previous papers, there is a significant overlap between the training and
test distortions. This makes it impossible to tell whether previous learning-based algorithms would work for new,
unseen distortions.

5The choice of 15 is based on a balance between properly sampling the training distortions and the cost of
obtaining labels in an inter-type group.
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isons within each group (both inter-type and intra-type) and the corresponding human labels

p̃AB are then used as the training data. Overall, there are a total of 77,280 pairwise comparisons

for training (67,200 inter-type and 10,080 intra-type). Inter-distortion comparisons allow us to

capture human preference across different distortion types and are more challenging than the

intra-distortion comparisons due to a larger variety of pairwise combinations and the difficulty

in comparing images with different distortion types. We therefore devote a larger proportion

of our dataset to inter-distortion comparisons.

2.4.2 Test set of unseen distortions and images

The test set contains 40 reference images and 31 distortions, which are representative of a

variety of image contents and visual effects. None of these images and distortions are in the

training set. For each reference image, there are 15 distorted images with randomly-sampled

distortions (sampled to ensure that the test set has both inter and intra-type comparisons). Prob-

abilistic labels are assigned to the exhaustive pairwise comparisons of the 15 distorted images

for each reference. The test set then contains a total of 4,200 distorted image pairs (105 per

reference image).

2.4.3 Amazon Mechanical Turk data collection

We use Amazon Mechanical Turk (MTurk) to collect human responses for both the training

and test pairs. In each pairwise image comparison, the MTurk user is presented with distorted

images (A and B) and the reference R. The user is asked to select the image that he/she considers

more similar to the reference.6 However, we need to collect a sufficient number of responses

per pair to accurately estimate pAB. Furthermore, we need to do this for 77,280 training pairs

and 4,200 test pairs, resulting in a large number of MTurk inquiries and a prohibitive cost. In

the next two sections, we show how to avoid this problem by analyzing the number of responses

6Details on MTurk experiments and interface are in the appendix A.
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needed per image pair to statistically estimate its pAB accurately, and then showing how to use a

maximum likelihood (ML) estimator to accurately label a larger set of pairs based on a smaller

set of acquired labels.

2.4.3.1 Number of responses per comparison

We model the human response as a Bernoulli random variable with a success probability

pAB, which is the probability of a person preferring IA over IB. Given n human responses νi, i =

1, ...,n, we then have p̃AB,n = 1
n ∑

n
i=1 νi, where p̃AB,n is the pAB estimated using n responses.

The Cumulative Distribution Function (CDF) of |p̃AB,n − pAB| is then given as follows:

prob(|p̃AB,n − pAB| ≤ η) = F((pAB +η)n,n, pAB)−F((pAB −η)n,n, pAB), (2.3)

where F(.,n, pAB) is the CDF of a Binomial distribution with n trials and a success probability

pAB.

To ensure an accurate estimation of pAB, we must choose n such that prob(|p̃AB,n − pAB| ≤

η) ≥ Ptarget, for a target Ptarget and tolerance η . Based on the CDF of |p̃AB,n − pAB| given by

Eq. 2.3, it can be easily confirmed numerically that by choosing n = 40 and η = 0.15, we can

achieve Ptarget ≥ 0.94. Therefore, we collect 40 responses for each pairwise comparison in the

training and test sets.

To further empirically analyze the estimation accuracy of pAB, we collect 100 responses

for 630 randomly-selected pairs. We assume that p̃AB,100 = pAB. Under this assumption,

E[|p̃AB,40 − pAB|] is estimated to be 0.056, which indicates the good accuracy obtained by

choosing n = 40 for estimating the probabilistic preference. As for estimating the binary pref-

erence, we look at the cases where p̃AB,40 /∈ [0.35,0.65], which indicates a strong estimated

binary preference.7 We then have prob(pAB > 0.5 | p̃AB,40 > 0.65) estimated to be 1, and

7We look at this range since when pAB ∈ [0.35,0.65], there does not exist a strong binary preference to estimate
and as our estimation of pAB from MTurk data is accurate within η = 0.15, it is not very meaningful to learn a
binary preference within this domain.
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prob(pAB < 0.5 | p̃AB,40 < 0.35) estimated to be 0.992, which confirms that by collecting 40

responses per comparison, p̃AB,40 estimates the binary preference with a high accuracy.

2.4.3.2 Statistical estimation of human preference

Collecting 40 MTurk responses for each of the 77,280 pairs of images in the training set

is prohibitively expensive. Thus, we use statistical modeling [93] to estimate all the needed

human labels based on a subset of the exhaustive pairwise comparison MTurk data. To see

how this works, suppose we need to estimate pA for all the possible pairs of N images (e.g.,

N = 15 in each inter-type group). Assume that the intrinsic quality scores of the images are

s = [s1, ...,sN ]. We use the Bradley-Terry model [89] for human responses, which models the

probability of choosing one image, Ii, over the other, I j, as a sigmoid function of the score

difference, i.e., prob(Ii > I j) = S(si − s j), where S(x) = 1
1+exp(−x/σ) and σ > 0.8 We denote

the human responses by a count matrix C = {ci, j}, where ci, j is the number of times Ii is

preferred over I j. The scores can then be obtained by solving an ML estimation problem [93]:

s⋆ = argmax
s

log∏
i, j

prob(Ii > I j)
ci, j

= argmax
s

∑
i, j

ci, jlogS(si − s j),

(2.4)

which can be solved via gradient descent.

It is necessary to query a sufficient number of pairwise comparisons so that the optimal

solution recovers the underlying true scores.9 It turns out to be sufficient to query a subset of

all the possible comparisons as long as each image appears in at least k (k <N−1) comparisons

presented to the humans, where k can be determined empirically using a very small subset of

the data for which human labels are acquired [90]. To decide on k, we collect the exhaustive

8The symbol “>” is used to indicate a binary preference in this context, i.e., X > Y means that X is preferred
over Y.

9Note that only the score difference carries information. The numeric value of each single score is arbitrary
[93].
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pairwise comparisons of 6 inter-type groups, where each group contains 15 images. Within

each inter-type group, we then analyze ML convergence as a function of k, by using a sampled

set of k comparisons per image to solve problem (2.4). The remaining comparisons are then

used to evaluate the estimation accuracy.
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Figure 2.5: Average log-likelihood as a function of the number of comparisons per image.
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Figure 2.6: Average error rates of ML-estimated binary preference w.r.t. the true preference when

p̃AB,40 /∈ [0.35,0.65], as a function of the number of comparisons per image.
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Figure 2.7: Mean Absolute Error (MAE) of ML-estimated probabilistic preference w.r.t. the true

preference, as a function of the number of comparisons per image.

Fig. 2.5 shows the average log-likelihood over the sampled set and hold-out set, which is
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the objective function of problem (2.4) (with a scaling factor). It can be seen that the estimation

converges when k ≥ 10, indicating that no further improvement on estimation accuracy can be

obtained beyond k = 10. Fig. 2.6 shows the average error rate of binary preference estimation

as a function of k, when p̃AB,40 /∈ [0.35,0.65]. When k = 10, the binary error rate is 0.0006

over the hold-out set, averaging over different randomizations of the k comparisons per image

as well as over the 6 groups of inter-type comparisons. Furthermore, Fig. 2.7 shows the Mean

Absolute Error (MAE) in estimating p̃AB,40. It can be seen that when k ≥ 10, the estimation

MAE is less than 0.06. As such, we have used k = 10 in this paper.

Overall, this indicates that we can accurately estimate both the human probabilistic prefer-

ence and binary preference, using ML estimation, based on a smaller set of human responses.

By using ML estimation with k = 10, we have reduced the required number of queries by

approximately 24%, as compared to exhaustively querying all the possible pairs.10

2.4.3.3 Details of the MTurk interface

Fig. 2.8 shows an example MTurk user interface. The user is instructed to select (by click-

ing the corresponding button below a distorted image) the distorted image from the bottom row

that he/she considers to be more similar to the reference image on the top row.

To ensure reliable data collection, a number of measures have been taken to prevent any

potential selection bias: 1) the left and right buttons are designed to be equally-distanced from

the middle; 2) the positions of the left image and right image are randomized in different

queries; 3) the sequential order in which the pairwise comparisons appear is also randomized.

In addition, we have designed 4 quality control questions in the form of pairwise image com-

parisons. The quality control questions have obvious answers and are randomly embedded in

each MTurk survey. Any submission that fails more than one quality control question will be

10Note that for each intra group, we query human responses for all possible pairwise comparisons because there
are only three images in each group, leading to higher sensitivity of ML estimation to human noise.
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Figure 2.8: An example MTurk interface - the user selects the distorted image from the bottom row

that he/she considers to be more similar to the reference image on the top row.

rejected. Each survey is designed to take approximately 20 min to finish to avoid fatigue. In

the actual MTurk experiments, each user is allowed 30 min to finish a survey.

2.5 Results

We implemented the system presented in Sec. 2.3 in TensorFlow [94], and trained it on

the training set described in Sec. 2.4 for 300K iterations (2 days) on an NVIDIA Titan X

GPU. In this section, we evaluate the performance of PieAPP and compare it with popular

and state-of-the-art IQA methods on both our proposed test set (Sec. 2.4.2) and two existing

datasets (CSIQ [83] and TID2013 [87]). Since there are many recent learning-based algorithms
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Figure 2.9: Ground-truth (GT) human-preference probabilities vs. estimated probabilities. (a) Estimat-

ing probabilities based on all pairwise comparisons with 100 human responses per pair to validate the

BT model. (b) Estimating probabilities with only 10 comparisons per image (still 100 human responses

each). (c) Estimating probabilities based on only 10 comparisons per image with only 40 responses

per pair. The last two plots show the accuracy of using ML estimation to fill in the missing labels (see

Sec. 2.4.3.2). The blue segments near the fitted line indicate the 25th and 75th percentile of the estimated

probabilities within each 0.1 bin of GT probabilities. The fitted line is close to y = x as shown by the

equations on the bottom-right.

(e.g., [79, 95, 96]), in this paper we only compare against the three that performed the best on

established datasets based on their published results [68, 69]. We show comparisons against

other methods and on other datasets in the appendix A.

We begin by validating the BT model for our data and showing that ML estimation can

accurately fill in missing human labels (Sec. 2.5.1). Next, we compare the performance of

PieAPP on our test set against that of popular and state-of-the-art IQA methods (Sec. 2.5.2),

with our main results presented in Table 2.2. We also test our learning model (given by the

error-estimation block f ) on other datasets by training it on them (Sec. 2.5.3, Table 2.3).

Finally, we show that existing learning-based methods can be improved using our pairwise-

learning framework (Sec. 2.5.4, Table. 2.4).
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2.5.1 Consistency of the BT model and the estimation of probabilistic

human preference

We begin by showing the validity of our assumptions that: 1) the Bradley-Terry (BT) model

accurately accounts for human decision-making for pairwise image comparisons, and 2) ML

estimation can be used to accurately fill in the human preference probability for pairs without

human labels. To do these experiments, we first collect exhaustive pairwise labels for 6 sets of

15 distorted images (total 630 image pairs), with 100 human responses for each comparison,

which ensures that the probability labels are highly reliable (Ptarget = 0.972 and η = 0.11; see

Sec. 2.4.3.1).

To validate the BT model, we estimate the scores for all images in a set with ML estimation,

using the ground-truth labels of all the pairs.11 Using the estimated scores, we compute the

preference probability for each pair based on BT (Eq. 2.1), which effectively tests whether

the BT scores can “fit” the measured pairwise probabilities. Indeed, Fig. 2.9a shows that the

relationship between the ground-truth and the estimated probabilities is close to identity, which

indicates that BT is a good fit for human decision-making.

We then validate the ML estimation when not all pairwise comparisons are labeled. We

estimate the scores using 10 ground-truth comparisons per image in each set (k = 10; see

Sec. 2.4.3.2), instead of using all the pairwise comparisons like before. Fig. 2.9b shows that

we have a close-to-identity relationship with a negligible increase of noise, indicating the good

accuracy of the ML-estimation process.

Finally, we reduce the number of human responses per comparison: we again use 10 com-

parisons per image in each set, but this time with only 40 responses per comparison (as we did

for our entire training set), instead of the 100 responses we used previously. Fig. 2.9c shows

that the noise has increased slightly but the fit to the ground-truth labels is still quite good.

11The is the same estimation as in Sec 2.4.3.2, but with the ground-truth labels for all the pairs in each set.
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KRCC
METHOD

p̃AB ∈ [0,1] p̃AB /∈ [0.35,0.65]
PLCC SRCC

MAE 0.252 0.289 0.302 0.302

RMSE 0.289 0.339 0.324 0.351

SSIM 0.272 0.323 0.245 0.316

MS-SSIM 0.275 0.325 0.051 0.321

GMSD 0.250 0.291 0.242 0.297

VSI 0.337 0.395 0.344 0.393

PSNR-HMA 0.245 0.274 0.310 0.281

FSIMc 0.322 0.377 0.481 0.378

SFF 0.258 0.295 0.025 0.305

SCQI 0.303 0.364 0.267 0.360

DOG-SSIMc 0.263 0.320 0.417 0.464

Lukin et al. 0.290 0.396 0.496 0.386

Kim et al. 0.211 0.240 0.172 0.252

Bosse et al. (NR) 0.269 0.353 0.439 0.352

Bosse et al. (FR) 0.414 0.503 0.568 0.537

Our method (PieAPP) 0.668 0.815 0.842 0.831

Table 2.2: Performance of our approach compared to existing IQA methods on our test set. PieAPP

beats all the state-of-the-art methods because the test set contains many different (and complex) distor-

tions not found in standard IQA datasets.

Hence, this validates the way we supplemented our hand-labeled data using ML estimation.

2.5.2 Performance on our unseen test set

We now compare the performance of our proposed PieAPP metric to that of other IQA

methods on our test set, where the images and distortion types are completely disjoint from

the training set. This tests the generalizability of the various approaches to new distortions and

image content. We compare the methods using the following evaluation criteria:

1. Accuracy of predicted quality (or perceptual error): As discussed in Sec. 2.5.1, we obtain

the ground-truth scores through ML estimation, using the ground-truth preference labels for all

the pairs in the test set. As is typically done in IQA papers, we compute the Pearson’s linear
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correlation coefficient (PLCC) to assess the correlation between the magnitudes of the scores

predicted by the IQA method and the ground-truth scores.12 We also use the Spearman’s

rank correlation coefficient (SRCC) to assess the agreement of ranking of images based on the

predicted scores.

2. Accuracy of predicted pairwise preference: IQA methods are often used to tell which

distorted image, A or B, is closer to a reference. Therefore, we want to know the binary error

rate (BER), the percentage of test set pairs predicted incorrectly. We report the Kendall’s rank

correlation coefficient (KRCC), which is related to the BER by KRCC = 1− 2BER. Since

this is less meaningful when human preference is not strong (i.e., p̃AB ∈ [0.35,0.65]), we show

numbers for both the full range and p̃AB ̸∈ [0.35,0.65].

For comparisons, we test against: 1) model-based methods: Mean Absolute Error (MAE),

Root-Mean-Square Error (RMSE), SSIM [8], MS-SSIM [58], GMSD [62], VSI [10], PSNR-

HMA [97], FSIMc [9], SFF [98], and SCQI [66], and 2) learning-based methods: DOG-

SSIMc [78], Lukin et al. [67], Kim et al. [69], and Bosse et al. (both no-reference (NR) and

full-reference (FR) versions of their method) [11,68].13 In all cases, we use the code/models re-

leased by the authors, except for Kim et al. [69], whose trained model is not publicly available.

Therefore, we used the source code provided by the authors to train their model as described

in their paper, and validated it by getting their reported results.

As Table 2.2 shows, our proposed method significantly outperforms existing state-of-the-

art IQA methods. Our PLCC and SRCC are 0.842 and 0.831, respectively, outperforming the

second-best method, Bosse et al. (FR) [68], by 48.24% and 54.75%, respectively. This shows

that our predicted perceptual error is considerably more consistent with the ground-truth scores

than state-of-the-art methods. Furthermore, the KRCC of our approach over the entire test

set (p̃AB ∈ [0,1]) is 0.668, and is 0.815 when p̃AB /∈ [0.35,0.65] (i.e., when there is a stronger

12For existing IQA methods, the PLCC on our test set is computed after fitting the predicted scores to the
ground-truth scores via a nonlinear regression as is commonly done [7].

13See appendix A for brief descriptions of these methods, as well as comparisons to other IQA methods.
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CSIQ [83] TID2013 [87]
METHOD

KRCC PLCC SRCC KRCC PLCC SRCC

MAE 0.639 0.644 0.813 0.351 0.294 0.484

RMSE 0.617 0.752 0.783 0.327 0.358 0.453

SSIM 0.691 0.861 0.876 0.464 0.691 0.637

MS-SSIM 0.739 0.899 0.913 0.608 0.833 0.786

GMSD 0.812 0.954 0.957 0.634 0.859 0.804

VSI 0.786 0.928 0.942 0.718 0.900 0.897

PSNR-HMA 0.780 0.888 0.922 0.632 0.802 0.813

FSIMc 0.769 0.919 0.931 0.667 0.877 0.851

SFF 0.828 0.964 0.963 0.658 0.871 0.851

SCQI 0.787 0.927 0.943 0.733 0.907 0.905

DOG-SSIMc 0.813 0.943 0.954 0.768 0.934 0.926

Lukin et al. – – – 0.770 – 0.930

Kim et al. – 0.965 0.961 – 0.947 0.939

Bosse et al. (NR) – – – – 0.787 0.761

Bosse et al. (FR) – – – 0.780 0.946 0.940

Error-estimation f 0.881 0.975 0.973 0.804 0.946 0.945

Table 2.3: Comparison on two standard IQA datasets (CSIQ [83] and TID2013 [87]). For all the

learning methods, we used the numbers directly provided by the authors (dashes “–” indicate numbers

were not provided). For a fair comparison, we used only one error-estimation block of our pairwise-

learning framework (function f ) trained directly on the MOS labels of each dataset. The performance

of PieAPP on these datasets, when trained with our pairwise-learning framework, is shown in Table 2.4.

preference by humans). This is a significant improvement over Bosse et al. (FR) [68] of 61.35%

and 62.03%, respectively. Translating these to binary error rate (BER), we see that our method

has a BER of 9.25% when p̃AB /∈ [0.35,0.65], while Bosse et al. has a BER of 24.85% in the

same range. This means that the best IQA method to date gets almost 25% of the pairwise

comparisons wrong, but our approach offers a 2.7× improvement. The fact that we get these

results on our test set (which is disjoint from the training set) indicates that PieAPP is capable

of generalizing to new image distortions and content much better than existing methods.
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Our test set CSIQ [83] TID2013 [87]

KRCC
PLF Modifications

p̃AB ∈ [0,1] p̃AB /∈ [0.35,0.65]
PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC

PLF + Kim et al. 0.491 0.608 0.654 0.632 0.708 0.863 0.873 0.649 0.795 0.837

PLF + Bosse et al. (NR) 0.470 0.593 0.590 0.593 0.663 0.809 0.842 0.654 0.781 0.831

PLF + Bosse et al. (FR) 0.588 0.729 0.734 0.748 0.739 0.844 0.898 0.682 0.828 0.859

Our method (PieAPP) 0.668 0.815 0.842 0.831 0.754 0.842 0.907 0.710 0.836 0.875

Table 2.4: Our novel pairwise-learning framework (PLF) can also be used to improve the quality of

existing learning-based IQA methods. Here, we replaced the error-estimating f blocks in our pairwise-

learning framework (see Fig. 2.3) with the learning models of Kim et al. [69] and Bosse et al. [68]. We

then trained their architectures using our pairwise-learning process on our training set. As a result, the

algorithms improved considerably on our test set, as can be seen by comparing these results to those

of their original versions in Table 2.2. Furthermore, we also evaluated these methods on the standard

CSIQ [83] and TID13 [87] datasets using the original MOS labels for ground truth.

2.5.3 Testing our architecture on other IQA datasets

For completeness, we also compare our architecture against other IQA methods on two

of the largest existing IQA datasets, CSIQ [83] and TID2013 [87].14 Since these have MOS

labels which are noisy with respect to ground-truth preferences, we trained our error-estimation

function of the pairwise-learning framework (i.e., f (A,R;θ) in Fig. 2.3) on the MOS labels of

CSIQ and TID2013, respectively.15 This allows us to directly compare our DCNN architecture

to existing methods on the datasets they were designed for.

For these experiments, we randomly split the datasets into 60% training, 20% validation,

and 20% test set, and report the performance averaged over 5 such random splits, as is usual.

The standard deviation of the correlation coefficients on the test sets of these five random splits

is at most 0.008 on CSIQ and at most 0.005 on TID2013, indicating that our random splits

14Comparisons on other datasets can be found in the appendix A file.
15Here, we train our error-estimation function directly on MOS labels as existing datasets do not provide prob-

abilistic pairwise labels. However, this does not change our architecture of f or its number of parameters.
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are representative of the data and are not outliers. Table 2.3 shows that our proposed DCNN

architecture outperforms the state-of-the-art in both CSIQ and TID2013, except for the PLCC

on TID2013 where we are only 0.11% worse than Kim et al. The fact that we are better

than (or comparable to) existing methods on the standard datasets (which are smaller and have

fewer distortions) while significantly outperforming them in our test set (which contains new

distortions) validates our method.

2.5.4 Improving other learning-based IQA methods

As discussed earlier, our pairwise-learning framework is a better way to learn IQA because

it has less noise than either subjective human quality scores or Swiss tournaments. In fact, we

can use it to improve the performance of existing learning-based algorithms. We observe that

since typical FR-IQA methods use a distorted image A and a reference R to compute a quality

score, they are effectively an alternative to our error-estimation block f in Fig. 2.3. Hence, we

can replace our implementation of f (A,R;θ) and f (B,R;θ) with a previous learning-based IQA

method, and then use our pairwise-learning framework to train it with our probability labels.

To do this, we duplicate the block to predict the scores for inputs A and B, and then subtract

the predicted scores and pass them through a sigmoid (i.e., block h(sA,sB) in Fig. 2.3). This

estimated probability is then compared to the ground-truth preference for backpropagation.16

This enables us to train the same learning architectures previously proposed, but with our

probabilistic-preference labels. We show results of experiments to train the methods of Kim

et al. [69] and Bosse et al. [68] (both FR and NR) in Table 2.4. By comparing with the corre-

sponding entries in Table 2.2, we can see that their performance on our test set has improved

considerably after our training. This makes sense because probabilistic preference is a bet-

ter metric and it also allows us to leverage our large, robust IQA dataset. Still, however, our

proposed DCNN architecture for error-estimation block f performs better than the existing

16All details of the training process can be found in the appendix A.
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methods. Finally, the table also shows the performance of these architectures trained on our

pairwise-preference dataset, but tested on CSIQ [83] and TID2013 [87], using their MOS la-

bels as ground-truth. While our modifications have improved existing approaches, PieAPP still

performs better.

2.6 Conclusion

We have presented a novel, perceptual image-error metric which surpasses existing metrics

by leveraging the fact that pairwise preference is a robust way to create large IQA datasets and

using a new pairwise-learning framework to train an error-estimation function. Overall, this

approach could open the door for new, improved learning-based IQA methods in the future.
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Chapter 3

Noise-Aware Video Saliency Prediction

3.1 Introduction

Humans can perceive high-frequency details only within a small solid angle, and thus,

analyze scenes by directing their gaze to the relevant parts [99, 100]. Predicting a distribution

of gaze locations (i.e. a saliency map) for a visual stimulus has widespread applications such

as image or video compression [101] and foveated rendering [102, 103], among others. This

has inspired an active area of research – visual saliency prediction. Early methods focused on

low- or mid-level visual features [14, 104, 105], and recent methods leverage high-level priors

through deep learning (DL) for saliency prediction and related tasks such as salient object

detection [106–118].

Given the improved accessibility of eye trackers [119], datasets for saliency prediction are

captured by recording gaze locations of observers viewing an image or a video. These gaze

locations are then used to estimate a per-frame/image saliency map. Generally speaking, the

quality of the reconstructed saliency maps increases with the number of gaze samples. How-

ever, two factors make it particularly challenging to reconstruct high-quality maps for videos.

First, since a single observer contributes only a few (typically one [13]) gaze locations per
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Figure 3.1: Motivation for noise-aware training (NAT). Frames from a video (DIEM [13]

dataset) are shown with an overlay of the saliency maps reconstructed from the gaze data of 95

observers. The level of gaze consistency across observers varies with frame content, leading to

different asymptotic values and convergence rates of the per-frame inter-observer consistency

(IOC) curves. Consequently, the accuracy of the saliency maps reconstructed from gaze data

varies across frames – especially when a limited number of observers (say, 5 observers) are

available. This impedes traditional training that directly minimizes the discrepancy between

predicted and measured maps. We introduce NAT to address this.

video frame, more observers are needed to capture sufficient per-frame gaze data for videos as

compared to images (e.g. the CAT2000 dataset has on average ∼333 fixations per image from

24 observers [120], while LEDOV has ∼32 fixations per video frame from 32 observers [121]).

Therefore, the cost associated with the creation of truly large-scale datasets with tens of thou-

sands of videos can be prohibitively high. Second, for videos of dynamic scenes, it is hard

to guarantee high accuracy of the reconstructed saliency maps across all frames from the gaze

data of a fixed number of observers. This is because the gaze behavior consistency across ob-

servers depends on the scene content [122]: scenes that elicit a high consistency would require

fewer observers to reconstruct accurate saliency maps than those for which the inter-observer

consistency (IOC) in gaze behavior is low.

Fig. 3.1 shows 3 frames from a DIEM video [13] with 95-observer saliency map overlays

and the per-frame IOC as a function of the number of observers used to reconstruct the saliency
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map [121–123]. A converged IOC curve indicates that additional observers do not add new in-

formation to the reconstructed saliency map and the captured number of observers (e.g. 95 in

Fig. 3.1) are sufficient for accurate estimation of saliency [121, 124]. As is clear from these

plots, when the number of available observers is small, the IOC curve differs from its asymp-

totic value by a varying amount for each frame. This leads to varying per-frame accuracy of

the saliency map reconstructed from few observers. In such cases, traditional training meth-

ods, which minimize the discrepancy between the predicted and measured saliency, can lead to

overfitting to the inaccurate saliency maps in the training dataset.

We address these issues by proposing a Noise-Aware Training (NAT) paradigm: we inter-

pret the discrepancy d between the measured and predicted saliency maps as a random variable,

and train the saliency predictor through likelihood maximization. We show that NAT avoids

overfitting to incomplete or inaccurate saliency maps, weighs training frames based on their

reliability, and yields consistent improvement over traditional training, for different datasets,

deep neural networks (DNN), and training discrepancies, especially when few observers or

frames are available for training. Therefore, NAT ushers in the possibility of designing larger-

scale video-saliency datasets with fewer observers per video, since it learns high-quality mod-

els with less training data.

Although existing datasets have been vital to advance video saliency research [13, 121], a

significant portion of these datasets consists of almost-static content, as observed recently by

Tangemann et al. [125]. Using these datasets for training and evaluation therefore makes it dif-

ficult to assess how saliency prediction methods fare on aspects specific to videos, such as pre-

dicting saliency on temporally-evolving content. Consequently, even an image-based saliency

predictor can provide good results for existing video saliency datasets [125]. As a step towards

designing datasets with dynamic content, we introduce the Fortnite Gaze Estimation Dataset

(ForGED), that contains clips from game-play videos of Fortnite, a third-person-shooter game

amassing hundreds of million of players worldwide. With ForGED, we contribute a novel
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dataset with unique characteristics such as: fast temporal dynamics, semantically-evolving con-

tent, multiple attractors of attention, and a new gaming context. The code, dataset, and trained

models proposed in this chapter are available at https://github.com/NVlabs/NAT-saliency.

3.2 Related work

Saliency prediction methods. In recent years, DL-based approaches have remarkably ad-

vanced video saliency prediction [5]. Existing works include (i) 3D CNN architectures that

observe a short sub-sequence of frames [126–128]; (ii) architectures that parse one frame at

a time but maintain information about past frames in feature maps (e.g. simple temporal ac-

cumulation or LSTMs [129–133]); or (iii) a combination of both [134]. Some methods also

decouple spatial and temporal saliency through specific features, such as “object-ness” and

motion in a frame [121, 135, 136], adopt vision transformers [118], or predict a compact spa-

tial representations such as a GMM [137]. Overall, existing works largely focus on improving

model architectures, output representations [137], and training procedures. In contrast, our

NAT paradigm is broadly applicable across all these categories and it only modifies the loss

function to account for the level of reliability of the measured saliency maps. We demonstrate

the model-agnostic applicability of NAT through experiments on representative DNN architec-

tures – we use ViNET [126] (2021 state-of-the-art that uses 3D CNN), TASED-Net [128] (a

3D CNN-based model), and SalEMA [129].

Metrics and measures of uncertainty for saliency. Popular metrics for training and eval-

uating saliency models include density-based functions (Kullback-Leibler divergence, KLD,

correlation coefficient, CC, similarity, SIM [138]), and fixation-based functions (area under

the ROC curve, AUC [139,140], normalized scanpath saliency, NSS [139,141,142]). Fixation-

based metrics evaluate saliency at the captured gaze locations, without reconstructing the entire

map. We observed that when few locations on a small training set are available, models that
47
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directly optimize either type of function show suboptimal performance.

The adoption of correction terms on a incomplete probability distributions has been ex-

plored in population satistics [143, 144]. Adapting these concepts to gaze data is possible at

low spatial resolutions [122]. However, at full resolution, gaze data tends to be too sparse

to collect sufficient statistics in each pixel. IOC curves are also used to estimate the level of

completeness of saliency maps [121], and the upper bounds on the performance of a saliency

predictor [122–124, 145]. Such approaches provide an insight on level of accuracy and uncer-

tainty in saliency maps, but depend on the availability of sufficient observers to estimate the

full curves. In contrast, NAT is designed specifically for limited-data setting.

