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MM Algorithms For Variance Components Models

Hua Zhoua, Liuyi Hub, Jin Zhouc, Kenneth Langed

aDepartment of Biostatistics, University of California, Los Angeles, CA

bDepartment of Statistics, North Carolina State University, Raleigh, NC

cDivision of Epidemiology and Biostatistcis, University of Arizona, Tuscon, AZ

dDepartment of Human Genetics, University of California, Los Angeles, CA

Abstract

Variance components estimation and mixed model analysis are central themes in statistics with 

applications in numerous scientific disciplines. Despite the best efforts of generations of 

statisticians and numerical analysts, maximum likelihood estimation and restricted maximum 

likelihood estimation of variance component models remain numerically challenging. Building on 

the minorization-maximization (MM) principle, this paper presents a novel iterative algorithm for 

variance components estimation. Our MM algorithm is trivial to implement and competitive on 

large data problems. The algorithm readily extends to more complicated problems such as linear 

mixed models, multivariate response models possibly with missing data, maximum a posteriori 

estimation, and penalized estimation. We establish the global convergence of the MM algorithm to 

a Karush-Kuhn-Tucker (KKT) point and demonstrate, both numerically and theoretically, that it 

converges faster than the classical EM algorithm when the number of variance components is 

greater than two and all covariance matrices are positive definite.

Keywords

global convergence; matrix convexity; linear mixed model (LMM); maximum a posteriori (MAP) 
estimation; minorization-maximization (MM); multivariate response; penalized estimation; 
variance components model

1 Introduction

Variance components and linear mixed models are among the most potent tools in a 

statistician’s toolbox, finding numerous applications in agriculture, biology, economics, 

genetics, epidemiology, and medicine. Given an observed n × 1 response vector y and n × p 
predictor matrix X, the simplest variance components model postulates that Y ∼ N (Xβ, Ω), 

where Ω = i = 1
m σi

2V i, and the V1, …, Vm are m fixed positive semidefinite matrices. The 

parameters of the model can be divided into mean effects β = (β1, …, βp) and variance 
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components σ2 = σ1
2, …, σm

2 . Throughout we assume Ω is positive definite. The extension to 

singular Ω will not be pursued here. Estimation revolves around the log-likelihood function

L β, σ2 = − 1
2lndetΩ − 1

2 y − Xβ TΩ−1 y − Xβ . (1)

Among the commonly used methods for estimating variance components, maximum 

likelihood estimation (MLE) (Hartley and Rao, 1967) and restricted (or residual) MLE 

(REML) (Harville, 1977) are the most popular. REML first projects y to the null space of X 
and then estimates variance components based on the projected responses. If the columns of 

a matrix B span the null space of XT, then REML estimates the σi
2 by maximizing the log-

likelihood of the redefined response vector BT Y, which is normally distributed with mean 0 

and covariance BTΩB = i = 1
m σi

2BTViB.

There exists a large literature on iterative algorithms for finding MLE and REML (Laird and 

Ware, 1982; Lindstrom and Bates, 1988, 1990; Harville and Callanan, 1990; Callanan and 

Harville, 1991; Bates and Pinheiro, 1998; Schafer and Yucel, 2002). Fitting variance 

components models remains a challenge in models with a large sample size n or a large 

number of variance components m. Newton’s method (Lindstrom and Bates, 1988) 

converges quickly but is numerically unstable owing to the non-concavity of the log-

likelihood. Fisher’s scoring algorithm replaces the observed information matrix in Newton’s 

method by the expected information matrix and yields an ascent algorithm when 

safeguarded by step halving. However the calculation and inversion of expected information 

matrices cost O(mn3) + O(m3) flops and quickly become impractical for large n or m, unless 

Vi are low rank, block diagonal, or have other special structures. The expectation-

maximization (EM) algorithm initiated by Dempster et al. (1977) is a third alternative (Laird 

and Ware, 1982; Laird et al., 1987; Lindstrom and Bates, 1988; Bates and Pinheiro, 1998). 

Compared to Newton’s method, the EM algorithm is easy to implement and numerically 

stable, but painfully slow to converge. In practice, a strategy of priming Newton’s method by 

a few EM steps leverages the stability of EM and the faster convergence of second-order 

methods.

In this paper we derive a novel minorization-maximization (MM) algorithm for finding the 

MLE and REML estimates of variance components. We prove global convergence of the 

MM algorithm to a Karush-Kuhn-Tucker (KKT) point and explain why MM generally 

converges faster than EM for models with more than two variance components. We also 

sketch extensions of the MM algorithm to the multivariate response model with possibly 

missing responses, the linear mixed model (LMM), maximum a posteriori (MAP) 

estimation, and penalized estimation. The numerical efficiency of the MM algorithm is 

illustrated through simulated data sets and a genomic example with 200 variance 

components.
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2 Preliminaries

Background on MM algorithms

Throughout we reserve Greek letters for parameters and indicate the current iteration 

number by a superscript t. The MM principle for maximizing an objective function f (θ) 

involves minorizing the objective function f (θ) by a surrogate function g(θ | θ(t)) around the 

current iterate θ(t) of a search (Lange et al., 2000). Minorization is defined by the two 

conditions

f θ t = g θ t θ t

f θ ≥ g θ θ t , θ ≠ θ t .
(2)

In other words, the surface θ g θ θ t  lies below the surface θ f θ  and is tangent to it at 

the point θ = θ(t). Construction of the minorizing function g(θ | θ(t)) constitutes the first M 

of the MM algorithm. The second M of the algorithm maximizes the surrogate g(θ | θ(t)) 

rather than f (θ). The point θ(t+1) maximizing g(θ | θ(t)) satisfies the ascent property 

f θ t + 1 ≥ f θ t . This fact follows from the inequalities

f θ t + 1 ≥ g θ t + 1 θ t ≥ g θ t θ t = f θ t , (3)

reflecting the definition of θ(t+1) and the tangency and domination conditions (2). The ascent 

property makes the MM algorithm remarkably stable. The validity of the descent property 

depends only on increasing g(θ | θ(t)), not on maximizing g(θ | θ(t)). With obvious changes, 

the MM algorithm also applies to minimization rather than to maximization. To minimize a 

function f (θ), we majorize it by a surrogate function g(θ | θ(t)) and minimize g(θ | θ(t)) to 

produce the next iterate θ(t+1). The acronym should not be confused with the maximization-

maximization algorithm in the variational Bayes context (Jeon, 2012).

