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ABSTRACT

Tandem repeat (TR) expansions have been impli-
cated in dozens of genetic diseases, including Hunt-
ington’s Disease, Fragile X Syndrome, and hereditary
ataxias. Furthermore, TRs have recently been impli-
cated in a range of complex traits, including gene ex-
pression and cancer risk. While the human genome
harbors hundreds of thousands of TRs, analysis of
TR expansions has been mainly limited to known
pathogenic loci. A major challenge is that expanded
repeats are beyond the read length of most next-
generation sequencing (NGS) datasets and are not
profiled by existing genome-wide tools. We present
GangSTR, a novel algorithm for genome-wide geno-
typing of both short and expanded TRs. GangSTR
extracts information from paired-end reads into a
unified model to estimate maximum likelihood TR
lengths. We validate GangSTR on real and simulated
data and show that GangSTR outperforms alterna-
tive methods in both accuracy and speed. We apply
GangSTR to a deeply sequenced trio to profile the
landscape of TR expansions in a healthy family and
validate novel expansions using orthogonal tech-
nologies. Our analysis reveals that healthy individu-
als harbor dozens of long TR alleles not captured by
current genome-wide methods. GangSTR will likely
enable discovery of novel disease-associated vari-
ants not currently accessible from NGS.

INTRODUCTION

Next-generation sequencing (NGS) has the potential to
profile nearly all genetic variants simultaneously in a single
assay. Indeed, whole exome sequencing (WES) and whole
genome sequencing (WGS) have successfully identified sin-
gle nucleotide polymorphisms (SNPs) and small indels con-

tributing to a range of phenotypes, including Mendelian
diseases (1), cancer (2) and complex traits (3). Recently, sev-
eral studies have demonstrated the power of NGS to geno-
type more complex structural variants (SVs) and revealed a
contribution to a variety of traits including gene expression
(4), cancer (5) and autism spectrum disorder (6). Despite
this progress, NGS pipelines struggle with highly repetitive
regions of the genome, which are still routinely filtered from
most studies.

Here, we focus on short tandem repeats (STRs) with mo-
tif lengths of 1-6bp and variable number tandem repeats
(VNTRs) with motif lengths of up to 20 bp, which we collec-
tively refer to as TRs. TRs have been implicated in dozens
of disorders (7), such as Huntington’s Disease and Fragile
X Syndrome, which together affect millions of individuals
worldwide (8–10). In most cases, the pathogenic mutation is
an expansion of the number of repeats. Importantly, known
pathogenic TRs represent just a small fraction of the more
than one million TRs in the human genome (11). Recently,
thousands of TRs have been shown to play a role in gene
regulation (12,13) and it is becoming increasingly clear that
TRs across the genome are likely to have widespread contri-
butions to complex polygenic traits (14–16). In these cases,
smaller expansions or contractions may subtly increase or
decrease risk for a trait, similar to effect sizes observed for
point mutations, and work together to modulate an individ-
ual’s disease risk (17). These studies apply linear or logistic
regression models at each TR in the genome to test for as-
sociation between TR copy number and phenotype across
a cohort of samples.

Over the last several years, we and others have devel-
oped a series of tools for genome-wide genotyping of STRs
(18–21) from short reads or targeted genotyping of VN-
TRs (22) from both short and long reads. These tools pri-
marily rely on identifying reads that completely enclose the
repeat of interest. While most TRs in the human genome
can theoretically be spanned by 100 bp reads (23), in prac-
tice repeats longer than ∼70 bp are difficult or impossi-
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ble to genotype due to an insufficient number of enclos-
ing reads. Notably, in our recent genome-wide analysis (24)
using HipSTR (19), >150,000 STRs were filtered because
they showed strong departure from genotype frequencies
expected under Hardy–Weinberg equilibrium, in part be-
cause of dropout of long alleles. The list of filtered TRs in-
cludes most known pathogenic TR expansions, for which
even normal alleles typically exceed the length of short reads
(16). Thus existing NGS pipelines provide an incomplete
picture of genome-wide variation at TRs.

Recently, several methods have been developed to analyze
expanded TRs from NGS, but all face limitations that do
not allow for unbiased genome-wide analysis of TR lengths.
exSTRa (25) classifies a repeat as ‘expanded’ vs. ‘normal’
but requires a control cohort and does not estimate repeat
length, which is often informative of disease severity or age
of onset (16) and is required for performing genome-wide
association studies. STRetch (26) can perform genome-wide
expansion identification but does not analyze short TRs, is
limited to motifs of up to 6 bp, and is computationally ex-
pensive. Tredparse (27) models multiple aspects of paired
end reads but cannot estimate repeat lengths longer than the
sequencing fragment length. ExpansionHunter (28) pro-
duces accurate genotypes across a range of repeat lengths
except when both alleles are close to or longer than the se-
quencing read length. Finally, Tredparse and Expansion-
Hunter have been primarily designed for targeted analysis
of known pathogenic expansions and do not scale genome-
wide.

Long read technologies have recently been applied to
genotype long and complex repeats, such as the CGG repeat
implicated in Fragile X Syndrome (29) and a complex pen-
tamer repeat implicated in myoclonus epilepsy (30). While
long reads offer a potential solution to genome-wide TR
analysis, NGS remains the gold standard for diagnostic se-
quencing and population-wide studies due to its low cost
and substantially higher throughput (31). Furthermore, the
low per-base accuracy and high indel rate of long read tech-
nologies present major challenges to accurate quantifica-
tion of repeat counts, especially for TRs with short motif
lengths. Thus, we focus here on the challenge of compre-
hensive TR genotyping from short reads.

Here, we present GangSTR, a novel method for genome-
wide analysis of TRs from NGS data. GangSTR relies
on a general statistical model incorporating multiple prop-
erties of paired-end reads into a single maximum like-
lihood framework capable of genotyping both normal
length and expanded repeats. We extensively benchmark
GangSTR against existing methods on both simulated and
real datasets harboring a range of allele lengths and show
that GangSTR is both faster and more accurate than ex-
isting solutions. Finally, we apply GangSTR to genotype
TRs using high-coverage NGS from a trio family to evaluate
Mendelian inheritance and validate novel repeat expansions
using orthogonal long read and capillary electrophore-
sis data. Altogether, our analyses demonstrate GangSTR’s
ability to robustly genotype a range of TR classes, which will
likely enable identification of novel pathogenic expansions
as well as genome-wide association studies of TR variation
in large cohorts.