Video saliency datasets. Some datasets capture video saliency for specific content (like

sports [146], movies [147], faces [148]), while others (like DHF1K [130], LEDOV [135],

and DIEM [13]) do for everyday scenes [5]. We perform our experimental analysis using two

of the largest datasets, DIEM and LEDOV, which also provide high-quality gaze annotations,

and, more importantly, access to per-observer gaze data – a feature that is not available in the

most popular DHF1K dataset, among other artifacts [125].

Videos with dynamic content are key to capturing and assessing video-specific saliency.

However, existing datasets contain mostly-static content, which can be explained by image-

based models [125]. Existing datasets with videos of highly-dynamic content are either con-

strained in visual content variety and real-time gaze capture (e.g. Atari-Head dataset [149]), or

capture gaze data from only a single subject (such as a game player [150], or a driver [15]), lim-

iting the accuracy of test-time evaluations. We therefore turn to game-play videos of Fortnite,

with its rich temporal dynamics, to further evaluate video-specific saliency. ForGED features

videos from Fortnite with gaze data from up to 21 observers per video frame, enabling an

effective benchmark for training and evaluating video-specific saliency.
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Figure 3.2: Overview of NAT. For an input image, a saliency map is approximated from mea-

sured gaze data. This can result in a noisy/incomplete version of the GT saliency – especially

when limited gaze data is available. Instead of training a DNN by directly minimizing the dis-

crepancy, d, between the measured and predicted saliency (traditional training), with NAT we

first estimate a distribution for d, p(d), that quantifies the uncertainty in d due to the inaccura-

cies in the measured saliency maps. We then train the DNN to optimize the likelihood of d.

3.3 Noise-Aware Training (NAT)

The accuracy of the saliency maps in videos varies with frame content, especially when

limited gaze data is available. The inaccuracy in the saliency maps can stem from errors in

gaze measurements, such as inaccurate localization of Purkinje reflections or calibration issues

in gaze tracker [151] – we term these measurement noise. Using an insufficient number of

observers to estimate the probabilities in different sub-regions of the saliency map is another

source of noise, which we term incomplete sampling. While the measurement noise can be

partially alleviated with techniques such as temporal filtering [152], the best way to overcome

both sources of noise is to capture sufficient data. Since this can be impractical, we now discuss

our proposed strategy to effectively train a DNN for saliency prediction, accounting for the

noise level in a measured saliency map (Fig. 3.2). We first discuss how we arrive at our overall
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formulation for NAT, and then we present further analyses for some of the claims/observations

we make as a part of the discussion of the formulation for NAT.

Let xi be the probability distribution of the ground-truth saliency map for the ith frame,

reconstructed from sufficient gaze data (e.g. when the IOC curve is close to its asymptotic

value). The traditional approach to train a saliency predictor (abbreviated as TT : traditional

training) optimizes:

Jideal = ∑i d(x̂i,xi), (3.1)

where x̂i is the predicted saliency map, and d(·, ·) is a discrepancy measure such as KLD, CC,

NSS, or a mix of these. Since reconstructing an accurate xi is challenging, the existing methods

instead end up optimizing:

Jreal = ∑i d(x̂i, x̃i), (3.2)

where x̃i is an approximation of the unobservable xi. We adopt the standard practice to esti-

mate x̃i from captured gaze data [121, 122, 153]: spatial locations are sampled from xi during

gaze acquisition, followed by blurring with a Gaussian kernel and normalization to obtain the

probability density function (pdf) x̃i. This can also be seen as a Gaussian Mixture Model with

equal-variance components at measured gaze locations. Let us denote this process of sampling

spatial locations and reconstructing a pdf (“SR”) as:

x̃i = SR(xi ; N), (3.3)

where N is the number of spatial locations sampled from xi via gaze data capture. For videos,

N is equivalently the number of observers.

Given that x̃i can be prone to inaccuracies/noise, minimizing Jreal during training can lead

to noise overfitting and suboptimal convergence (see Section 3.6.3). Instead of directly mini-

mizing d(x̂i, x̃i), our approach models the uncertainty in d(xi, x̃i) due to the noise in x̃i. We first

estimate a probability density function for d(x̂i, x̃i), denoted by p[d(xi, x̃i)], and then train the

DNN for saliency prediction by maximizing the likelihood of d(xi, x̃i).
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We interpret d(xi, x̃i) as Gaussian random variable with statistics E[d(xi, x̃i)], Var[d(xi, x̃i)].

We first consider an ideal case where xi is available and therefore we can compute these statis-

tics by sampling and reconstructing several realizations of x̃i from xi (Eq. 3.3; no gaze data

acquisition needed), and then computing sample mean E[d(xi, x̃i)] and variance Var[d(xi, x̃i)].

The value of these statistics depends on the number of available gaze locations N used to re-

construct x̃i and on the complexity of xi. For example, when xi consists of a simple, unimodal

distribution – e.g. when only one location in a frame catches the attention of all the observers

– a small N is sufficient to bring x̃i close to xi, which leads to low E[d(xi, x̃i)] and Var[d(xi, x̃i)]

values. Alternatively, for a complex multimodal xi, a larger N is required for x̃i to converge to

xi and consequently, E[d(xi, x̃i)] and Var[d(xi, x̃i)] are large when N is small (more discussion

on this using a toy example mentioned in Section 3.3.1).

Our NAT cost function is then defined as the following negative log likelihood:

JNAT =−ln∏i p[d(x̂i, x̃i)] =−∑i ln{p[d(x̂i, x̃i)]}, (3.4)

that enables us to account for the presence of noise in the training data, for any choice of d.

If E[d(xi, x̃i)] and Var[d(xi, x̃i)] are known, and assuming that d(xi, x̃i) is a Gaussian random

variable, we can simplify Eq. 3.4 (see Section 3.3.3) to get:

Jideal
NAT = ∑i {d(x̂i, x̃i)−E[d(xi, x̃i)]}2/Var[d(xi, x̃i)]. (3.5)

We note that Jideal
NAT penalizes x̂i that are far from x̃i, as in the traditional case. However,

it also ensures that x̂i is not predicted too close to the noisy x̃i, which helps prevent noise

overfitting (similar to discrepancy principles applied in image denoising [154, 155]). The pe-

nalization is inversely proportional to Var[d(xi, x̃i)], i.e. it is strong for frames where x̃i is a

good approximation of xi. In contrast, E[d(xi, x̃i)] and Var[d(xi, x̃i)] are large for multimodal,

sparse x̃i containing gaze data from only a few observers, since in such cases, x̃i is not a good

approximation of xi. This prevents the NAT formulation from overfitting to such uncertain x̃i,
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by weakly penalizing the errors in x̂i when compared to x̃i.

However, Eq. 3.5 cannot be implemented in practice, as xi (and consequently E[d(xi, x̃i)]

and Var[d(xi, x̃i)]) is unknown. We only have access to x̃i, a noisy realization of xi. We therefore

turn to approximating the statistics of d(xi, x̃i) as:

E[d(xi, x̃i)]≈ E[d(x̃i, ˜̃xi)], Var[d(xi, x̃i)]≈ Var[d(x̃i, ˜̃xi)]. (3.6)

Here, ˜̃xi = SR(x̃i ; N) is the pdf obtained by sampling N spatial locations from x̃i, followed

by blurring (N is also the number of gaze fixations sampled from xi by real observers). The dif-

ference between how x̃i is reconstructed from xi and ˜̃xi from x̃i is in the manner of obtaining the

N spatial locations: the N spatial locations used to reconstruct x̃ are obtained from human gaze

when viewing the ith frame; while for reconstructing ˜̃xi, N spatial locations are sampled from

the pdf x̃i. Multiple realizations of ˜̃xi are then used to estimate E[d(x̃i, ˜̃xi)] and Var[d(x̃i, ˜̃xi)].

Intuitively, the approximation in Eq. 3.6 holds because the level of consistency across multiple

realizations of ˜̃xi would be low when x̃i is complex (multimodal) with small N and indicates

that the underlying GT saliency map xi must also be complex. Similarly, a high consistency

across multiple realizations of ˜̃xi points towards a reliable x̃i. Therefore, the spatial noise intro-

duced by sampling from x̃i serves as a proxy of the various noise introduced by the insufficient

gaze-capturing process. We observe empirically that these approximations hold with a mean

absolute percentage error of 10−21% on real cases – we analyze this approximation further in

Sec. 3.3.2.

Using Eq. 3.6, the NAT formulation from Eq. 3.5 is modified to minimize:

Jreal
NAT = ∑i {d(x̂i, x̃i)−E[d(x̃i, ˜̃xi)]}2/Var[d(x̃i, ˜̃xi)], (3.7)

where all the terms are now well-defined and a DNN can be trained using this cost function.

When implementing Eq. 3.7, for numerical stability, a small offset of 5e−5 is applied to the

denominator, and E[d(x̃i, ˜̃xi)] and Var[d(x̃i, ˜̃xi)] are computed using 10 realization of ˜̃xi.
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Fig. 3.4 shows the mean and standard deviation of KLD(x̃i|| ˜̃xi) for some frames in ForGED,

as estimated by Eq. 3.6. Frames with high consistency across several observers are considered

more reliable for training – a feature that is exploited by NAT in Eq.3.7. In the next few sub-

sections, we elaborate upon some of the insights behind the NAT formulations.

3.3.1 A toy example to motivate NAT

Assume that a method predicts the (unobservable) distribution xi exactly, that is x̂i = xi.

Because of measurement noise and incomplete sampling in x̃i (which is the the saliency map

estimated from insufficient gaze data, i.e. the one typically used for training), d(xi, x̃i) ̸= 0,

even though the prediction is perfect. In this scenario, it would suboptimal to train a saliency

predictor to minimize d(xi, x̃i).

Let us consider a 1D toy example: Figs. 3.3(a,h) show two 1D ground-truth “saliency

maps” (or pdfs) xi, one unimodal, and one bimodal. We simulate the “1D gaze-data acquisi-

tion” by sampling 3 (red circles) or 30 (blue) spatial locations (or “gaze fixations”) from xi.

Following the de facto standard to generate saliency maps from single gaze locations, we blur

each fixation (Fig. 3.3(b)), and accumulate the resulting curves (Fig. 3.3(c)). This results in

approximations, x̃i, of the ground-truth saliency maps. The inaccurate positions of the modes

in these estimated saliency maps mimics the measurement noise, while the finite number of 1D

gaze fixations used to estimate these maps simulates incomplete sampling.

When few fixations are available, x̃i may be shifted with respect to xi (Fig. 3.3(c)), and

the number of its modes may not match xi (Fig. 3.3(j)). Furthermore, when xi is multimodal,

the mass of each mode in x̃i may be imprecisely estimated compared to xi (Fig. 3.3(j)). The

standard deviation of 1000 random realizations of x̃i (Std[x̃i]), which measures the uncertainty

in x̃i (and therefore the quality of estimation of xi using x̃i), decreases when a large number of

fixations are used to reconstruct x̃i and remains high for a smaller number of fixations. This is
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Figure 3.3: A toy example to motivate NAT. Plots in (a) and (h) show the unimodal and multi-

monal 1D pdfs xi in dashed black lines – these are analogous to the true underlying 2D saliency

maps for video frames / images. The measured saliency maps are reconstructed by first sam-

pling “fixations” (red / blue circles in (a, h)) from xi, then blurring (b, e, i, l),and reconstructing

the saliency maps x̃i (d, g, j, m). When a limited number of observers is available (e.g. 3, in the

red plots in (c,j)), x̃i may differ in shape from xi, e.g. due to random shifts, reconstruction errors,

etc. Plots d, g, k, n show the expected value and standard deviation for multiple realizations

of x̃i, with respect to xi. The deviation of x̃i from xi results in the statistics E[KLD(xi, x̃i)] and

Var[KLD(xi, x̃i)] to be non-zero (as shown in the titles of plots d, g, k, n). These statistics are

larger when few observers are available and when xi has a complex shape (e.g. multimodal).
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shown as the light-blue / light-red shaded regions in Figs. 3.3(d, g, k, n), while the solid plot red

/ blue curve shows E[x̃i]. Furthermore, the level of uncertainty is proportional the complexity

of the ground-truth saliency map: e.g. given 3 fixations to reconstruct x̃i, the uncertainty is

lower when the underlying ground-truth xi map is unimodal (Fig. 3.3(d)), and higher when xi

is bimodal Fig. 3.3(k). We note that in Figs. 3.3(d, g, k, n), E[x̃i] still differs from xi because

of the blurring operation used in the reconstruction of x̃i from sampled 1D locations from xi.

When the reconstruction process for x̃i is perfect (a topic of research beyond the scope of this

work), such reconstruction errors would be eliminated. For our experiments, we adopt this

standard reconstruction process.

The uncertainty in x̃i due to measurement noise and incomplete sampling results in uncer-

tainty in accurately estimating d(xi, x̃i). We now want to estimate the distribution p[d(xi, x̃i)],

where we model d(xi, x̃i) as a Gaussian random variable. We compute KLD(xi, x̃i) for 1,000

random realizations of x̃i and estimate E[KLD(xi, x̃i)], Std[KLD(xi, x̃i)]. These are reported in

the titles of Figs. 3.3(d, g, k, n). We use KLD as discrepancy function because of its wide

adoption for saliency estimation, but the results presented here hold for other metrics as well.

We observe that:

• E[KLD(xi, x̃i)] > 0, i.e. KLD(xi, x̃i) is biased. The source of the bias is twofold. First,

KLD(xi, x̃i) > 0 because E[x̃i] is a smoothed version of xi (bias due to the choice of the

method used to reconstruct x̃i), independently from the number of observers. Second, x̃i

is noisy (Std[x̃i] > 0), which, especially for a limited number of observers, contributes

with an additional bias to KLD(xi, x̃i).

• Std[KLD(xi, x̃i)]> 0, and it tends to be smaller for a larger number of observers.

• For a given number of observers, E[KLD(xi, x̃i)] and Std[KLD(xi, x̃i)] are larger for mul-

timodal maps.

We conclude that, when x̃i is affected by measurement noise and incomplete sampling,
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the expected value and variance of the discrepancy d(xi, x̃i) are not zero, depend on the num-

ber of observers, and are different for each frame. These properties, which also hold for 2D

saliency maps recorded from real human observers, form the basis for the development and

interpretation of NAT.

3.3.2 Analysis of approximation in Eq. 3.6

To analyze the accuracy of Eq. 3.6, we select a subset of the video frames from the DIEM

dataset that contains gaze data from more than 200 observers. Given the very large number of

gaze fixations for these frames, we anticipate that the estimated human-saliency map x̃i is very

close to ground-truth saliency xi [124] for every such frame i (as also confirmed by converged

IOC curves for these frames). We therefore analyze the accuracy of Eq. 6 under the assumption

that the > 200-observer gaze maps of these frames represent xi. From these 200-observer gaze

maps (xi), we sample a certain number (denoted as M) of gaze fixation locations followed by

blurring to compute x̃i. Therefore, x̃i = SR(xi;M). Then, we compute ˜̃x by sampling M spatial

locations as per the pdf x̃ followed by blurring. That is, ˜̃xi = SR(x̃i;M).

Using multiple realizations of x̃ and ˜̃x, we estimate E[d(x, x̃)], E[d(x̃, ˜̃x)], Var[d(x, x̃)],

Var[d(x̃, ˜̃x)]. We find that the mean absolute percentage error (MAPE) in the approximation

of E[d(x, x̃)] (Eq. 3.6) goes from 21% for N = 5, to 13% for N = 15, and down to 10% for

N = 30. Similarly, MAPE in the approximation of Var[d(x, x̃)] (Eq. 3.6) goes from 13% for

N = 5, to 6% for N = 15, and down to 5% for N = 30. Note that a large under/over-estimation

of E[d(x, x̃)] and Var[d(x, x̃)] in Eq. 3.6 may lead to overfitting to noisy data or sub-optimal

convergence respectively using Eq. 3.7 for training. This would result in poor performance of

NAT compared to traditional training – which, as shown by the results, is not the case.
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3.3.3 Derivation of the NAT cost function

We interpret d(xi, x̃i) as a random variable with Gaussian distribution, d(xi, x̃i)∼ G(µi,σ
2
i ),

where µi = E[d(xi, x̃i)] indicates its mean, whereas σ2
i = Var[d(xi, x̃i)] is its variance. When

the predicted saliency map x̂i is optimal, i.e. when x̂i = xi, d(x̂i, x̃i) has the same statistical

distribution of d(xi, x̃i). Therefore, for a perfect saliency predictor, we can write d(x̂i, x̃i) ∼

G(µi,σ
2
i ). Note that, for our proposed noise-aware training (NAT), µi and σi are assumed to

be known, and therefore, x̂i is the only unknown. The likelihood of d(x̂i, x̃i) is given by:

p[d(x̂i, x̃i)] =
1√

2πσi
e
− [d(x̂i,x̃i)−µi]

2

2σ2
i . (3.8)

Given our interpretation of d(x̂i, x̃i), for a dataset containing N +1 saliency maps, the negative

log likelihood is:

J(x̂0, x̂1, ..., x̂N) =−ln∏i
1√

2πσi
e
− [d(x̂i,x̃i)−µi]

2

2σ2
i =

∑i−ln{ 1√
2πσi

e
− [d(x̂i,x̃i)−µi]

2

2σ2
i }=

∑i{ln(
√

2πσi)+
[d(x̂i, x̃i)−µi]

2

2σ2
i

}. (3.9)

We want to train the saliency models to predict all the {x̂i}i=0...N that maximize the likeli-

hood. Therefore, the optimization problem becomes:

(x̂0, x̂1, ..., x̂N) = argmin
(x̂0,x̂1,...,x̂N)

J(x̂0, x̂1, ..., x̂N) =

argmin
(x̂0,x̂1,...,x̂N)

∑i{ln(
√

2πσi)+
[d(x̂i, x̃i)−µi]

2

2σ2
i

}. (3.10)

Upon simplification (removing the terms that do not depend on (x̂0, x̂1, ..., x̂N), that are the only

unknowns), we obtain:

(x̂0, x̂1, ..., x̂N) = argmin
(x̂0,x̂1,...,x̂N)

∑i{
[d(x̂i, x̃i)−µi]

2

σ2
i

}. (3.11)

This leads to the formulation of the NAT cost function:

Jideal
NAT = ∑i{

[d(x̂i, x̃i)−µi]
2

σ2
i

}= ∑i{
[d(x̂i, x̃i)−E[d(xi, x̃i)]]

2

Var[d(xi, x̃i)]
}. (3.12)
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x̃i with 15 observers x̃i with 5 observers x̃i with 2 observers

0.197±0.077 0.261±0.136 0.478±0.418

0.442±0.112 0.585±0.277 1.018±0.630

0.372±0.106 0.652±0.324 1.079±0.691

0.517±0.154 0.937±0.453 0.947±0.722

Figure 3.4: Typical frames from ForGED with gaussian-blurred gaze locations of speci-

fied number of observers overlaid in red. For each image, we also show E[KLD(x̃i|| ˜̃xi)]±

Std[KLD(x̃i|| ˜̃xi)]. These quantities increase when the saliency map is sparse/multimodal and

number of observers is small – a setting that reduces the reliability of a frame for training.

ForGED images have been published with the permission from Epic Games.

3.4 The ForGED dataset

Videogames present an interesting and challenging domain for saliency methods – given

their market value, dynamic content, multiple attractors of visual attention, and dependence

of human gaze on temporal semantics. We therefore introduce ForGED, a video-saliency

dataset with 480, 13-second clips of Fortnite game play annotated with gaze data from up

to 21 observers per video. Compared to popular existing datasets such as LEDOV [135] and

DIEM [13], ForGED provides higher dynamism and a video-game context, with the highest

number of frames at a consistent 1080p resolution. We summarize the characteristics of each

of the datasets used in our experiments in Tab. 3.1 and show typical ForGED frames in Fig. 3.4.
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Dataset Videos Frames Resolution Max. Total
mean ± std.dev. optical

flow magnitude

DIEM [13] 84 240,015 720p@30Hz 31 51-219 9.41±33.85

LEDOV [135] 538 179,336 ≥720p@24Hz 32 32 4.09±8.65

ForGED (ours) 480 374,400 1080p@60hz 5 - 15 15-21 27.26±39.08

Table 3.1: Characteristics of video-saliency datasets, including the proposed ForGED dataset.

Dynamic content in ForGED. To compare the dynamic content level of ForGED to those of

LEDOV and DIEM, we use RAFT [156] to compute the mean and standard deviation of the

magnitude of the optical flow on a random subset of 100,000 frames from the three datasets, at

a uniform 1080p resolution and 30 fps framerate (Tab. 3.1). This is in ForGED approximately

3× that of DIEM and more than 6× larger than LEDOV, suggesting that objects move faster

(on average) in ForGED. It also has the largest standard deviation suggesting a larger variety

of motion magnitudes in ForGED.

3.4.1 Gaze data acquisition and viewing behavior in ForGED

To acquire ForGED, we first recorded 12 hours of Fortnite Battle Royale game-play videos

from 8 players of varying expertise using OBS [157]. We then sampled 480 15-second clips

to show to a different set of 102 participants with varying degree of familiarity with Fortnite.

Each viewer was tasked with viewing a total of 48 clips, randomly sampled from the pool of

480, and interspersed with 3-second “intervals” showing a central red dot on grey screen [121]

to ensure consistent gaze starting point for each clip (total 15-minute viewing time per viewer).

Each participant viewed the video clips on a 1080p monitor situated approximately 80cm away,

while their gaze was recorded with Tobii Tracker 4C at 90Hz. After analyzing the gaze patterns,

we discarded the initial 2 seconds of each clip, when observers were mostly spending time

to understand the context, to get a total of 374,400 video frames annotated with gaze data.

Accumulating the gaze of all frames, we observe that ForGED presents a bias towards the frame
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center and top-right corner. This is because in Fortnite the main character and the crosshair lie

at the screen center – making it an important region – and the mini-map on the top right corner

attracts regular viewer attention to understand the terrain. Such a bias is uniquely representative

of the observer behavior not only in Fortnite, but also in other third person shooting games

with similar scene layouts. Further analysis of gaze data in ForGED, such as IOC curves,

visual comparison of gaze data biases in ForGED, LEDOV and DIEM, are presented in the

Section 3.4.2.

3.4.2 Gaze data analysis for ForGED

Observer consistency and ForGED dataset split. As discussed in Section 3.1, IOC curve

measures how well a saliency map reconstructed from gaze data of N observers explains the

gaze of a new observer as a function of N [121–123]. A converged IOC curve indicates

that additional observers do not add significant new information to the reconstructed saliency

map [121, 124]. A typical test of whether a dataset captures sufficient observers is to evaluate

the level of convergence of the IOC curves on average across all frames at maximum value for

N (sometimes by using curve-fitting and extrapolation [124]). To obtain the average IOC for

ForGED, we sample 1 out of every 5 frames from ForGED test videos containing at least 19

observers – for a total of 1500 frames. For each frame, we compute the per-frame IOC curve

with 20 random realizations for the subset of observers that constitute the N observers and the

subset that constitutes the new observer whose gaze data is to be explained by the N-observer

saliency map. All realizations of the IOC curves across all sampled frames are averaged to

obtain the IOC curve shown in Fig. 3.5. As can be seen from Fig. 3.5, the gradient magni-

tude of the IOC curve is small at N = 17 (0.04). This further diminishes upon extrapolation to

N = 21 observers to 0.02. Our test set therefore contains gaze data from up to 21 observers per

video (median 17). While on average the IOC curves across all evaluated datasets (LEDOV,
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DIEM, ForGED) show very small gradient at sufficiently high number of observers, the level

of convergence for each frame may be different (content-dependent) and motivates the need

for NAT. This also presents an interesting direction of future research to design noise-robust

evaluation schemes. Note that, while the ForGED test dataset contains gaze data from a large

number of observers (that ensures small gradients in the IOC curves at maximum available N),

the ForGED training dataset consists of a larger number of videos but with gaze data from only

5− 15 observers (the majority of the videos contain 5 observers). This setting simulates the

scenario where training data with limited number of observers is available (the setting most

suitable for NAT) – while the testing is always performed on more accurate saliency maps.

The training-validation-test split for ForGED videos is 379 videos for training, 26 for valida-

tion, and 75 for testing. The different experiments enlisted in tables, the training dataset size is

varied in terms of number of available training videos, V , and number of observers, N, used to

reconstruct the saliency maps x̃i per video – to demonstrate the performance gain of NAT for

varying amount of training data.

Observer gaze behavior in ForGED. Given that the main character is placed at the center of

the screen in Fortnite game, we observe an affinity towards center in the gaze behavior. Events

such as combat, focused motion towards a location such as the horizon, attempts to pick up

resources such as ammunition lead to observer gaze behavior that follows the narrative of the

game-play (e.g. viewers observe the opponent when the main character is in combat, viewers

look towards the horizon when the main character is moving towards it). On the other hand,

when a scene becomes relatively uneventful, such as when the main central character has been

running towards the horizon for a few seconds, the observers’ gaze tends to become more

exploratory – scanning the surroundings, or simply browsing the evolving scenery. Lastly, we

accumulate all of the gaze locations captured on ForGED into a fixation density map (Fig. 3.6a)

to assess the common viewing tendencies of observers. We also compare these for LEDOV and

DIEM. As briefly mentioned earlier, due to the main character near the center of the frame, the
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Figure 3.5: Inter-observer consistency (IOC) curve computed on test-set frames of ForGED

containing at least 19 observers. Each data point is an average of the IOC value for the given

value of N, with the average computed over multiple realizations across the frames. The fitted

curve is shown with a solid line and indicates the diminishing amount of new information that

gaze data from additional observers imparts, when N is sufficiently high.

LOW FIXATION DENSITY HIGH FIXATION DENSITY

(a) ForGED (b) DIEM (c) LEDOV

Figure 3.6: Accumulated fixation density across gaze data from all observers across all frames

in (a) ForGED (b) DIEM and (c) LEDOV.

aiming reticle at the center of the frame, and a guiding mini-map on the top right, observers look

at these regions frequently. As compared to LEDOV and DIEM, such a behavior is uniquely

representative of the observer behavior in third person shooting games such as Fortnite. In case

of LEDOV and DIEM, we also observe a bias towards the center – but it tends to be more

widespread as shown in Fig. 3.6.
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method, hyperparameter settings KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

ViNET, Adam, 0.0001, KLD (default) 0.806 0.697 0.569 3.781 0.881

ViNET, RMSprop, 0.0001, KLD (improved) 0.773 0.710 0.573 3.969 0.889

TASED-Net, SGD, learning rate schedule (default) 1.104 0.554 0.452 2.536 0.828

TASED-Net, RMSprop, 0.001, KLD (improved) 0.754 0.724 0.572 4.227 0.921

SalEMA, Adam, 1e−7, BCE (default) 1.238 0.511 0.412 2.426 0.894

SalEMA, RMSprop, 1e−5, KLD (improved) 1.052 0.612 0.463 3.237 0.912

Table 3.2: LEDOV test-set performance when trained (traditionally) with default and improved

settings for ViNet [126], TASED-Net [128], and SalEMA [129].

3.5 Results

We compare TT (Eq. 3.2) and NAT (Eq. 3.7) on three datasets (ForGED, LEDOV [135],

and DIEM [13]) and three DNNs (ViNet [126], the state-of-the-art on DHF1K [130]; TASED-

Net, a 3D-CNN-based architecture [128]; and SalEMA, an RNN-based architecture [129]). We

further evaluate NAT against TT when density-based (e.g. KLD) or fixation-based (e.g. NSS)

discrepancy functions are used as d(·, ·) in Jreal (Eq. 3.2) and Jreal
NAT (Eq. 3.7). We first evaluated

and improved the author-specified hyperparameters for ViNet, TASED-Net, and SalEMA, by

performing TT (Eq. 3.2) on the entire LEDOV training set (see Tab. 3.2). We use the improved

settings for our experiments (more details in Appendix B). We also verify that training on

existing saliency datasets does not generalize to ForGED (Tab. 3.4b), given its novel content.

Experimental setup: We want to compare TT and NAT when training with different amounts

of data and varying levels of accuracy/gaze-data completeness. We emulate small-size training

datasets from LEDOV, DIEM, and ForGED by controlling the number of fixations, N, used

to reconstruct x̃ in the training set and the number of training videos, V , used. We report the

performance evaluation of TT and NAT on test set for each (V,N) value used for the training set.

The values for V and N are chosen to gradually increase the training dataset size and accuracy
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until the maximum V and/or N is reached. To reconstruct x̃, we choose a kernel of size ∼ 1◦

viewing angle [121,122,153] and discuss alternative x̃ reconstruction strategies [107,108,158]

in Sec. 3.6.

ForGED data are randomly split into 379 videos for training, 26 for validation, and 75

for testing. For LEDOV, we adopt the train / val / test split specified by the authors. DIEM

contains gaze data from many observers on a few videos: we use 60 videos with fewest ob-

servers for training and evaluate on the remaining videos with 51−219 observers. Evaluation

is performed on test-set maps reconstructed from the set of all the available observers, that is

sufficiently large to lead to converged IOC curves even for multimodal maps; consequently,

we also assume a negligible noise level in evaluation. We omit experimenting with DHF1K in

favor of LEDOV which is similar in scope to DHF1K [125], but contains a larger number of

observers (converged IOC curves), while DHF1K lacks accurate per-observer gaze data.