The MM principle (De Leeuw, 1994; Heiser, 1995; Kiers, 2002; Lange et al., 2000; Hunter 

and Lange, 2004) finds applications in multidimensional scaling (Borg and Groenen, 2005), 

ranking of sports teams (Hunter, 2004), variable selection (Hunter and Li, 2005; Yen, 2011), 

optimal experiment design (Yu, 2010), multivariate statistics (Zhou and Lange, 2010), 

geometric programming (Lange and Zhou, 2014), survival models (Hunter and Lange, 2002; 

Ding et al., 2015), sparse covariance estimation (Bien and Tibshirani, 2011), and many other 

areas (Lange, 2016). The celebrated EM principle (Dempster et al., 1977) is a special case of 

the MM principle. The Q function produced in the E step of an EM algorithm minorizes the 

log-likelihood up to an irrelevant constant. Thus, both EM and MM share the same 

advantages: simplicity, stability, graceful adaptation to constraints, and the tendency to avoid 

large matrix inversion. The more general MM perspective frees algorithm derivation from 

the missing data straitjacket and invites wider applications (Wu and Lange, 2010). Figure 1 

shows the minorization functions of EM and MM for a variance components model with m 
= 2 variance components.
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Convex matrix functions

For symmetric matrices we write A ⪯ B when B − A is positive semidefinite and A ≺ B if B − 

A is positive definite. A matrix-valued function f is said to be (matrix) convex if

f λA + 1 − λ B ⪯ λ f A + 1 − λ f B

for all A, B, and λ ∈ [0, 1]. Our derivation of the MM variance components algorithm 

hinges on the convexity of the two functions mentioned in the next lemma. See standard text 

Boyd and Vandenberghe (2004) for the verification of both facts.

Lemma 1. (a) The matrix fractional function f (A, B) = AT B−1A is jointly convex in the m × 

n matrix A and the m × m positive definite matrix B. (b) The log determinant function f (B) 

= ln det B is concave on the set of positive definite matrices.

3 Univariate response model

Our strategy for maximizing the log-likelihood (1) is to alternate updating the mean 

parameters β and the variance components σ2. Updating β given σ2 is a standard general 

least squares problem with solution

β t + 1 = XTΩ− t X −1XTΩ− t y, (4)

where Ω−(t) represents the inverse of Ω t = i = 1
m σi

2 t V i. Updating σ2 given β(t) depends on 

two minorizations. If we assume that all of the Vi are positive definite, then the joint 

convexity of the map X, Y XTY−1X for positive definite Y implies that

Ω t Ω−1Ω t =
i = 1

m
σi

2 t Vi i = 1

m
σi

2Vi

−1

i = 1

m
σi

2 t Vi

⪯
i = 1

m σi
2 t

j
σ j

2 t
j
σ j

2 t

σi
2 t σi

2 t Vi
j
σ j

2 t

σi
2 t σi

2Vi

−1
j
σ j

2 t

σi
2 t σi

2 t Vi

=
i = 1

m σi
4 t

σi
2 Vi .

When one or more of the Vi are rank deficient, we replace each Vi by Vi,ϵ = Vi + ϵI for ϵ > 0 

small and let Ωϵ
t = iσi

2 t Vi, ϵ. Sending ϵ to 0 in Ωϵ
(t)Ωϵ

−1Ωϵ
(t) ⪯ i = 1

m (σi
4(t)/σi

2)Vi, ϵ now 

gives the desired majorization Ω t Ω−1Ω t ⪯ i = 1
m σi

4 t /σi
2 Vi in the general case. Negating 

both sides leads to the minorization
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− y − Xβ TΩ−1 y − Xβ ⪰ − y − Xβ TΩ− t

i = 1

m σi
4 t

σi
2 Vi Ω− t y − Xβ (5)

that effectively separates the variance components σ1
2, …, σm

2  in the quadratic term of the log-

likelihood (1).

The convexity of the function A − logdetA is equivalent to the supporting hyperplane 

minorization

−lndetΩ ≥ − lndetΩ t − tr Ω− t Ω − Ω t (6)

that separates σ1
2, …, σm

2  in the log determinant term of the log-likelihood (1). Combination of 

the minorizations (5) and (6) gives the overall minorization

g σ2 σ2 t

= − 1
2tr Ω− t Ω − 1

2 y − Xβ t TΩ− t

i = 1

m σi
4 t

σi
2 Vi Ω− t y − Xβ t + c t

=
i = 1

m
−

σi
2

2 tr Ω− t Vi − 1
2

σi
4 t

σi
2 y − Xβ t TΩ− t ViΩ− t y − Xβ t + c t ,

(7)

where c(t) is an irrelevant constant. Maximization of g(σ2 | σ2(t)) with respect to σi
2 yields the 

simple multiplicative update

σi
2 t + 1 = σi

2 t y − Xβ t TΩ− t ViΩ− t y − Xβ t

tr Ω− t Vi
, i = 1, …, m . (8)

As a sanity check on our derivation, consider the partial derivative

∂
∂σi

2 L β, σ2 = − 1
2tr Ω−1Vi + 1

2 y − Xβ TΩ−1ViΩ−1 y − Xβ . (9)

Given σi
2 t > 0, it is clear from the update formula (8) that σi

2 t + 1 < σi
2 t  when ∂

∂σi
2 L < 0. 

Conversely σi
2 t + 1 > σi

2 t  when ∂
∂σi

2 L > 0.
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Algorithm 1 summarizes the MM algorithm for MLE of the univariate response model (1). 

The update formula (8) assumes that the numerator under the square root sign is nonnegative 

and the denominator is positive. The numerator requirement is a consequence of the positive 

semidefiniteness of Vi. The denominator requirement is not obvious but can be verified 

through the Hadamard (elementwise) product representation tr Ω− t Vi = 1T Ω− t ⊙ Vi 1. 

The following lemma of Schur (1911) is crucial. We give a self-contained probabilistic proof 

in Supplementary Materials S.1.

Lemma 2 (Schur). The Hadamard product of a positive definite matrix with a positive 
semidefinite matrix with positive diagonal entries is positive definite.

We can now obtain the following characterization of the MM iterates.

Proposition 1. Assume Vi has strictly positive diagonal entries. Then tr(Ω−(t)Vi) > 0 for all t. 

Furthermore if σi
2 0 > 0 and Ω− t y − Xβ t ∉ null Vi  for all t, then σi

2 t > 0 for all t. When 

Vi is positive definite, σi
2 t > 0 holds if and only if y ≠ Xβ t .

Proof. The first claim follows easily from Schur’s lemma. The second claim follows by 

induction. The third claim follows from the observation that null(Vi) = {0}.