GangSTR is packaged as an open-source tool at https:
//github.com/gymreklab/GangSTR.

MATERIALS AND METHODS

Overview of the GangSTR model

GangSTR is an end-to-end method that takes sequence
alignments and a reference set of TRs as input and out-
puts estimated diploid repeat lengths. Its core component
is a maximum likelihood framework incorporating various
sources of information from short paired-end reads into a
single model that is applied separately to each TR in the
genome.

Multiple aspects of paired-end short reads can be infor-
mative of the length of a repetitive region. Reads that com-
pletely enclose a repeat trivially allow determination of the
repeat number by simply counting the observed number of
repeats. While most of the existing tools have primarily fo-
cused on repeat-enclosing reads, other pieces of informa-
tion, such as fragment length, coverage, and existence of
partially enclosing reads, are all functions of repeat number.
Recent tools for targeted genotyping of expanded STRs uti-
lize various combinations of these information sources (Ta-
ble 1).

GangSTR incorporates each of these informative aspects
of paired-end read alignments into a single joint likelihood
framework (Figure 1). The underlying genotype is repre-
sented as a tuple 〈A, B〉, where A and B are the repeat
lengths of the two alleles of an individual. We define four
classes of paired-end reads: enclosing read pairs (‘E’) con-
sist of at least one read that contains the entire TR plus
non-repetitive flanking region on either end; spanning read
pairs (‘S’) originate from a fragment that completely spans
the TR, such that each read in the pair maps on either end
of the repeat; flanking read pairs (‘F’) contain a read that
partially extends into the repetitive sequence of a read; and
fully repetitive read pairs (‘FRR’) contain at least one read
consisting entirely of the TR motif. Two types of proba-
bilities are computed for each read pair: the class proba-
bility, which is the probability of observing a read pair of
a given class given the true genotype, and the read proba-
bility, which gives the probability of observing a particular
characteristic of the read pair. A different characteristic is
modeled for each class (Figure 2).

Computation of log likelihood

The likelihood model computes the probability of the ob-
served read pairs given a true underlying diploid genotype:

L(〈A, B〉) = log P(R; 〈A, B〉)

=

LP︷ ︸︸ ︷
log

∏
r∈R

P(r ; 〈A, B〉) +
LN︷ ︸︸ ︷

log P(|F RR|; 〈A, B〉)

(1)

Where L(〈A, B〉) corresponds to the total log likelihood of
genotype 〈A, B〉, which consists of term LP combining the
contribution of each read pair r from the set of informative

https://github.com/gymreklab/GangSTR
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Table 1. Classes of read pairs and features used by existing tools for genotyping TRs from short reads

Tool Enclosing FRR Spanning
Off-target
FRR

Estimates
# rpts. Genome-wide Estimation limit

LobSTR (18) X X X < Read length
HipSTR (19) X X X < Read length
STRetch (26) X X X X Only reports expanded TRs
exSTRa (25) X X X Does not estimate TR length
Tredparse (27) X X X X < Fragment Length
ExpansionHunter (28) X X X X Poor performance when both

alleles long
GangSTR X X X X X X Not limited by fragment or read

length

Figure 1. Schematic of GangSTR method. Paired-end reads from an input set of alignments are separated into various read classes, each of which provides
information about the length of the TR in the region. This information is used to find the maximum likelihood diploid genotype and confidence interval
on the repeat length. Results are reported in a VCF file.

read pairs R, and term LN which models the total number
of FRR reads.

Read pair term. The first term in (1) is calculated by ex-
tracting characteristics from every informative read pair,
where the specific characteristic modeled depends on the
class of the read. Each read pair is assigned to one or more
classes. If a read pair belongs to multiple classes (e.g. a read
pair can be both spanning and flanking), it appears once
in each class for its contribution to both likelihood classes.
The read pair term is computed as follows:

LP = log
∏
r∈R

P(r ; 〈A, B〉)

=
∑
r∈R

log P(r ; 〈A, B〉)

=
∑
r∈R

log
∑
C j ∈C

P(r, C j ; 〈A, B〉) (2)

where C = {C j } = {enclosing, spanning, F RR, f lanking}
is the set of all informative read classes. Every informative
read pair r belongs to a class of informative reads, we denote
this class by C(r). The value of P(r, C j ; 〈A, B〉) is set to 0 if

C j �= C(r ). We thus simplify the term for each read pair:

Lp =
∑
r∈R

log P(r, C(r ); 〈A, B〉)

=
∑
r∈R

log P(r |C(r ); 〈A, B〉)︸ ︷︷ ︸
Read Probability

P(C(r ); 〈A, B〉)︸ ︷︷ ︸
Class Probability

(3)

Finally, in a diploid model we assume each read pair is
equally likely to originate from allele A or B:

Lp =
∑
r∈R

log
1
2

{
P(r |C(r ); A)P(C(r ); A)

+P(r |C(r ); B)P(C(r ); B)
}

(4)

Class probability. The class probability, P(C(r); A), mod-
els the relative abundance of different classes of informa-
tive reads for an underlying repeat length A. We use the
schematic in Figure 2 to describe how class probabilities are
modeled. We consider a repeat with A copies of a motif of
size m bp plus F bp of flanking region on either side. Denote
the starting position of each read in a pair relative to the be-
ginning of this region as S1 and S2, where each read in the
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Figure 2. Four classes of informative read pairs. (A) Enclosing class: characteristic n corresponds to the number of repeat copies enclosed in the read. (B)
n is modeled for different repeat lengths accounting for errors introduced during PCR. (C) Spanning class: characteristic � denotes the observed fragment
length for a read pair. (D) � is modeled for different repeat lengths. Longer repeats give shorter observed fragment lengths. The red vertical dashed line
gives the mean actual fragment length. (E) Fully Repetitive Read (FRR) class: characteristic � is the distance of the non-repetitive read from the repeat
region. (F) � is modeled for different repeat lengths. Longer repeats give shorter observed � values. (G) Flanking class: characteristic k shows the number
of copies extracted from the flanking read. (H) k is modeled for different repeat lengths. S1 and S2 give the start coordinates of each read in the pair relative
to the beginning of the first flanking region. For A, C, E and G, F shows the length (bp) of the flanking region and the repeat is L bp long (A copies of
a repeat of length m). For B, D, F and H, each color denotes a different underlying repeat length (blue = 10 copies, green = 20 copies, red = 40 copies,
purple = 60 copies, gold = 80 copies, light blue = 200 copies).

pair has length r. Then we can define class probabilities as:

P(C = Enclosing; A) = P(S2 < F, S2 + r > F + Am)

P(C = Spanning; A) = P(S1 < F, S2 > F + Am − r )

P(C = F RR; A) = P(S1 ≤ F, F ≤ S2 ≤ F + Am − r )

P(C = Flanking; A) = P(F − r < S1 < F,

S1 + r < F + Am)

Class probabilities capture changes in the relative abun-
dance of each class as a function of TR length (Supplemen-
tary Figure S1). Closed form solutions to compute class
probabilities are given in the Supplementary Note.