Dataset type and size: We compare NAT and TT on different dataset types, by training

ViNet and TASED-Net on ForGED, LEDOV, and DIEM, and changing V and N to assess the

performance gain of NAT as a function of the level of accuracy and completeness of the training

dataset. Tab. 3.3 and 3.4a show the results for ViNet trained on ForGED and LEDOV, whereas

Tab. ??a and 3.8,3.7 show the results for TASED-Net. With ViNet, we observe a consistent

performance gain of NAT over TT. Although NAT is particularly advantageous when N and V

are small, training on the entire LEDOV dataset (last row in Tab. 3.3) also shows a significant

improvement for NAT since, depending on their content, some frames can still have insufficient

fixation data. With TASED-Net trained on ForGED, NAT consistently outperforms TT when

the number of training videos is ≤ 100, i.e. when noise overfitting may occur. Notably, NAT

on 30 videos / 15 observers and 100 videos / 5 observers is comparable or superior to TT

with 379 videos / 5 observers, which corresponds to ≥ 3× saving factor in terms of the data

required for training. Similar conclusions can be drawn for LEDOV (Tab. 3.8) and DIEM (see
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 2.636 0.266 0.250 1.344 0.528
5

NAT 2.054 0.406 0.353 1.979 0.624

TT 1.475 0.467 0.414 2.320 0.779
15

NAT 1.320 0.502 0.427 2.467 0.813

TT 1.717 0.446 0.395 2.286 0.708
25

NAT 1.441 0.482 0.419 2.450 0.786

TT 1.828 0.448 0.392 2.281 0.663

30

30−32 (all)
NAT 1.446 0.491 0.424 2.462 0.770

TT 1.303 0.539 0.453 2.676 0.798
100 30−32 (all)

NAT 1.275 0.562 0.471 2.848 0.784

TT 1.066 0.611 0.511 3.104 0.840
200 30−32 (all)

NAT 1.020 0.598 0.503 3.025 0.869

TT 0.959 0.655 0.535 3.456 0.847
300 30−32 (all)

NAT 0.897 0.669 0.546 3.517 0.863

TT 0.773 0.710 0.573 3.969 0.889
461 (all) 30−32 (all)

NAT 0.718 0.720 0.577 3.893 0.904

ViNET on LEDOV, d = KLD

Table 3.3: NAT vs. TT on LEDOV with ViNet architecture trained on different training dataset

sizes, using d =KLD as discrepancy. Best metrics between NAT and TT are in bold. The last

two rows show the training on the entire LEDOV dataset.

Appendix B). We also test the case of practical importance of an unbalanced LEDOV dataset,

with an uneven number of observers in the training videos. Since NAT, by design, accounts for

the varying reliability of the gaze data in training frames, it significantly outperforms TT (last

two rows of Tab. 3.8).
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.538 0.541 0.426 3.261 0.713
5

NAT 1.264 0.593 0.460 3.412 0.773

TT 1.779 0.514 0.399 3.130 0.633
10

NAT 1.220 0.620 0.488 3.670 0.764

TT 1.218 0.602 0.473 3.542 0.794

30

15
NAT 1.257 0.605 0.469 3.527 0.773

TT 1.263 0.600 0.473 3.609 0.775
100 5

NAT 1.149 0.623 0.485 3.620 0.798

TT 1.134 0.629 0.494 3.750 0.804
200 5

NAT 0.982 0.641 0.489 3.704 0.882

TT 0.994 0.645 0.495 3.697 0.860
379 5

NAT 1.026 0.625 0.438 3.505 0.918

(a) ViNET on ForGED, d = KLD

training dataset KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

DHF1K 2.038 0.262 0.228 1.336 0.805

LEDOV 1.573 0.436 0.345 2.583 0.818

(b) pretrained ViNET tested on ForGED

Table 3.4: (a) NAT vs. TT on ForGED with ViNet architecture trained on different training

dataset sizes, using d =KLD as discrepancy. Best metrics between NAT and TT are in bold. (b)

Training on existing large-scale video-saliency datasets shows poor generalization to ForGED

since the videogame presents a very unique visual domain.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.385 0.546 0.370 2.992 0.877
2

NAT 1.298 0.558 0.385 3.161 0.903

TT 1.419 0.536 0.370 3.042 0.877
5

NAT 1.172 0.590 0.428 3.372 0.908

TT 1.080 0.615 0.481 3.598 0.897

30

15
NAT 0.995 0.634 0.478 3.750 0.924

TT 1.323 0.565 0.365 3.034 0.890
2

NAT 1.056 0.610 0.447 3.386 0.922

TT 1.065 0.623 0.473 3.627 0.917
100

5
NAT 0.969 0.643 0.494 3.749 0.923

TT 0.986 0.628 0.475 3.434 0.925
2

NAT 0.974 0.632 0.470 3.497 0.932

TT 0.963 0.631 0.461 3.376 0.936
379

5
NAT 0.888 0.664 0.508 3.813 0.934

Table 3.5: NAT vs. TT on ForGED with TASED-Net architecture and different values of N,V ,

trained to minimize the discrepancy d = KLD.

Discrepancy functions: NAT can be applied to any choice of discrepancy d. To demonstrate

this, a mix of density- and fixation-based discrepancies, d = KLD− 0.1CC− 0.1NSS, which

has also been a popular choice in literature [130,133], is used to train TASED-Net on ForGED

(Tab. 3.6). Comparing Tab. 3.5 and Tab. 3.6, we note that NAT provides a performance gain

over TT, independently of the training discrepancy. We show more experiments in the Ap-

pendix B, with a fixation-based metric (NSS), and on different datasets.

DNN architectures: Tab. 3.8, 3.7 compares NAT vs. TT when training two different DNNs

(TASED-Net [128] and SalEMA [129]) on LEDOV, with KLD. As also observed earlier, NAT
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.155 0.612 0.440 3.600 0.904
5

NAT 1.061 0.618 0.466 3.656 0.912

TT 1.095 0.612 0.448 3.574 0.919
30

15
NAT 0.993 0.639 0.475 3.802 0.928

TT 1.138 0.601 0.429 3.406 0.911
2

NAT 1.099 0.600 0.434 3.356 0.920

TT 1.097 0.623 0.425 3.533 0.921
100

5
NAT 1.016 0.631 0.468 3.644 0.924

TT 1.069 0.618 0.436 3.456 0.920
2

NAT 1.011 0.626 0.450 3.459 0.931

TT 0.958 0.655 0.467 3.652 0.934
379

5
NAT 0.905 0.669 0.496 3.946 0.933

Table 3.6: NAT vs. TT on ForGED with TASED-Net architecture and different values of N,V ,

trained to minimize the discrepancy d = KLD - 0.1CC - 0.1NSS.

outperforms TT and the performance gap shrinks with increasing training data. The Ap-

pendix B shows results with SalEMA on ForGED.

3.6 Discussion

3.6.1 NAT for images

Image-based saliency datasets (e.g. CAT2000 [120], SALICON [159]) have many fixations

per image resulting in high-quality of the reconstructed saliency maps, as the accuracy rapidly

increases with number of fixations (e.g., > 90% accuracy at 20 fixations [124]). It is nonethe-

less fair to ask if NAT is effective for image-saliency predictors. We simulate a high-noise,
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incomplete, dataset by sampling a subset of fixations for each SALICON image1 and train a

state-of-the-art method, EML-Net [111], with TT and NAT. Tab. 3.9 shows the results on the

official SALICON benchmark test set, and confirms the advantage of NAT.

3.6.2 Alternative methods to reconstruct x̃

Although reconstructing x̃ by blurring a binary map of fixations is prevalent practice [121,

122, 153], we experiment with another reconstruction strategy for x̃ using Gaussian KDE with

a uniform regularization. To estimate the optimal bandwidth using KDE, we optimize a gold-

standard model for saliency prediction, which predicts the probability of fixation for one ob-

server, given the gaze data from the remaining observers for the video frame (leave-one-out

cross-validation) [123, 125]. We observe that, when gaze fixation locations are sparsely dis-

tributed across a frame, the optimal bandwidth for KDE is high, which would result is high-

spread, almost-uniform saliency maps. Independent of the estimation strategy for x̃, we posit

that there is an underlying uncertainty / noise in the measured saliency map – which is ac-

counted for during training using NAT, to obtain improved performance over traditional train-

ing. Experiments with TASED-Net on ForGED (N = 5, V = 30) comparing TT with x̃ esti-

mated using a fixed-size blur or KDE-based reconstruction, and NAT, show that while KDE

improves TT, NAT still yields the best results (Tab. 3.10).

Note that we do a per-frame estimation of optimal KDE bandwidth and mixing coefficient,

to account for the general case where each frame can have a different variety of points of

interest to attract gaze which cannot be explained with the optimal KDE bandwidth of another

frame. The alternative to this is to estimate an optimal KDE bandwidth independent of the

video frames, which amounts to the case of obtaining a universal Gaussian-blur kernel of a

different size. In this case, the treatment of the underlying gaze data for obtaining the measured

1Mouse clicks are used as proxy for gaze in SALICON.
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saliency maps, ˜̃xi, remains the same, in principle, as our experiments with ∼ 1◦ viewing-angle

Gaussian-blur kernel (which amounts to 36 pixels and 1920× 1080 resolution for ForGED).

To demonstrate this for completeness, in Table 3.11, we show some of the results for TASED

trained with ForGED and KLD as discrepancy. For this experiment, the training gaze maps

are estimated using a Gaussian-blur kernel of size 27 pixels (at resolution 1920×1080), which

amounts to ∼ 0.75◦ viewing angle. We note in Table 3.11 that NAT outperforms traditional

training, consistent with our experiments with ∼ 1◦ viewing-angle Gaussian-blur kernel.

3.6.3 Overfitting behavior with NAT

Figure 3.7 shows the training and validation set performance (in terms of KLD) as a func-

tion of the training iteration when training TASED on LEDOV dataset with KLD discrepancy,

for different number of observers and videos in the training set. For both the traditional ap-

proach (dashed orange line) and NAT (dashed purple line), the training-set curves decrease

regularly, as expected in a smooth optimization process. However, the validation-set curves

for traditional training (continuous orange line) quickly reach a minimum and then start di-

verging towards a higher asymptotic value, which is a clear sign of overfitting. On the other

hand, the validation curves for NAT (continuous purple line) are always lower (suggesting bet-

ter performance) and tend to stabilize around asymptotic values without growing anymore — a

clear sign, in this case, that overfitting is avoided. Note that for the training-set curves (dashed

lines), the human saliency map used for KLD computation is derived using the limited num-

ber of observers available during the specific training experiment. As an additional check for

the overfitting behavior of traditional training, we plot the performance of training set when

compared against human saliency maps obtained from all the observers available in the train-

ing videos (32). These are indicated with dash-dotted lines. For few-observer experiments,

the performance of traditional training on all-observer evaluations gets worse with increasing
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Figure 3.7: Training-set and validation-set KLD as a function of training iterations for TASED

trained on LEDOV (“GT” in the legend indicates “ground-truth”). In contrast to the traditional

training (Eq.2 in main paper), NAT does not overfit.

iterations. On the contrary, the performance on validation set, training set, and all-observer

training set do not generally show signs of overfitting for NAT. Only in few cases, NAT plots

are unstable at the beginning of the training (see the peaks in the validation curves in the left
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most panels for 30 observers trainings), but then the curves stabilize to an asymptotic value.

The only exception to this is represented by the upper right panel in the figure (2-observer

training with 461 videos), where we believe that the slight increase in the validation-set perfor-

mance value is due to the approximation introduced in NAT to make it computable in practice.

We observed a similar behavior when training on other datasets.

3.6.4 Limitations and future work

Although the test saliency maps of LEDOV, DIEM and ForGED are derived from several

observers leading to converged IOC on average, per-frame inaccuracies of saliency maps can

still add uncertainty about the conclusions one can draw. Adopting alternative strategies such

as deriving metric-specific saliency from the probabilistic output of a saliency predictor [139,

158], can give a clearer understanding. Nonetheless, in our experiments all the metrics are

generally in agreement about the ranking between TT and NAT: a strong evidence in favor

of NAT [142]. NAT design principles can also be applied to saliency evaluation (not only

training), where variable importance is given to each frame depending on its noise level.

3.7 Conclusion

Video gaze data acquisition is time-consuming and can be inaccurate. To reduce the impact

of dataset size in the field of visual saliency prediction, we introduce NAT to account for the

level of reliability of a saliency map. We also introduce a new dataset which offers a unique

video-game context. We show consistent improvements for NAT over TT across a variety

of experiments. The adoption of NAT has important practical implications, since it allows

acquiring new datasets (or training on old ones) with less data, both in terms of videos and

number of observers, without loss of quality.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 2.155 0.195 0.198 1.007 0.793
2

NAT 1.431 0.428 0.378 2.082 0.884

TT 1.744 0.371 0.265 1.763 0.861
5

NAT 1.189 0.495 0.409 2.378 0.902

TT 1.360 0.457 0.383 2.225 0.886

30

30
NAT 1.120 0.532 0.433 2.638 0.909

TT 1.882 0.315 0.275 1.621 0.787
2

NAT 1.449 0.457 0.367 2.281 0.869

TT 1.351 0.460 0.382 2.331 0.890
5

NAT 1.098 0.554 0.443 2.753 0.902

TT 1.170 0.524 0.424 2.687 0.904

100

30
NAT 0.872 0.648 0.493 3.604 0.932

TT 1.231 0.532 0.459 2.784 0.880
2

NAT 0.975 0.595 0.499 2.931 0.921

TT 0.805 0.684 0.552 3.788 0.921
5

NAT 0.828 0.667 0.531 3.530 0.929

TT 0.754 0.724 0.572 4.227 0.921
30−32 (all)

NAT 0.686 0.727 0.575 4.128 0.937

TT 0.836 0.666 0.551 3.615 0.916

461

2,5,15,30
NAT 0.768 0.692 0.545 3.855 0.933

TASED-Net trained and tested on LEDOV, d = KLD

Table 3.7: NAT vs. TT on LEDOV dataset with 3DCNN-based architecture of TASED-Net

with d = KLD and different training data sizes. The last two rows show the case of an unbal-

anced dataset with N chosen from 2,5,15,30 in a video.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.922 0.249 0.232 1.039 0.803
2

NAT 1.768 0.286 0.285 1.263 0.843

TT 2.168 0.280 0.276 1.348 0.844
5

NAT 1.710 0.327 0.298 1.476 0.848

TT 1.888 0.256 0.225 1.082 0.821

30

30
NAT 1.510 0.404 0.321 1.969 0.874

TT 1.621 0.355 0.307 1.634 0.854
2

NAT 1.538 0.385 0.311 1.733 0.867

TT 1.381 0.455 0.363 2.179 0.882
5

NAT 1.340 0.470 0.392 2.368 0.893

TT 1.359 0.532 0.408 2.909 0.883

100

30
NAT 1.284 0.559 0.408 3.272 0.884

TT 1.277 0.487 0.382 2.247 0.895
2

NAT 1.243 0.490 0.403 2.365 0.899

TT 1.139 0.568 0.444 2.825 0.903
5

NAT 1.136 0.567 0.450 3.117 0.908

TT 1.052 0.612 0.462 3.237 0.912

461

30
NAT 1.045 0.633 0.457 3.425 0.910

SalEMA trained and tested on LEDOV, d = KLD

Table 3.8: NAT vs. TT on LEDOV dataset with the RNN-based architecture of SalEMA, with

d = KLD and different training data sizes.
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no. of fixations loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 3.986 0.578 0.537 1.477 0.764
5

NAT 1.672 0.660 0.611 1.549 0.817

TT 2.877 0.655 0.589 1.669 0.795
15

NAT 1.437 0.714 0.640 1.676 0.831

Table 3.9: Evaluation on EML-Net.

x̃i for training loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

1◦ blur TT 1.419 0.536 0.370 3.042 0.877

KDE TT 1.223 0.573 0.399 3.271 0.897

1◦ blur NAT 1.172 0.590 0.428 3.372 0.908

Table 3.10: Methods for estimating x̃.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.586 0.471 0.329 2.832 0.878
2

NAT 1.387 0.546 0.378 3.153 0.879

TT 1.358 0.563 0.345 3.184 0.903
5

NAT 1.239 0.565 0.406 3.272 0.905

TT 1.056 0.622 0.483 3.682 0.902

30

15
NAT 1.035 0.616 0.476 3.757 0.917

TT 1.085 0.634 0.464 3.770 0.903
100 5

NAT 1.018 0.636 0.474 3.633 0.926

TT 0.959 0.651 0.480 3.652 0.931
379 5

NAT 0.888 0.670 0.517 4.091 0.924

Table 3.11: Performance comparisons on ForGED test set for TASED trained with KLD as

discrepancy. Instead of computing gaze maps for train set with Gaussian blur kernel of size

approximately 1◦ viewing angle (which amounts of 36 pixels at 1920× 1080 resolution), we

use a Gaussian blur kernel of size approximately 0.75◦ viewing angle (27 pixels). As we can

see, the conclusion regarding the superior performance of NAT compared to traditional training

applies independent of blur kernel size.
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Chapter 4

Generalizable Deepfake Detection with

Phase-Based Motion Analysis

4.1 Introduction

High-quality deep generative models for faces [17,18], and their seamless public access [19,

20]), has enabled areas like art or communication. However, they also pose a societal threat if

the deepfakes generated by such models are used to propagate misinformation [24, 25]. This

has led to the active pursuit of designing deepfake (DF) detection methods [21–23]. Broadly,

DF detection methods either rely on the spatial per-frame artifacts left by DF generators (such

as warping [26] or upsampling [27]) or the anomalies in facial dynamics across frames of a

DF video (such as in lip movements [35]). Leveraging the inconsistencies in the facial tem-

poral dynamics for DF detection is more promising of the two directions, since it is harder

to synthesize realistic facial motion. We contribute to this promising trend with our proposed

method, PhaseForensics (Fig. 4.1), that relies on temporal phase changes to estimate a noise-

robust, domain-invariant, representation of the facial dynamics for DF detection. Distinct from

the existing phase-based DF detection methods [27] – that only rely on spatial anomalies in
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the per-frame phase spectrum – we use the temporal phase changes in frequency sub-bands

across frames to explicitly leverage motion-related information. This allows us to learn the DF

classifier from the high-level facial temporal dynamics instead of the per-frame artifacts.

Traditionally, temporal methods for DF detection either use hand-coded features such as

estimating motion vectors [41] or landmark trajectories [42], or learn temporal semantics in an

end-to-end manner [35]. These techniques can be error-prone due to factors such as depen-

dence on estimation accuracies, or tracking errors. Instead, we adopt an Eulerian approach to

estimating motion-based features [45]. Specifically, we use the temporal phase changes across

video frames in the frequency sub-bands to capture the motion field (which is equivalent to

applying the Fourier Shift theorem on a finite-support basis) [43–45]. This circumvents the

need for error-prone tracking/optical-flow estimation or solely relying on the trained model to

learn motion-relevant features from RGB-domain inputs [35], but still provides an indication

of the amount of motion in face sub-regions. Using this link between phase and motion, we

isolate the facial temporal dynamics with learnable spatio-temporal filters applied to the phase

of the coefficients of a complex steerable pyramid (CSP) decomposition of the frames [44].

The output of this stage is provided to a standard DF classifier pipeline with feature extraction

and sequence modeling [35].

Operating in the phase domain has another crucial advantage: it affords increased robust-

ness to appearance changes (e.g., contrast or scale changes) [43,45]. Consequently, we observe

improved robustness to spatial distortions associated with color, noise, and compression arti-

facts, as well as state-of-the-art cross-dataset generalization (e.g., with of 91.2% in terms of

AUC on Celeb-DFv2 dataset [16]). In Fig. 4.1b, we demonstrate this, in comparison to Lip-

Forensics [35], (which uses RGB-domain input) by plotting the classifier output for sub-clips

of videos. PhaseForensics output shows fewer oscillations as the video progresses and a consis-

tently accurate predicted class for the video, despite the varying scale of the face and transient

factors such as head pose or lighting changes.
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Figure 4.1: In this work, we propose PhaseForensics, a novel a phase-based approach for Deep-

Fake (DF) detection (a). We use spatio-temporally filtered phase from frequency sub-bands of

frames to train the DF detector. When compared to directly using the RGB data, phase-based

DF detection decreases per-frame prediction variability despite appearance changes as shown

in (b). We further show this improved robustness by superior performance on unseen test data,

and spatial/adversarial distortions (Tab. ??).

A relatively under-explored aspect of the performance analyses of DF detectors is assess-

ing their adversarial robustness. Recent studies reveal that existing DF detectors tend to be

vulnerable to adversarial attacks, which can limit their applicability [37,38]. With PhaseForen-
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sics, we observe a higher adversarial robustness compared to existing temporal state-of-the-art

methods such as LipForensics [35], for black-box attacks. Previous works have shown that

adversarial attacks typically target the high-frequency components of image inputs [46]. In

the process of estimating phase variations to capture the motion field, the input features esti-

mated for PhaseForensics are obtained from the band-pass components, discarding the higher

frequencies. These input features enable our deep learning model to learn from lower fre-

quency components, thereby yielding adversarial robustness by design, while also achieving

state-of-the-art results on traditional, non-adversarial benchmark DF datasets.

Overall, with PhaseForensics, we achieve state-of-the-art cross-dataset generalization across

three DF datasets, improved or – in some cases – on-par spatial distortion robustness compared

to existing state-of-the-art, and improved adversarial robustness to black-box attacks (Fig 4.1).

We analyze the design choices of our proposed method through experiments, to clearly demon-

strate the advantage of each of the components.

4.2 Related work

We now discuss the existing notable works for DF detection, and refer the readers to com-

prehensive reviews on the topic for a more in-depth discussion [21, 22].

Frame-based methods. The sub-field of frame-based DF detection has witnessed active

progress over the years, with early methods performing per-frame feature-extraction using

pretrained networks [6] to more sophisticated frame-based approaches utilizing attention, for

example: [160] perform fine-grained per-frame classification using the learnt multi-attentional

maps with soft-attention dropout and a regional independence loss, [161] propose an image-

based method that uses multi-scale transformers to process RGB image, followed by fusion

of processed features with the DCT domain. The loss used for training is a combination of

cross-entropy, segmentation, and contrastive loss. While frame-based methods have been pop-
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ular, dependence on single-frame DF generation artifacts can be prone to inaccuracies. This

is because of the rising sophistication of DF generators [17, 18], and also because the imprints

left by such generators can easily be lost by simple architecture changes [34]. This can espe-

cially impact methods that rely on signals such as generative model footprint [27], face warping

artifacts [26], or blending boundaries for classifying real vs. fake faces [162]. Therefore, sev-

eral other methods have attempted to improve detection performance and generalization by

leveraging additional features. Such features have included Discrete Cosine Transform (DCT)

coefficients [163], mid-level features [164], and Laplacian of Gaussian filtered inputs [36].

Methods relying on biological signals. Many methods rely on detecting inconsistencies in

facial landmarks between real and deepfake videos [33, 42]. These methods leverage exist-

ing, pretrained face landmark detection models, to extract a condensed feature to be passed

for classification. While these methods may offer a degree of explainability not obvious in

more complicated neural networks, the performance results generally lag behind the end-to-

end trainable models. Related to these are the methods that rely on biological signals – with

the aim to track inconsistencies in heart-rate [28–31] or blink/gaze patterns [30, 32, 33]). With

all these approaches, there is a susceptibility towards estimation errors since such methods

depend on reliable estimation of such signals – which can be lost for low-quality videos.

Methods leveraging phase/frequency information. An important sub-class of DF detec-

tion methods have considered leveraging frequency and phase-related cues. Specifically, these

include phase or frequency spectrum imprint of generative models [27, 165–167], per-frame

Laplacian of Gaussians [168], and DCT coefficients [163]. All these methods use the frequency

or phase domain to estimate frame-level features to inform DF detection. In contrast, our nov-

elty lies in effectively leveraging temporal phase variations to estimate a domain-invariant rep-

resentation of local motion in face regions. Therefore, we leverage fundamentally different

aspect for DF detection compared to existing methods that use phase/frequency, as compared
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to these frame-based methods.

Methods that perform temporal processing. In order to overcome the potential limitations

of frame-based approaches, a recent trend has been to perform sequence modeling – to make

the DF detector dependent on temporal signals. Improved performance by using per-frame

backbone models has therefore been observed, with output features being fed into Recurrent

Neural Networks (RNNs) [169–172] or Long-Short Term Memory (LSTM) [173, 174] net-

works, and trained end-to-end [169–172]. Besides these, there have been several promising

recent developments. [36] present a two-branch RNN-based spatio-temporal deepfake detec-

tor, utilizing Laplacian of Gaussian to amplify medium and high-frequency artifacts, while the

second branch uses RGB data. [42] model the temporal behavior of landmarks is fed to a two-

stream RNN for classification. [35] propose LipForensics: a multi-scale temporal CNN is used

to classify deepfakes based on temporal features extracted from lip region using a ResNet-18

and 3DCNN layers. An important step adopted here is the domain-specific pretraining on lip-

reading task. The learned high-level lip semantics afford high generalizability to novel datasets

and robustness to perturbation. [175] learn spatial and temporal attention maps used to mod-

ulate shallow and mid-level features with the of capturing long-spatial-distance dependencies

and anomalies in the coordination of facial features. Despite recent advances, we observe that

the generalization and robustness of temporal DF detectors can be improved. To achieve this

with PhaseForensics, we move away from depending on pixel-intensity-based features, and

instead rely temporal on phase variations robustly isolate the facial dynamics for DF detection.

We now discuss the details of our approach.

4.3 PhaseForensics: Phase-based DF detection

For any given input video, we first apply a standard pre-processing pipeline to detect the

face region in the input video, stabilize it, and crop out the relevant portion. After this, we apply
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Figure 4.2: PhaseForensics overview. For a given video clip of a facial sub-region, we com-

pute the per-frame complex steerable pyramid (CSP) decomposition, followed by spatial and

temporal filtering of the phase in frequency sub-bands to isolate motion cues suitable for deep-

fake detection. The spatio-temporally filtered phase is then passed to a ResNet-18 feature

extractor followed by sequence modeling and classification.

the two-step PhaseForensics pipeline (Fig. 4.1a). First, we estimate the local per-frame phase

from spatial sub-bands (using the complex steerable pyramid [176]), which we then pass to a

learnable spatio-temporal filter to isolate the relevant facial dynamics from phase to inform DF

detection. Second, we use these spatio-temporally filtered phase-based features as input to train

a standard DF detection pipeline comprising of a feature extractor and a multi-scale temporal

convolutional network that is known to effectively perform sequence modeling [35, 177, 178].

We now elaborate upon each of these steps, along with a discussion of alternate design choices

(see Sec. 4.4 for analysis).

4.3.1 Phase-based spatio-temporal feature estimation

For an image, I(x,y), global translations along x and y directions, such as I(x+∆x,y+∆y),

directly relate to the phase changes in the Fourier coefficients of I(x,y). Specifically, for all

frequency components (ωx,ωy), the phase change due to the translation would correspond to

(ωx∆x,ωy∆y) as per the Fourier Shift Theorem. Given their infinite spatial support, phase

changes in the Fourier basis functions directly capture global translation in I(x,y). Intuitively,

this idea can be extended to local spatial shifts: looking at the phase changes in an image
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decomposition constituted by finite-support quadrature filter pairs – such as with complex

wavelets, or, its polar-separable version, the complex steerable pyramid [176] – provide an

indication of the local shift in image content. In a typical video, V (t,x,y), (e.g, that of a talk-

ing face), motion is spatially localized, and can be captured with such local phase changes.

This motion may differ across multiple scales, and may not be effectively captured by a single

motion estimation filter. To represent these multiple granularities of motion, we utilize the

complex steerable pyramid (CSP) decomposition [176] and compute the phase of the complex

coefficients obtained from the scaled and oriented bandpass components of the per-frame CSP.

Temporal changes in the phase of these components represents local motion in the video at

the different orientations and scales. The low-pass and high-pass residual components of CSP,

being real-valued, do not contain phase information. We therefore only consider the band-

pass components of the CSP in PhaseForensics. Moreover, since these residual components

directly relate to image intensities, they are prone to spatial perturbations and domain-specific

cues. We analyze this in Sec. 4.4, where we compare the result of using CSP residuals for

training as well. As an aside, we note that CSP is also a popular and effective choice for es-

timating local motion for other video-related tasks such as motion magnification [44], motion

interpolation [179], and motion transfer [180].

For the input video frame at time instance t, V (t,x,y), the complex-valued coefficient,

Rω,θ (t,x,y), obtained after filtering with the spatial bandpass filter, Ψω,θ (x,y) [176], at scale

ω and orientation θ is computed as:

Rω,θ (t,x,y) =V (t,x,y)∗Ψω,θ (x,y)

= Aω,θ (t,x,y)(Cω,θ (t,x,y)

+ iSω,θ (t,x,y)).

(4.1)

Here, Aω,θ (·) is the amplitude of the complex response, and At,ω,θ (·)Ct,ω,θ (·), At,ω,θ (·)St,ω,θ (·)

denote the responses to the quadrature filter pairs, with phase φt,ω,θ (x,y)= arctan(Sω,θ (t,x,y)/Cω,θ (t,x,y)).

The phase estimates from all scales and orientations of the CSP are concatenated along a new
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Figure 4.3: Here we visualize the per-frame output of a 4-scale, 2-orientation complex steerable

pyramid decomposition (zoom in for details). The phase of the bandpass filtered is utilized for

next steps of the PhaseForensics pipeline (Fig. 4.2).

dimension, which we term c, to yield a per-frame tensor at each instance t which we denote as

Φ(t,x,y,c).

Given Φ(t,x,y,c) for all the video frames, we now want to isolate phase variations across

time that are relevant to DF detection. Traditionally, the motion of relevant objects is isolated

by a hard-coded temporal filter Φ(t,x,y,c) [181]. However, harcoding a temporal filter design

can be suboptimal for DF detection: for example, when capturing motion of lip region, it is hard

to guarantee that a hardcoded temporal filter would capture lip movements at different talking

speeds. Instead, we allow our DF detector to guide this process of isolating the temporal phase

changes relevant to DF detection through an end-to-end learning process. Therefore, we apply

a learnable temporal filtering operation ft (with parameters θ f ) to Φ(t,x,y,c). Before temporal

filtering, we perform a spatial filtering operation (again, learnable – with parameters θs) sx,y

on Φ(t,x,y,c), to overcome any spurious spatial artifacts and improve the signal-to-noise ratio

of Φ(t,x,y,c) (previous work do this with a hard-coded filter [44]). A noteworthy issue with

Φ(t,x,y,c) is the ambiguity around large motions since phase shifts beyond 2π are ill-defined.