In most applications, Vm = I. Proposition 1 guarantees that if σm
2 0 > 0 and the residual 

vector y − Xβ(t) is nonzero, then σm
2 t  remains positive and thus Ω(t) remains positive definite 

throughout all iterations. This fact does not prevent any of the sequences σi
2 t  from 

converging to 0. In this sense, the MM algorithm acts like an interior point method, 

approaching the optimum from inside the feasible region.

Univariate response: two variance components

The major computational cost of Algorithm 1 is inversion of the covariance matrix Ω(t) at 

each iteration. The special case of m = 2 variance components deserves attention as repeated 

matrix inversion can be avoided by invoking the simultaneous congruence decomposition for 

two symmetric matrices, one of which is positive definite (Rao, 1973; Horn and Johnson, 

1985). This decomposition is also called the generalized eigenvalue decomposition (Golub 

and Van Loan, 1996; Boyd and Vandenberghe, 2004). If one assumes Ω = σ1
2V1 + σ2

2V2 and

Zhou et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lets V1, V2 D, U  be the decomposition with U nonsingular, U T V1U = D diagonal, and 

U T V2U = I, then

Ω t = U−T σ1
2 t D + σ2

2 t In U−1

Ω− t = U σ1
2 t D + σ2

2 t In
−1UT

det Ω t = det σ1
2 t D + σ2

2 t In det V2 .

(10)

With the revised responses y = UT y and the revised predictor matrix X = UTX, the update (8) 

requires only vector operations and costs O(n) flops. Updating the fixed effects is a weighted 

least squares problem with the transformed data y, X  and observation weights 

wi
t = σ1

2 t di + σ2
2 t −1

. Algorithm 2 summarizes the simplified MM algorithm for two 

variance components.

Numerical experiments

This section compares the numerical performance of MM, EM, Fisher scoring, and the lme4 

package in R (Bates et al., 2015) on simulated data from a two-way ANOVA random effects 

model and a genetic model. For ease of comparison, all algorithm runs start from σ2(0) = 1 
and terminate when the relative change (L(t+1) − L(t))/(|L(t)|+ 1) in the log-likelihood is less 

than 10−8.

Two-way ANOVA: We simulated data from a two-way ANOVA random effects model

yi jk = μ + αi + β j + αβ i j + ϵi jk, 1 ≤ i ≤ a, 1 ≤ j ≤ b, 1 ≤ k ≤ c,

where αi N 0, σ1
2 , β j N 0, σ2

2 , αβ i j N 0, σ3
2 , and ϵi jk N 0, σe

2  are jointly independent. Here 

i indexes levels in factor 1, j indexes levels in factor 2, and k indexes observations in the (i, 
j)-combination. This corresponds to m = 4 variance components. In the simulation, we set 

σ1
2 = σ2

2 = σ3
2 and varied the ratio σ1

2/σe
2; the numbers of levels a and b in factor 1 and factor 2, 

respectively; and the number of observations c in each combination of factor levels. For each 
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simulation scenario, we simulated 50 replicates. The sample size was n = abc for each 

replicate.

Tables 1 and 2 show the average number of iterations and the average runtimes when there 

are a = b = 5 levels of each factor. Based on these results and further results not shown for 

other combinations of a and b, we draw the following conclusions: Fisher scoring takes the 

fewest iterations; the MM algorithm always takes fewer iterations than the EM algorithm; 

the faster rate of convergence of Fisher scoring is outweighed by the extra cost of evaluating 

and inverting the information matrix. Table 1 in Supplementary Materials S.2 shows that all 

algorithms converged to same objective values.

Genetic model: We simulated a quantitative trait y from a genetic model with two 

variance components and covariance matrix Ω = σa
2Φ + σe

2I, where Φ is a full-rank empirical 

kinship matrix estimated from the genome-wide measurements of 212 individuals using 

Option 29 of the Mendel software (Lange et al., 2013). In this example, MM had run times 

similar to Fisher scoring, and both were much faster than EM and lme4.

In summary, the MM algorithm appears competitive even in small-scale examples. Many 

applications involve a large number of variance components. In this setting, the EM 

algorithm suffers from slow convergence and Fisher scoring from an extremely high cost per 

iteration. Our genomic example in Section 7 reinforces this point.

4 Global convergence of the MM algorithm

The Karush-Kuhn-Tucker (KKT) necessary conditions for a local maximum σ2 = (σ1
2, …, σm

2 )

of the log-likelihood (1) require each component of the score vector to satisfy

∂
∂σi

2 L σ2 ∈ 0
−∞, 0

σi
2 > 0

σi
2 = 0.

In this section we establish the global convergence of Algorithm 1 to a KKT point. To 

reduce the notational burden, we assume that X is null and omit estimation of fixed effects β. 

The analysis easily extends to the nontrivial X case. Our convergence analysis relies on 

characterizing the properties of the objective function L(σ2) and the MM algorithmic 

mapping σ2 M σ2  defined by equation (8). Special attention must be paid to the boundary 

values σi
2 = 0. We prove convergences for two cases, which cover most applications. For 

example, the genetic model in Section 3 satisfies Assumption 1, while the two-way ANOVA 

model satisfies Assumption 2.

Assumption 1. All Vi are positive definite.

Assumption 2. V1 is positive definite, each Vi is nontrivial, ℋ = span V2, …, Vm  has 

dimension q < n, and y ∉ ℋ.
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The key condition y ∉ span V2, …, Vm  in the second case is also necessary for the existence 

of an MLE or REML (Demidenko and Massam, 1999; Grzadziel and Michalski, 2014). In 

Supplementary Materials S.4, we derive a sequence of lemmas en route to the global 

convergence result declared in Theorem 1.

Theorem 1. Under either Assumption 1 or 2, the MM sequence σ2 t
t ≥ 0 has at least one 

limit point. Every limit point is a fixed point of M (σ2). If the set of fixed points is discrete, 
then the MM sequence converges to one of them. Finally, when the iterates converge, their 
limit is a KKT point.

5 MM versus EM

Examination of Tables 2 and 3 suggests that the MM algorithm usually converges faster than 

the EM algorithm. We now provide an explanation for this observation. Again for notational 

convenience, we consider the REML case where X is null. Since the EM principle is just a 

special instance of the MM principle, we can compare their convergence properties in a 

unified framework. Consider an MM map M (θ) for maximizing the objective function f (θ) 

via the surrogate function g(θ | θ(t)). Close to the optimal point θ∞,

θ t + 1 − θ∞ ≈ dM θ∞ θ t − θ∞ ,

where dM θ∞  is the differential of the mapping M at the optimal point θ∞ of f (θ). Hence, 

the local convergence rate of the sequence θ(t+1) = M (θ(t)) coincides with the spectral radius 

of dM θ∞ . Familiar calculations (Lange, 2010) demonstrate that

dM θ∞ = I − d2g θ∞ θ∞ −1
d2 f θ∞ .