Read probability. The read probability, P(r|C(r); A), mod-
els a separate informative characteristic for each class of in-
formative read pairs as a function of repeat length A.

The number of repeats observed in enclosing reads (pa-
rameter n in Figure 2A) can trivially estimate repeat size.
However, errors introduced during PCR can alter the num-
ber of repeats observed. We model the size of PCR errors
using a geometric distribution with default parameter P =
0.9 as suggested by HipSTR (19) (Figure 2B).

Spanning read pairs have one mate aligned to either side
of the TR. In a sample with a TR expansion, the spanning
read pair’s apparent fragment length based on mapped read
positions (parameter � in Figure 2C) will shrink compared
to the actual fragment length by an amount corresponding
to the size of the TR expansion. We thus model observed
fragment length as a normal distribution where the mean is
a function of repeat length (Figure 2D).

Fully repetitive reads (FRRs) often have an anchor mate
that maps in the flanking region before or after the TR.
The distance of the anchor from the TR locus (parameter
� in Figure 2E) is modeled as a function of TR length, with
smaller � values indicating longer TRs (Figure 2F).

Flanking reads partially cover the TR. The number of re-
peats in a flanking read (parameter k in Figure 2G) indicates
that one allele is at least of size k. For a TR with length A,

flanking reads are equally likely to exhibit a number of re-
peats k ranging from 1 to A (Figure 2H).

Closed form solutions to compute each class probability
are given in the Supplementary Note.

Repetitive read count term. The LN term in (1) assigns a
likelihood to the total number of observed fully repetitive
reads. We use a Poisson distribution with parameter � to
model the expected number of observed FRR reads, which
is linearly related to the size of alleles A and B. Assum-
ing uniform average coverage Cv, read length r, and motif
length m, we can calculate � using (5). The unit step func-
tion u(.) ensures alleles shorter than the read length have 0
expected FRR reads.

λ = u(A− r
m

) · Cv(A · m − r )
2r

+u(B − r
m

) · Cv(B · m − r )
2r

(5)

Then we compute the LN term as:

LN = log P(|F RR|; 〈A, B〉)

= log
e−λλ|F RR|

|F RR|!
= −λ + |F RR| · logλ − log

(|F RR|!)
We use Stirling’s approximation to calculate log (|FRR|!) for
large |FRR| values:

log
(
n!

) ≈
(

n + 1
2

)
· log(n) − n + 1

2
log(2π ) (6)

Local realignment

For enclosing, flanking, and FRR reads GangSTR must ob-
tain accurate counts of the number of repeats contained in
each read. For reads fully enclosing the TR plus a minimum
of 20 bp on either end, repeat count is extracted from the
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CIGAR score present in the BAM files. Reads starting or
ending closer to the TR boundaries or that are fully repet-
itive are prone to alignment errors and are subject to strin-
gent local realignment. Similar to Tredparse (27), we create
artificial reference sequences consisting of flanking region
(of size of the read length) on either side and different num-
bers of repeats, starting from the longest stretch of perfect
copies of the repeat and ending with 1 + 1.1 times the total
number of copies of the motif seen in the read. Each read is
realigned to the candidate sequences and the reference with
the highest realignment score is used to determine the num-
ber of repeat copies and the class of the read (flanking, en-
closing, or FRR). Realignment is performed using an ef-
ficient implementation of the Smith–Waterman algorithm
(32).

Retrieving reads mapped to off-target regions

For large expansions some fragments consist entirely of the
repeat and may not map to the correct genomic region (off-
target). To rescue these reads, we scan a predefined set of
off-target regions for additional FRR reads. While in some
cases these off-target FRRs cannot be uniquely mapped,
our genome-wide analysis below suggests expansions of
most TR motifs are rare, and thus most off-target FRRs
of the same motif likely originate from the same locus.

To identify off-target regions for each pathogenic TR,
we simulated reads for expanded alleles and aligned them
back to the reference genome (see simulation settings be-
low). We extracted positions of reads mapped outside of
the simulated region (5000 bp on either side of the TR). We
merged off-target regions within 30 bp of each other and ex-
panded the final merged regions by 10 bp on either side. The
GangSTR implementation allows users to choose whether
or not to include off-target FRRs in the maximum likeli-
hood calculation.

Optimization

For each TR, GangSTR determines the possible range of
repeat lengths from observed reads. Minimum and maxi-
mum counts are determined by enclosing and flanking reads
if present. If FRRs are observed, the maximum count is le-
niently set to a value with mean expected FRR count 5 times
the observed count.

By default, GangSTR uses an exhaustive grid search over
all possible allele pairs and returns the maximum likelihood
diploid genotype. To speed up optimization for TRs with a
large range of possible alleles, GangSTR also implements
an efficient multi-step optimization procedure. To account
for the irregularity of the likelihood surface, we perform a
modular optimization procedure with each step searching
a different range of allele lengths. First, any enclosing al-
lele a with support of two or more reads is added to the
list of potential alleles. In the second step, each potential
enclosing allele, a, is used to perform 1D optimization of
the likelihood function to find allele b, were <a, b > maxi-
mizes the likelihood function. Next, multiple rounds of 2D
optimization are performed to find <c, d > genotypes that
maximize the likelihood function. In each round the opti-
mizer uses a different initial point which helps prevent re-
porting local optima. Any potential allele from each step,

a, b, c, d, is added to the list of potential alleles. In the fi-
nal step we compare the likelihood from any combination
of two alleles in this list, to find the maximum likelihood
genotype. All 1D and 2D optimizations are performed us-
ing the COBYLA algorithm (33) implemented in the NLopt
library (https://github.com/stevengj/nlopt).