One way to resolve this to some extent is explored in motion interpolation works [179] – where

phase information of different scales are used to resolve the ambiguity for a given scale. With
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our proposed construction of Φ(t,x,y,c), our deep learning model has the flexibility to also

perform this operation. This is because the scale sub-bands in Φ(t,x,y,c) are stacked along the

channel dimension – allowing for across-scale interactions in a typical conv layer. Specifically,

in the implementation of the 3D separable convolution, the receptive field of ft and st along the

channel dimension ensures this interaction along the various sub-bands, which can help resolve

the ambiguity. In summary, the post-processing operations on Φ(t,x,y,c) are implemented as

a learnable, separable, 3D convolution (as done in [182]), to yield,

Φ
p(t,x,y,c) = ft(sx,y(Φ(t,x,y,c))), (4.2)

which we use for our DF detection (super-script p indicates processed output).

Alternatives to CSP. An alternative to obtain phase information is discrete Fourier transform

(DFT): as discussed earlier, the infinite spatial support of the DFT basis makes it impossible

to use its coefficients to estimate of local motion, while the finite spatial support of the CSP

basis allows for this. Other sub-band decompositions can include wavelets or Laplacian of

Gaussians [36], both of which, being real-valued, do not provide local phase information. This

makes CSP the best choice amongst alternatives.

4.3.2 DeepFake detection training

Facial region selection. Before training with Φp(t,x,y,c) for DF detection, we want to under-

stand which facial regions can benefit the most from such an approach. This is because, for

regions that contain very little or no motion, variations in Φp(t,x,y,c) are meaningless [44],

and can adversely affect the training process. Since the lip region of the face provides the

largest motion cues, for our main experiments we only focus on the lip region of the face to

compute Φp(t,x,y,c), similar to a previous work, LipForensics [35]. In Sec. 4.4.2, we ap-

ply PhaseForensics to the eye region and in Appendix C we also show the experiments with
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training on full face, and compare it to our experiments with the lip region. Our process of

sub-region extraction and alignment follow a standard pipeline – with face detection, landmark

detection and alignment, followed by cropping (details in Appendix C). We note that the align-

ment process is global, and does not distort the facial features – which are important for DF

detection.

Architecture. For a given video clip, the spatio-temporally processed phase, Φp(t,x,y,c)

(Eq. 4.2) is passed to the next stage of the DF detection pipeline. We adopt a standard two-

step approach for the rest of our DF detection pipeline: we first compute per-frame feature

embeddings, followed by sequence modeling to learn the temporal behavior. We choose to

use the ResNet-18 architecture (with modified input channels to match the maximum value

of Φp(t,x,y,c)) as our feature extractor – denoting this function as rx,y, with learnable pa-

rameters θr. For temporal modeling, we choose a multi-scale temporal convolutional network

(MSTCN) [183], given their remarkable performance gain over typically-used LSTMs for a

variety of tasks [35, 177, 178] and due to their flexible design with varying temporal receptive

field and lightweight construction. The output of MSTCN is passed through a linear layer to

yield the final prediction. We denote the function represented by MSTCN + linear classifier as

mt,x,y, with learnable parameters θm. The output logit from PhaseForensics pipeline for a given

input video clip V (t,x,y), is then given by ŷ = mt(rx,y(Φ
p(t,x,y,c))). We train PhaseForensics

in an end-to-end manner to optimize all parameters, θ f ,θs,θr,θm by minimizing the average

binary cross-entropy loss across training samples 1
N ∑

N
i = LBCE(ŷi,yi;θ f ,θs,θr,θm), where i

indexes the training samples and N is the training dataset size.

Pretraining and hyperparameters. Before training PhaseForensics for DF detection, we per-

form domain-specific pretraining on the lip and eye regions, with Φp(t,x,y,c) (Eq. 4.2) as in-

put. We pretrain the architecture discussed above on tasks relevant to these facial sub-regions,

since these are shown to significantly improve the generalization of the DF detector [35]. We

note that many competing methods adopt unique training steps best-suited for their specific
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goals, such as pretraining on lipreading [35], ImageNet pretraining [6, 36], or using custom

dataset [16]. In our evaluation of competing methods, we regard the author-prescribed train-

ing steps as the best practice – without taking away any of the key steps. This is also com-

monly done in performance comparisons presented by existing state-of-the-art DF detection

methods [35,184]. Similar to LipForensics [35] (a state-of-the-art method leveraging anomaly

detection), training PhaseForensics on, say, lips, involves first learning the distribution of nat-

ural temporal dynamics of lips using the Lip Reading in the Wild (LRW) dataset [185], for

10 epochs, with a cross-entropy loss (similar to [35]), and then identifying deviations from

it during the training for DF detection. More formally, there are two steps: 1) learning the

natural lip movements by training for lipreading, 2) learning to detect anomalies in the lip

movements of deepfakes by training on DF dataset. in Appendix C, we clearly motivate this

two-step approach by demonstrating the drop in performance observed when LRW pretraining

is not performed. Similarly for the eye region, we pretrain for gaze prediction on the EVE

dataset [186] for 50,000 iterations, with crops from face images showing both the eyes, and

an angular loss [186], that measures the error between predicted and true gaze. For computing

Φ(t,x,y,c), CSP decomposition is composed of 4 spatial scales and 2 orientations for lip sub-

images, and 3 spatial scales and 4 orientations for eye region. For all the training steps, Adam

optimizer with a learning rate of 2e−4 and a batch size of 32 is used. The DF detection train-

ing is stopped when the validation loss does not show any improvement for 20,000 training

iterations. More details about all training stages can be found in Appendix C.

4.4 Results

We now compare PhaseForensics to existing popular and state-of-the-art DF detection

methods. In our evaluations we consider the classic methods such as the Xception base-

line [6]; recent popular approaches such as PatchForensics [187] (truncated Xception classifier
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Figure 4.4: Overview of performance evaluations. With PhaseForensics, we demonstrate

state-of-the-art cross-dataset generalizability with experiments on CDFv2, DFDC and VFHQ.

We also assess the robustness to spatial distortions and adversarial perturbations – for which

phase-based processing is very beneficial.

trained on aligned faces, with result averaged over patches [35]), Multi-Attention [160], CNN-

GRU [170] (DenseNet-161 [172] trained with GRU [188]), Face X-ray [16] (from [35], trained

with blended images and fake samples), DSP-FWA [26]; and also state-of-the-art methods

LipForensics [35] and FTCN [184]. Links to the source code and pretrained models provided

by the authors of each of these papers are available in Appendix C. For PhaseForensics, we

train the model on only the lip region (Sec. 4.3.2 – since we obtain better the performance for

this sub-region; discussed further in Sec. 4.4.2). LipForensics is an important baseline in our

evaluations, since it also operates on the lip regions [35] . In our ablation studies, we compare

against LipForensics to demonstrate the advantage of using phase over pixel intensities. Con-

sistent with recent approaches [6,35], we report the video-level Area Under ROC Curve (AUC)

metric (the result is averaged over frames for frame-based methods).

4.4.1 Evaluating the generalizability of DF detectors

Training dataset. PhaseForensics and all other methods evaluated here are trained on Face-

Forensics++ (FF++) training set [6]. FF++ comprises of a total of 1000 unmanipulated videos,

and corresponding manipulated videos with 4 DF generation methods – 2 each for face-swapping
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(DeepFakes [189], FaceSwap [190]) and face re-enactment (Face2Face [191], NeuralTextures [192])

DF generation approaches. We adopt the train / val / test splits specified by the dataset and use

the trained model from FF++ training for all experiments.

Evaluation approach, datasets, and metrics. Recent DF detection methods tend to show

near-perfect performance when evaluated on within-domain videos (i.e., test set of FF++) –

which does not give a clear sense of real-world generalizability of such methods. Our main

aim in this section is, therefore, to thoroughly analyze the generalization to completely new

datasets never seen during training. For this (Sec. 4.4.1), we use three datasets: CelebDFv2

(CDFv2) – containing very high-quality face-swapped deepfakes) [16]; DFDC test subset –

featuring face-swapping and face re-enactment deepfakes [193], and the VideoForensicsHQ

dataset – a very high-quality face re-enactment DF dataset (VFHQ) [194]. We also analyze the

robustness to spatial distortions and adversarial perturbations in this cross-dataset evaluation

setting (Fig. 4.4 shows an overview of our main experiments). Lastly, we evaluate the trained

models on FF++ test videos with the same face manipulations as seen in training, and on also

datasets that feature novel face manipulation methods applied to the FF++ videos, such as

DeeperForensics (DFor) [111] (without spatial distortions), and FaceShifter (FSh) [195].

Cross-dataset generalization. Given the variety in data capture conditions and face manip-

ulation algorithms (from both face swap and face re-enactment categories), the cross-dataset

performance evaluation (Tab. 4.1) on CDFv2, VFHQ, and DFDC allows for an in-depth as-

sessment of the generalization capabilities of DF detectors. PhaseForensics yields a significant

improvement in cross-dataset generalization over state-of-the-art, such as LipForensics (AUC

82.4% on CDFv2) [35] and FTCN (AUC 86.9% on CDFv2) [184], with a performance of

91.2% on CDFv2, 94.2% on VFHQ, and 78.2% on DFDC. We attribute this to the improved

robustness of phase-based features to appearance changes (Sec. 4.1), which allow for stable

predictions despite the cross-dataset domain shifts.
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METHOD DFDC VFHQ CDFv2

Xception [6] 70.9 70.1 73.7

Multi-Attention [160] 63.0 55.0 68.0

PatchForensics [187] 65.6 - 69.6

Face X-ray [162] 65.5 - 79.5

CNN GRU [170] 68.9 66.0 69.8

Two-branch [36] - - 76.7

DSP FWA [26] 67.3 69.0 69.5

LipForensics [35] 73.5 90.2 82.4

FTCN [184] 74.0 84.8 86.9

PhaseForensics 78.2 94.2 91.2

Table 4.1: Cross-dataset generalization analysis. Here we show the video-level AUC (%)

for all models trained with FaceForensics++ (FF++) [6] and evaluated on completely different

datasets (cross-dataset generalization analysis): DFDC [193], CDFv2 [16], and VFHQ [194].

Some numbers are reported from existing benchmarks [16, 35], while a ‘-’ is stated when

the metric is not available (missing code / trained model). As is clear from these results,

PhaseForensics achieves state-of-the-art cross-dataset generalization.

Evaluation on different face manipulations. As mentioned earlier, the performance of recent

DF detection methods is near-perfect (close to 99% AUC) when evaluated on FF++ test set

videos (after training on FF++ train set). This also holds true to some extent even for unseen

facial manipulation algorithms (such as for FSh, DFor), when the videos being evaluated are

from the same dataset as training (FF++). This can point to strong dependence on the training

domain. Therefore, such a high performance gain can be considered reliable when it also leads
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METHOD FF++ DFor FSh

Xception [6] 99.8 84.5 72.0

Multi-Attention [160] 89.8 72.3 60.2

PatchForensics [187] 99.9 81.8 57.8

Face X-ray [162] 99.8 86.8 92.8

CNN GRU [170] 99.9 74.1 80.8

Two-branch [36] 99.1 - -

DSP FWA [26] 57.5 50.2 65.5

LipForensics [35] 99.9 97.6 97.1

FTCN [184] 99.7 98.8 98.8

PhaseForensics 99.5 97.4 97.4

Table 4.2: Cross-manipulation generalization analysis. In this table, we evaluate the trained

models on FF++ test videos, and also with different DF generators used to manipulate original

FF++ videos. All models trained with FF++ training videos [6] – so, the training and test-set

domains are the same. Here we report the video-level AUC (%). Some numbers are reported

from existing benchmarks [16, 35], while a ‘-’ is stated when the metric is not available (miss-

ing code / trained model). PhaseForensics ranks amongst the top-3 methods when tested on

novel (not seen in training) DF generation methods applied to the original FF++ test videos

(FSh [195] and DFor [111]), with a performance drop of only 1.4% AUC compared to state-

of-the-art. Unlike PhaseForensics, most methods achieve high accuracy on the within-domain

FF++ test set, while generalizing poorly to new datasets.

to improved cross-dataset and distortion/adversarial robustness. Tab. 4.2 shows the results for

this cross-manipulation generalization analysis. PhaseForensics is amongst the top 3 for this
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set of evaluations, with a cross-manipulation generalization of at least 97.4% AUC, only a

1.4% drop compared to FTCN. However, considering that the cross-dataset tests are crucial for

understanding the real-world applicability of DF detection, the significant performance gain of

PhaseForensics over FTCN across three cross-dataset tests (Tab. 4.1) outweighs this small drop

in performance for these in-domain test.

Robustness to spatial distortions. Color filters and compression are commonly applied to

internet media. Here we assess robustness to such spatial distortions for PhaseForensics,

and compare it to that of two existing temporal DF detectors, CNN-GRU and LipForensics.

We only consider distortions which do not dramatically alter the video appearance. When

a distortion to the video is perceptually very evident, it already points to lack of authentic-

ity of the video, defeating the purpose of evaluating whether the video contains a deepfake.

Therefore, amongst the distortions enlisted in the DFor dataset, we assess the color-based

and compression-based distortions, at severity levels of 1 and 2. The complete analysis for

all distortion types, levels and more datasets is in Appendix C. Many previous works show

the distortion robustness results on FF++ test set (the same DF generators are used for train-

ing) [35]. Here we analyze the distortion robustness on the test dataset of CDFv2 (Tab. 4.3)

– which is represents a more challenging real world use case, give the high quality DF gener-

ator and no overlap with training set. PhaseForensics shows consistently higher robustness to

color-change distortions (saturation and contrast change) and per-frame pixelation. The per-

formance for PhaseForensics is lower for compression-related artifacts, since these can affect

the frequency composition of a video frame (discussed further in Sec. 4.4.2). However, Phase-

Forensics remains within a few percentage point of LipForensics for this setting. Note that for

this experiment, along with %AUC, we also report mean absolute percentage error (MAPE)

in AUC compared to the performance of each method on clean CDFv2. A lower MAPE in-

dicates that the method maintains its performance despite the applied distortion. As is clear,
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Distortion CNN-GRU LipForensics PhaseForensics

type level %auc↑ %mape ↓ %auc ↑ %mape ↓ %auc ↑ %mape ↓

contrast 1 73.6 5.4 74.8 9.2 89.5 1.9

change 2 73.5 5.3 74.7 9.3 90.0 1.3

color 1 70.5 1.0 72.8 11.6 90.9 0.3

saturation 2 69.4 0.6 72.2 12.4 90.9 0.3

1 64.8 7.2 76.3 7.4 91.3 0.1
pixelation

2 62.7 10.2 74.6 9.5 84.3 7.6

1 70.5 1.0 74.3 9.8 72.6 20.0
compression

2 69.4 0.5 72.2 12.7 70.3 22.9

black box adv. attack 43.4 37.8 49.5 39.9 71.1 22.0

Table 4.3: Robustness to spatial distortions and black-box adversarial attacks. We assess

the robustness to color and compression-related spatial distortions (derived from DFor dataset)

for PhaseForensics, and two competing temporal DF detection methods: CNN-GRU [169],

and LipForensics [35]. We apply these distortions to CDFv2 and report %AUC of each DF

detector when tested on the distorted versions of the videos. PhaseForensics outperforms both

baselines on the majority of distortion-robustness tests. We also report the mean absolute per-

centage error (MAPE) in %AUC compared to the performance of each method on undistorted

CDFv2. Lastly, we evaluate adversarial robustness (last row) of the three methods for a black-

box attack [38].

the performance of PhaseForensics is the least affected by distortions, except in the case of

compression.

Adversarial robustness. Recently, existing works have observed the vulnerability of DF de-
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input frame adv. perturbation (64x amplified for visiblity) 
for PhaseForensics (left) and LipForensics (right) 

Figure 4.5: Examples of adversarial perturbations. Here we show one example of an adver-

sarial perturbation map for the black-box attack [38] on LipForensics [35] and PhaseForensics

(64× amplified for visualization). These imperceptible noise signals can be added to the video,

to fool the DF detection method.

tectors to black-box adversarial attacks [38]. Black-box attacks represent a plausible case

where the detection model may be unknown to the adversary, but the adversary has the abil-

ity to test the model on a limited number of inputs. To assess the adversarial robustness

for CNN-GRU, LipForensics and PhaseForensics, we compute the adversarial perturbations

(Fig. 4.5) for CDFv2 (and, in Appendix C, on FSh) using a recent approach on black-box at-

tacks for DF detectors (using the default settings provided by the authors) [38]. The % AUC

on adversarially-perturbed CDFv2 is shown in the last row of Tab. 4.3. This black-box method

uses Natural Evolutionary Strategies to estimate the gradient in each step, optimizing the ad-

versarial image using an Expectation over Transforms and includes slight transformations of

the input (blurring, translation) to the optimization loop for better robustness. LipForensics

relies on pixel intensity-based input without any constraints on the frequency components used

for DF prediction. Consequently, this leads to a higher susceptibility to adversarial attacks –

since typically such attacks reside in higher frequency bands [46]. In contrast, PhaseForensics

shows better robustness since the phase computations are performed in the band-pass frequency
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CSP configuration test dataset

orient. scales bandwidth input CDFv2 FF++ DFor

2 4 octave amp. 66.1 99.5 97.3

2 4 half-octave phase 62.5 99.5 94.8

2 6 octave phase 80.5 99.2 97.1

4 4 octave phase 88.9 99.5 95.6

2 4 octave phase 91.2 99.5 97.4

Table 4.4: We motivate the design choice of our phase-based input in PhaseForensics by train-

ing DF detectors with alternate input feature choices. We vary the CSP filter bandwidths,

number of scales and orientations, and also demonstrate the result of training with purely

amplitude-based input (in a similar spirit to existing works that use image-pyramid inputs [36]).

As is evident from %AUC reported here for CDFv2, FF++ test set and DFor, phase-based in-

puts from our choice of 4-scale, 2-orientation, octave-bandwidth pyramid prove to be the most

optimal amongst the alternatives.

components (excluding the high-frequency components). Details of the attack parameters are

available in Appendix C.

4.4.2 Discussion and Ablation Studies

Design choices for CSP. As stated in Sec. 4.3, the CSP for lip region is computed with 4 scales

and 2 orientations, and the phase from complex band-pass coefficients is used (the real-valued

low and high-pass residues do not contain phase) for training. In Tab. 4.4, we consider alternate

input features to verify this choice. We train DF detectors with input features computed from

different configurations of CSP. Reducing the filter bandwidth (e.g., in Tab. 4.4, from octave
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to half-octave) lowers the performance of DF detector since it increases the spatial support of

the CSP filters [44], thereby reducing the fidelity to local motion. Constructing a CSP with

more than 4 scales, for the lip sub-images of size 88×88, also does not yield an improvement

– and a similar observation holds for more than 2 orientations. Moreover, the third row shows

a case where the phase information from bandpass components is discarded altogether: only

the amplitude of the complex bandpass coefficients and the real-valued high and low-pass

residues are used (similar, in spirit, to DF detection methods that use image pyramids with

all frequency components [36]). In Tab. 4.4, we can see that not relying on phase especially

impacts cross-dataset generalization. Across all experiments, the performance gain with the

chosen octave-bandwidth, 4-scale, 2-orientation CSP is most evident in cross-dataset tests.

Temporal preprocessing. To motivate the importance of separable spatio-temporal phase pre-

possessing (Sec. 4.3), we train three models on the lip region: one without any spatio-temporal

filtering (phase information is directly passed to ResNet-18 feature extractor), one with a stan-

dard 3DCNN layer (similar to [35]), and one with our proposed separable 3D CNN layer.

Looking at the performance on CDFv2, DFDC datasets in Tab. 4.5b, we conclude that our

choice of separable spatio-temporal phase processing is most suited for PhaseForensics.

Benefit of phase in comparison to pixel-intensity inputs. Note that, the third row Tab. 4.5b

(3DCNN) is a direct modification of the LipForensics pipeline: instead of training with pixel

intensities as input (as done in LipForensics), we feed Φ(t,x,y,c) from Eq. 4.2 to their model,

appropriately adjusting the number of input channels. This allows for a clear assessment of the

advantage of using phase instead of pixel values: compared to LipForensics, using phase inputs

in the LipForensics pipeline improves the %AUC on CDFv2 from 82.4 to 85.2. As discussed

above, further improvement is obtained by adopting Eq. 4.2 instead of the standard 3DCNN.

PhaseForensics applied to eyes. While lips provide a strong motion cue, in Tab. 4.5a, we

evaluate PhaseForensics applied to lips, after pretraining on gaze prediction task (Sec. 4.3). As
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face region CDFv2 DFDC

eye 73.3 65.5

lip 91.2 78.2

(a) effect of face regions

type of temporal processing CDFv2 DFDC

no processing 62.8 64.6

3DCNN 85.2 77.3

separable 3DCNN 91.2 78.2

(b) choice of temporal processing

Table 4.5: (a) Here we show that applying PhaseForensics to lip sub-region yields a better

performance compared to eyes, since motion around eyes is less prominent compared to that

around lips. (b) To verify our choice of temporal processing of phase using separable 3DCNN,

we train three models with different types of temporal processing. First, we apply no processing

and feed the phase directly to the ResNet feature extractor. Second, we apply a 3D conv layer

to phase. Lastly, we apply a separable 3D convolution layer: which proves to be the most

optimal choice.

expected, learning a DF detector from eye regions using phase changes is difficult and gives

poorer results.

Limitations. Similar to LipForensics [35], PhaseForensics is dependent on the presence of

motion in the lips. As with most methods, our method also depends on successful detection of

face landmarks for the cropping pre-processing step. Moreover, CSP decompositions currently

tend to form overcomplete/redundant representations for images, which may create additional

computational cost. More efficient alternatives such as Reisz pyramids [196] could be used

in the future. Lastly, distortion and adversarial robustness with PhaseForensics holds so long

as the perturbations do not disrupt the band-passed frequency components. The adversarial

robustness of PhaseForensics depends on careful filter design, to ensure that the final model is

not susceptible to high-frequency attacks.
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4.5 Conclusion

In this work, we presented PhaseForensics, our method for generalizable, robust, deepfake

video detection. This method outperforms existing works with state-of-the art cross-dataset

generalization, and is robust under a variety of spatial and adversarial distortions. By being

effective against both in and out of training domain samples, we take a critical step towards

real-world deployment of DF detectors. We will release our source code upon the publication

of the manuscript.
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Discussion and Conclusion

Automatically evaluating the different aspects of the visual quality and authenticity for im-

ages and videos is one of the most ubiquitous steps in a variety of downstream tasks such as

effectively training deep neural networks using perceptual metrics, content-aware media com-

pression, video forensics, designing high-quality generative models for visual content, foveated

rendering, or Monte Carlo denoising. Therefore, designing methods to automatically evaluate

the quality and authenticity of visual media has been active area of research across computer

vision and computer graphics research communities. However, the subjective nature of these

problems has been a major deterrent in designing perceptually-consistent algorithms. Specif-

ically, the subjectivity limits the accuracy of the training datasets, and makes the algorithms

trained on existing datasets prone to inaccuracies and suboptimal convergence. An attempt to

design accurate training datasets can be prohibitively expensive or impossible due to factors

such as the need for human annotations from several subjects, the difficulty to accurately cap-

turing human perception of visually quality, or the lack of sufficient data samples to represent

the real-world data distributions.

In this thesis, we made critical strides in addressing these issues and proposed solutions

(datasets, and/or deep learning-based algorithms) for three specific problems: perceptually
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consistent image error prediction, video saliency prediction, and deepfake detection. Our key

insight for designing methods for perceptual error prediction and visual saliency hinges on the

observation that instead of expecting consistent human-provided labels for these tasks (which

can be virtually impossible to obtain), we can leverage the varying degree of human consensus

to our advantage. We do so in two different ways.

1. For perceptual error prediction, we choose to label our novel dataset with the probability

of pairwise preference to capture the degree of human consensus and design a pairwise

learning framework around it.

2. For visual saliency, we choose to quantify the degree of consensus in human gaze be-

havior compared to the number of available human subjects as a measure of the level of

reliability of the training sample.

For deepfake detection, capturing human-annotated data classifying videos as real or fake is

particularly challenging, given the high visual quality. Therefore, typically, training and test

datasets are created by selecting a set original face videos and created manipulated content us-

ing generative models. The ground-truth labels for the videos are known by design. However,

it is difficult to guarantee that any training dataset can capture a large variety of generative

models – since these are constantly evolving. We overcome the issue of poor generalizability

of existing deepfake detectors trained on such limited datasets, by using a robust input repre-

sentation based on the phase variations in the per-frame frequency sub-bands that estimate the

temporal variations in face sub-regions. Relying solely on phase changes makes our proposed

solution robust to dataset-specific appearance changes, leading to state-of-the-art generaliza-

tion to novel deepfake datasets. As an additional advantage, relying on phase in frequency

sub-bands improves the robustness of deepfake detectors to spatial and adversarial perturba-

tions.
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There are several key insights we gather from our proposed approaches to the three prob-

lems considered in this thesis. We believe these can pave the way for redesigning some of the

key steps for other related problems within the domain of perceptual quality and authenticity

evaluation. First, we realize that designing noise-robust/accurate methods for visual quality

and authenticity evaluation requires re-thinking some of the fundamental steps in traditional

pipelines for training data-driven models. Typically, when labeling a training dataset with

human-provided annotations, one aim is to arrive at a single/majority, label across the queried

human population. The inconsistencies/deviations from the majority label are attributed to

noise in data capture process in such cases and are often disregarded/averaged out. In con-

trast, for perceptual quality/saliency evaluation, we realize that instead of aiming for a major-

ity/consensus in the training dataset label, a more promising approach is to reliably capture the

variation across human population for such tasks and account for it when training a model to

automatically perform such tasks. We find that deriving the ground-truth labels for training

by leveraging the varying degree of human consensus provides important clues for the quality

and/or saliency for a given visual media. Optimizing a data-driven model based on such labels

proves to be a much better choice in terms of convergence properties as well as accuracy of the

trained models, as compared to relying the noise-prone labels in existing datasets. Moreover,

leveraging the variation across human subjects is true to the inherent nature of such tasks –

since there may not be a single right answer, but a distribution based on human labels.

Second, we realize that the departure from expecting a single “ground-truth” label for qual-

ity/saliency also points to the need for redesigning the training/optimization pipelines for data-

driven methods, so that we can account foe the varying consensus in human labels. We make

two suggestions for such designs: the pairwise learning framework for image error prediction

and noise-aware training for visual saliency prediction. However, we stress these are just the

first steps – we anticipate future work in this direction to further build upon these insights.

Lastly, we realize that a noteworthy modification in the traditional data-driven models is

102



Discussion and Conclusion Chapter 5

to take the robustness of the input features provided to the models into consideration. Robust-

ness and generalizability of the data-driven solutions for various computer vision and image

processing applications is an ongoing challenge in the research community. For sensitive ap-

plications, such as those related to video forensics, relying on input features that are robust to

malicious perturbations such as spatial or adversarial distortions is all the more crucial. While

our proposed solution to this forms an important step in improving the robustness of the data-

driven models for deepfake detection, additional robustness analysis to novel distortions can

provide directions for further improvements – building upon the insights proposed in our work.

We conclude this dissertation by highlighting some of the potential research directions that

arise out of or are facilitated by our contributions.

1. No-reference image and video quality measures. In Chapter 2, we discussed our solu-

tion for predicting the perceived error between an undistorted reference and a distorted

image. However, in many cases, the undistorted reference image might not be available.

An extension to the perceptual error prediction problem could then explore the design of

a solution for perceptual quality assessment for images without a reference image. An

important baseline towards this goal can be obtained by an application of the proposed

pairwise-preference data capturing schemes and pairwise learning framework discussed

in Chapter 2 to the setting where a reference image is not provided to the human labelers

as well as to the data-driven model during training.

2. Video quality assessment. Extending the work on perceptual image error metrics to

problems such as video error and/or no-reference quality prediction are other impactful

directions that can utilize the pairwise learning framework and pairwise data capture

scheme. Moreover, with video perception, the visual saliency of different regions of a

scene becomes all the more important to consider since not all regions of a frame have
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an equal probability of attracting human attention. Therefore, a perceptual metrics for

videos would also benefit from including a video saliency prediction step in the pipeline.

This is an area where our visual saliency prediction work (Chapter 3) can also be utilized.

3. Media forensics beyond video deepfakes. While faces present the most popular targets

for generating fake content and propagating mis-information, designing methods to go

beyond faces to evaluate the authenticity of more general content such as surveillance

videos, or artistic content is yet another interesting challenge. As with video deepfake

detection (Chapter 4), we hypothesize that, even for manipulated videos with more gen-

eral content, designing robust and generalizable input representations would be a crucial

step in guaranteeing that imperceptible malicious distortions do not confuse data-driven

detection methods.

4. Applications of perceptual quality evaluation to novel media-viewing modalities.

The increasing popularity of viewing and interacting with visual content within the con-

text of augmented reality / virtual reality / mixed reality settings presents a completely

new domain for designing perceptual quality and authenticity metrics. We believe that

the insights and design choices presented in this dissertation for images and videos

would serve as important initial steps for designing automatic methods perceptual qual-

ity/authenticity evaluation in such novel media-viewing modalities.
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Appendix A

PieAPP: Perceptual Image-Error

Assessment through Pairwise Preference

A.1 Performance Comparisons with Additional IQA Meth-

ods and datasets

In Chapter 2, we compare the performance of PieAPP on our proposed test set (which

is disjoint from the training set in terms of both the reference images and the distortion types)

against popular or state-of-the-art IQA methods. In this section, we compare PieAPP against 11

additional popular or state-of-the-art IQA methods on our proposed test set (similar to Sec. 5.2

of Chapter 2). Furthermore, we test the efficacy of our deep convolutional neural network

(DCNN) architecture by training and testing the error-estimation function (i.e., f (A,R;θ)) of

our pairwise-learning framework on 2 additional existing IQA datasets, TID2008 [86] and

LIVE [7] (in the same manner as the training and testing on TID2013 and CSIQ; Sec. 5.3 of

Chapter 2).