In other words, the local convergence rate is determined by how well the surrogate surface 

g θ θ∞  approximates the objective surface f (θ) near the optimal point θ∞. In the EM 

literature, dM θ∞  is called the rate matrix (Meng and Rubin, 1991). Fast convergence 

occurs when the surrogate g θ θ∞  hugs the objective f (θ) tightly around θ∞. Figure 1 shows 

a case where the MM surrogate locally dominates the EM surrogate. We demonstrate that 

this is no accident.

The Q-function in the EM algorithm

gEM σ2 σ2 t = − 1
2 i = 1

m
rank Vi ⋅ lnσi

2 + rank Vi
σi

2 t

σi
2 −

σi
4 t

σi
2 tr Ω− t Vi

− 1
2 i = 1

m σi
4 t

σi
2 yTΩ− t ViΩ

− t y
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minorizes the log-likelihood up to an irrelevant constant. Supplementary Materials S.6 gives 

a detailed derivation for the more general multivariate response case. Both surrogates 

gEM(σ2 | σ2(∞)) and gMM(σ2 | σ2(∞)) are parameter separated. This implies that both second 

differentials d2gEM σ2 ∞ σ2 ∞  and d2gMM σ2 ∞ σ2 ∞  are diagonal. A small diagonal 

entry of either matrix indicates fast convergence of the corresponding variance component. 

Our next result shows that, under Assumption 1, on average the diagonal entries of 

d2gEM σ2 ∞ σ2 ∞  dominate those of d2gMM σ2 ∞ σ2 ∞  when m > 2. Thus, the EM 

algorithm tends to converge more slowly than the MM algorithm, and the difference is more 

pronounced as the number of variance components m grows. See Supplementary Materials 

S.4 for the proof.

Theorem 2. Let σ2 ∞ ≻ 0m be a common limit point of the EM and MM algorithms. Then 

both second differentials d2gMM σ2 ∞ σ2 ∞  and d2gEM σ2 ∞ σ2 ∞  are diagonal with

d2gEM σ2 ∞ σ2 ∞
ii

= −
rank Vi

2σi
4 ∞

d2gMM σ2 ∞ σ2 ∞
ii

= −
yTΩ− ∞ ViΩ

− ∞ y

σi
2 ∞ = −

tr Ω− ∞ Vi

σi
2 ∞ .

Furthermore, the average ratio

1
m i = 1

m d2gMM σ2 ∞ σ2 ∞
ii

d2gEM σ2 ∞ σ2 ∞
ii

= 2
mn i = 1

m
tr Ω− ∞ σi

2 ∞ Vi = 2
m < 1

for m > 2 when all Vi have full rank n.

It is not clear whether a similar result holds under Assumption 2. Empirically we observed 

faster convergence of MM than EM, for example, in the two-way ANOVA example (Table 

1). Also note that both the EM and MM algorithms must evaluate the traces tr(Ω−(t)Vi) and 

quadratic forms (y − Xβ(t))T Ω−(t)ViΩ−(t)(y − Xβ(t)) at each iteration. Since these quantities 

are also the building blocks of the approximate rate matrices d2g(σ2(t) | σ2(t)), one can 

rationally choose either the EM or MM updates based on which has smaller diagonal entries 

measured by the 𝓁1, 𝓁2 or 𝓁∞ norms. At negligible extra cost, this produces a hybrid 

algorithm that retains the ascent property and enjoys the better of the two convergence rates 

under either Assumption 1 or 2.

6 Extensions

Besides its competitive numerical performance, Algorithm 1 is attractive for its simplicity 

and ease of generalization. In this section, we outline MM algorithms for multivariate 

response models possibly with missing data, linear mixed models, MAP estimation, and 

penalized estimation.
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6.1 Multivariate response model

Consider the multivariate response model with n × d response matrix Y, which has no 

missing entries, mean E Y = XB, and covariance

Ω = Cov vecY =
i = 1

m
Γi ⊗ Vi .

The p × d coefficient matrix B collects the fixed effects, the Γi are unknown d × d variance 

components, and the Vi are known n × n covariance matrices. If the vector vecY is normally 

distributed, then Y equals a sum of independent matrix normal distributions (Gupta and 

Nagar, 1999). We now make this assumption and pursue estimation of B and the Γi, which 

we collectively denote as Γ. Under the normality assumption, Roth’s Kronecker product 

identity vec(CDE) = (ET ⊗ C)vec(D) yields the log-likelihood

L B, Γ = − 1
2lndetΩ − 1

2vec Y − XB TΩ−1vec Y − XB

= − 1
2lndetΩ − 1

2 vecY − Id ⊗ X vecB TΩ−1 vecY − Id ⊗ X vecB .

(11)

Updating B given Γ(t) is accomplished by solving the general least squares problem met 

earlier in the univariate case. Update of Γi given B(t) is difficult due to the positive 

semidefiniteness constraint. Typical solutions involve reparameterization of the covariance 

matrix (Pinheiro and Bates, 1996). The MM algorithm derived in this section gracefully 

accommodates the covariance constraints.

Updating Γ given B(t) requires generalizing the minorization (5). In view of Lemma 1 and 

the identities (A ⊗ B)(C ⊗ D) = (AC) ⊗(BD) and (A ⊗ B)−1 = A−1 ⊗ B−1, we have

Ω t Ω−1Ω t = m 1
m i = 1

m
Γi

t ⊗ Vi
1
m i = 1

m
Γi ⊗ Vi

−1
1
m i = 1

m
Γi

t ⊗ Vi

⪯ m 1
m i = 1

m
Γi

t ⊗ Vi Γi ⊗ Vi
−1 Γi

t ⊗ Vi

=
i = 1

m
Γi

t Γi
−1Γi

t ⊗ Vi,

or equivalently

Ω−1 ⪯ Ω− t

i = 1

m
Γi

t Γi
−1Γi

t ⊗ Vi Ω− t . (12)

This derivation relies on the invertibility of the matrices Vi. One can relax this assumption 

by substituting Vϵ,i = Vi + ϵIn for Vi and sending s to 0.
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The majorization (12) and the minorization (6) jointly yield the surrogate

g Γ Γ t = − 1
2 i = 1

m
tr Ω− t Γi ⊗ Vi + vecR t T Γi

t Γi
−1Γi

t ⊗ Vi vecR t + c t ,

where R(t) is the n × d matrix satisfying vec R(t) = Ω−(t)vec(Y − XB(t)) and c(t) is an irrelevant 

constant. Based on the Kronecker identities (vec A)T vec B = tr(AT B) and vec(CDE) = (ET 

⊗ C)vec(D), the surrogate can be rewritten as

g Γ Γ t = − 1
2 i = 1

m
tr Ω− t Γi ⊗ Vi + tr R t TViR

t Γi
t Γi

−1Γi
t + c t

= − 1
2 i = 1

m
tr Ω− t Γi ⊗ Vi + tr Γi

t R t TViR
t Γi

t Γi
−1 + c t .