Quality metrics

GangSTR reports three separate quality metrics to accom-
modate a range of downstream applications.

Bootstrap confidence intervals and standard errors. In each
bootstrap round, GangSTR resamples the set of informa-
tive reads (with replacement) to create a bootstrap sample
and performs the above optimization procedure on this set
of read pairs. The number of bootstrap samples, Nb, is set by
the user. GangSTR records all bootstrap estimates in sepa-
rate lists for shorter and longer alleles. These lists are then
sorted and used to find the confidence interval at the desired
level of significance and standard errors on allele lengths.

Genotype likelihoods and quality score. Let L equal the
sum of likelihoods for each possible genotype and LML
be the likelihood of the maximum likelihood genotype.
GangSTR returns a quality score Q = LML

L . This is equiv-
alent to a posterior probability of the maximum likelihood
genotype assuming a uniform prior. This value is most in-
formative for short allele lengths where repeat unit res-
olution can be achieved. For TR expansions with larger
standard errors, the posterior probability of any particular
genotype will be low and expansion probabilities are more
informative.

Expansion probability. Given a user-specified repeat num-
ber expansion threshold X, GangSTR computes the prob-
abilities of no expansion (P0), a heterozygous expansion
above the threshold (P1), or a homozygous expansion above
the threshold (P2) as:

P0 = �〈A,B〉∈Gs.t.A<X,B<XL(〈A, B〉)/L
P1 = �〈A,B〉∈Gs.t.A<X,B≥XL(〈A, B〉)/L
P2 = �〈A,B〉∈Gs.t.A≥X,B≥XL(〈A, B〉)/L

(7)

where G is the set of all possible diploid genotypes, L(〈A,
B〉) is the likelihood of genotype 〈A, B〉, and L is as defined
above.

Benchmarking using simulated reads

Reads were simulated using wgsim (https://github.com/lh3/
wgsim). Unless otherwise specified, we used parameters
mean fragment length (-d) 500, standard deviation of frag-
ment length (-s) 100, and read length (-1 and -2) 150. Muta-
tion rate (-r), fraction of indels (-R) and probability of indel
extension (-X) were all set to 0, and base error rate (-e) was
set to 0.005. The number of simulated reads (-N) was calcu-
lated using the following formula N = C(2F+Am)

2r , where C is
the average coverage, set to 40×. F is the length of the sim-
ulated flanking region around the TR, set to 10,000 bp. A is
the number of copies of the motif of length m present in the
simulated sample (simulated allele), and r is the read length.

https://github.com/stevengj/nlopt
https://github.com/lh3/wgsim
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Simulated genotypes for each pathogenic TR were selected
such that the shorter allele covers the normal or premuta-
tion range, while the longer allele could be either normal,
premutation, or pathogenic (Supplementary Table S1).

Reads were aligned to the hg38 reference genome us-
ing BWA-MEM (34) with parameter -M. GangSTR v2.3
was run using the disease-specific reference files for each
TR available on the GangSTR website with --coverage set
to the simulated coverage level and with the --targeted
option. Tredparse v0.7.8 was run with with --cpus 6, --
useclippedreads, and --tred appropriately set for each dis-
ease locus. ExpansionHunter v2.5.5 was used with --read-
depth preset to the simulated coverage level.

Quantifying genotyping performance with RMSE

Root mean square error (RMSE) was used to com-
pare estimated vs. expected repeat allele lengths. We de-
note the diploid genotype of sample i with 〈xi

1, xi
2〉.

For each diploid genotype, we ordered the two alle-
les by length such that xi

1 ≤ xi
2. Then to compare esti-

mated X = {〈x1
1 , x1

2 〉, 〈x2
1 , x2

2 〉...〈xn
1 , xn

2 〉} and expected Y =
{〈y1

1 , y1
2 〉, 〈y2

1 , y2
2 〉...〈yn

1 , yn
2 〉} genotypes, RMSE is defined

as:
√∑n

i=1

∑2
j=1

(yi
j −xi

j )
2

2n .

Analysis of genomes and exomes with validated expansions

Whole genome sequencing datasets for samples with pre-
viously validated repeat expansions were obtained from
the European Genome-Phenome Archive (dataset ID:
EGAD00001003562). GangSTR v2.3 was run using the
disease-specific reference files for each TR with option --
targeted. For Fragile X Syndrome, --ploidy was set to 1 for
males and 2 for females. ExpansionHunter v2.5.5 was run
using the set of off-target regions given in the GangSTR ref-
erence files for Huntington’s Disease, and with their pub-
lished off-target regions for Fragile X Syndrome. Tredparse
v.0.7.8 was run using default parameters and --tred set to
HD or FXS for Huntington’s or Fragile X Syndrome, re-
spectively.

Whole exome sequencing datasets for Huntington’s
Disease patients were obtained from dbGaP accession
phs000371.v2.p1. Fastq files were aligned to the hg19 refer-
ence genome using BWA-MEM (34). PCR duplicates were
removed using the samtools (35) rmdup command. Vali-
dated repeat lengths were obtained from data fields HD-
CAG1 and HDCAG2 in table pht002988.v1.p1.c1. We in-
ferred fragment length mean and standard deviation per
sample after removing read pairs mapping more than 1kb
apart. GangSTR v2.3 was run with --insert-mean and --
insert-sdev set to the values computed for each sample. We
additionally used parameters --nonuniform and --targeted.
ExpansionHunter v2.5.5 was run with --read-depth set to
the mean coverage at the TR plus surrounding region. Tred-
parse v0.7.8 was run with options --useclippedreads and -
-tred HD.

Constructing a genome-wide repeat reference panel

Tandem Repeats Finder (36) was used to create a panel of
repetitive regions with motifs up to 20 bp in the hg19 and

hg38 reference genomes using parameters matching weight
= 2, mismatch penalty = 5, indel score = 17, match proba-
bility = 80, and indel probability = 10. We required a min-
imum score threshold of 24 to ensure at least 12 bp match-
ing the motif for each TR and removed TRs with reference
lengths greater than 1000 bp.