Brief descriptions of the IQA methods considered in the comparisons (both in Chapter 2

105



PieAPP: Perceptual Image-Error Assessment through Pairwise Preference Chapter A

and this supplementary) are also provided. In the descriptions, we only highlight the key

characteristics of the IQA methods. More in-depth details can be found in the corresponding

references.

A.1.1 Comparisons with additional IQA methods on the proposed test

set

Table A.1 shows the performance comparisons on our proposed test set (consisting of 4200

pairwise comparisons obtained from exhaustively labeling all possible pairwise comparisons

for 15 distorted copies for each test reference image; see Sec. 4.2 and 5.2 of Chapter 2)1. The

methods which have already been listed in the paper are shown in the lower section of the table,

while the additional methods are shown in the upper section. The performance of PieAPP is

shown at the very end of the table (highlighted in bold). We emphasize that none of these test

images and test distortions have been seen during training of PieAPP, and therefore, enable us

to understand the generalizability of our proposed method and existing methods. We follow

the same evaluation strategy as discussed in Sec. 5.2 of Chapter 2. As can be seen, PieAPP

outperforms all existing IQA methods.

A.1.2 Additional comparisons on the existing IQA datasets

As stated in Chapter 2, we retrain and evaluate the error-estimation function of our pairwise-

learning framework (i.e., f (A,R;θ)) on existing IQA datasets using the MOS labels of each

dataset as ground-truth. This enables a direct comparison against existing methods using the

numbers reported by these methods in their papers after training and testing on these datasets.

We train our error-estimation function directly on MOS labels as existing datasets do not pro-

1For an existing IQA method, its PLCC on our test set is computed after fitting its predicted scores to the
ground-truth scores via a nonlinear regression [7].
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KRCC
METHOD

p̃AB ∈ [0,1] p̃AB /∈ [0.35,0.65]
PLCC SRCC

MAPE 0.233 0.278 0.170 0.290

MRSE 0.185 0.211 0.135 0.219

NQM 0.216 0.234 0.508 0.246

IFC 0.165 0.178 0.230 0.198

VIF 0.179 0.192 0.250 0.212

VSNR 0.242 0.274 0.286 0.281

MAD 0.270 0.301 0.231 0.304

RFSIM 0.217 0.246 0.368 0.247

GSM 0.324 0.376 0.356 0.378

SR-SIM 0.296 0.356 0.352 0.358

MDSI 0.280 0.336 0.349 0.350

MAE 0.252 0.289 0.302 0.302

RMSE 0.289 0.339 0.324 0.351

SSIM 0.272 0.323 0.245 0.316

MS-SSIM 0.275 0.325 0.051 0.321

GMSD 0.250 0.291 0.242 0.297

VSI 0.337 0.395 0.344 0.393

PSNR-HMA 0.245 0.274 0.310 0.281

FSIMc 0.322 0.377 0.481 0.378

SFF 0.258 0.295 0.025 0.305

SCQI 0.303 0.364 0.267 0.360

DOG-SSIMc 0.263 0.320 0.417 0.464

Lukin et al. 0.290 0.396 0.496 0.386

Kim et al. 0.211 0.240 0.172 0.252

Bosse et al. (NR) 0.269 0.353 0.439 0.352

Bosse et al. (FR) 0.414 0.503 0.568 0.537

Our method (PieAPP) 0.668 0.815 0.842 0.831

Table A.1: Additional comparisons for assessing the performance of our approach compared to existing

IQA methods on our test set (which is disjoint from the training set in terms of both the reference images

and the distortion types). PieAPP significantly improves upon the state-of-the-art methods, which do

not perform well because this test set contains many different (and complex) distortions not commonly

found in standard IQA datasets.

vide probabilistic pairwise labels. However, this does not change our learning architecture of

f or its number of parameters. In Chapter 2, we report the performance of our architecture
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on two largest (and least overlapping) IQA datasets, CSIQ [83] and TID2013 [87]. Here, we

report the performance on two additional popular IQA datasets, LIVE [7] and TID2008 [86]

(see Table. A.2). As can be seen, our proposed architecture for f (A,R;θ) outperforms or gives

comparable performance to existing state-of-the-art IQA methods.

A.1.3 Brief descriptions of the IQA methods included in the paper

In the paper, we have included several state-of-the-art IQA methods, which are 1) very

commonly-used IQA methods (1-4), 2) recently-proposed IQA methods which have good per-

formance over existing IQA datasets (5-10), and 3) recent top-performing learning-based IQA

methods (11-13). We provide brief descriptions of these methods below.

1. Mean Absolute Error (MAE): This method calculates the mean absolute error of the

pixel values between the distorted image and the reference image. Note that this method

is equivalent to calculating the L1 error between the reference image and the distorted

image, in terms of predicting human binary preference.

2. Root Mean Squared Error (RMSE): This method calculates the square root of the

mean squared error of the pixel values between the distorted image and the reference

image. Note that this method is equivalent to calculating the L2 error or the Peak Signal-

to-Noise Ratio (PSNR) between the reference image and the distorted image, in terms of

predicting human binary preference.

3. Structural Similarity Index (SSIM) [8]: This method utilizes the structural image sim-

ilarity between the reference image and the distorted image.

4. Multi-Scale SSIM (MS-SSIM) [58]: This is a multi-scale extension of SSIM.

5. PSNR-HMA [97]: This is an improved version of PSNR that takes into account the con-

trast sensitivity function, between-coefficient contrast masking of DCT basis functions,
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LIVE [7] TID2008 [86] CSIQ [83] TID2013 [87]
METHOD

KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC

MAPE 0.841 0.892 0.934 0.361 0.430 0.448 0.587 0.607 0.706 0.477 0.579 0.586

MRSE 0.842 0.621 0.935 0.394 0.477 0.487 0.619 0.568 0.754 0.501 0.631 0.611

NQM 0.741 0.912 0.909 0.461 0.614 0.624 0.564 0.743 0.740 0.474 0.690 0.643

IFC 0.758 0.927 0.926 0.424 0.734 0.568 0.590 0.838 0.767 0.394 0.554 0.539

VIF 0.828 0.960 0.964 0.586 0.808 0.749 0.754 0.928 0.920 0.515 0.772 0.677

VSNR 0.762 0.923 0.927 0.534 0.682 0.705 0.625 0.800 0.811 0.508 0.740 0.681

MAD 0.842 0.968 0.967 0.644 0.831 0.834 0.797 0.950 0.947 0.604 0.827 0.781

RFSIM 0.782 0.935 0.940 0.678 0.864 0.868 0.764 0.918 0.930 0.595 0.833 0.774

GSM 0.815 0.951 0.956 0.660 0.842 0.850 0.737 0.896 0.911 0.626 0.846 0.795

SR-SIM 0.830 0.955 0.962 0.715 0.887 0.891 0.772 0.925 0.932 0.666 0.877 0.851

MDSI 0.840 0.966 0.967 0.752 0.916 0.921 0.813 0.953 0.957 0.712 0.908 0.890

MAE 0.814 0.567 0.936 0.228 0.120 0.321 0.639 0.644 0.813 0.351 0.294 0.484

RMSE 0.812 0.917 0.931 0.187 0.168 0.265 0.617 0.752 0.783 0.327 0.358 0.453

SSIM 0.796 0.945 0.948 0.577 0.773 0.775 0.691 0.861 0.876 0.464 0.691 0.637

MS-SSIM 0.804 0.949 0.951 0.657 0.845 0.854 0.739 0.899 0.913 0.608 0.833 0.786

GMSD 0.856 0.960 0.960 0.727 0.879 0.891 0.812 0.954 0.957 0.634 0.859 0.804

VSI 0.806 0.948 0.952 0.712 0.876 0.898 0.786 0.928 0.942 0.718 0.900 0.897

PSNR-HMA 0.726 0.874 0.872 0.673 0.819 0.847 0.780 0.888 0.922 0.632 0.802 0.813

FSIMc 0.836 0.961 0.964 0.699 0.876 0.884 0.769 0.919 0.931 0.667 0.877 0.851

SFF 0.836 0.963 0.965 0.688 0.882 0.877 0.828 0.964 0.963 0.658 0.871 0.851

SCQI 0.784 0.934 0.941 0.729 0.890 0.905 0.787 0.927 0.943 0.733 0.907 0.905

DOG-SSIMc 0.844 0.966 0.963 0.786 0.939 0.935 0.813 0.943 0.954 0.768 0.934 0.926

Lukin et al. – – – – – – – – – 0.770 – 0.930

Kim et al. – 0.982 0.981 – 0.951 0.947 – 0.965 0.961 – 0.947 0.939

Bosse et al. (NR) – 0.963 0.954 – – – – – – – 0.787 0.761

Bosse et al. (FR) – 0.980 0.970 – – – – – – 0.780 0.946 0.940

Error-estimation f 0.894 0.986 0.977 0.822 0.956 0.951 0.881 0.975 0.973 0.804 0.946 0.945

Table A.2: Comparison on additional standard IQA databases. Here we show comparisons against

LIVE [7], TID2008 [86], CSIQ [83] and TID2013 [87]. For all learning methods, we use the numbers

directly provided by the authors (dashes “–” are shown where numbers are not provided). For a fair

comparison, we train the error-estimation function of our pairwise-learning framework (i.e., f (A,R;θ))

directly on the MOS labels of each dataset as existing datasets do not provide probabilistic pairwise

labels.
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mean shift, and contrast changing.

6. Feature Similarity Index (FSIMc) [9]: This method utilizes the phase congruency and

the image gradient magnitude as features to compute the similarity between the reference

image and the distorted image.

7. Spare Feature Fidelity (SFF) [98]: This method transforms images into sparse repre-

sentations based on a trained sparse feature detector. It then computes the feature sim-

ilarity and luminance correlation between the reference image and the distorted image.

This algorithm is motivated by the fact that sparse coding can provide a good description

of an important part of the Human Visual System (HVS).

8. Gradient Magnitude Similarity Deviation (GMSD) [62]: This method utilizes the

pixel-wise gradient magnitude similarity between the reference image and the distorted

image to predict the perceptual image quality.

9. Visual Saliency Induced Index (VSI) [10]: This method uses the visual saliency to

compute the local quality map of the distorted image. It then uses the visual saliency

again to weigh the importance of the local regions, when pooling the local quality scores.

10. Structural Contrast Quality Index (SCQI) [66]: This method primarily uses the struc-

tural contrast index, which can well characterize local and global visual quality per-

ceptions for various image characteristics with structural-distortion types. In addition,

features that capture contrast sensitivity and chrominance component variation are also

used.

11. Pei et al. [78]: This learning-based method first extracts features from several differ-

ence of Gaussian frequency bands of the image, which mimics the HVS. The features

are then nonlinearly combined using the Random Forest regression model to predict the
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MOS of an image. This algorithm is representative of the class of learning-based meth-

ods that compute image features directly from the image pixels and utilize a regression

model. This methodology is different from the metric-fusion framework (e.g., Lukin et

al.) which utilizes the quality scores provided by existing IQMs, as opposed to directly

processing the image.

12. Lukin et al. [67]: This is a neural network-based approach that nonlinearly combines

the scores computed by several existing IQMs to predict the Mean Opinion Score (MOS)

of an image. This algorithm is representative of the class of learning-based methods that

perform metric fusion. More specifically, these algorithms use the scores of existing

IQMs as the input to a learning system, which is then trained to predict the MOS of an

image.

The model used for comparison is trained on TID 2013, as is done in [67].2

13. Bosse et al. [11]: This is a Deep Convolutional Neural Network (DCNN)-based ap-

proach. It utilizes a DCNN to extract features from a number of image patches. The fea-

tures are then nonlinearly combined (using fully-connected layers) to predict the MOS of

an image. Two versions of the proposed architecture are trained: one for full-reference

IQA and another for no-reference IQA. For completeness, we compare against the mod-

els released by the authors for both these versions. The models (both FR and NR) used

for comparison on our test set are weighted-patch-combination models trained on the

TID2013 dataset. For the comparison on existing datasets, we report the numbers pub-

lished by the authors.3.

14. Kim et al. [69]: This is another Deep Convolutional Neural Network (DCNN)-based

approach. It utilizes a DCNN to learn a sensitivity map using the distorted image, and

2The trained model is available from the authors via http://ponomarenko.info/nnmetric.rar.
3The trained model is available from the authors via https://github.com/dmaniry/deepIQA
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an error map between the reference and the distorted image as input (a version without

error map as input feature is also trained, but we choose to compare against the one

that utilizes the error map due to better performance). Since this is a recent method,

the trained models have not yet been released and so we follow the code released by

the authors to perform a 20-fold training on TID2013 (the largest existing IQA dataset

with largest variety of distortions) as prescribed and report performance on our test set

averaged over these 20 folds. For the comparison on existing datasets, we report the

numbers published by the authors.

A.1.4 Brief descriptions of the additional IQA methods included in the

supplementary file

In this section, we briefly summarize the additional IQA methods used for performance

comparison in this supplementary file, which include 11 popular model-based methods. These

methods are representative of a wide variety of existing IQA methods.

1. Mean Absolute Percentage Error (MAPE): This error metric is computed using the

following formula:

MAPE =
NI

∑
i=1

|ID(xi,yi)− IR(xi,yi)|
IR(xi,yi)+ ε

, (A.1)

where ID(x,y) denotes the distorted image, IR(x,y) denotes the reference image, ε = 0.01

is used to avoid division-by-zero, and NI is the total number of pixels. The numeric range

of pixel values is from 0 to 255.

This is a commonly-used metric in signal processing and it accounts for the HVS’s sen-

sitivity to color variations in darker image regions.

2. Mean Relative Squared Error (MRSE): This error metric is computed using the fol-
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lowing formula:

MRSE =
NI

∑
i=1

(ID(xi,yi)− IR(xi,yi))
2

IR(xi,yi)2 + ε
, (A.2)

where ID(x,y) denotes the distorted image, IR(x,y) denotes the reference image, ε = 0.01

is used to avoid division-by-zero, and NI is the total number of pixels. The numeric range

of pixel values is from 0 to 255.

This error metric is more sensitive to color variations in darker image regions as com-

pared to RMSE in order to model the HVS.

3. Noise Quality Measure (NQM) [197]: This methods takes into account the following

factors when measuring the visual quality of an image: 1) variation in contrast sensitivity

with distance, image dimensions, and spatial frequency; 2) variation in the local lumi-

nance mean; 3) contrast interaction between spatial frequencies; and 4) contrast masking

effects.

4. Information Fidelity Criterion (IFC) [198]: This method uses a novel information

fidelity criterion that is based on natural scene statistics, for assessing the image quality

with respect to a reference image.

5. Visual Information Fidelity (VIF) [61]: This method proposes an information measure

of image content. It first quantifies the information content present in the reference image

and then it uses the same information measure to quantify the distorted image. These two

information measurements are then used to form the VIF measure, which relates visual

quality to relative image information.

6. Visual Signal-to-Noise Ratio (VSNR) [199]: This method first computes the contrast

thresholds for detecting distortions via wavelet-based models of visual masking and vi-

sual summation. When the distortion is visible (above threshold), VSNR utilizes the
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low-level visual property of perceived contrast and the mid-level visual property of global

precedence to measure visual fidelity.

7. Most Apparent Distortion (MAD) [83]: This method aims to model two strategies that

the HVS uses to determine image quality, which are: 1) for images containing near-

threshold distortions, the image is most apparent, and thus the HVS attempts to look past

the image and look for the distortions; 2) for images containing clearly visible distortions,

the distortions are most apparent, and thus the HVS attempts to look past the distortion

and look for the image’s subject matter.

8. Riesz-Transform Based Feature Similarity Metric (RFSIM) [200]: This method uti-

lizes the 1st-order and 2nd-order Riesz transform coefficients of the image as features,

which is based on the fact that the HVS perceives an image mainly according to its

low-level features.

9. Gradient Similarity Based Metric (GSM) [201]: This method puts an emphasis on

gradient similarity, which can effectively capture structural and contrast changes. Lumi-

nance change is also taken into account in this metric.

10. Spectral Residual Based Similarity (SR-SIM) [202]: This method utilizes the spectral

residual visual saliency to measure the image quality.

11. Mean Deviation Similarity Index (MDSI) [65]: This method utilizes gradient similar-

ity and chromaticity similarity as image features. It then uses a deviation pooling scheme

to compute a final quality score based on the proposed image features.

As the trained model is not publicly available, we have obtained the feature extraction

codes from the authors and re-produced the model based on the details in the paper. Our

trained model has matched the reported performance in the cross-validation experiments

on TID 2013, where our RMSE is 0.4383 (reported: 0.4433) and our KROCC is 0.7772
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(reported: 0.7678).4 This indicates that our training is implemented correctly. We thus

train the model on the entire TID 2013 dataset and use this trained model for performance

comparison.

A.2 Training details

Our training set of 160 reference images and their distorted image pairs (paper Sec. 4.1) is

randomly divided into 120 training and 40 validation images. For the validation set, the prob-

ability labels obtained from human responses are directly used as ground-truth labels without

employing ML estimation to obtain some of the missing probability labels (which was done for

the training set). Therefore, a total of 67,620 pairs (after ML estimation) are used for training

and 7260 pairs (without ML estimation) are used for validation. We use a batch size of 4 during

training (i.e., the mean squared error between predicted and ground-truth probabilities of 4 im-

age pairs A, B is used for one backward pass through the network). 36 random patches of size

64× 64 are sampled from corresponding locations in A, B, R, and fed through the network to

compute sA and sB (which are then used to compute predicted probabilities). For the validation

set, 36 patches are sampled on a regular 6× 6 grid of overlapping patches. At test time, we

ideally want to use all possible patches for computing the overall quality score for an image.

However, sampling all possible patches would significantly increase the computation time of

our metric even for a single image. We therefore randomly sample 1024 patches during testing

of our trained model (which means that with a probability ∼ 1, every pixel will be present in at

least one sampled patch). We use Adam optimizer [203] for gradient backpropagation with a

learning rate of 10−4 to minimize the mean squared error between predicted and ground-truth

probabilities. There is clear evidence of convergence (i.e., negligible change in validation set

performance), within 300,000 iterations and hence the training was stopped after that.

4This performance is for DOG-SSIMc, which is the best model reported by Pei et al. [78]
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A.2.1 Training existing IQA methods with our pairwise-learning frame-

work

When training the existing DCNN-based IQA methods [11,69] using our pairwise-learning

framework (Sec. 5.4 in Chapter 2), we use the hyperparameters prescribed by the authors, such

as learning rate, batch size, patch sampling strategies, and optimizer choice (all methods used

Adam optimizer [203]). Gradient descent is performed on the mean squared error between

the predicted and the ground-truth probabilities. The same training-validation split is used for

all the trainings (including the training of PieAPP). All the pairwise-preference trainings with

existing models converge within 500,000 iterations of training which take at most 2 days on

an NVIDIA Titan X GPU using unoptimized TensorFlow code. For each of the trainings, the

best performing models are selected based on validation set performance and used for further

assessment on our proposed test set (which is disjoint from our proposed training set both

in terms of distortion types and reference images) and the two largest existing IQA datasets,

TID2013 [87] and CSIQ [83], as reported in Chapter 2.
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A.3 Patch Sampling Strategies for Training PieAPP

We present two analyses to motivate our patch sampling strategy during training.
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Figure A.1: Experiments for patch sampling strategies during training. (a) shows a comparison of the

training plots for PieAPP (mean squared error vs. iterations) when the training is performed using sparse

random patch samples (6 and 12 patches per image per iteration) and our choice of 36 random patch

samples. A better convergence is observed for the training with denser (36) random patch sampling

strategy. (b) shows the comparison of the training plots when the training is performed using 36 fixed

patch samples and using 36 random patch samples. As can be seen, randomly sampling patches during

training has significantly better convergence while the training with fixed samples overfits to training

data early on.

Effects of sparse random patch sampling. During training, 36 random patches are sampled

during an iteration to compute an image score. We find that if each pixel is a part of at least one

patch with a high probability (empirically, we find that a probability ≥ 0.90 to be sufficiently

high), the convergence of the training process happens faster compared to when sparser patches

are sampled. To demonstrate this, we perform two additional training experiments: 1) with only

6 patches sampled during a training iteration (probability of an image pixel belonging to at least

one patch = 0.32), and 2) with 12 patches sampled during a training iteration (probability of

an image pixel belonging to at least one patch = 0.54). We observe that the convergence of the
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network becomes slower with a reduced number of patch samples (see Fig. A.1a). A larger

number of patch samples (e.g., 36) can improve convergence but also significantly increase

training time and memory requirements. We find 36 patches to be the best balance of training

speed and accuracy.

Advantages of random patch sampling. The process of random sampling of patches during

training leads to an increase in the variety of samples observed for a single image during an

iteration. This in turn enables the network to learn from the given (limited) amount of data for

a larger number of iterations thereby leading to improved performance on validation set [11].

To observe this behavior we compare the performance (in terms of mean squared error) of two

training sessions: 1) training with 36 patches randomly sampled during each training iteration

for every input, and 2) training with 36 patches sampled from fixed positions on a regular

6×6 grid so that every time an image is fed to the network, the same patches are seen during

training. We observe that the fixed patch sampling strategy results in significant overfitting to

the training set with a validation set performance that is worse than the random sampling case

(see Fig. A.1b). Therefore, a random patch sampling strategy for training is adopted.

A.4 Limitations of Existing datasets

As discussed in the paper (Sec. 1), existing IQA databases [7, 80–85] typically assign a

numerical “quality” score to each individual image, which is referred to as the Mean Opinion

Score (MOS). As we extensively discussed, although there may exist an intrinsic quality score

for each image, learning it by asking humans to provide subjective ratings to an individual

image can be considerably challenging and noise-prone. A few work attempt to address this

issue and define a pairwise MOS by collecting scores that capture pairwise comparisons [86,

87]. However, the way this pairwise MOS is calculated makes it dependent on the specific set.

In other words, the pairwise MOS score of a pair of distorted images can change considerably
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when the same pair is included in two different datasets. In this supplementary document, we

provide a few examples of this, motivating the need for our proposed set-independent ground

truth quality label (based on probabilistic pairwise preference). We also demonstrate some

of the failure cases in LIVE [7] and CSIQ [83] where the MOS is based on asking humans

to assign quality scores to single images directly (the particular technique adopted for doing

this involved taking a difference between MOS of a reference and a distorted image, hence

lower score is better, and is termed DMOS). To identify such cases, we collect human pairwise

probabilistic preference labels for 500 randomly sampled distorted image pairs from both these

datasets and identify pairs that are inconsistent with human preference (we select cases where

human probabilistic preference is strong, i.e., outside probability range of [0.35,0.65]).

We first demonstrate the set-dependence of MOS calculated in TID2008 and TID2013

datasets (Sec. A.4.1), which share several identical images. In Fig. A.2-A.5, we show 4 exam-

ple image pairs with their pairwise MOS difference calculated based on TID2008 and TID2013,

respectively. It can be seen that the pairwise MOS difference can vary considerably from one

set (e.g., TID2008) to another set (e.g., TID2013). In some of the examples, this discrepancy

of the pairwise MOS difference is so high that it results in a flipped preference, as can be

seen. Next we present 3 examples of image pairs for CSIQ (Sec. A.4.2, Fig. A.7, A.8) and

LIVE (Sec. A.4.3, Fig. A.9) datasets in which the binary preference from DMOS labels is

inconsistent with human probabilistic preference. One of the factors that could lead to such

inconsistencies is the difficulty and subjectivity of the task of assigning a quality score to a

single image [86, 87].5

5Although we have only included a few examples of discrepancies here, more such examples can be easily
found in the respective datasets.

119



PieAPP: Perceptual Image-Error Assessment through Pairwise Preference Chapter A

A.4.1 Inconsistencies in TID ground-truth quality labeling scheme

reference image R

distorted image distorted image

pairwise MOS difference calculated on TID2008 = 0.4667

pairwise MOS difference calculated on TID2013 = -0.6194

Figure A.2: Limitation of Swiss-tournament-based MOS labeling scheme: Here is an ex-

ample of a pair of distorted images with pairwise MOS difference (between MOS of left image

and right image) calculated based on TID2008 and TID2013, respectively. The top row shows

the undistorted reference image and the bottom row shows the two distorted images. As is

evident, the pairwise MOS difference for the two images is inconsistent across the two datasets

and the MOS indicates a different choice for the higher-quality image of the two distorted ones

depending on which dataset the images belong to.
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reference image R

distorted image distorted image

pairwise MOS difference calculated on TID2008 = -1.0968

pairwise MOS difference calculated on TID2013 = 0.2564

Figure A.3: Limitation of Swiss-tournament-based MOS labeling scheme: Here is an ex-

ample of a pair of distorted images with pairwise MOS difference (between MOS of left image

and right image) calculated based on TID2008 and TID2013, respectively. The top row shows

the undistorted reference image and the bottom row shows the two distorted images. As is

evident, the pairwise MOS difference for the two images is inconsistent across the two datasets

and the MOS indicates a different choice for the higher-quality image of the two distorted ones

depending on which dataset the images belong to.
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reference image R

distorted image distorted image

pairwise MOS difference calculated on TID2008 = -0.4118

pairwise MOS difference calculated on TID2013 = -1.4408

Figure A.4: Limitation of Swiss-tournament-based MOS labeling scheme: Here is an ex-

ample of a pair of distorted images with pairwise MOS difference (between MOS of left image

and right image) calculated based on TID2008 and TID2013, respectively. The top row shows

the undistorted reference image and the bottom row shows the two distorted images. It can be

seen that pairwise MOS difference is different depending on the set it is evaluated on.
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reference image

distorted image distorted image

pairwise MOS difference calculated on TID2008 = 1.4839

pairwise MOS difference calculated on TID2013 = 0.2632

Figure A.5: Limitation of Swiss-tournament-based MOS labeling scheme: Here is an ex-

ample of a pair of distorted images with pairwise MOS difference (between MOS of left image

and right image) calculated based on TID2008 and TID2013, respectively. The top row shows

the undistorted reference image and the bottom row shows the two distorted images. It can be

seen that pairwise MOS difference is different depending on the set it is evaluated on.
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TID2008 MOS: 6.5143

TID2013 MOS: 5.1351

TID2008 MOS: 7.2941

TID2013 MOS: 5.9189

TID2008 MOS: 3.9722

TID2013 MOS: 2.9714

TID2013 MOS: 4.0769

TID2013 MOS: 5.0882

Figure A.6: Limitation of Swiss-tournament-based MOS labeling scheme: Example images

with individual MOS reported in TID2008 and TID2013, respectively. It can be seen that the

numerical values of MOS of an exactly same image (L2 error = 0) in the two databases can

change drastically when obtained in two different sets.
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A.4.2 Inconsistencies in CSIQ ground-truth quality labeling scheme

reference image

distorted image distorted image

DMOS score difference calculated on CSIQ = -0.01

human probability of preferring left image over right = 0.06

Figure A.7: Inconsistency of CSIQ DMOS labeling scheme: A pair of distorted images with

pairwise DMOS difference (between DMOS of left image and right image; with individual

DMOS ranging from 0 to 1 and lower score indicating a better image) calculated based on CSIQ

dataset is shown here. The human probability of preferring left image over right is reported at

the bottom. A negative value for DMOS difference indicates that left image is preferred over

the right one as per CSIQ DMOS label. However, humans prefer the right image over left.
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reference image

distorted image distorted image

DMOS score difference calculated on CSIQ = -0.04

human probability of preferring left image over right = 0.18

Figure A.8: Inconsistency of CSIQ DMOS labeling scheme: A pair of distorted images with

pairwise DMOS difference (between DMOS of left image and right image; with individual

DMOS ranging from 0 to 1 and lower score indicating a better image) calculated based on CSIQ

dataset is shown here. The human probability of preferring left image over right is reported at

the bottom. A negative value for DMOS difference indicates that left image is preferred over

the right one as per CSIQ DMOS label. However, humans prefer the right image over left.
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A.4.3 Inconsistencies in LIVE ground-truth quality labeling scheme

reference image

distorted image distorted image

DMOS score difference calculated on LIVE = -0.93

human probability of preferring left image over right = 0.01

Figure A.9: Inconsistency of LIVE DMOS labeling scheme: Here is an example of a pair

of distorted images along with pairwise DMOS difference (between MOS of left image and

right image; with individual DMOS ranging from 0 to 100 and lower score indicating a better

image) calculated based on LIVE dataset. The human probability of preferring left image over

right is reported at the bottom. A negative value for DMOS difference indicates that left image

is preferred over the right one as per LIVE DMOS label. However, humans prefer the right

image over left.
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A.5 Details of the Image Distortions

In this section, we describe the implementation details of the training and test distortions

in our proposed database, as well as the reason why each distortion is included in the database

(see the note on “Relevance” for each distortion). In the implementation descriptions, we have

included information on how we select the distortion parameters. Unless specified otherwise,

the image pixel values range from 0 to 1. For each distortion, 2-4 pictorial examples are also

provided, which show a few different distortion levels.

The different levels of a given distortion are generated by varying one or more parameters

involved (e.g., the blur kernel variance for Gaussian blur). In the following descriptions, we

specify the parameter ranges used for each distortion in our database. These parameter ranges

are empirically chosen such that the distorted images do not exhibit drastic/unrealistic effects

upon manual visual assessment. Each distorted image is generated by applying a distortion to

the reference image, with randomly-sampled parameters. The reference image used is shown

in Fig. A.10. In the following descriptions, we denote the distorted image by ID(x,y,c) and

reference image by IR(x,y,c), where (x,y) denotes the pixel location and c denotes a channel.

As mentioned in the paper, the distortions are grouped according to their visual effects. The

descriptions of the distortions in each group can be easily accessed via the hyperlinks in Table

A.3 and Table A.4.