The first trace is linear in Γi with the coefficient of entry (Γi)jk equal to

tr Ω jk
− t Vi = 1n

T Vi ⊙ Ω jk
− t 1n,

where Ω jk
− t  is the (j, k)-th n × n block of Ω−(t) and ⊙ indicates elementwise product. The 

matrix Mi of these coefficients can be written as

Mi = Id ⊗ 1n
T 1n1d

T ⊗ Vi ⊙ Ω− t Id ⊗ 1n .

The directional derivative of g(Γ | Γ(t)) with respect to Γi in the direction Δi is

− 1
2tr MiΔi + 1

2tr Γi
t R t TViR

t Γi
−1ΔiΓi

−1

= − 1
2tr MiΔi + 1

2tr Γi
−1Γi

t R t TViR
t Γi

t Γi
−1Δi .

Because all directional derivatives of g(Γ | Γ(t)) vanish at a stationarity point, the matrix 

equation

Mi = Γi
−1Γi

t R t TViR
t Γi

t Γi
−1 (13)

holds. Fortunately, this equation admits an explicit solution. For positive scalers a and b, the 

solution to the equation b = X−1aX−1 is X = ± a/b. The matrix analogue of this equation is 

the Riccati equation B = X−1AX−1, whose solution is summarized in the next lemma.

Lemma 3. Assume A and B are positive definite and L is the Cholesky factor of B. Then Y = 

L−T (LT AL)1/2L−1 is the unique positive definite solution to the matrix equation B = X−1AX
−1.
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The Cholesky factor L in Lemma 3 can be replaced by the symmetric square root of B. The 

solution, which is unique, remains the same. The Cholesky decomposition is preferred for its 

cheaper computational cost and better numerical stability.

Algorithm 3 summarizes the MM algorithm for fitting the multi-response model (3). Each 

iteration invokes m Cholesky decompositions and symmetric square roots of d × d positive 

definite matrices. Fortunately in most applications, d is a small number. The following result 

guarantees the non-singularity of the Cholesky factor throughout the iterations. See 

Supplementary Materials S.8 for the proof.

Proposition 2. Assume Vi has strictly positive diagonal entries. Then the symmetric matrix 

Mi = Id ⊗ 1n
T 1d1d

T ⊗ Vi ⊙ Ω− t Id ⊗ 1n  is positive definite for all t. Furthermore if 

Γi
0 ≻ 0 and no column of R(t) lies in the null space of Vi for all t, then Γi

t ≻ 0 for all t.

Multivariate response, two variance components—When there are m = 2 variance 

components Ω = Γ1 ⊗V1 + Γ2 ⊗V2, repeated inversion of the nd×nd covariance matrix Ω 
reduces to a single n×n simultaneous congruence decomposition and, per iteration, two d×d 
Cholesky decompositions and one d×d simultaneous congruence decomposition. The 

simultaneous congruence decomposition of the matrix pair (V1, V2) involves generalized 

eigenvalues d = (d1, …, dn) and a nonsingular matrix U such that U T V1U = D = diag(d) and 

U T V2U = I. If the simultaneous congruence decomposition of Γ1
t , Γ2

t  is Λ t , Φ t  with 

Φ t TΓ1
t Φ t = Λ t = diag λ t  and Φ t TΓ2

t Φ t = Id, then

Ω t = Φ− t ⊗ U−1 T Λ t ⊗ D + ID ⊗ In Φ− t ⊗ U−1

Ω− t = Φ t ⊗ U Λ t ⊗ D + ID ⊗ In
−1 Φ t ⊗ U

T

detΩ t = det Λ t ⊗ D + ID ⊗ In det Φ− t ⊗ U−1 T Φ− t ⊗ U−1

= det Λ t ⊗ D + ID ⊗ In det Γ2
t ⊗ V2

= det Λ t ⊗ D + ID ⊗ In det Γ2
t ndet V2

D .

Updating the fixed effects reduces to a weighted least squares problem for the transformed 

responses Y = UTY, transformed predictor matrix X = UTX, and observation weights 
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(λk
t di + 1)−1

. Algorithm 4 summarizes the simplified MM algorithm. The lengthy 

derivations are relegated to Supplementary Materials S.5.

6.2 Multivariate response model with missing responses

In many applications the multivariate response model (11) involves missing responses. For 

instance, in testing multiple longitudinal traits in genetics, some trait values yij may be 

missing due to dropped patient visits, while their genetic covariates are complete. Missing 

data destroys the symmetry of the log-likelihood (11) and complicates finding the MLE. 

Fortunately, MM algorithm 3 easily adapts to this challenge.

The familiar EM argument (McLachlan and Krishnan, 2008, Section 2.2) shows that

− n
2lndetΩ(t) − 1

2tr{Ω−(t)[vec(Z(t) − XB(t))vec(Z(t) − XB(t))T + C(t)]} (14)

minorizes the observed log-likelihood at the current iterate (B t , Γ1
t , …, Γm

t ). Here Z(t) is the 

completed response matrix given the observed responses Yobs
t  and the current parameter 

values. The complete data Y is assumed to be normally distributed N (vec(XB(t)), Ω(t)). The 

block matrix C(t) is 0 except for a lower-right block consisting of a Schur complement.

To maximize the surrogate (14), we invoke the familiar minorization (6) and majorization 

(12) to separate the variance components Γi. At each iteration we impute missing entries by 

their conditional means, compute their conditional variances and covariances to supply the 

Schur complement, and then update the fixed effects and variance components by the 

explicit updates of Algorithm 3. The required conditional means and conditional variances 

can be conveniently obtained in the process of inverting Ω(t) by the sweep operator of 

computational statistics (Lange, 2010, Section 7.3).
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6.3 Linear mixed model (LMM)

The linear mixed model plays a central role in longitudinal data analysis. Consider the 

single-level LMM (Laird and Ware, 1982; Bates and Pinheiro, 1998) for n independent data 

clusters (yi, Xi, Zi) with

Yi = Xiβ + Ziγi + ϵi, i = 1, …, n,

where β is a vector of fixed effects, the γi ∼ N (0, Ri(θ)) are independent random effects, 

and ϵi ∼ N 0, σ2Ini
 captures random noise independent of γi. We assume the matrices Zi 

have full column rank. The within-cluster covariance matrices Ri(θ) depend on a parameter 

vector θ; typical choices for Ri(θ) impose autocorrelation, compound symmetry, or 

unstructured correlation. It is clear that Yi is normal with mean Xiβ, covariance 

Ωi = ZiRi θ Zi
T + σ2Ini

, and log-likelihood

Li β, θ, σ2 = − 1
2lndetΩi − 1

2 yi − Xiβ
TΩi

−1 yi − Xiβ .