This initial panel was subject to multiple filters to avoid
imperfect or complex TR regions that cannot be accurately
genotyped. First, motifs formed by homopolymer runs (e.g.
‘AAAA’) or by combining smaller sub-motifs (e.g. ‘ATAT’ is
made of 2×‘AT’) were discarded. Based on thresholds used
in previous TR references (11), we required TRs with mo-
tif size 2 or 3 to have at least five or four copies in tandem,
respectively, and larger motifs to have at least three copies.
To avoid errors in the local realignment step of GangSTR,
all repeating regions were trimmed until they no longer con-
tained any imperfections in their first and last three copies
of the motif. We removed TRs within 50 bp of another TR
as these regions tend to be low complexity and result in low
quality calls. Next we discarded remaining TRs that do not
consist of perfect repetitions of the motif. Finally, we manu-
ally added disease associated TRs to ensure notation is con-
sistent with other methods (e.g. (27,28)).

Run time evaluation

All timing and memory experiments were tested in a Linux
environment running Centos 7.4.1708 on a server with 28
cores (Intel® Xeon® CPU E5-2660 v4 @ 2.00 GHz) and
125GB RAM and were performed on a single core. Each ex-
periment was run 5 times and the mean value was reported.
Tredparse was evaluated on all available TRs (‘treds’) since
it does not allow specifying a subset of TRs for analysis. For
all timing analyses we used the --skip-unaligned option for
ExpansionHunter, which improved run time. For scalabil-
ity tests, we randomly chose varying sized sets of TRs from
the genome-wide reference. Timing was performed with the
UNIX time command and the sum of the sys and user
times was reported. Memory usage was measured using the
UNIX top command. Virtual memory was measured every
0.1 seconds and the maximum value was reported.

Genome-wide TR analysis in a CEU trio

Whole genome sequencing data (BAM files) for the CEU
trio consisting of NA12878, NA12891, and NA12892 were
obtained from the European Nucleotide Archive (ENA ac-
cession: PRJEB3381).

GangSTR v2.3 was run on each family member
(NA12878, NA12891, NA12892) using the hg19 ver13.1
reference available on the GangSTR website with default
parameters. We supplied an --str-info-file with the expan-
sion threshold for each TR set to the read length of 101 bp.
HipSTR v.0.6.2 was run on NA12878 with non-default pa-
rameters: --lib-from-samp --def-stutter-model --max-str-len
1200 --min-reads 15 --output-filters. STRetch v0.4.0 was
run on NA12878 using the GangSTR reference (limited
to motifs up to 6bp) as input regions and with no control
genomes specified.

We used our filtering tool, DumpSTR (see Code Avail-
ability), to filter GangSTR and HipSTR calls. DumpSTR
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has various recommended filtering settings depending on
the downstream application. For example, for applications
where precise estimation of TR length is important, more
stringent quality filters should be applied vs. for applica-
tions targeted at identifying whether a TR is expanded or
not. Thus we applied two filter levels referenced in the re-
sults as level 1 and level 2.

First, level 1 filters were used to filter out TRs that
could not be reliably called. For HipSTR level 1 filter-
ing, we applied dumpSTR options: --max-call-DP 1000 -
-min-supp-reads 1, which removes calls with abnormally
high coverage or calls with no supporting reads, respec-
tively. For GangSTR level 1 filtering, we applied dump-
STR options: --max-call-DP 1000 --min-call-DP 20 --filter-
spanbound-only --filter-badCI, which removes calls with
abnormally high coverage, calls where only spanning or
bounding reads were found, or calls for which the max-
imum likelihood genotype falls outside of the 95% boot-
strap confidence interval. For filter levels 1 and 2, we ad-
ditionally filtered regions overlapping annotated segmen-
tal duplications in hg19 (UCSC Genome Browser (37)
track hg19.genomicSuperDups table) and regions that over-
lapped more than one other TR in the raw TR set from Tan-
dem Repeats Finder (36) that was used to create the refer-
ence panel.

Second, level 2 filters were used to further restrict to TRs
with high confidence length estimates to compare HipSTR
vs. GangSTR concordance. For HipSTR level 2 filtering,
we applied additional options: --min-call-DP 10 --min-call-
Q 0.9 --max-call-flank-indel 0.15 --max-call-stutter 0.15 as
recommended on the HipSTR website. For GangSTR level
2 filtering, we applied additional options: --min-call-Q 0.9 -
-min-total-reads 50.

Mendelian inheritance was determined using two met-
rics. First, we used maximum likelihood estimates for each
sample at each locus to determine whether the child geno-
type could be explained by parental genotypes. Second, in
a less stringent analysis, we determined whether reported
confidence intervals were consistent with Mendelian inher-
itance. Let child, mother, and father confidence intervals
be denoted as (cl

1 − ch
1 , cl

2 − ch
2 ), (ml

1 − mh
1, ml

2 − mh
2), and

( f l
1 − f h

1 , f l
2 − f h

2 ), where subscripts 1 and 2 denote the
short and long allele at each diploid genotype and super-
scripts l and h represent the low and high end of the con-
fidence interval for each allele. A locus was considered to
follow Mendelian inheritance if cl

1 − ch
1 overlapped either

maternal confidence interval and cl
2 − ch

2 overlapped either
paternal confidence interval, or vice versa.

Validating GangSTR using long reads

Oxford Nanopore Technologies (ONT) data for NA12878
was obtained from the Nanopore WGS Consortium
(https://github.com/nanopore-wgs-consortium/NA12878).
Pacific Biosciences (PacBio) data for NA12878 was
obtained from the Genome in a Bottle website
(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/
NA12878 PacBio MtSinai).

For each repeat, we used the Pysam (https://github.com/
pysam-developers/pysam) python wrapper around htslib
and samtools (35) to identify overlapping PacBio or ONT

reads and extract the portion of the read overlapping the re-
peat ±50 bp. We estimated the repeat length by taking the
difference in length between the reference sequence and the
number of bases of each read aligned in that region based
on the CIGAR score.

Assembled paternal and maternal haplotypes
were extracted from the TrioCanu (38) assembly of
NA12878 (data availability: https://obj.umiacs.umd.edu/
marbl publications/triobinning/). Contigs were aligned
to the hg19 reference genome using Minimap2 (39) with
recommended settings for full genome assembly alignment
(options: -c --cs -ax asm5). The length of each TR was
estimated by counting the difference in length between
the reference sequence and aligned assembled haplotypes
in the ±50 bp window around each TR using Pysam
(https://github.com/pysam-developers/pysam) as described
above.