Note that 16 of the distortions in our proposed training set have also been considered in

the largest existing IQA database [87]. These 16 distortions are additive Gaussian noise with

higher noise levels in color channels, multiplicative Gaussian noise, spatially correlated noise,

masked noise, salt and pepper noise (impulse noise), JPEG compression, local blockwise color

distortion, non-eccentricity pattern noise, JPEG2000 transmission errors, lossy compression

of images corrupted by additive Gaussian noise, Gaussian blur, change of saturation, color

quantization, color quantization with dither, mean color shift, and chromatic aberrations.
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Figure A.10: undistorted reference image

A.5.1 Training image distortions

Visual Effects Training Image Distortions

Noise 1. additive Gaussian noise with higher noise levels in color channels

2. multiplicative Gaussian noise

3. spatially-correlated noise

4. masked noise

5. salt and pepper noise

Block-like artifacts 6. JPEG compression

7. zeroing out frequency components from all image blocks

8. zeroing out frequency components from randomly selected image blocks

9. local blockwise color distortion

10. non-eccentricity pattern noise

11. block-based image hole-filling (using a Poisson solver)
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Artifacts with regu-

lar patterns

12. deblurring using Lucy-Richardson’s method [204, 205] for images corrupted by

Gaussian blur

13. deblurring using Lucy-Richardson’s method for images corrupted by motion blur

14. joint deblurring and denoising using Lucy-Richardson’s method for images cor-

rupted by additive Gaussian noise and Gaussian blur

15. joint deblurring and denoising using Lucy-Richardson’s method for images cor-

rupted by additive Gaussian noise and motion blur

16. JPEG2000 transmission errors

17. lossy compression of images corrupted by additive Gaussian noise

18. zeroing out frequency components from an image

Detail loss 19. Gaussian blur

20. motion blur

21. locally-varying blur

22. Perona-Malik denoising [206]

23. Rudin-Osher-Fatemi (ROF) denoising [207]

24. median denoising of image corrupted by salt and pepper noise

25. deep network-based super-resolution with a sparse prior [208]

Color change 26. change of saturation

27. contrast stretching

28. gamma transformation

29. local color shift

30. local contrast change

31. color quantization

32. color quantization with dither

33. mean color shift
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Geometric transfor-

mations

34. projective transformation

35. warping (using a local spatial shift map)

36. spatial shift

37. 2D rotation

38. spatial shift and rotation

39. radial barrel transform

40. radial pincushion transform

Others 41. compressive sensing using Orthogonal Matching Pursuit [209]

42. chromatic aberrations

43. JPEG transmission error

44. image sharpening

Table A.3: Training distortions are categorized according to their visual effects. Implementa-

tion details and pictorial examples for each distortion can be found by following the hyperlink

of each visual effect category.

A.5.1.1 Noise

1. Additive Gaussian noise with higher noise in color channels (Fig. A.11): Additive Gaus-

sian noise is applied to each of the luminance and chrominance channels of an image (repre-

sented using YCbCr color space). The noise variance of the chrominance channels, σ2
b and

σ2
r , are higher than that of the luminance channel (σ2

l ). More specifically, σb = αb ×σl and

σr = αr ×σl , where αb ≥ 1 and αr ≥ 1.

Parameters: Noise standard deviation in the luminance channel: σl ∈ [0.005,0.03] and the

scaling factors αb,αr ∈ [1,2.8]

Relevance: This distortion is used to capture the known property that the Human Visual Sys-

tem (HVS) do not equally perceive distortions in the brightness (luminance) and the color
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(chrominance) components [86, 87].

(a) σl = 0.01, αb = 1.8, αr = 1.6 (b) σl = 0.03, αb = 2.8, αr = 2.8

Figure A.11: additive Gaussian noise with higher noise variances in color channels (parameters

in sub-captions)

2. Multiplicative Gaussian noise (Fig. A.12): The distorted image ID(x,y,c) is computed

using the following formula:

ID(x,y,c) = IR(x,y,c)×N(x,y,c)+ IR(x,y,c)= IR(x,y,c)× (N(x,y,c)+1), (A.3)

where IR(x,y,c) is the reference image and N(x,y,c)∼ N (0, σ2
g ).

Parameter: Gaussian noise standard deviation: σg ∈ [0.01,0.08]

Relevance: This distortion can be caused by the image acquisition process.

3. Spatially-correlated noise (Fig. A.13): The reference image is first corrupted by an additive

Gaussian noise, which results in each pixel being corrupted by an independent and identically

distributed noise pattern. The resultant image is then filtered with an average filter of kernel

size 3× 3, correlating the intensity of each pixel with those of the neighboring pixels. More
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(a) σg = 0.03 (b) σg = 0.08

Figure A.12: multiplicative Gaussian noise (parameters in sub-captions)

specifically, the distorted image is given by:

ID(x,y,c) =
1

|Nn| ∑
i∈Nn

(IR(xi,yi,ci)+N(xi,yi,ci)), (A.4)

where ID(x,y,c) is the distorted image, IR(x,y,c) is the reference image, Nn is the set of neigh-

boring pixels, and N(x,y,c)∼ N (0, σ2
g ).

Parameter: Additive Gaussian noise variance: σ2
g ∈ [10−5,4×10−3]

Relevance: Additive white noise can get spatially correlated at various stages in a camera

image pipeline (e.g., demosaicing).

4. Masked noise (Fig. A.14): There are two implementations of masked noise in our database

(both computed in a per-channel manner):

1. Using Contrast Sensitivity Function (CSF)-based masking: For this distortion, the vis-

ibility of Gaussian high-frequency noise (Sec. A.5.2.1 of this file, test distortion No. 2)

in an image region is modulated by the masking effect (computed based on the CSF) of
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(a) σg = 0.03 (b) σg = 0.004

Figure A.13: spatially-correlated noise (parameters in sub-captions)

that region [86, 210]. The distorted image ID(x,y) is computed as:

ID(x,y) = M(x,y)◦ IH(x,y)+(1−M(x,y))◦ IR(x,y), (A.5)

where IH(x,y) is an image corrupted by Gaussian high frequency noise with frequency

selection threshold set to 0.5, M(x,y) is the mask map, and “◦” denotes the Hadamard

product of two matrices.

Parameter: Standard deviation of Gaussian high frequency noise: σg ∈ [40,120]. (The

pixel values range from 0 to 255 in this case.)

2. Using Watson’s DCT-based visual model: Watson’s DCT-based visual model utilizes

luminance and contrast masking while computing slacks, sl (a measure of the amount

by which a DCT coefficient can be altered without causing noticeable artifacts), for each

component of all 8× 8 block-DCT coefficients of an image [211]. A signal (a vector,

m, which is drawn from a Gaussian distribution of variance 0.1 in our case) is then
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added to an original DCT coefficient, C0, (during the process of digital watermarking,

for example) resulting in Cw as follows:

Cw(i, j,k) =C0(i, j,k)+αm ×m× sl(i, j,k), (A.6)

where αm is a scaling factor, the indices (i, j,k) represent (i, j)th value of kth 8 × 8

block of a 2D matrix and m is an element in m. A popular practice for DCT-based

watermarking is to utilize mid-band frequencies for proper concealment and robust-

ness to compression [212, 213]. We choose the mid-band DCT coefficients at positions

8,9,12,13,14,17,18,19,20,23,24,25,26,27 (in the zig-zag scan order used for JPEG

compression) for concealing m. The coefficients Cw are then used to construct the dis-

torted image. To simulate imperfect concealment, we vary αm.

Parameter: αm ∈ [0.8,2.8].

Relevance: The concept of masking is used in digital watermarking [211] and captures the

sensitivity of the HVS to contrast and luminance changes.

5. Salt and pepper noise (Fig. A.15): A distorted image is generated by adding salt and

pepper noise to the reference image (using the imnoise function in Matlab).

Parameter: Density of the noise: d ∈ [10−4,0.045]

Relevance: This noise can occur during image acquisition, due to errors in the camera imaging

pipeline.

A.5.1.2 Block-like artifacts

6. JPEG compression (Fig. A.16): The distorted image is a JPEG-compressed version of the

reference image. JPEG compression is implemented using Matlab’s imwrite function.

Parameter: Compression quality factor: q ∈ {10,11, ...,79,80}

Relevance: This distortion is commonly caused by image compression operations.
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7. Zeroing out frequency components from all image blocks (Fig. A.17): The input refer-

ence image is first divided into blocks. For each block, the frequency components (obtained

after applying Fourier transform to the block) whose magnitude falls below a threshold are

zeroed out. The threshold is specified in terms of a percentile value (e.g., all frequency com-

ponents with magnitudes smaller than the 98th percentile are removed from Fig. A.17b).

Parameters: The block size: sb ∈ {4,5, ...,20} and the percentile value for computing the

magnitude threshold: per ∈ [60,98]

Relevance: This distortion is used to simulate image compression artifacts.

8. Zeroing out frequency components from randomly-selected image blocks (Fig. A.18):

Given a reference image, random image blocks are selected. The frequency components within

each selected block (obtained after applying Fourier transform to each block) whose magnitude

falls below a threshold are zeroed out. The threshold (same for all selected blocks) is specified

in terms of a percentile value (e.g., all frequency components with magnitudes smaller than the

98th percentile are removed from Fig. A.18b).

Parameters: The number of random blocks: nb ∈{10,11, ...,30}, the block size: sb ∈{4,5, ...,40},

and the percentile value for computing the magnitude threshold: per ∈ [60,98]

Relevance: This distortion is used to simulate image compression artifacts.

9. Local blockwise color distortion (Fig. A.19): This distortion is modeled as an arbitrary

color shift (from the mean color) in local blocks. The blocks where the color is changed are

either selected randomly or based on a saliency map [214]. For saliency map-based selection,

all image locations that are one standard deviation above the mean saliency value are isolated.

For each image block whose pixel center is contained in these regions, the pixel intensities are

first replaced by the block mean and then shifted by a certain amount (independently done for

each channel). For randomly-selected blocks, the same color change operation is performed.

Parameters: The number of blocks with such a color change: nb ∈ [4,10], the size of these

blocks: sb ∈ [5,21], and the width of the zero-mean uniform distribution from which the color
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shift for an image block is drawn: w ∈ [0,0.6]

Relevance: This distortion is used to simulate image inpainting and the image acquisition

process [86, 87].

10. Non-eccentricity pattern noise (Fig. A.20): Given a reference image, the distorted im-

age is obtained by replacing some randomly-selected image patches with randomly-selected

neighboring patches (located within a distance of 15 pixels between patch centers). The patch

size is fixed to be 15×15.

Parameter: The number of patches to be replaced: np ∈ {2,3, ...,75}

Relevance: Spatial shifts in local image blocks can often go unnoticed by the HVS depending

on the conspicuousness of the blocks [86, 87]. This characteristic of the HVS can play a key

role in various algorithms related to image synthesis and image compression.

11. Block-based image hole-filling (using a Poisson solver, Fig A.21): Given a reference

image, randomly-selected square blocks of the image are considered as holes. The holes are

filled using the regionfill function in Matlab, which computes a Laplacian over the holes to be

filled and solves a Dirichlet boundary value problem.

Parameters: The number of blocks (holes): nb ∈ {10,11, ...,30} and the width of a block:

sb ∈ {10,11, ...,20}

Relevance: This distortion is used to simulate the artifacts from the image inpainting and the

image synthesis processes.

A.5.1.3 Artifacts with regular patterns

12-13. Deblurring using Lucy-Richardson’s method [204,205] (Fig. A.22,A.23): The input

reference image is first blurred (Gaussian blur or linear motion blur). We then deblur the image

using Lucy-Richardson’s method (using the deconvlucy function in Matlab). For Gaussian blur,

we set the kernel size (sk) to be a function of the standard deviation (σk): sk = 3×σk +2.

Parameters: Gaussian blur kernel standard deviation: σk ∈ [0.5,2.5], motion blur kernel
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length: len ∈ [3,10], and the motion blur kernel direction: dir ∈ [0,360]

Relevance: These distortions are representative of the artifacts caused by a number of image

deblurring algorithms.

14-15. Joint deblurring and denoising using Lucy-Richardson’s method [204,205] (Fig. A.24,

A.25): Lucy-Richardson’s method (using the deconvlucy function in Matlab) can also be ap-

plied to restoring images that are corrupted by additive noise, in addition to blur. We apply

Lucy-Richardson’s method to images corrupted by 1) Gaussian blur and additive Gaussian

noise, and 2) linear motion blur and additive Gaussian noise. For Gaussian blur, we set the ker-

nel size (sk) to be a function of the standard deviation (σk) of the blur kernel: sk = 3×σk +2.

Parameters: Gaussian blur kernel standard deviation: σk ∈ [0.5,2], the motion blur kernel

length: len ∈ [3,10], the motion blur kernel direction: dir ∈ [0,360], and additive Gaussian

noise variance: σ2
g ∈ [10−5,8×10−4])

Relevance: These distortions are representative of the artifacts caused by a number of image

restoration algorithms.

16. JPEG2000 transmission errors (Fig. A.26): A JPEG-2000 compressed image bitstream

is QPSK-modulated to give the complex message signal xin = xR + j× xI , which is then to be

transmitted. The channel model is a Rayleigh flat-fading channel with the complex-valued

transfer function h = hR + j × hI . During the transmission, the signal is corrupted by ad-

ditive Gaussian noise to give the received signal yout with real and imaginary parts given

by Re(yout) = Re(h × xin) + ng and Im(yout) = Im(h × xin) + ng, respectively, where ng ∼

N (0, σ2
g ) and σg is determined from the specified received signal-to-noise ratio (SNR). The

corrupted signal yout is then demodulated, resulting in the distorted image.

Parameter: Received SNR ∈ [34,42]

Relevance: This distortion is common during the transmission of compressed images over

noisy channels.

17. Lossy compression of an image corrupted by additive Gaussian noise (Fig. A.27): We
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use the implementation described in [86, 87], which we briefly sumamrize as follows. The

input reference image is first corrupted by an additive Gaussian noise. We then use a DCT-

based coder, ADCT [215], to compress this noisy image to obtain the output distorted image.

Parameters: Additive Gaussian noise standard deviation: σg ∈ [0.02,0.1] and the quantization

step for the ADCT coder: ∆ ∈ {50,51, ...,160}

Relevance: This distortion can occur when noisy images are compressed.

18. Zeroing out frequency components from an image (Fig. A.28): The distorted image is

generated by zeroing out the frequency components whose magnitude response fall below a

threshold. The threshold is specified in terms of a percentile value (e.g., all frequency compo-

nents with magnitudes smaller than the 99.4th percentile are removed in Fig. A.28b).

Parameter: The percentile value for computing the magnitude threshold: per ∈ [60,99.4]

Relevance: This distortion can be caused by image compression and image filtering.

A.5.1.4 Detail loss

19. Gaussian blur (Fig. A.29): The distorted image is generated by convolving the undistorted

reference image with a Gaussian blur kernel. We set the kernel size (sk) to be a function of the

standard deviation (σk) of the blur kernel: sk = 3×σk +2.

Parameters: Standard deviation of the blur kernel: σk ∈ [0.5,3.1]

Relevance: This distortion can be caused by image filtering and multi-scale image processing.

20. Linear motion blur (Fig. A.30): Linear motion blur is applied to the reference image

using Matlab’s fspecial function.

Parameters: The motion blur kernel length: len ∈ [2,10] and the motion blur kernel direction:

dir ∈ [0,360]

Relevance: This distortion can occur during image acquisition when the camera is in motion.

21. Locally-varying blur (Fig. A.31): The reference image is corrupted by a blur kernel that
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has a spatially-varying standard deviation. The standard deviation map for achieving this per-

pixel blur effect is computed in the form of a Perlin noise pattern [216], which is of the same

size as the reference image. The range of values of the Perlin noise pattern are linearly scaled

from 0 to a pre-specified maximum.

Parameters: The maximum scale for Perlin noise generator: smax ∈ [5,8] and the maximum

value of Perlin noise map: vmax ∈ [1.5,5]

Relevance: This distortion can occur in depth-of-field blur simulations.

22. Perona-Malik denoising [206] (Fig. A.32): The reference image is first corrupted by an

additive Gaussian noise. We then apply Perona-Malik denoising algorithm to the noisy image.

The denoised image is the output distorted image.

Parameter: Additive Gaussian noise variance: σ2
g ∈ [10−4,3.1×10−3]

Relevance: This distortion is representative of the artifacts caused by an important class of

denoising algorithms that use anisotropic diffusion.

23. Rudin-Osher-Fatemi (ROF) denoising [207] (Fig. A.33): The reference image is first

corrupted by an additive Gaussian noise. We then apply a total variation-based denoising

algorithm (ROF denoising using a fixed-point iteration solver) to the noisy image. The denoised

image is the resultant distorted image.

Parameter: Additive Gaussian noise variance: σ2
g ∈ [0,4×10−3]

Relevance: This distortion is representative of the artifacts caused by an important class of

total variation-based denoising algorithms.

24. Median denoising of images corrupted by salt and pepper noise (Fig. A.34): The

undistorted reference image is first corrupted by salt and pepper noise. We then apply a median

filter to the noisy image. The filter kernel is set to a fixed size of 3×3.

Parameter: Density of salt and pepper noise: d ∈ [0.08,0.3]

Relevance: This is a common procedure of removing salt and pepper noise.

25. Deep network-based super-resolution with a sparse prior [208] (Fig. A.35): An image
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is first downsampled by a resizing factor and then upscaled to the original size using Wang et

al.’s method [208]. We use this method as one instance from the large set of super-resolution

algorithms. The upscaling factor can be as high as 8 in order to bring out the artifacts caused

specifically by super-resolution methods. (A small upscaling factor will make the distortion

look like a common Gaussian blur.)

Parameter: The upscaling factor: u ∈ {2,3, ...,8}

Relevance: This distortion is one instance from the large set of super-resolution algorithms.

A.5.1.5 Color change

26. Change of color saturation (Fig. A.36): This distortion is implemented in the same

way as in TID 2013 [87]: the RGB image is transformed into YCbCr space and the chroma

components are transformed as follows: Cb = 128+(Cb− 128)×K and Cr = 128+(Cr−

128)×K. Larger values of K result in more extreme color saturation effects.

Parameter: K ∈ [0.01,1.8]

Relevance: This distortion can be caused by color correction algorithms and the image acqui-

sition process.

27. Contrast stretching (Fig. A.38): Contrast changing is performed as follows: ID(x,y,c) =

1
1+( Īc

IR(x,y,c)+ε
)α

, where ID is the distorted image, IR is the reference image, and Īc is the mean

intensity for channel c. As α increases, the distorted image shows more contrast (with a larger

range of pixel values), while as α decreases, the range of pixel values is compressed. Fig. A.37

shows the contrast stretch transformation with different values of α .

Parameter: α ∈ [0.5,3.8]

Relevance: Contrast stretching is a commonly-used technique for image color enhancement.

28. Gamma transformation (Fig. A.39): The distorted image is obtained by using the fol-

lowing formula: ID(x,y,c) = IR(x,y,c)γ , where IR is the reference image.

Parameter: γ ∈ [0.5,1.7]
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Relevance: This is a commonly-used technique for image color correction.

29. Local color shift (Fig. A.40): Pixel values at each pixel in reference image (IR) are shifted

to give the locally-varying color effect. Instead of independently shifting the pixel value at

each location of IR (which would look like additive noise), the color shift map is computed in

the form of a Perlin noise pattern [216] independently for each channel (maximum scale of the

pattern is fixed to 8). Each location of the Perlin noise pattern indicates the amount of the shift

at that pixel location. The range of values of the Perlin noise pattern are linearly scaled from 0

to a pre-specified maximum. The resultant pixel values are clamped to [0,1].

Parameters: The maximum value (corresponding to the maximum color shift) to be obtained

from Perlin noise pattern: vmax ∈ [0.1,0.5]

Relevance: This distortion can be caused by artistic image processing, flaws in camera im-

age processing pipelines, and some color correction algorithms (e.g., local white balancing,

dehazing).

30. Local contrast change (Fig. A.41): A distorted image is generated by having a unique α

for contrast stretching (see description of contrast stretching (training distortion No. 27) for the

transformation formula) for each pixel (x,y,c). A Perlin noise pattern is used to specify the α

at each pixel (maximum scale of the pattern is fixed to 8). The minimum and maximum value

of Perlin noise pattern are pre-specified.

Parameters: The minimum value of Perlin noise pattern: vmin ∈ [0.2,0.7] and the maximum

value of Perlin noise pattern: vmax ∈ [1.2,3]

Relevance: The distorted image has spatially varying contrast, which is a common artifact of

color correction algorithms (e.g., dehazing).

31. Color quantization (Fig. A.42): A distorted image is generated by first computing the

intensity segmentation thresholds using Otsu’s segmentation method (Matlab’s multithresh

method) and then quantizing the image based on these thresholds (Matlab’s imquantize func-

tion).

142



PieAPP: Perceptual Image-Error Assessment through Pairwise Preference Chapter A

Parameter: The number of intensity levels to be used for quantization: L ∈ [4,20]

Relevance: Quantization is a crucial step in several applications including compression and

segmentation.

32. Color quantization with dither (Fig. A.43): Matlab function rgb2ind is used to imple-

ment this distortion, which converts an RGB image into a quantized image with dithering.

Parameter: The number of intensity levels to be used for quantization: L ∈ [10,95]

Relevance: This distortion is typical in image printing [87].

33. Mean color shift (Fig. A.44): To obtain a distorted image, the color values in each channel

of the reference image are shifted by a constant (same shift value for all channels). The pixel

values of the resultant image are then clamped to [0,1].

Parameter: The intensity shift value: vs ∈ [−0.3,0.3]

Relevance: This distortion can be caused during the image acquisition process or during color

correction of images.

A.5.1.6 Geometric transformations

NOTE: To maintain the size of the resulting distorted image from each of the following geo-

metric transformations and to simulate the real-world cases in which such distortions would be

expected to occur, the geometrically distorted images are hole-filled in a content-aware man-

ner near the image borders. The hole-filling is done using an open-source tool GMIC [217].

In most of the cases, our geometrically distorted images do not reveal too much empty space

around the image borders and as a result, the hole-filled images simulate the continuous world

that is captured by a camera.

34. Projective transformation (Fig. A.45): For this distortion, we simulate a projective trans-

formation by transforming the image coordinates with a homography matrix. To construct this

matrix, we begin with certain simplifying assumptions about the camera matrix for reference
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image, C0. A camera matrix is given by C = K[R | t]. Here, K is the intrinsic matrix and

[R | t] is the extrinsic matrix comprising of rotation (R, which can be computed as a product of

rotation matrices along the x,y,z-axes: R = RxRyRz) and translation (t) information about the

camera within the world coordinates. Without loss of generality, we assume the intrinsic matrix

K0 for C0 to be a 3×3 identity matrix, and extrinsic parameters to have no rotation or transla-

tion, which gives C0 = [I3×3 | 0]3×4. We then compute a new camera matrix, C1 = K1[R1 | t1]

by modifying the rotation matrix (extrinsic parameters, modified by changing rotation angles

about x,y,z axes: θx,θy,θz in degrees respectively) and adding a skew factor (intrinsic parame-

ter, sq). The resultant 2D projective transformation is then given by: H = K1R1 which is used

to transform the reference image [218].

Parameters: θx ∈ [−0.05,0.05], θy ∈ [−0.05,0.05], θz ∈ [−8,8], and sq ∈ [−0.18,0.18]

Relevance: A common procedure in 3D image processing and computer vision applications

(e.g., panoramic stitching, 3D reconstruction).

35. Warping (using a local spatial shift map) (Fig. A.46): Locally-varying spatial shift is

applied to each pixel in the reference image. The per-pixel shift map is computed at a coarse

scale (sw), and then upsampled (using bicubic interpolation). At the coarse scale, the spatial

shift values are drawn from a zero-mean uniform distribution with a specified width w. The

upsampled shift map is used to warp the reference image.

Parameters: sw ∈ [1,20] and w ∈ [0.05,0.5]

Relevance: This distortion can occur during correspondence map-based image transformations

(e.g., generalized PatchMatch [219]).

36. Spatial shift (Fig. A.47): The reference image is shifted horizontally and/or vertically.

Parameters: horizontal shift: sh ∈ [−10,10] and vertical shift: sv ∈ [−10,10]

Relevance: A common procedure in 3D image processing and computer vision applications

(e.g., panoramic stitching, 3D reconstruction).

37. 2D rotation (Fig. A.48): The reference image is rotated using a 2D rotation matrix.
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Parameter: Angle of rotation: θ ∈ [−9,9]

Relevance: A common procedure in 3D image processing and computer vision applications

(e.g., panoramic stitching, 3D reconstruction).

38. Spatial shift and rotation (Fig. A.49): A combination of rotation and shift is applied to

the reference image.

Parameters: horizontal shift: sh ∈ [−10,10], vertical shift: sv ∈ [−10,10], and the angle of

rotation: θ ∈ [−9,9]

Relevance: A common procedure in 3D image processing and computer vision applications

(e.g., panoramic stitching, 3D reconstruction).

39. Radial barrel transformation (Fig. A.50): Barrel distortion (in polar coordinates) is

formulated as:

r′ = r× (1+a× r2) and θ
′ = θ , (A.7)

where (r,θ) are the original polar coordinates, (r′,θ ′) are the transformed polar coordinates.

For barrel transformation, a > 0.

Parameter: a ∈ [10−6,5.5×10−6]

Relevance: This distortion simulates a common lens distortion artifact during the image ac-

quisition process.
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(a) CSF-based, σg = 60 (b) CSF-based, σg = 120

(c) Watson’s model-based, αm = 0.8 (d) Watson’s model-based, αm = 1.0

Figure A.14: sample images obtained by corrupting the reference image with masked noise.

The top row shows the cases with CSF-based masked noise and the bottom row shows the cases

with Watson’s model-based masked noise (parameters in sub-captions).
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(a) d = 0.01 (b) d = 0.045

Figure A.15: salt and pepper noise (parameters in sub-captions)

(a) q = 50 (b) q = 20

Figure A.16: JPEG compression artifacts (parameters in sub-captions)
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(a) sb = 12, per = 93 (b) sb = 20, per = 98

Figure A.17: zeroing out frequency components from all image blocks (parameters stated in

sub-captions).

(a) nb = 10, sb = 33, per = 86 (b) nb = 30, sb = 60, per = 98

Figure A.18: zeroing out frequency components from randomly-selected image blocks (pa-

rameters in sub-captions)
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(a) nb = 6, sb = 15, w = 0.4 (b) nb = 6, sb = 21, w = 0.6

Figure A.19: local blockwise color distortion (parameters in sub-captions)

(a) np = 22 (b) np = 72

Figure A.20: non-eccentricity pattern noise (parameters in sub-captions)
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(a) nb = 15, sb = 10 (b) nb = 30, sb = 20

Figure A.21: Block-based image hole-filling (parameters in sub-captions)

(a) σk = 1 (b) σk = 2.5

Figure A.22: sample images obtained by applying the deblurring operation using Lucy-

Richardson’s method [204, 205] to reference image corrupted by Gaussian blur (parameters

in sub-captions)
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(a) len = 7, dir = 240 (b) len = 10, dir = 360

Figure A.23: sample images obtained by applying the deblurring operation using Lucy-

Richardson’s method [204, 205] to images corrupted by motion blur (parameters in sub-

captions)
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(a) σk = 1, σ2
g = 2×10−4 (b) σk = 2, σ2

g = 6×10−4

Figure A.24: joint deblurring and denoising using Lucy-Richardson’s method [204, 205] ap-

plied to reference image corrupted by additive Gaussian noise and Gaussian blur
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(a) len = 5, dir = 120, σ2
g = 2×10−4 (b) len = 10, dir = 360, σ2

g = 6×10−4

Figure A.25: joint deblurring and denoising using Lucy-Richardson’s method [204, 205] ap-

plied to reference image corrupted by additive Gaussian noise and motion blur (parameters in

sub-captions)

(a) Received SNR = 38 (b) Received SNR = 36

Figure A.26: JPEG2000 transmission errors (parameters in sub-captions)
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(a) σg = 0.04, ∆ = 80 (b) σg = 0.1, ∆ = 160

Figure A.27: lossy compression of reference image corrupted by additive Gaussian noise (pa-

rameters in sub-captions)

(a) per = 94 (b) per = 99.4

Figure A.28: zeroing out the Fourier coefficients from the reference image (parameters in sub-

captions)
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(a) σk = 1.3 (b) σk = 3.1

Figure A.29: Gaussian blur (parameters in sub-captions)

(a) len = 4, dir = 115 (b) len = 10, dir = 355

Figure A.30: linear motion blur (parameters in sub-captions)
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(a) vmax = 5, smax = 8 (b) Perlin noise pattern used in A.31a.

Figure A.31: reference image with locally-varying blur and the corresponding Perlin noise

pattern used to compute the locally-varying standard deviation for the Gaussian blur kernel

(a) σ2
g = 2.1×10−3 (b) σ2

g = 3.1×10−3

Figure A.32: Perona-Malik denoising [206] applied to reference image corrupted by additive

Gaussian noise (parameters in sub-captions)
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(a) σ2
g = 0.0036 (b) σ2

g = 0.004

Figure A.33: ROF denoising [207] applied to reference image corrupted by additive Gaussian

noise (parameters in sub-captions)

(a) d = 0.14 (b) d = 0.3

Figure A.34: sample images obtained by applying median denoising to images corrupted by

salt and pepper noise (parameters in sub-captions)
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(a) u = 3 (b) u = 8

Figure A.35: sample images obtained by applying super-resolution to downsampled versions

of the reference image using Wang et al.’s method [208] (parameters in sub-captions)

(a) K = 0.51 (b) K = 1.6

Figure A.36: sample images obtained by changing the color saturation of the reference image

(parameters in sub-captions)
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Figure A.37: Contrast stretch transformation curve with different values of α , assuming (with-

out loss of generality) that Īc = 0.5.