The next three technical facts about pseudo-inverses are used in deriving the MM algorithm 

for LMM and their proofs are in Supplementary Materials S.9-S.11.

Lemma 4. If A has full column rank and B has full row rank, then (AB)+ = B+A+.

Lemma 5. If A and B are positive semidefinite matrices with the same range, then

lim
ϵ 0

B + ϵI A + ϵI −1 B + ϵI = BA+B .

Lemma 6. If R and S are positive definite matrices, and the conformable matrix Z has full 
column rank, then the matrices ZRZT and ZSZT share a common range.

The convexity of the map X, Y XTY−1X and Lemmas 4–6 now yield via the obvious 

limiting argument the majorization

Ω t Ω−1Ω t = ZiRi θ t Zi
T + σ2 t Ini

ZiRi θ Zi
T + σ2Ini

−1
ZiRi θ t Zi

T + σ2 t Ini

⪯ ZiRi θ t Zi
T ZiRi θ Zi

T +
ZiRi θ t Zi

T + σ4 t

σ2 Ini

= ZiRi θ t Zi
TZi

T + Ri
−1 θ Zi

+ZiRi θ t Zi
T + σ4 t

σ2 Ini
.

In combination with the minorization (6), this gives the surrogate
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gi(θ, σ2 θ(t), σ2(t)) = − 1
2tr(Zi

TΩi
−(t)ZiRi(θ)) − 1

2ri
(t)TRi

−1(θ)ri
(t)

− 1
2tr(Ωi

−(t)) − σ4(t)

2σ2 (yi − Xiβ
(t))TΩi

−2(t)(yi − Xiβ
(t)) + c(t),

for the log-likelihood Li(θ, σ2), where

ri
t = Zi

+ZiRi θ t Zi
T Ωi

− t yi − Xiβ
t = Ri θ t Zi

TΩi
− t yi − Xiβ

t .

The parameters θ and σ2 are nicely separated. To maximize the overall minorization 

function igi θ, σ2 θ t , σ2 t , we update σ2 via

σ2 t + 1 = σ2 t i
yi − Xiβ

t TΩi
−2 t yi − Xiβ

t

i
tr Ωi

− t .

For structured models such as autocorrelation and compound symmetry, updating θ is a low-

dimensional optimization problem that can be approached through the stationarity condition

i
vec(Zi

TΩi
(T)Zi − Ri

−1(θ)ri
(t)ri

(t)TRi
−1(θ))T ∂

∂θ j
vec Ri(θ) = 0

for each component θj. For the unstructured model with Ri(θ) = R for all i, the stationarity 

condition reads

i
Zi

TΩi
t Zi = R−1

i
ri

t ri
t T R−1

and admits an explicit solution based on Lemma 3.

The same tactics apply to a multilevel LMM (Bates and Pinheiro, 1998) with responses

Yi = Xiβ + Zi1γi1 + ⋅ ⋅ ⋅ Zimγim + ϵi .

Minorization separates parameters for each level (variance component). Depending on the 

complexity of the covariance matrices, maximization of the surrogate can be accomplished 

analytically. For the sake of brevity, details are omitted.
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6.4 MAP estimation

Suppose β follows an improper flat prior, the variance components σi
2 follow inverse gamma 

priors with shapes αi > 0 and scales γi > 0, and these priors are independent. The log-

posterior density then reduces to

− 1
2lndetΩ − 1

2 y − Xβ TΩ−1 y − Xβ −
i = 1

m
αi + 1 lnσi

2 −
i = 1

m γi

σi
2 + c, (15)

where c is an irrelevant constant. The MAP estimator of (β, σ2) is the mode of the posterior 

distribution. The update (4) of β given σ2 remains the same. To update σ2 given β, apply the 

same minorizations (5) and (6) to the first two terms of equation (15). This separates 

parameters and yields a convex surrogate for each σi
2. The minimum of the σi

2 surrogate is 

defined by the stationarity condition

0 = − 1
2tr Ω− t Vi +

σi
4 t

2σi
4 y − Xβ t TΩ− t ViΩ

− t y − Xβ t −
αi + 1

σi
2 +

γi

σi
4 .

Multiplying this by σi
4 gives a quadratic equation in σi

2. The positive root should be taken to 

meet the nonnegativity constraint on σi
2.

For the multivariate response model (11), we assume the variance components Γi follow 

independent inverse Wishart distributions with degrees of freedom νi > d − 1 and scale 

matrix Ψi ≻ 0. The log density of the posterior distribution is

− 1
2lndetΩ − 1

2vec Y − XB TΩ−1vec Y − XB

− 1
2 i = 1

m
vi + d + 1 lndetΓi − 1

2 i = 1

m
tr ΨiΓi

−1 + c,

(16)

where c is an irrelevant constant. Invoking the minorizations (6) and (12) for the first two 

terms and the supporting hyperplane minorization for − ln det Γi gives the surrogate function

g Γ Γ t = − 1
2 i = 1

m
tr Ω− t Γi ⊗ Vi − 1

2 i = 1

m
tr Γi

t R t TViR
t Γi

t Γi
−1

− 1
2 i = 1

m
vi + d + 1 tr Γi

− t Γi − 1
2 i = 1

m
tr ΨiΓi

−1 + c t .

The optimal Γi satisfies the stationarity condition
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Id ⊗ 1n
T 1d1d

T ⊗ Vi ⊙ Ω− t Id ⊗ 1n + Vi + d + 1 Γi
− t

= Γi
−1 Γi

t R t TViR
t Γi

t + Ψi Γi
−1,

which can be solved by Lemma 3.