Experimental validation of repeat lengths

Candidate TRs with long alleles identified in NA12878 were
PCR amplified using GoTaq (Promega #PRM7123) with
primers shown in Supplementary Table S5. PCR products
were purified using NucleoSpin® Gel and PCR Clean-
up (Macherey-Nagel #740609) and analyzed with capillary
electrophoresis using an Agilent 2100 Bioanalyzer and an
Agilent DNA 1000 kit (#5067-1504).

Code availability

GangSTR is freely available at https://github.com/
gymreklab/GangSTR. The dumpSTR filtering tool is
available at https://github.com/gymreklab/STRTools.

RESULTS

GangSTR outperforms existing TR expansion genotypers

We first evaluated GangSTR’s performance by benchmark-
ing against Tredparse (27) and ExpansionHunter (28), two
alternative methods for genotyping repeat expansions. We
focused on these methods since they output estimated re-
peat number at both normal and expanded TRs and do not
require a control cohort as input (Table 1). We simulated
reads for a set of 14 well-characterized repeats involved in
repeat expansion disorders. Since almost all known repeat
expansion disorders follow an autosomal dominant inher-
itance pattern, we simulated individuals heterozygous for
one normal range allele and a second allele that varied along
the range of normal and pathogenic repeat counts (Supple-
mentary Table S1). In each case, paired-end 150 bp reads
were simulated to a target of 40-fold coverage, a standard
setting for clinical-grade whole genomes. Performance at
each locus was measured as the root mean square error
(RMSE) between true vs. observed alleles (Methods).

GangSTR genotypes showed the most robust perfor-
mance compared to other tools across a wide range of re-
peat lengths, with the smallest RMSE for all TRs tested
(Figure 3A, Supplementary Figure S2). At TRs for which
the normal range allele is below the read length (SCA6,
SCA2, SCA7, SCA1, HTT and SCA17), both Expansion-
Hunter and GangSTR accurately predicted the lengths of

https://github.com/nanopore-wgs-consortium/NA12878
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai
https://github.com/pysam-developers/pysam
https://obj.umiacs.umd.edu/marbl_publications/triobinning/
https://github.com/pysam-developers/pysam
https://github.com/gymreklab/GangSTR
https://github.com/gymreklab/STRTools
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Figure 3. Evaluation of TR genotypers on real and simulated data at pathogenic repeat expansions. (A) RMSE for each simulated locus. HTT=Huntington’s
Disease; SCA=spinocerebellar ataxia; DM=Myotonic Dystrophy; C9ORF72=amyotrophic lateral sclerosis/frontotemporal dementia; FMR1=Fragile X
Syndrome. TRs are sorted from left to right by ascending length of the pathogenic allele. The motif for each locus is specified in parentheses. (B) Comparison
of true vs. estimated repeat number for each simulated genotype for SCA1. Gray dashed line gives the diagonal. (C) Comparison of true vs. estimated repeat
number for each simulated genotype for SCA8. (D) Comparison of true versus estimated repeat number for HTT using real WGS data. (E). Comparison
of true versus estimated repeat number for FMR1 using real WGS data. In all panels, red = GangSTR; blue = ExpansionHunter; black = Tredparse.

both alleles (Figure 3B). However, GangSTR demonstrated
a distinct advantage over ExpansionHunter in genotyping
TRs for which both the normal and pathogenic allele were
close to or longer than the read length, where Expansion-
Hunter estimates become unstable (Figure 3A, C). Tred-
parse performed well at short alleles but consistently un-
derestimated alleles longer than the fragment length (Figure
3B, C) which accounts for its inflated RMSE results.

We performed additional simulations at the Huntington’s
Disease locus to test the effects of sequencing parameters on
each tool’s performance. GangSTR and ExpansionHunter
both improved significantly as a function of coverage and
read length, whereas Tredparse was relatively unaffected
(Supplementary Figures S3 and S4). Performance of all
tools was mostly consistent across mean fragment lengths
(Supplementary Figure S5).

We then tested GangSTR’s performance on real NGS
data from individuals with validated pathogenic repeat ex-
pansions (Methods). Notably, only a small number of such
samples are available. Thus, tests on real data were lim-
ited to two TRs implicated in Huntington’s Disease (HTT)
and Fragile X Syndrome (FMR1) with sufficient sam-
ple sizes. We first genotyped the HTT and FMR1 loci in
14 and 25 samples respectively with available PCR-free
WGS data (28). All tools performed well on the HTT
TR (Figure 3D). GangSTR showed the smallest over-
all error (RMSEGANGSTR=7.9; RMSETREDPARSE = 8.3;
RMSEEXPANSIONHUNTER =10.1) with a small bias in Ex-
pansionHunter for overestimating repeat lengths. Perfor-
mance was markedly worse for all tools at FMR1 (Fig-

ure 3E; RMSEGANGSTR = 29.3; RMSETREDPARSE = 34.8;
RMSEEXPANSIONHUNTER = 27.3). Notably, the FMR1 TR
has 100% GC content and very few reads mapping directly
to the TR could be identified. This highlights a major chal-
lenge in calling GC-rich TRs that are still not sequenced
well even with PCR-free protocols.

We additionally tested each tool on 200 whole ex-
ome sequencing datasets from patients with validated
Huntington’s Disease expansions (Methods, Supplemen-
tary Figure S6). GangSTR again showed the smallest
error (RMSEGANGSTR = 5.4; RMSETREDPARSE = 96.4;
RMSEEXPANSIONHUNTER = 9.1). Notably, Expansion-
Hunter gave biased estimates, presumably due to uneven
coverage profiles in exomes. Tredparse again underesti-
mated calls for alleles approaching the fragment length
(mean = 200 bp).

Finally, we evaluated computational performance of each
tool on various sets of input TRs. We first used the 14
pathogenic TRs to time each tool. GangSTR performed
the fastest (mean = 15.4 s), with ExpansionHunter show-
ing similar run time (mean = 16.1 s). Tredparse was sig-
nificantly slower (mean = 82.4). We then performed addi-
tional evaluation of the scalability of GangSTR and Expan-
sionHunter by testing on input TR sets ranging from 100
to 100,000 TRs (Supplementary Figure S7). GangSTR run
time scaled linearly with reference size as expected, whereas
ExpansionHunter run time grew super-linearly. Notably,
ExpansionHunter only finished on three out of five runs
with 100,000 TRs and would not run to completion on
larger TR sets, potentially due to stalling at problematic
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loci. We additionally tested the maximum memory require-
ment of each method. GangSTR memory usage stayed rel-
atively constant at under 1GB, whereas ExpansionHunter
memory usage grew linearly with the number of TRs in the
reference set (Supplementary Figure S8).