(a) α = 0.8 (b) α = 2.8

Figure A.38: This figure shows 2 sample images obtained by applying the contrast stretch

transformation to the reference image.
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(a) γ = 0.6 (b) γ = 1.25

Figure A.39: sample images obtained by applying gamma transformation to the reference im-

age (parameters in sub-captions)

(a) vmax = 0.3 (b) vmax = 0.5

Figure A.40: sample images obtained by applying local color shifts to the reference image

(based on random Perlin noise pattern – parameters in sub-captions)
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(a) vmin = 0.3, vmax = 1.2 (b) vmin = 0.3, vmax = 2.7

Figure A.41: sample images obtained by applying local contrast changes to the reference image

(based on random Perlin noise pattern – parameters in sub-captions)

(a) L = 18 (b) L = 6

Figure A.42: sample images obtained by corrupting the reference image with image quantiza-

tion (parameters in sub-captions)
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(a) L = 20 (b) L = 10

Figure A.43: sample images obtained by corrupting the reference image with image quantiza-

tion with dithering (parameter settings in sub-caption)

(a) vs =−0.3 (b) vs = 0.1

Figure A.44: sample images obtained by corrupting the reference image with mean color shift

(parameter settings in captions)
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(a) θx = 0.05,θy = 0.01,θz =−2, sq =−0.03 (b) θx =−0.04,θy =−0.02,θz =−8, sq = 0.07

Figure A.45: sample images obtained by applying projective transformation to the reference

image (parameters in sub-captions)

(a) sw = 3, w = 0.3 (b) sw = 20, w = 0.35

Figure A.46: sample images obtained by applying warping (using a local spatial shift map) to

the reference image (parameters in sub-captions)
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(a) sh =−9, sv =−7 (b) sh = 5, sv = 1

Figure A.47: sample images obtained by applying global spatial shifts to the reference image

(parameters in sub-captions)

(a) θ = 3 (b) θ =−9

Figure A.48: sample images obtained by applying global image rotation to the reference image

(parameters in sub-captions)
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(a) sh = 6, sw =−6, θ = 9 (b) sh = 10, sw = 8, θ =−5

Figure A.49: sample images obtained by applying global image shift and rotation to the refer-

ence image (parameters in sub-captions)

(a) a = 3.5×10−6 (b) a = 5.5×10−6

Figure A.50: sample images obtained by applying radial barrel transformation to the reference

image (parameters in sub-captions)
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40. Radial pincushion transformation (Fig. A.51): Pincushion transformation is obtained by

modifying the coefficient a in Eq. A.7 (training distortion No. 39) such that a < 0 (and |a|< 1).

Parameter: a ∈ [−7×10−6,−1×10−6]

Relevance: This distortion simulates a common lens distortion artifact during the image ac-

quisition process.

(a) a =−2.5×10−6 (b) a =−6.5×10−6

Figure A.51: sample images obtained by applying radial pincushion transformation to the

reference image (parameters in sub-captions)

A.5.1.7 Others

41. Compressive sensing using Orthogonal Matching Pursuit (OMP) [209] (Fig. A.52):

An image is considered to be sparse in DCT basis. We use random Gaussian sampling matrix

to sample the image and to reconstruct the image based on the samples. We then solve a set of

linear equations under sparsity constraints by using the OMP algorithm.

Parameter: The percentage of samples used to reconstruct an image: ps ∈ [40,80]
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(a) ps = 50 (b) ps = 40

Figure A.52: sample images obtained by sparse sampling and reconstructing the reference

image using the OMP algorithm [209] (parameters in sub-captions)

Relevance: Compressive sensing, sparse reconstruction of an image

42. Chromatic aberrations (Fig. A.53): This distortion is implemented by applying indepen-

dent spatial shifts, sc, to each channel of the reference image, followed by applying Gaussian

blur to each channel. We set the Gaussian blur standard deviation (σk) to be proportional to

shift applied to a channel: σk = 0.35× sc. Parameters: sc ∈ [−20,20] Relevance: This dis-

tortion simulates an image acquisition defect where there is a lens failure in focusing all the

colors to the same point.

43. JPEG transmission error (Fig. A.54): This is implemented similar to the JPEG-2000

transmission error (Sec. A.5.2.2 of this file, training distortion No. 12). A JPEG-compressed

image bitstream is QPSK-modulated to give the complex message signal xin = xR + j × xI ,

which is then to be transmitted. The channel model is a Rayleigh flat-fading channel with

the complex-valued transfer function h = hR + j× hI . During the transmission, the signal is

corrupted by additive Gaussian noise to give the received signal yout with real and imaginary
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(a) sc = 2 (b) sc = 6

Figure A.53: sample images obtained by corrupting the reference image with chromatic aber-

rations (parameters in sub-captions)

parts given by Re(yout) = Re(h×xin)+ng and Im(yout) = Im(h×xin)+ng, respectively, where

ng ∼ N (0, σ2
g ) and σg is determined from the specified received signal-to-noise ratio (SNR).

The corrupted signal yout is then demodulated, resulting in the distorted image.

Parameter: Received SNR ∈ [36,40]

Relevance: This distortion is common during the transmission of compressed images over

noisy channels.

44. Image sharpening (Fig. A.55): This image sharpening operation is implemented using

the imsharpen function in Matlab.

Parameters: The standard deviation of the Gaussian lowpass kernel: σk ∈ [1,4] and the

strength of sharpening: αs ∈ [0.05,2.05]

Relevance: This distortion can be caused by image enhancement operations.
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(a) Received SNR = 19 (b) Received SNR = 18

Figure A.54: sample images obtained by corrupting the reference image with JPEG transmis-

sion errors (parameters in sub-captions)

A.5.2 Test image distortions

Visual Effects Unseen Test Image Distortions

Noise 1. additive Gaussian noise

2. Gaussian noise in high frequency components

3. speckle noise

4. Poisson noise
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Artifacts with regu-

lar patterns

5. deblurring using Chan et al.’s method [220] for images corrupted by Gaussian blur

6. deblurring using Chan et al.’s method for images corrupted by motion blur

7. deblurring using Tikhonov regularization for images corrupted by Gaussian blur

8. deblurring using Tikhonov regularization for images corrupted by motion blur

9. joint deblurring and denoising using Chan et al.’s method for images corrupted by

additive Gaussian noise and Gaussian blur

10. joint deblurring and denoising using Chan et al.’s method for image corrupted by

additive Gaussian noise and motion blur

11. comfort noise

12. JPEG2000 compression

Detail loss 13. BM3D denoising [221] of images corrupted by additive Gaussian noise

14. BM3D denoising of images corrupted by spatially-varying Gaussian noise

15. ROF denoising using split Bregman solver [222]

16. compressive sensing using Danielyan et al.’s method [223]

17. super-resolution using SRCNN [224]

18. super-resolution using Peleg et al.’s method [225]

19. super-resolution using Timofte et al.’s method [226]

20. super-resolution using Zeyde et al.’s method [227]

21. soft focus

Color change 22. color temperature change

23. log transformation

24. histogram equalization

25. vignette effect
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Geometric transfor-

mations

26. vertical image stretch/shrink

27. horizontal image stretch/shrink

28. swirl transformation

29. wave transformation

30. image shift and rotation and radial distortion

31. radial distortion using 2nd order polynomial function

Table A.4: Test distortions are categorized according to their visual effects. Implementation

details and pictorial examples for each example can be found by following the hyperlink of

each visual effect category.

A.5.2.1 Noise

1. Additive Gaussian noise: Gaussian noise of a specified variance is added to the image,

resulting in a distorted image (using Matlab’s imnoise function).

Parameter: Gaussian noise variance: σ2
g ∈ [0.001,0.024]

Relevance: This is a common noise in image processing and may occur during the image

acquisition process.

2. Gaussian noise in high frequency components: Distorted images are generated by adding

Gaussian noise to high frequency components of an image. To select the high frequency com-

ponents for adding noise, a Fourier transform of an image is parameterized in polar coordinates,

with the image center as the origin. The components that are farther (in terms of the normalized

distance from the origin) than a specified threshold are selected as high frequency components.

(The points farthest from the origin have a distance of 1.)

Parameters: Gaussian noise standard deviation: σg ∈ [30,150] and the threshold on normal-

ized distance for selecting frequency components to add noise to: t ∈ [0.5,0.99]. (The pixel
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(a) σk = 2, αs = 0.05 (b) σk = 4, αs = 2.05

Figure A.55: sample images obtained by applying image sharpening to the reference image

(parameters in sub-captions)

values range from 0 to 255 in this case.)

Relevance: This distortion is used to capture the spatial frequency sensitivity of the HVS.

3. Speckle noise: An image corrupted by speckle noise is given by ID(x,y,c) = IR(x,y,c)+

N(x,y,c)× IR(x,y,c), where ID(x,y,c) is the distorted image, IR(x,y,c) is the reference image,

and N(x,y,c) is a uniformly-distributed random noise with zero mean and a specified width.

This is implemented using the imnoise function in Matlab.

Parameter: Width of the uniform random distribution: w ∈ [0.001,0.055]

Relevance: This distortion can occur during the acquisition of medical images or tomography

images.

4. Poisson noise: This distortion is generated using imnoise function of Matlab, which gen-

erates Poisson noise based on the image pixel values. The parameter settings for this noise

are pre-specified to fixed numbers in Matlab, thus we keep this distortion free of additional

parameters.
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(a) σ2
g = 0.015 (b) σ2

g = 0.021

Figure A.56: additive Gaussian noise (parameters in sub-captions)

Parameter: None

Relevance: This distortion occurs during the acquisition of digital images.

A.5.2.2 Artifacts with regular patterns

5-6. Deblurring using Chan et al.’s method [220]: We include a few more realizations of

deblurring and joint deblurring and denoising algorithms in our test set, which appear visually

distinct from their training set counterparts. In this distortion, we include deblurring using total

variation regularization [220] for images corrupted by Gaussian or motion blur. For Gaussian

blur, we set the kernel size (sk) to be a function of the standard deviation (σk): sk = 3×σk +2.

Parameters: Gaussian blur kernel standard deviation: σk ∈ [0.5,2.5], motion blur kernel

length: len ∈ [3,25], and the motion blur kernel direction: dir ∈ [0,360]

Relevance: The distortions are representative of the artifacts caused by a number of image

restoration algorithms.

7-8. Deblurring using Tikhonov regularization: Images corrupted by Gaussian and linear
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(a) σg = 110, t = 0.91 (b) σg = 120, t = 0.5

Figure A.57: Gaussian noise in high frequency components (parameters in sub-captions)

motion blur are deblurred using an algorithm with Tikhonov regularization (using the decon-

vreg function in Matlab). For Gaussian blur, we set the kernel size (sk) to be a function of the

standard deviation (σk): sk = 3×σ +2.

Parameters: Gaussian blur kernel standard deviation: σk ∈ [0.5,2.5], motion blur kernel

length: len ∈ [3,10], and the motion blur kernel direction: dir ∈ [0,360].(The pixel values

range from 0 to 255 in this case.)

Relevance: The distortions are representative of the artifacts caused by a number of image

restoration algorithms.

9-10. Joint deblurring and denoising using Chan et al.’s method [220]: Chan et al.’s method

can be applied for restoring images that are corrupted by additive noise, in addition to blur. We

apply this method to images corrupted by 1) Gaussian blur and additive Gaussian noise, and 2)

motion blur and additive Gaussian noise. For Gaussian blur, we set the kernel size (sk) to be a

function of the standard deviation (σk): sk = 3×σk +2.

Parameters: Gaussian blur kernel standard deviation: σk ∈ [0.5,2.5], motion blur kernel
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(a) w = 0.031 (b) w = 0.036

Figure A.58: speckle noise (parameters in sub-captions)

Figure A.59: a sample image corrupted by Poisson noise

length: len ∈ [3,25], motion blur kernel direction: dir ∈ [0,360], and additive Gaussian noise

variance: σ2
g ∈ [10−5,8×10−4]
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(a) σk = 2 (b) σk = 2.5

Figure A.60: deblurring using Chan et al.’s method [220] applied to the reference image cor-

rupted by Gaussian blur (parameters in sub-captions)

Relevance: The distortions are representative of the artifacts caused by a number of image

restoration algorithms.

11. Comfort noise: Comfort noise is used to offset the artifacts caused by lossy compression

[228]. We use the implementation of comfort noise in [87], which is described as the following.

An image is first converted to the YCbCr space from the RGB space. Each color channel is

lossy-compressed using ADCT [215]. Each channel is then decompressed and post-processed

for block artifacts removal to yield a reconstructed channel, Yr. Given that the original channel

is Y , the corresponding channel of the distorted image is generated as follows: YD = 2×Yr −Y .

Parameters: Quantization step for ADCT: ∆ ∈ [10,90].(The input image pixel values range

from 0 to 255 in this case.)

Relevance: This distortion can occur in image compression and de-compression pipelines.

12. JPEG2000 compression: Images are compressed using the JPEG2000 compression algo-

rithm (using the jp2 option in Matlab).
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(a) len = 15, dir = 330 (b) len = 22, dir = 300

Figure A.61: deblurring using Chan et al.’s method [220] applied to the reference image cor-

rupted by motion blur (parameters in sub-captions)

Parameters: compression ratio: R ∈ [10,100]

Relevance: This distortion commonly occurs in image compression applications.

A.5.2.3 Detail loss

13-14. BM3D denoising [221]: BM3D (using default settings) has been included in the test

set to denoise images corrupted by 1) additive Gaussian noise of a constant variance, and 2)

additive Gaussian noise of a spatially-varying variance. In the spatially-varying case, similar

to our other spatially-varying distortions, a Perlin noise pattern [216] is used to obtain the per-

pixel noise variance. The range of values obtained from the Perlin noise pattern is scaled to lie

between 0 and a specified maximum variance

Parameters: Additive Gaussian noise variance for constant variance noise: σ2
g ∈ [0.01,0.09],

the maximum noise variance for spatially-varying noise: σ2
max ∈ [0.01,0.09], and the maximum

scale for Perlin noise generator: smax ∈ [5,8]
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(a) σk = 2 (b) σk = 2.5

Figure A.62: deblurring using Tikhonov regularization (Matlab’s deconvreg) applied to refer-

ence image corrupted by Gaussian blur (parameters in sub-captions)

Relevance: These distortions capture the artifacts caused by the popular BM3D denoising

algorithm.

15. ROF denoising using split Bregman solver [207,222]: ROF denoising implemented with

split Bregman method is used (with default settings) to denoise an image corrupted by additive

Gaussian noise. Note that the artifacts caused by this distortion are different from those caused

by ROF denoising using a fixed-point iteration solver (training distortion No. 23).

Parameters: Additive Gaussian standard deviation: σg ∈ [5,30]. (The pixel values range from

0 to 255 in this case.)

Relevance: This distortion captures the artifacts caused by the popular ROF denoising algo-

rithm.

16. Compressive sensing using Danielyan et al.’s method [223]: This is a compressive sens-

ing technique that adopts spatial filtering as a form of regularization. It is used to reconstruct

an image from its sparse samples (with default settings for the algorithm, as provided by the
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(a) len = 8, dir = 180 (b) len = 10, dir = 300

Figure A.63: operation using Tikhonov regularization (Matlab’s deconvreg) applied to refer-

ence image corrupted by motion blur (parameters in sub-captions)

authors).

Parameters: Number of samples as a fraction of the rows and columns of an images: fs ∈

[0.1,0.6]

Relevance: This distortion occurs from the sparse sampling and reconstruction of an image.

17-20. Super-resolution [224–227]: Images are first downsampled with a resizing factor and

then up-scaled using several popular super-resolution algorithms that use a variety of tech-

niques, ranging from sparse dictionary learning to convolutional neural networks: Dong et

al. [224], Peleg et al. [225], Timofte et al. [226], and Zeyde et al. [227]. In some cases, the

resultant images have fewer pixels (lost from the image borders). Matlab’s padarray function

with replicate option is used to make sure that the size of the super-resolved image is the same

as the reference image.

Parameter: The resizing factor: u ∈ {2,3,4,6,8} (except for Peleg et al.’s, where u ∈ {2,3}).

Relevance: These distortions are representative of the artifacts caused by a variety of super-
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(a) σk = 1.5, σ2
g = 4.1×10−4 (b) σk = 1, σ2

g = 2.1×10−4

Figure A.64: deblurring and denoising using Chan et al.’s method [220] applied to reference

image corrupted by additive Gaussian noise and Gaussian blur (parameters in sub-captions)

resolution algorithms.

21. Soft focus (Fig. A.76): The distorted image is given by ID = W ◦ IR +(1−W ) ◦ Ĩ, where

IR is the reference image, Ĩ is a Gaussian blurred version of I, W is a radially symmetric

weight map that weighs the blurred version more as the radial distance (normalized so that the

distance is 0 at the image center and close to 1 near the edges) from image center increases,

and “◦” denotes Hadamard product. Along a single ray from center to an image edge point,

W (p) = rw×(1−dw(p))gw , where p is a point along the ray and dw(p) is the normalized radial

distance of point p. rw and gw are scalar parameters that govern the fall-off of W as the distance

from the origin increases.

Parameters: The Gaussian blur kernel standard deviation: σk ∈ [1,15] and the parameters

governing the fall-off: rw ∈ [0.5,10], gw ∈ [2,20].(The pixel values range from 0 to 255 in this

case.)

Relevance: This distortion can simulate a lens flaw causing blurred images. It can also be
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(a) len = 3, dir = 30, σ2
g = 6.1×10−4 (b) len = 10, dir = 240, σ2

g = 4.1×10−4

Figure A.65: deblurring and denoising using Chan et al.’s method [220] to applied to reference

image corrupted by additive Gaussian noise and motion blur (parameters in sub-captions)

deliberately introduced to create artistic effects in photography.

A.5.2.4 Color change (Fig. A.77):

22. Color temperature change: The colors in the R and B channel are shifted by equal

amounts in the opposite directions. This is as a simple approximation of change in color

temperature.

Parameter: The value of color shift: st ∈ [−50,50].(The pixel values range from 0 to 255 in

this case.)

Relevance: This distortion can occur from color correction algorithms. It is also a popular way

to create artistic photo effects.

23. Log transformation (Fig. A.78): A distorted image (ID) is obtained from the reference
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(a) ∆ = 50 (b) ∆ = 85

Figure A.66: comfort noise [87] (parameters in sub-captions)

image (IR) by the following transformation:

ID(x,y,c) = αlog × log(1+ IR(x,y,c)), (A.8)

for each pixel location (x,y) and each color channel c.

Parameter: αlog ∈ [0.4,3]

Relevance: This distortion captures the output of using Log transformation for global color

correction, which is a commonly-used technique.

24. Histogram equalization (Fig. A.79): Histogram equalization is applied (using Matlab’s

histeq) to the R, G, and B channels of the reference image independently with a specified

number of histogram bins to obtain the distorted image.

Parameter: Number of bins of the output image: nbin ∈ [5,200].

Relevance: This distortion captures the output of using histogram equalization for global color

correction, which is a commonly-used technique.

25. Vignette effect (Fig. A.80): The distorted image is given by ID = B ◦ IR, where IR is the
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(a) R = 60 (b) R = 65

Figure A.67: JPEG2000 compression (parameters in sub-captions)

reference image, B is a radially symmetric color attenuation map which goes from 1 to 0 as

the radial distance (normalized so that the distance is 0 at the image center and close to 1 near

the edges) from image center increases, and “◦” denotes Hadamard product. More specifically,

along a single ray from center to an image edge point, B(p) = rb × (1− db(p))gb , where p is

a point along the ray, db(p) is the normalized radial distance of point p. rb and gb are scalar

parameters that govern the fall-off of B as the distance from the origin increases.

Parameters: The parameters governing the fall-off: rb ∈ [1,7], gb ∈ [0.5,2]. (The pixel values

range from 0 to 255 in this case.)

Relevance: This distortion simulates the vignetting of pictures coming from DSLRs and artis-

tic image processing.

A.5.2.5 Geometric transformations (Fig. A.81):

26. Vertical image stretch/shrink: An image is stretched/shrunk vertically by increasing/decreasing

the number of rows in the image and using bicubic interpolation (using imresize function in
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(a) σ2
g = 0.025 (b) σ2

g = 0.027

Figure A.68: BM3D denoising [221] applied to reference image corrupted by additive Gaussian

noise (parameters in sub-captions)

Matlab). The resulting image is cropped at the center or hole-filled using GMIC [217] near the

edges to match the size of the reference image.

Parameter: Resizing factor in the vertical direction: rv ∈ [0.8,1.5]

Relevance: This distortion can occur during panoramic image stitching, 3D reconstruction,

and image morphing.

27. Horizontal image stretch/shrink (Fig. A.82): An image is stretched/shrunk horizontally

by increasing/decreasing the number of columns in the image and using bicubic interpolation

(using imresize function in Matlab). The resulting image is cropped at the center or hole-filled

using GMIC [217] near the edges to match the size of the reference image.

Parameter: Resizing factor in the vertical direction: rh ∈ [0.8,1.5]

Relevance: This distortion can occur during panoramic image stitching, 3D reconstruction and

image morphing.
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(a) σ2
max = 0.06, smax = 6 (b) σ2

max = 0.08, smax = 8

Figure A.69: BM3D denoising [221] applied to reference image corrupted by additive Gaussian

noise with a spatially-varying variance (parameters in sub-captions)

(a) σg = 15 (b) σg = 24

Figure A.70: ROF denoising (with split Bregman solver) [207,222] applied to reference image

corrupted by additive Gaussian noise (parameters in sub-captions)
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(a) fs = 0.45 (b) fs = 0.1

Figure A.71: sparse sampling and reconstruction of the reference image using Danielyan et

al.’s compressive sensing algorithm [223] (parameters in sub-captions)

(a) u = 6 (b) u = 8

Figure A.72: super-resolution applied to downsampled versions of the reference image using

Dong et al.’s method [224] (parameters in sub-captions)
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(a) u = 2 (b) u = 3

Figure A.73: sample images obtained by applying super-resolution to downsampled versions

of the reference image using Peleg et al.’s method [225] (parameters in sub-captions)

(a) u = 2 (b) u = 8

Figure A.74: sample images obtained by applying super-resolution to downsampled versions

of the reference image using Timofte et al.’s method [226] (parameters in sub-captions)
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(a) u = 6 (b) u = 8

Figure A.75: sample images obtained by applying super-resolution to downsampled versions

of the reference image using Zeyde et al.’s method [227] (parameters in sub-captions)

(a) σk = 9, rw = 5, gw = 9 (b) σk = 12, rw = 10, gw = 16

Figure A.76: soft focus effect (parameters in sub-captions)
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(a) st = 25 (b) st =−50

Figure A.77: color temperature change (parameters in sub-captions)

(a) αlog = 1 (b) αlog = 2.8

Figure A.78: log transformation (parameters in sub-captions)

189



PieAPP: Perceptual Image-Error Assessment through Pairwise Preference Chapter A

(a) nbin = 50 (b) nbin = 5

Figure A.79: per-channel histogram equalization (parameters in sub-captions)

(a) rb = 2, gb = 0.8 (b) rb = 1, gb = 0.5

Figure A.80: vignette effect (parameters in sub-captions)
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(a) rv = 1.1 (b) rv = 1.3

Figure A.81: vertical stretching/shrinking (parameters in sub-captions)

(a) rh = 0.8 (b) rh = 1.3

Figure A.82: horizontal stretching/shrinking (parameters in sub-captions)

191



PieAPP: Perceptual Image-Error Assessment through Pairwise Preference Chapter A

28. Swirl transformation (Fig. A.83): The image is resampled on a new coordinate space

(x′,y′), given the original coordinate space (x,y), as follows:x′

y′

=

 cosθ(x,y) sinθ(x,y)

−sinθ(x,y) cosθ(x,y)


x− x0

y− y0

+

x0

y0

 . (A.9)

θ(x,y) is a rotation angle map computed as follows:

θ(x,y) = θ0 × (1− rθ (x,y)
max

x,y
rθ (x,y)

), (A.10)

where rθ (x,y)=
√
(x− x0)2 +(y− y0)2. The resulting image is hole-filled near the edges using

GMIC [217].

Parameters: x0 ∈ [−0.25×WI,0.25×WI], y0 ∈ [−0.25×HI,0.25×HI], and θ0 ∈ [−20,20],

where WI and HI are the height and width of the image, respectively.

Relevance: This distortion can occur from image morphing and artistic geometric image trans-

formations.

(a) x0 = 0, y0 =−0.25×HI, θ0 =−19 (b) x0 = 0.1×WI, y0 = 0.1×HI, θ0 =−19

Figure A.83: swirl transformation (parameters in sub-captions)
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29. Wave transformation (Fig. A.84): The image is resampled on a new coordinate space

(x′,y′), given the original coordinate space (x,y), as follows:

x′ = x+ax × sin(µx × ȳ) and x′ = y+ay × sin(µy × x̄). (A.11)

where ȳ = y/HI and x̄ = x/WI , where HI and WI are the height and width of the image, respec-

tively. The resulting image is hole-filled near the edges using GMIC [217].

Parameters: ax ∈ [5,10], ay ∈ [5,10], µx ∈ [0.3×2π,1.2×2π], and µy ∈ [0.3×2π,1.2×2π]

Relevance: This distortion can occur from image morphing and artistic geometric image trans-

formations.

(a) ax = 9,ay = 10,µx = 0.3×2π,µy = 2π (b) ax = 6,ay = 10,µx = 0.8×2π,µy = 1.2×2π

Figure A.84: wave transformation (parameters in sub-captions)

30. Image shift and rotation and radial distortion (Fig. A.85): An image is spatially shifted,

rotated using a 2D rotation matrix and distorted using either pincushion or barrel distortion.

This distortion is a combination of training distortions No. 36-40 (see Sec. A.5.1.6 of this file)

to create new visual effects.

Parameters: Horizontal spatial shift: sh ∈ [−10,10], vertical spatial shift: sv ∈ [−10,10], the
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2D rotation angle: θ ∈ [−9,9], and the radial transformation coefficient a ∈ [−7× 10−6,5×

10−6]

Relevance: This is a common distortion from 3D image processing applications (e.g., panoramic

stitching) and lens distortion correction.

(a) sh = 10, sv = 4, θ = 8, a =−6×10−6 (b) sh =−7, sv =−6, θ =−8, a = 5×10−6

Figure A.85: spatial shift, rotation and radial distortion (parameters in sub-captions)

31. Radial distortion using (Fig. A.86):2nd order polynomial function: This distortion

is formulated as a general 2nd-degree radially symmetric polynomial in the polar coordinate

space:

r′ = a0 +a1 × r+a2 × r2 and θ
′ = θ , (A.12)

where (r,θ) are the original polar coordinates computed about an arbitrary location (x0,y0) of

the image and (r′,θ ′) are the transformed polar coordinates. The resulting image is hole-filled

near the edges using GMIC [217].

Parameters: a0 ∈ [5,50], a1 ∈ [0.5,1], and a2 ∈ [−0.001,0.001]

Relevance: This distortion is used to model lens distortions.
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(a) a0 = 7.93, a1 = 0.94, a2 =−5.2×10−4 (b) a0 = 42, a1 = 0.71, a2 = 4×10−5

Figure A.86: radial distortion (with a general 2nd order polynomial – parameters in sub-

captions)
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Appendix B

Noise-Aware Visual Saliency Prediction

with Incomplete Gaze Data

B.1 Additional Results

We now report the additional experiments performed to compare NAT to traditional training

(abbreviated as TT) in this section. Furthermore, we show typical gaze maps obtained through

TT and NAT compared to the ground truth for TASED on the ForGED dataset in Fig. B.1.

B.1.1 Dataset type and size

In this section, we continue reporting the results for Chapter 3, where we compared NAT vs.

TT for different dataset types and sizes. Table B.1 compares the performance of TT to NAT on

an additional dataset, the DIEM dataset [13], for the TASED architecture [128], and using KLD

as discrepancy for training. As done throughout the results shown in Chapter 3, the evaluation

is performed on videos with gaze data from all of the available observers (in contrast to training,

for which a subset of observers are used). In case of DIEM dataset, given that only 84 videos

are available, we use 30 or 60 videos for training and report the results on the remaining 24
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videos, which are also used as validation set. The number of observers for these videos ranges

from 51 to 219, which makes DIEM a very low-noise evaluation set [124]. Results on DIEM

are consistent with those reported in Chapter 3, with NAT providing better metrics in evaluation

when compared to TT when less training data (e.g., 30 videos) is available.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 0.641 0.698 0.591 3.517 0.922
5

NAT 0.599 0.708 0.592 3.513 0.934

TT 0.597 0.710 0.602 3.582 0.930
15

NAT 0.583 0.718 0.607 3.627 0.932

TT 0.576 0.724 0.614 3.663 0.925

30

31
NAT 0.559 0.731 0.618 3.694 0.928

TT 0.528 0.735 0.619 3.709 0.933
5

NAT 0.518 0.737 0.616 3.639 0.940

TT 0.485 0.757 0.639 3.795 0.933
15

NAT 0.493 0.754 0.635 3.792 0.936

TT 0.476 0.759 0.641 3.821 0.938

60

31
NAT 0.467 0.766 0.654 3.864 0.935

Table B.1: Saliency metrics on DIEM, for TASED Net, training with KLD as discrepancy, and

various number of training videos and observers. The best metrics between TT and NAT are in

bold.

B.1.2 Discrepancy functions

Table B.2 shows NAT vs. TT using d =−NSS on ForGED dataset. In Table B.2, we notice

that NAT overcomes TT in terms of NSS only for 2 or 5 observers, and 30 training videos.
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Figure B.1: Typical gaze maps obtained through TT and NAT (third row) compared to the

ground truth (first row) for TASED on the ForGED dataset, training with KLD loss, 30 training

videos and 5 observers per frame. Each panel reports in the title the corresponding KLD and

CC values. The last column shows a failure case where the metrics KLD and CC indicate that

NAT is worse than TT, although a visual inspection might indicate otherwise. Furthermore,

the saliency maps predicted with TT indicate more centralized unimodal predictions – while

NAT accurately predicts decentralized, multi-modal saliency maps even when trained with less

data. The visualization of saliency map overlays follows the scheme in Figure 3.4 of Chapter 3.

ForGED images have been published with permission of Epic Games.

Recall that, by design, NSS optimizes the predicted saliency map only at the measured fixation

locations. Consequently, when few fixations per frame are available for training, a high NSS

score may not generalize well to other evaluation metrics that evaluate different aspects of the

quality of a predicted saliency map. This can be alleviated by additional regularization (such

as using additional metrics as we do with d = KLD− 0.1CC− 0.1NSS (shown in Chapter 3

and observe that high NSS scores generalize to good performance in terms of other metrics).