6.5 Variable selection

In the statistical analysis of high-dimensional data, the imposition of sparsity leads to better 

interpretation and more stable parameter estimation. MM algorithms mesh well with 

penalized estimation. The simple variance components model (1) illustrates this fact. For the 

selection of fixed effects, minimizing the lasso-penalized log-likelihood −L β, σ2 + λ
j

β j

is often recommended (Schelldorfer et al., 2011). The only change to the MM Algorithm 1 

is that in estimating β, one solves a lasso penalized general least squares problem rather than 

an ordinary general least squares problem. The updates of the variance components σi
2

remain the same. For estimation of a large number of variance components, one can 

minimize the ridge-penalized log-likelihood

−L β, σ2 + λ
i = 1

m
σi

2

subject to the nonnegativity constraints σi
2 ≥ 0. The variance update (8) becomes

σi
2 t + 1 = σi

2 t y − Xβ t TΩ− t ViΩ
− t y − Xβ t

tr Ω− t Vi + 2λ
, i = 1, …, m,

which clearly exhibits shrinkage but no thresholding. The lasso penalized log-likelihood

−L β, σ2 + λ
i = 1

m
σi (17)

subject to nonnegativity constraint σi ≥ 0 achieves both ends. The update of σi is chosen 

among the positive roots of a quartic equation and the boundary 0, whichever yields a lower 

objective value. Next section illustrates variance component selection using lasso penalty on 

a real genetic data set.

7 A numerical example

Quantitative trait loci (QTL) mapping aims to identify genes associated with a quantitative 

trait. Current sequencing technology measures millions of genetic markers in study subjects. 

Traditional single-marker tests suffer from low power due to the low frequency of many 
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markers and the corrections needed for multiple hypothesis testing. Region-based 

association tests are a powerful alternative for analyzing next generation sequencing data 

with abundant rare variants.

Suppose y is a n × 1 vector of quantitative trait measurements on n people, X is an n × p 
predictor matrix (incorporating predictors such as sex, smoking history, and principal 

components for ethnic admixture), and G is an n × m genotype matrix of m genetic variants 

in a pre-defined region. The linear mixed model assumes

Y = Xβ + Gγ + ϵ, γ ∼ N 0, σg
2I , ϵ ∼ N 0, σe

2In ,

where β are fixed effects, γ are random genetic effects, and σg
2 and σe

2 are variance 

components for the genetic and environmental effects, respectively. Thus, the phenotype 

vector Y has covariance σg
2GGT + σe

2In, where GGT is the kernel matrix capturing the overall 

effect of the m variants. Current approaches test the null hypothesis σg
2 = 0 for each region 

separately and then adjust for multiple testing (Lee et al., 2014; Zhou et al., 2016). Instead of 

this marginal testing strategy, we consider the joint model

y = Xβ + s1
−1/2G1γ1 + ⋅ ⋅ ⋅ + sm

−1/2Gmγm + ϵ,

γi ∼ N 0, σi
2I , ϵ ∼ N 0, σe

2In

and select the variance components σi
2 via the penalization (17). Here si is the number of 

variants in region i, and the weights si
−1/2 put all variance components on the same scale.

We illustrate this approach using the COPDGene exome sequencing study (Regan et al., 

2010). After quality control, 399 individuals and 646,125 genetic variants remain for 

analysis. Genetic variants are grouped into 16,619 genes to expose those genes associated 

with the complex trait height. We include age, sex, and the top 3 principal components in the 

mean effects. Because the number of genes vastly exceeds the sample size n = 399, we first 

pare the 16,619 genes down to 200 genes according to their marginal likelihood ratio test p-

values and then carry out penalized estimation of the 200 variance components in the joint 

model (17). This is similar to the sure independence screening strategy for selecting mean 

effects (Fan and Lv, 2008). Genes are ranked according to the order they appear in the lasso 

solution path. Table 4 lists the top 10 genes together with their marginal LRT p-values. 

Figure 1 in Supplementary Materials displays the corresponding segment of the lasso 

solution path. It is noteworthy that the ranking of genes by penalized estimation differs from 

the ranking according to marginal p-values. The same phenomenon occurs in selection of 

highly correlated mean predictors. This penalization approach for selecting variance 

components warrants further theoretical study.
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8 Discussion

The current paper leverages the MM principle to design powerful and versatile algorithms 

for variance components estimation. The MM algorithms derived are notable for their 

simplicity, generality, numerical efficiency, and theoretical guarantees. Both ordinary MLE 

and REML are apt to benefit. Other extensions are possible. In nonlinear models (Bates and 

Watts, 1988; Lindstrom and Bates, 1990), the mean response is a nonlinear function in the 

fixed effects β. One can easily modify the MM algorithms to update β by a few rounds of 

Gauss- Newton iteration. The variance components updates remain unchanged.

One can also extend our MM algorithms to elliptically symmetric densities

f y = e
− 1

2κ δ2

2π

n
2 detΩ

1
2

defined for y ∈ ℝn, where δ2 = (y − µ)T Ω−1(y − µ) denotes the Mahalanobis distance 

between y and µ. Here we assume that the function κ(s) is strictly increasing and strictly 

concave. Examples of elliptically symmetric densities include the multivariate t, slash, 

contaminated normal, power exponential, and stable families. Previous work (Huber and 

Ronchetti, 2009; Lange and Sinsheimer, 1993) has focused on using the MM principle to 

convert parameter estimation for these robust families into parameter estimation under the 

multivariate normal. One can chain the relevant majorization κ s ≤ κ s t + κ′ s t s − s t

with our previous minorizations and simultaneously split variance components and pass to 

the more benign setting of the multivariate normal. These extensions are currently under 

investigation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Surrogate functions of EM and MM minorize the log-likelihood surface of a 2-variance 

component model at point (σ1
2(t), σ2

2(t)) = (18.5, 0.7). MM surrogate function hugs the log-

likelihood surface tighter than EM.
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Table 1:

Fisher scoring converges fastest and MM takes fewer iterations than EM. Shown below are average number of 

iterations until convergence for MM, EM, and FS for fitting a two-way ANOVA model with a = b = 5 levels of 

both factors. Standard errors are given in parentheses.