Genome-wide TR profiling

We next evaluated GangSTR’s utility for genome-wide TR
genotyping. To this end, we used Tandem Repeats Finder
(36) to construct a set of all STRs (motif length 2–6 bp)
and short VNTRs (motif length 7–20 bp) in the human ref-
erence genome (Methods). In total, we identified 829,231
TRs (780,328 autosomal) in hg19 with a mean length of 15.6
bp. Of these, 5,828 are found in coding regions (Figure 4A),
most of which have lengths that are multiples of 3 bp.

We used our genome-wide panel to genotype autosomal
repeats using GangSTR on WGS with 30× coverage for
a trio of European descent consisting of the highly char-
acterized NA12878 individual and her parents (NA12891
and NA12892). After filtering low quality loci (Methods,
level 1 filters), an average of 673,252 TRs were genotyped
per sample. As expected, most alleles matched the reference
(Supplementary Figure S9) with a bias toward calling alle-
les shorter than the reference. Both alleles for the major-
ity of TRs (>99%) had maximum likelihood lengths less
than the read length of 101 bp (Supplementary Figure S10).
To evaluate GangSTR calls, we determined whether esti-
mated genotypes followed patterns expected based on the
trio family structure (Methods). Overall, 98.9% of TRs fol-
lowed Mendelian inheritance when considering maximum
likelihood genotypes. For 99.9% of TRs, 95% confidence in-
tervals were consistent with Mendelian inheritance (Meth-
ods). These values changed to 90.6% and 99.3% respectively
after removing TRs that were homozygous reference in all
samples. The quality of calls steadily increased as a func-
tion of the minimum number of observed reads at the locus
and was mostly consistent across repeats with different mo-
tif lengths (Figure 4B, Supplementary Figure S11).

We evaluated GangSTR’s utility for genome-wide TR
profiling by benchmarking against HipSTR using the same
reference TR set. After removing low quality loci from each
dataset, (Methods, level 1 filters) GangSTR produced calls
at 43,571 TRs that could not be reliably genotyped by Hip-
STR (Figure 4C). Of these, seven are known pathogenic
TRs analyzed in Figure 3, demonstrating the limitations
of relying on enclosing reads. Notably, 1,880 TRs were not
called by GangSTR but were present in HipSTR output.
These primarily consist of repeats with SNPs or indels in or
near the TR sequence which did not pass GangSTR’s strin-
gent local realignment process. After applying stringent rec-
ommended quality filters for each tool (Methods, level 2 fil-
ters), TRs called by both tools showed extremely high con-
cordance (>99%) (Figure 4D) with strong correlation be-
tween allele lengths reported by each (Pearson r = 0.99; P <
10−200; n = 542,467), demonstrating that GangSTR can ro-
bustly genotype both STRs previously analyzed using Hip-
STR as well as long TRs previously excluded from genome-
wide analyses.

Genome-wide detection of novel TR expansions

We next evaluated whether GangSTR could identify
novel repeat expansions in a healthy genome (NA12878).
GangSTR identified 56 TRs predicted to have at least one
allele longer than the read length (101bp) with greater than
80% probability (see Expansion Probabilities defined in
Methods) (Supplementary Table S2). Of these, 46 showed
evidence of expansions in one or both parents. Long repeats
were highly enriched for repeats with motif AAAGn (17
TRs, one-sided Fisher’s exact test P = 1.2 × 10−10) and re-
lated motifs of the form AnGm (Supplementary Table S3).
This finding is concordant with previous reports that AAG,
AAAG and AAGG repeats exhibit strong base-stacking in-
teractions that simultaneously promote expansions through
replication slippage and protect the resulting secondary
structure from DNA repair (40–42).

For comparison, we applied STRetch (26), an alternative
tool for detecting repeat expansions, using the GangSTR
reference set of TRs restricted to motif lengths up to 6 bp
(808,868 total TRs). STRetch leverages a modified reference
genome containing decoy repeat sequences to identify po-
tentially expanded TRs. It only attempts to genotype TRs
with candidate expansions and thus is unsuitable for unbi-
ased genome-wide TR genotyping. After filtering for seg-
mental duplications (Methods), STRetch returned results
for 45 TRs (Supplementary Table S4). Notably, STRetch
took approximately 157 CPU-hours (6.5 days) compared
to 16.6 CPU-hours for GangSTR on a single genome. TRs
genotyped by both GangSTR and STRetch showed concor-
dant repeat number estimates (Pearson r = 0.68, P = 1.5 ×
10−5, n = 33, Figure 5A, Supplementary Table S4). However
only 4 of the 56 TRs with alleles longer than 101 bp reported
by GangSTR were genotyped by STRetch. Overall these re-
sults show that GangSTR provides a more comprehensive
analysis of genome-wide TR variation.

To validate putative expansions identified by GangSTR,
we examined long read data from WGS for NA12878 gen-
erated using Pacific Biosciences (PacBio) (43) and Oxford
Nanopore Technologies (ONT) (44). For each of the 56 TRs
with at least one allele longer than the read length, we ex-
tracted regions of PacBio and ONT reads overlapping the
TR and determined the repeat length supported by each
read (Methods). In 53/56 cases with supporting reads from
PacBio, at least one read showed evidence of an allele longer
than 101 bp (46/56 for ONT) (Supplementary Table S2).
ONT showed less evidence of expansions, perhaps due to a
deletion bias. Both long read technologies exhibit high error
rates at homopolymer runs (45), resulting in messy sequence
within repeats themselves (Figure 5B).