In other words, for few-observer training, optimizing for NSS alone may not constrain the
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predicted saliency map sufficiently — which shows up as poor generalization to other metrics.

This is what we observe in Table B.2, where the regularizing effect of NAT leads to worse NSS

values compared to TT; but, all of the other evaluation metrics indicate NAT to be better.

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 2.005 0.362 0.302 2.677 0.788
2

NAT 1.408 0.528 0.371 3.163 0.887

TT 1.642 0.489 0.28 3.212 0.898
5

NAT 1.254 0.566 0.417 3.39 0.906

TT 1.518 0.506 0.403 3.672 0.826

30

15
NAT 1.155 0.608 0.435 3.552 0.91

TT 1.328 0.563 0.383 3.783 0.899
2

NAT 1.206 0.584 0.426 3.44 0.906

TT 1.312 0.578 0.452 3.983 0.835
100

5
NAT 1.165 0.61 0.475 3.747 0.879

TT 1.163 0.614 0.475 4.161 0.857
2

NAT 1.028 0.642 0.495 3.858 0.901

TT 1.093 0.633 0.491 4.381 0.875
379

5
NAT 1.006 0.658 0.512 3.928 0.892

Table B.2: NAT vs. TT on ForGED for TASED, d = −NSS (a fixation-based discrepancy),

various number of training videos and observers. Best metrics for each pair of experiments in

bold.

To further verify that NAT generalizes to different discrepancy functions, we train and test

TASED on LEDOV [135] with the fixation-based discrepancy function, d = −NSS, and the

combination of fixation and density-based discrepancy functions, d = KLD−0.1CC−0.1NSS

(which is a popular discrepancy function used in video-saliency research [130, 133]). The test
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set for LEDOV is used for all reported evaluations on LEDOV dataset, which contains gaze

data from 32 observers per video.

Table B.3 shows NAT vs. TT using d = −NSS. For this specific experiment, with TT we

observe that adopting RMSprop as the optimizer (as done for all experiments in the paper)

shows very fast convergence to very high NSS values. While this property of fast and optimal

convergence of discrepancy function has proven useful for all experiments in the paper (see

Sec. B.2 for details), for this specific experiment the solution provided by RMSprop optimiza-

tion shows poor generalization to all other saliency metrics. This behavior is alleviated to some

extent by switching RMSProp with Stochastic Gradient Descent (SGD) for TT – but at the cost

of poor convergence in terms of NSS. To show this, in Table B.3, we report two sets of ex-

periments for TT for each size of training dataset (one with SGD and another with RMSprop).

With NAT, however, we observe a consistent optimal convergence due to the regularizing effect

of the NAT formulation that prevents overfitting to dataset noise.

We further observe that using additional terms with NSS in the discrepancy function, such

as with d = KLD−0.1CC−0.1NSS overcomes some of the issues of training with NSS alone.

Table B.4, B.5 show the comparison of TT vs. NAT for this combined discrepancy function. A

high NSS performance in this case is well-correlated with good performance in terms of other

metrics. Furthermore we note that the performance of NAT is superior to TT when less gaze

data is available, with the gap between the two approaches closing in with more gaze data.

Given our analyses of all of the experiments with various discrepancy functions and dataset

types, our conclusion is that the performance of models trained with density-based discrepancy

functions (e.g., KLD) is better for TT as well as NAT, with NAT showing consistent superior

performance compared to TT.
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT, SGD 2.352 0.244 0.267 2.272 0.761

TT, RMSprop 4.139 0.192 0.056 9.92 0.1785

NAT 1.746 0.428 0.230 2.358 0.916

TT, SGD 2.302 0.258 0.275 2.661 0.775

TT, RMSprop 3.593 0.247 0.111 13.628 0.423

100

30

NAT 1.903 0.398 0.198 2.370 0.919

TT, SGD 2.777 0.317 0.232 4.464 0.612

TT, RMSprop 4.00 0.241 0.062 14.617 0.2065

NAT 1.305 0.575 0.354 3.29 0.929

TT, SGD 2.252 0.470 0.355 2.463 0.593

TT, RMSprop 3.526 0.292 0.127 14.048 0.381

461

30

NAT 1.402 0.571 0.310 2.933 0.927

Table B.3: Comparison of TT vs. NAT on LEDOV testing set, for TASED Net, trained with

−0.1NSS as discrepancy, and various number of training videos and observers. The best metric

between each set of 3 experiments for a given dataset size (videos and observers) is in bold

and the second-best is italicized. Given the strong overfitting behavior of NSS with TT using

RMSprop for this particular set of experiments, we report TT optimized with SGD as well.

B.1.3 DNN architectures

To further verify that NAT works effectively on different DNN architectures, independently

from the adopted dataset, we train SalEMA [129] on the ForGED dataset. We use KLD as

the discrepancy function, with RMSprop as the optimizer with a learning rate equal to 1e−5

rather than Adam with learning rate 1e−7 and binary cross entropy as discrepancy function, as

suggested by the authors (an analysis of this hyperparameter choice is discussed later). Con-

sistently with the other cases analyzed here, NAT outperforms TT, notably when the number
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.652 0.446 0.261 2.269 0.871
30 30

NAT 1.243 0.494 0.394 2.491 0.900

TT 1.368 0.496 0.395 2.430 0.863
5

NAT 1.149 0.540 0.423 2.782 0.905

TT 1.261 0.534 0.368 2.658 0.903
100

30
NAT 1.034 0.574 0.432 3.250 0.928

TT 1.159 0.577 0.485 3.912 0.864
461

5
NAT 0.852 0.626 0.513 3.451 0.931

TT 0.913 0.626 0.513 5.743 0.910

30

NAT 0.755 0.688 0.554 3.559 0.930

Table B.4: Saliency quality metrics on LEDOV testing set, for TASED Net, training with KLD-

0.1CC-0.1NSS as discrepancy, and various number of training videos and observers. The best

metrics between TT and NAT are in bold.

of observers or videos is limited (Table B.6).

B.2 Additional training details

Here we discuss more training additional training details for TASED-Net [128], SalEMA [129],

and EML-Net [111]. The details of training ViNet are already mentioned in Chapter 3. For

all models, the code released by authors was used, with changes to reflect the new hyperpa-

rameter settings, specifying NAT loss function and faster data loading.1 For all experiments,

the training was stopped when the validation discrepancy does not improve for 10,000 iter-

1ViNet: https://github.com/samyak0210/ViNet, TASED-Net: https://github.com/MichiganCOG/TASED-Net,
SalEMA: https://github.com/Linardos/SalEMA, EML-Net: https://github.com/SenJia/EML-NET-Saliency
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train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 0.687 0.696 0.590 3.618 0.900
15

NAT 0.588 0.718 0.601 3.629 0.932

TT 0.555 0.727 0.609 3.605 0.935
30

31
NAT 0.560 0.730 0.612 3.666 0.933

TT 0.555 0.728 0.615 3.660 0.930
5

NAT 0.535 0.736 0.612 3.681 0.937

TT 0.514 0.743 0.631 3.804 0.931
15

NAT 0.488 0.755 0.636 3.814 0.939

TT 0.502 0.748 0.639 3.887 0.931

60

31
NAT 0.503 0.750 0.632 3.774 0.938

Table B.5: Saliency quality metrics on DIEM testing set, for TASED Net, training with KLD-

0.1CC-0.1NSS as discrepancy, and various number of training videos and observers. The best

metrics between TT and NAT are in bold.

ations. All testing was performed at the original resolution for videos of all datasets: when

the predicted output size is different, the predicted saliency maps were resized to original res-

olution. Hyperparameters for TASED training on LEDOV. To ensure a fair comparison

against traditional training and guarantee that the best performance is achieved for the given

architecture and dataset, we first perform some hyperparameter tuning of TASED on LEDOV

with traditional training. We found that using RMSprop with a learning rate of 0.001 for KLD

optimization gives better performance than the default settings originally proposed for training

on DHF1K (i.e., SGD with momentum 0.9 and learning rate 0.1 for decoder stepping down

by a factor of 0.1 at iteration 750 and 950, and 0.001 for encoder), as shown in Table B.7 and

in Fig. B.2. Thus, we adopt RMSprop with a learning rate of 0.001 to train TASED for both

203



Noise-Aware Visual Saliency Prediction with Incomplete Gaze Data Chapter B

train videos V train obs. N loss KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TT 1.229 0.546 0.412 2.911 0.912
5

NAT 1.187 0.559 0.428 3.050 0.915

TT 1.214 0.544 0.420 2.972 0.916
30

15
NAT 1.184 0.563 0.426 3.152 0.916

TT 1.077 0.600 0.444 3.273 0.923
100 5

NAT 1.071 0.599 0.447 3.274 0.926

TT 1.054 0.601 0.447 3.248 0.926
379

2
NAT 1.076 0.600 0.440 3.284 0.930

TT 1.014 0.623 0.482 3.533 0.929
5

NAT 1.019 0.623 0.471 3.526 0.930

Table B.6: Saliency quality metrics on ForGED testing set, for SalEMA, training with KLD as

discrepancy, and various number of training videos and observers. The best metrics between

TT and NAT are in bold.

traditional training and NAT in all the experiments. An exception to this rule is the traditional

training with SGD reported in Table B.3, where we adopt SGD with a learning rate of 0.0001

(any higher leads to training instabilities due to data noise) and momentum 0.9.

Hyperparameters for SalEMA training on LEDOV. We train SalEMA [129] on the full

LEDOV dataset with the default choice for loss function and optimizer (Adam optimizer, bi-

nary cross entropy, with learning rate 1e−7), and compare against the adoption of the RMSprop

optimizer with KLD as the loss function and 2 learnings rates: 1e−5 and 1e−7 (see Table. B.8).

We train with LEDOV training set and we choose the best hyperparameter setting based on the

LEDOV test-set performance for all of the experiments in the paper.

Details of training EML-Net. We train EML-Net [111] for image-saliency on our noisy ver-

sion of SALICON train set [159] (generated by randomly selecting a subset 5 or 15 fixations per
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Figure B.2: Validation-set performance plots (KLD vs. training iterations) for the LEDOV

dataset during training of TASED with KLD as loss function and LEDOV dataset using: SGD,

with default setting provided by authors; and RMSprop, learning rate 0.001. Based on this

experiment, we choose RMSprop with a learning rate of 0.001 for our experiments.

hyperparameter settings KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

TASED-Net, SGD, learning rate schedule (default) 1.104 0.554 0.452 2.536 0.828

TASED-Net, RMSprop, 0.001, KLD (improved) 0.754 0.724 0.572 4.227 0.921

Table B.7: Performance on LEDOV for TASED trained traditionally using KLD with original

settings, and those used in Chapter 3 (RMSprop, learning rate 0.001) on the full LEDOV train-

ing set. We adopted the best hyperparameter setting (best metrics in bold) for all experiments.

*Original settings: SGD, initial learning rate 0.1 for decoder and 0.001 for encoder, momen-

tum 0.9.

image). To do so, we select the ResNet50 backbone [171]. Consistent with recommendations

from authors, we train two versions of the encoder: first, we finetune starting from ImageNet-

pretrained weights [229], and second, we finetune from Places365-pretrained weights [230].

The two saliency models obtained from the encoder-training stage are input to the decoder-

training pipeline to give the final image-saliency predictor for EML-Net approach. We adopt
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hyperparameter settings KLD↓ CC↑ SIM↑ NSS↑ AUC-J↑

Adam, 1e−7, BCE (original) 1.238 0.511 0.412 2.426 0.894

RMSprop, 1e−7, KLD 1.206 0.532 0.418 2.602 0.900

RMSprop, 1e−5, KLD 1.052 0.612 0.463 3.237 0.912

Table B.8: Performance comparisons on LEDOV test set for SalEMA trained with the original

hyperaprameter settings and the ones used in this paper (RMPprop optimizer with 1e−5 learn-

ing rate) after training on LEDOV training set. Best metrics are in bold.

the EML discreapncy (which is a combination of KLD, CC and NSS losses described by au-

thors) for training both traditionally and using NAT. After searching through learning rates and

optimizers, we find the author-specified choices to be most optimal: SGD with momentum

with a learning rate of 0.01 at the beginning and multiplied by 0.1 after every epoch. We train

both encoder and decoder for 10 epochs. After training, the best model for each experiment

in Table 3.9 of Chapter 3 is selected based on validation-set performance (using all available

fixations on images in validation set), and submitted to SALICON benchmark for evaluation

on the test set [159]. Note that even though the training is performed on few-fixation images to

simulate a noisy version of the SALICON dataset, the evaluation on test set and validation set

contains all of the available fixations.
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Appendix C

Generalizable Deepfake Detection with

Phase-Based Motion Analysis

C.1 Additional training details

Preprocessing and data augmentation steps. We use RetinaFace for detecting facial sub-

regions [231], and FAN [232] for landmark detection. Facial region crops (1.3× larger than

detected face region [6]) are then aligned by affine warping each frame so that 5 landmarks

around eyes and nose match an average face, along with temporal smoothing over 12 frames for

the landmarks to avoid jitter. This preprocessing is same as a previous work: LipForensics [35].

The specified facial sub-region (eyes or lips) is then extracted from aligned facial crops. In

case of eyes, an initial crop of size 64× 128 is performed centered around both eyes. From

this, a random crop of size 56×122 is selected for training. For lips, an initial crop of 96×96

is used, with a random crop of size 88×88 used for training. In case of lips, random horizontal

flipping is also performed for the training set.

More architecture details. The input clip-size is 25 frames [35], which is passed to the
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complex-steerable pyramid (CSP) computation step [176]1. As mentioned in the Chapter 4,

the phase band-pass components of the CSP are appended along the channel dimension, mak-

ing the input being passed to sx,y (Eq. 4.2 of Chapter 4) of size 32×C×25×H×W (in terms of

the PyTorch NCDHW convention for 3D inputs), where our batch size is set to 32, C depends

on the number of scales and orientations of the bandpass coefficients (specified Chapter 4

for eyes and lips) and (H,W ) are the spatial dimensions of the facial subregion (mentioned

above). The function sx,y is implemented as a 3DCNN operation with a filter of size 1×7×7

(first dimension filters along the time axis) with a stride of 2, and padding 3 followed by batch

normalization and ReLU non-linearity [182] –with 64 output channels. The function ft is im-

plemented as a 3DCNN operation with a filter of size 3×1×1 with a stride of 1 and padding

1, followed by batch normalization and ReLU non-linearity [182] –with 64 output channels.

The remainder of the model consists of a standard ResNet-18 feature extractor, followed by an

MS-TCN adopted from the previous work on sequence modeling for lip reading and deepfake

(DF) detection [35, 177] (Fig. 4.2 of Chapter 4).

Pretraining details. As mentioned in Chapter 4, instead of starting from random weights

or with ImageNet-pretrained weights (as is often done), we pretrain the DF detector on tasks

specific to the facial regions.

When training with eyes sub-region, the DF detector is finetuned on pretrained weights

obtained from gaze detection task with the EVE dataset [186], where we train for 50,000

iterations to obtain a small validation-set performance of 3.6 angular loss.

For lip region, the pretraining with LRW dataset [185] is performed for 10 epochs, yielding

a validation-set accuracy of 77% (early stopping). The output layer from pretrained networks

is switched out for a 1-class linear classifier layer before finetuning for DF detection. The

finetuning step is performed using FF++ training set, with the performance (in terms of loss)

1https://github.com/tomrunia/PyTorchSteerablePyramid
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on FF++ validation set used to identify the best model, which is then evaluated on different

datasets for generating all the results. The choice for number of frames for training, validation

and test set is consistent with LipForensics [35].

Robustness to spatial distortions. We continue our analysis of robustness to spatial distor-

tions for the three baselines (CNN-GRU [170], LipForensics [35] and our proposed method,

PhaseForensics) mentioned in Chapter 4 (Sec. 4.4), on the distortions enlisted in DFor datasets,

applied to CDFv2 (high-quality faceswap deepfakes [16]) and also to an additional dataset:

VFHQ (high-quality face re-enactment deepfakes [194]).

In Tab. C.1,C.2, we compare the baselines on commonly-occurring spatial distortions found

on the internet media (color, compression) that do not raise a suspicion about the authen-

ticity of the media, given their ubiquity, on CDFv2 and VFHQ datasets respectively. We

want to assess the cross-dataset generalizability of the the DF detection methods in the pres-

ence of such distortions. For color-based distortions, PhaseForensics is particularly effective.

For per-frame compression-based distortions (JPEG compression – referred here as pixelation

consistent with [35]), PhaseForensics is more effective for CDFv2 (face-swap deepfakes), as

compared to VFHQ (face re-enactment deepfakes). For video compression, LipForensics and

PhaseForensics are comparable for VFHQ, while for CDFv2 – PhaseForensics is slightly worse

than LipForensics for low compression levels. Fig. C.1 visualizes the distortions considered

here for a video frame from CDFv2 dataset. The code from the DFor dataset [111] is used

for all of the distortion robustness analysis. Higher levels of distortions indicate clear signs

of tampering – reducing the likelihood of being deployed adversarially to fool DF detectors.

Overall, PhaseForensics performance is better on all color-based distortions and comparable or

better than LipForensics on compression-based distortions. The same trend holds with mean

absolute percentage error.

In Tab. C.3,C.4, we compare the robustness of DF detectors to other spatial distortions that

show clear signs of tampering, on CDFv2 and VFHQ respectively. We compare the perfor-

209



Generalizable Deepfake Detection with Phase-Based Motion Analysis Chapter C

level 1 level 2 level 3 level 4 level 5

co
nt

ra
st

 c
ha

ng
e

co
lo

r s
at

ur
ai

on
pi

xe
la

tio
n 

(J
P

E
G

)
vi

de
o 

co
m

pr
es

si
on

Figure C.1: Visualization of the spatial distortions that are routinely applied to inter-

net media. Here we visualize a frame from the CDFv2 dataset with various color-based

and compression-based distortions applied (based on DFor distortion code). These distortions

present a threat to the DF detectors, since they do not leave clear signs of tampering – given

their ubiquity – and adversely affect the performance of DF detectors (Tab. C.1, C.2).
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Figure C.2: Visualization of the spatial distortions that are less common and leave clear evi-

dence of tampering.
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mance of CNN-GRU, LipForensics, and PhaseForensics for the 3 distortions at all severity lev-

els: random block-wise perturbations, gaussian noise and gaussian blur (visualized in Fig. C.2;

using code from DFor dataset [111]). Except for very low levels, these distortions leave clear

evidence of tampering – making them less likely to be deployed as attacks used to confuse

DF detectors. However, for completeness, we compare performance on these distortions as

well. In case of Gaussian noise, LipForensics performs better in terms of AUC for CDFv2,

while PhaseForensics performs better on VFHQ, at low distortion levels. Block-wise distor-

tions perhaps leave the most evident signs of tampering: with random colored blocks appearing

at different locations for each frame. For this distortion, at low levels, PhaseForensics performs

best for CDFv2, while LipForensics performs best for VFHQ. Admittedly, PhaseForensics is

most vulnerable to high amount of Gaussian blur – since it distorts frequency distribution.

This manifests as worse performance with PhaseForensics, as compared to LipForensics, in all

cases except for a low distortion level for CDFv2. A future step to overcome this could involve

learning a better frequency decomposition for the input frames. Overall, the results are mixed

for these kinds of less common distortions.

Robustness to adversarial distortions. We extend our analysis on the robustness of CNN-

GRU and LipForensics (two of the baselines for temporal DF detection methods [35, 170]) to

black box attacks [38] on FSh [16], in addition to the CDFv2 analysis presented in Tab. 4.3

of Chapter 4 (see Tab. C.5). This black-box method utilizes Natural Evolutionary Strategies

(NES) to estimate gradients between the input and output of the network without knowing the

model weights. This is done by applying small perturbations to the input image in the form

of Gaussian noise, and observing the change in output result. With an input image scaled to

the range of [0,1], we use 40 samples per step, and take a step size of 1/255. At most 25

total steps are taken, with a total perturbation of at most 16/255. Consistent with the original

work [38], once the adversarial perturbation reaches a 90% confidence of fooling the detector,
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an Expectation over Transforms is introduced. This step applies random Gaussian blur and

translation to the video before each adversarial step.

Consistent with our results in Chapter 4, PhaseForensics continues to outperforms these

methods as well. As discussed in Chapter 4, PhaseForensics shows better adversarial robust-

ness since the phase computations are performed in band-pass frequency components – reduc-

ing the chance of being affected by adversarial attacks. In contrast, other methods rely on pixel

intensity-based input without any constraints on the frequency components which enable the

DF prediction.

Performance of PhaseForensics on lips, with and without pretraining on lipreading task.

As detailed in Sec. 4.3.2 of Chapter 4, similar to LipForensics [35], pretraining on lipread-

ing (using LRW dataset [185], Sec. 4.3.2 of Chapter 4) enables us to learn a distribution of

natural lip movements. Finetuning such a pretrained network allows us to effectively train a

DF classifier by detecting deviations from natural lip movements. As shown in Tab. C.6, the

performance of the PhaseForensics DF detector drops without the pretraining step. This is ex-

pected, since such a case is akin to expecting the DF detector to predict deviations from natural

lip movements, without having seen the original distribution of natural lip movements first.

Baselines considered in this paper. We provide brief descriptions/details for some of the

methods compared in this work.

For Xception [6], we follow the official training code, and include horizontal flipping. This

method is an important baseline that demonstrate the utilizing per-frame features from a feature

extractor followed by a classifier.

Multi-Attention2 [160] is a frame based method which uses a novel multi-attention mech-

anism combined with a local texture enhancement model. The authors argue this architecture

more easily allows for the network to identify localized abnormalities in the video texture.

2https://github.com/yoctta/ multiple-attention
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CNN-GRU [170], is a baseline to demonstrate the utilizing per-frame features from a fea-

ture extractor followed sequence modeling. We train with DenseNet-161 architecture.

Results for PatchForensics [187], DSP-FWA [26], Face X-ray [16], and two-branch [36],

are obtained from existing benchmarks [35, 36], that follow similar testing protocols.

LipForensics3 [35] is one of our important baselines, with a lip-based DF classifier, that

learns high-level temporal semantics of the lip region. We use the code from [177], with

the last layer modified to a 1-class classifier, and use author-released weighted (trained on

FaceForensics++ [6]) to generate the results in this paper.

For FTCN4 [184], we utilize the evaluation code released by the authors, along with the

trained weights.

3https://github.com/ahaliassos/LipForensics
4https://github.com/yinglinzheng/FTCN
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CDFv2

Distortion CNN-GRU LipForensics PhaseForensics

type level ↑ %auc ↓ %mape ↑ %auc ↓ %mape ↑ %auc ↓ %mape

1 73.6 5.4 74.8 9.2 89.5 1.9

contrast 2 73.5 5.3 74.7 9.3 90 1.3

change 3 73.4 5.2 74.6 9.5 89.4 2

4 73 4.6 74.2 10 90.3 1

5 72.5 3.9 73.4 10.9 89.1 2.3

1 70.5 1 72.8 11.7 90.9 0.3

color 2 69.4 0.6 72.2 12.4 90.9 0.3

saturation 3 67.8 2.9 71.7 13 90.8 0.4

4 66 5.4 71.2 13.6 90.6 0.7

5 63.9 8.5 70.1 14.9 91.1 0.1

1 64.8 7.2 76.3 7.4 91.3 0.1

2 62.7 10.2 74.6 9.5 84.3 7.6

pixelation 3 60.4 13.5 70.8 14.1 78.7 13.7

4 60.4 13.5 67.9 17.6 74.7 18.1

5 59.3 15 64.2 22.1 67.9 25.5

1 70.5 1 74.3 9.8 72.6 20.4

2 69.4 0.6 72.2 12.4 70.3 22.9

compression 3 66.4 4.9 69 16.3 64.6 29.2

4 64.1 8.2 63.8 22.6 56.2 38.4

5 61.9 11.3 61.1 25.8 50.1 45.1

Table C.1: Here we compare CNN-GRU [170], LipForensics [35] and our proposed method,

PhaseForensics, on commonly-occurring spatial distortions found on the internet media (color,

compression) Overall, PhaseForensics outperforms other baselines on color-based distortions

and comparable to existing approaches on compression-based distortions. In addition to

%AUC, we report the mean absolute percentage error (MAPE) in %AUC compared to the

performance on undistorted CDFv2 (reported in Tab. 4.1 of Chapter 4).
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VFHQ

Distortion CNN-GRU LipForensics PhaseForensics

type level ↑ %auc ↓ %mape ↑ %auc ↓ %mape ↑ %auc ↓ %mape

1 60 9.1 88.2 2.2 94.6 0.4

contrast 2 60.3 8.6 88 2.4 94.5 0.3

change 3 58.9 10.8 87.7 2.8 94.7 0.5

4 59.5 9.8 87.4 3.1 94.7 0.5

5 58.1 12 86.6 4 95.3 1.2

1 46.2 30 90.3 0.1 94.5 0.3

color 2 42 36.4 90.4 0.2 94.3 0.1

saturation 3 37.1 43.8 90.5 0.3 94.4 0.2

4 34.4 47.9 90.5 0.3 94.4 0.2

5 33.7 48.9 90.5 0.3 94.6 0.4

1 60.9 7.7 96.5 7 92.2 2.1

2 59.5 9.8 96.4 6.9 72.9 22.6

pixelation 3 52.4 20.6 94.2 4.4 77.1 18.2

4 49.8 24.5 87.6 2.9 66.3 29.6

5 38.3 42 83.8 7.1 61.4 34.8

1 56.6 14.2 81.5 9.6 81.3 13.7

2 54.1 18 74.9 17 78.9 16.2

compression 3 51.5 22 71.4 20.8 73.8 21.7

4 52 21.2 66.9 25.8 66.7 29.2

5 52.4 20.6 62.2 31 62.3 33.9

Table C.2: Analyzing DF detection robustness to spatial distortions that are routinely

observed on internet media (evaluated on VFHQ [194]): Here we repeat the analysis from

Tab. C.1, on VFHQ.
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CDFv2

Distortion CNN-GRU LipForensics PhaseForensics

type level ↑ %auc ↓ %mape ↑ %auc ↓ %mape ↑ %auc ↓ %mape

1 73.6 5.4 73.1 11.3 91 0.2

blockwise 2 73.4 5.2 67.9 17.6 79.6 12.7

distortion 3 72.2 3.4 66.4 19.4 65.9 27.7

4 72 3.2 64.4 21.8 53.6 41.2

5 71.3 2.1 62.2 24.5 43.7 52.1

1 55.7 20.2 62.1 24.6 46.1 49.5

Gaussian 2 51.3 26.5 65 21.1 38.8 57.5

noise 3 50.5 27.7 67.5 18.1 35.9 60.6

4 56.2 19.5 65 21.1 36.7 59.8

5 54 22.6 57.9 29.7 35.9 60.6

1 61.5 11.9 74 10.2 80 12.3

2 58.1 16.8 69.2 16 54.9 39.8

Gaussian

blur
3 54.3 22.2 61.4 25.5 51.5 43.5

4 52.3 25.1 56.2 31.8 55.4 39.3

5 51.2 26.6 52.8 35.9 55.3 39.4

Table C.3: Robustness to other spatial distortions that show clear signs of tampering

(evaluation on CDFv2 [16]). Here we compare the performance of CNN-GRU, LipForen-

sics, and PhaseForensics for 3 additional distortions at all severity levels: random block-wise

perturbations, gaussian noise and gaussian blur (visualized in Fig. C.2); using code from DFor

dataset [111]). Except for very low levels, these distortions leave clear evidence of tampering

– making them less likely to be deployed as attacks used to confuse DF detectors. Overall, the

results are mixed for these kinds of less common distortions – with no clear winner for any

particular type of distortion.
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VFHQ

Distortion CNN-GRU LipForensics PhaseForensics

type level ↑ %auc ↓ %mape ↑ %auc ↓ %mape ↑ %auc ↓ %mape

1 58.7 11.1 90.1 0.1 84.7 10.1

blockwise 2 56 15.2 89 1.3 77.4 17.8

distortion 3 55.2 16.4 85.2 5.5 65.2 30.8

4 52.6 20.3 78.1 13.4 59 37.4

5 49.5 25 73.6 18.4 52.1 44.7

1 38.8 41.2 46.3 48.7 80.1 15

Gaussian 2 38.3 42 61.1 32.3 70.3 25.4

noise 3 45.1 31.7 71.4 20.8 49.2 47.8

4 25.2 61.8 69.4 23.1 44.6 52.7

5 22.2 66.4 58.7 34.9 45.4 51.8

1 51.6 21.8 96 6.4 93.5 0.7

2 46.6 29.4 95.4 5.8 87.5 7.1

Gaussian

blur
3 32.6 50.6 88.4 2 49.3 47.7

4 31.9 51.7 85.2 5.5 55.8 40.8

5 30.5 53.8 80.3 11 62.9 33.2

Table C.4: Robustness to other spatial distortions that show clear signs of tampering (eval-

uation on VFHQ [194]). Here we compare the performance of CNN-GRU, LipForensics,

and PhaseForensics for 3 additional distortions at all severity levels: random block-wise per-

turbations, gaussian noise and gaussian blur (visualized in Fig. C.2); using code from DFor

dataset [111]), applied to VFHQ.
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model CDFv2 FSh

%auc ↑ %mape ↓ %auc ↑ %mape ↓

CNN-GRU 43.4 37.8 49.7 38.5

LipForensics 49.5 39.9 62.7 35.4

PhaseForensics 71.1 22.0 69.7 28.4

Table C.5: Robustness to adversarial perturbations. PhaseForensics is particularly advanta-

geous in this regard, given its dependence on bandpass frequency components.

pre-training CDFv2 DFDC

no pretraining 76.4 61.8

lipreading pretrained 91.2 78.2

Table C.6: Effectiveness of pretraining on lip reading task. Here we show the perfor-

mance of PhaseForensics (%AUC), with and without the lip reading pretraining, on CDFv2

and DFDC. As is clear, LipReading pretraining is crucial for effective DF detection.
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