σ1
2/σe

2 Method c = # observations per combination

5 10 20 50

0.00 MM 143.12(99.76) 118.26(62.91) 96.26(50.61) 81.10(33.42)

EM 2297.72(797.95) 1711.70(485.92) 1170.06(365.48) 788.10(216.60)

FS 25.64(11.20) 21.10(7.00) 16.46(4.37) 13.88(2.88)

0.05 MM 121.86(98.52) 69.38(50.23) 55.88(37.34) 29.50(18.80)

EM 1464.26(954.27) 538.04(504.42) 254.90(253.86) 104.98(157.97)

FS 16.78(9.13) 12.62(6.22) 9.68(3.22) 8.10(1.34)

0.10 MM 84.74(59.33) 62.98(50.48) 40.46(31.43) 25.86(18.79)

EM 985.46(830.49) 360.32(462.62) 157.70(231.91) 68.26(107.85)

FS 15.20(10.10) 10.58(5.92) 8.58(3.56) 7.50(1.72)

1.00 MM 31.04(33.27) 29.60(27.66) 25.32(25.39) 24.90(20.76)

EM 130.18(299.03) 161.14(290.23) 64.20(135.38) 84.88(137.88)

FS 6.62(4.72) 6.32(3.64) 5.12(1.87) 5.36(1.50)

10.00 MM 29.80(35.42) 34.16(38.25) 28.82(28.44) 20.90(14.28)

EM 115.94(274.33) 177.30(301.71) 80.12(155.67) 75.02(127.38)

FS 12.72(5.14) 12.86(4.94) 11.66(3.95) 11.76(3.66)

20.00 MM 30.10(32.92) 32.72(39.02) 23.70(21.20) 19.62(15.67)

EM 148.04(318.40) 85.86(180.28) 61.74(140.84) 37.36(83.89)

FS 18.76(7.51) 17.40(5.21) 17.22(5.67) 16.28(5.03)
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Table 2:

MM shows shortest run times than EM, Fisher scoring (FS), and lme4. Shown below are average run times 

(milliseconds) for fitting a two-way ANOVA model with a = b = 5 levels of both factors. Standard errors are 

given in parentheses.

σ1
2/σe

2 Method c = # observations per combination

5 10 20 50

 0.00 MM 11.46(7.77) 10.06(5.29) 11.93(6.35) 10.44(3.99)

EM 189.32(71.32) 148.20(48.13) 147.87(49.97) 96.28(24.97)

FS 34.27(33.47) 24.89(8.55) 23.70(14.15) 20.46(4.54)

lme4 25.84(12.10) 22.32(1.25) 27.34(4.06) 36.14(5.59)

 0.05 MM 9.79(7.72) 6.19(4.22) 6.87(4.37) 4.45(2.20)

EM 116.03(75.57) 47.72(45.35) 30.60(29.88) 14.23(19.68)

FS 19.18(10.23) 15.37(7.48) 12.78(4.06) 12.39(2.35)

lme4 22.76(1.96) 24.88(2.60) 28.72(3.10) 47.34(16.29)

 0.10 MM 7.07(4.78) 6.29(4.94) 5.14(3.72) 3.95(2.23)

EM 78.96(66.19) 35.48(45.81) 19.53(27.71) 9.67(13.56)

FS 17.36(11.26) 14.44(9.00) 12.08(6.31) 11.47(2.40)

lme4 22.66(1.83) 28.90(8.70) 30.16(4.43) 44.58(4.89)

 1.00 MM 2.66(2.61) 3.22(2.91) 3.57(3.15) 3.85(2.50)

EM 10.71(23.93) 15.88(27.52) 8.35(16.26) 11.34(16.65)

FS 7.88(5.44) 9.10(4.95) 7.12(2.42) 8.46(2.27)

lme4 23.12(1.75) 30.22(9.37) 29.96(4.47) 42.82(8.32)

 10.00 MM 2.48(2.72) 3.24(3.19) 3.84(3.35) 3.35(1.71)

EM 9.66(22.02) 15.98(26.57) 10.24(18.78) 10.27(15.40)

FS 15.19(6.05) 16.39(6.11) 15.81(5.15) 18.14(5.46)

lme4 35.02(3.83) 47.12(8.10) 63.24(15.33) 102.78(34.49)

 20.00 MM 2.57(2.49) 3.13(3.53) 3.13(2.44) 3.07(1.81)

EM 12.28(25.71) 8.44(16.89) 8.01(17.12) 5.47(9.76)

FS 22.09(8.53) 22.03(6.14) 23.08(7.21) 23.99(7.38)

lme4 37.34(12.91) 50.24(8.59) 63.62(17.39) 91.14(28.39)
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Table 3:

MM and Fisher scoring (FS) show superior performance than EM and lme4. Shown below are average 

performance for fitting a genetic model. Standard errors are given in parentheses.

σa
2/σe

2 Method Iteration Runtime (ms) Objective

0.00 MM 198.02(102.23) 133.61(822.67) −375.59(9.63)

EM 1196.10(958.51) 29.71(12.34) −375.60(9.64)

FS 7.60(3.07) 19.34(33.77) −375.59(9.63)

lme4 – 401.02(142.04) −375.59(9.64)

0.05 MM 185.86(99.41) 17.26(1.76) −377.39(10.52)

EM 1227.62(1030.07) 29.82(12.74) −377.40(10.52)

FS 7.84(2.74) 14.97(1.55) −377.39(10.52)

lme4 – 425.04(144.00) −377.39(10.52)

0.10 MM 169.24(99.75) 16.97(1.59) −378.40(11.44)

EM 924.80(912.23) 26.06(11.26) −378.41(11.45)

FS 7.32(2.75) 15.06(1.38) −378.40(11.44)

lme4 – 435.14(128.87) −378.40(11.44)

1.00 MM 58.96(23.69) 15.53(0.75) −409.54(10.90)

EM 105.10(79.65) 15.49(0.96) −409.54(10.90)

FS 5.80(1.05) 14.66(0.89) −409.54(10.90)

lme4 – 493.14(52.80) −409.54(10.90)

10.00 MM 110.00(63.13) 16.22(1.12) −532.48(8.77)

EM 642.48(1470.38) 22.32(18.37) −532.57(8.75)

FS 14.98(5.21) 14.78(0.97) −531.72(8.92)

lme4 – 2897.12(15006.38) −532.48(8.77)

20.00 MM 110.52(34.81) 16.07(0.91) −590.87(7.15)

EM 1014.22(1775.40) 27.03(22.33) −590.89(7.15)

FS 17.72(3.13) 14.79(0.93) −588.46(7.27)

lme4 – 5059.24(20692.67) −590.79(7.15)
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Table 4:

Top 10 genes selected by the lasso penalized variance component model (17) are tallied with their marginal p-

values in an association study of 200 genes and the complex trait height.

Lasso Rank Gene Marginal P-value # Variants

1 DOLPP1 2.35 × 10−6 2

2 C9orf21 3.70 × 10−5 4

3 PLS1 2.29 × 10−3 5

4 ATP5D 6.80 × 10−7 3

5 ADCY4 1.01 × 10−3 11

6 SLC22A25 3.95 × 10−3 14

7 RCSD1 9.04 × 10−4 4

8 PCDH7 1.20 × 10−4 7

9 AVIL 8.34 × 10−4 11

10 AHR 1.14 × 10−3 7
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