In addition to using raw long reads for comparison, we
extracted repeat regions from error-corrected phased haplo-
type assemblies of NA12878 generated using TrioCanu (38).
We used the phased assemblies to estimate diploid repeat
lengths at each candidate expansion (Supplementary Table
S2). Overall, repeat lengths reported by GangSTR are sim-
ilar to those extracted from haplotype-resolved assemblies
(Pearson r = 0.84, P = 9.0e–13 for the smaller allele in each
genotype, and Pearson r = 0.76, P = 1.1e–9 for the larger al-
lele). Notably, several experimentally validated expansions
reported by GangSTR (see below) are not supported by as-
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Figure 4. Genome-wide TR genotyping. (A) Composition of TRs in the hg19 reference genome. The x-axis gives the motif length and the y-axis (log10
scale) gives the number of TRs in the genome. Colored bars represent TRs overlapping various genomic annotations (blue = coding, orange = 5’ UTR,
green = 3’ UTR, red = intronic, purple = intergenic). (B) Mendelian inheritance of GangSTR genotypes in a CEU trio as a function of the number of
informative read pairs. Colors denote repeat lengths. Solid lines give mean Mendelian inheritance rate across all TRs, computed based on 95% confidence
intervals as described in Methods. Dashed lines are computed after excluding loci where all three samples were homozygous for the reference allele. (C)
Overlap between TRs genotyped by HipSTR and GangSTR. (D) Comparison of HipSTR and GangSTR genotypes. The x-axis and y-axis show the sum
of the two allele lengths genotyped by HipSTR and GangSTR in bp relative to the hg19 reference genome (dosage), respectively. The size of the bubble
represents the number of points at that coordinate.

Figure 5. Discovery and validation of genome-wide TR expansions. (A) Comparison of STRetch and GangSTR estimated repeat lengths. The x-axis shows
the estimated repeat number returned by STRetch. The y-axis shows the estimated repeat number of the longest of two alleles reported as the maximum
likelihood genotype by GangSTR. Only TRs called by both tools and passing all GangSTR filters are shown. The gray dashed line shows the diagonal.
(B) Example sequence at a candidate TR expansion. The reference sequence and representative reads from PacBio (top) and ONT (bottom) for NA12878
are shown for a locus where GangSTR predicted a 48bp expansion from the reference genome. Instances of the repeat motif are shown in red. (C, D) For
each of the TRs shown, left plots compare GangSTR genotypes to those predicted by long reads. Red dots give the maximum likelihood repeat lengths
predicted by GangSTR and red lines give the 95% confidence intervals for each allele. Black histograms give the distribution of repeat lengths supported
by PacBio (top) and ONT (bottom) reads. The black arrow denotes the length in hg19. The right plots show PCR product sizes for each TR as estimated
using capillary electrophoresis. Left bands show the ladder and right bands show product sizes in NA12878. Green and purple bands show the lower and
upper limits of the ladder, respectively. Red arrows and numbers give product sizes expected for the two alleles called by GangSTR.

sembled haplotypes (Figure 5C, Supplementary Table S2,
Supplementary Figure S12), even when they were evident
in raw reads. These TRs may represent regions that could
not be fully phased by assembly methods, and highlight a
current limitation of long read assemblies at highly variable
repeat regions.

Finally, for a subset of 11 candidate expansions, we addi-
tionally performed capillary electrophoresis to measure TR
lengths (Methods, Supplementary Table S5). Capillary re-
sults showed evidence of long alleles for the majority (9/11)
of TRs (Figure 5C, D, Supplementary Figure S12). Notably,
expanded TRs proved difficult to amplify and capillary re-

sults in some cases did not clearly indicate two distinct al-
lele lengths. Further, in some cases GangSTR, PacBio and
ONT gave discordant results, with either strikingly differ-
ent repeat lengths or an ambiguous signal that could not
be resolved using capillary electrophoresis (Supplementary
Figure S12). Still, the majority of long TRs identified by
GangSTR were validated by at least one of these orthogo-
nal technologies. Taken together, these results demonstrate
GangSTR’s ability to identify novel expanded TRs from
genome-wide data and highlight the challenges in precisely
validating TR lengths at these loci.



PAGE 11 OF 13 Nucleic Acids Research, 2019, Vol. 47, No. 15 e90

DISCUSSION

A unified framework for genotyping a wide range of TRs

Our study presents GangSTR, a novel tool for genotyp-
ing TRs from NGS data. GangSTR is a flexible tool that
can be used for a variety of applications, including genome-
wide TR genotyping, targeted detection of TR expansions
at known pathogenic loci, and genome-wide discovery of
novel TR expansions. We show that GangSTR outperforms
existing tools in both speed and accuracy in a range of set-
tings using simulated and real NGS datasets. We applied
GangSTR genome-wide to genotype hundreds of thou-
sands of TRs in a deeply sequenced healthy trio. We iden-
tified dozens of long repeat alleles which were confirmed
by orthogonal long read and capillary electrophoresis tech-
nologies.

GangSTR outperforms state of the art methods for char-
acterizing TR expansions from NGS (Figure 3). Our tar-
geted simulation analyses demonstrate that GangSTR pro-
duced accurate TR length estimates in a range of set-
tings, including unexpanded genotypes and genotypes that
are either heterozygous or homozygous for long alleles.
GangSTR’s advantage becomes more pronounced for TRs
with longer normal-length alleles. ExpansionHunter (28)
does not accurately genotype TRs heterozygous for two
long alleles since its model is primarily based on sequencing
coverage. Our model overcomes this limitation by incorpo-
rating orthogonal information available from spanning read
pairs. While Tredparse (27) similarly models observed frag-
ment lengths for spanning read pairs, it does not analyze
read pairs where both reads are mapped to off-target re-
gions, and cannot genotype TRs longer than the fragment
length.

Beyond TR expansions implicated in Mendelian disor-
ders, mounting evidence suggests that thousands of TRs
genome-wide contribute to polygenic phenotypes such as
gene expression (12). Accurate genome-wide TR geno-
typing will be critical for performing association studies
to identify these TRs and quantify their contribution to
common disease. GangSTR extends our existing methods
for genome-wide TR genotyping to accommodate repeats
longer than the read length and identifies tens of thousands
of TRs that were missed by HipSTR (19).

Genome-wide analysis additionally allows for identify-
ing novel pathogenic TR expansions or expansions present
in healthy genomes. While existing tools allow for this,
they do not produce genome-wide TR length estimates.
STRetch (26) identifies novel expansions, but requires a
time-consuming and memory intensive step to realign raw
reads to a modified reference sequence containing decoy re-
gions. Due to compute requirements, performing realign-
ment is often not feasible to implement in high-throughput
pipelines. Additionally, STRetch only identifies a subset of
TR alleles that are expanded from the repeat sequence, and
thus cannot be used to obtain accurate diploid TR lengths.
exSTRa (25) can also be used to find novel expansions, but
requires a matched control cohort to identify expansions
and reports only expansion status, rather than TR length
estimates. On the other hand, GangSTR generates unbiased
TR length estimates genome-wide, which can be used in di-

verse downstream applications such as association testing
or discovery of Mendelian disease loci. Further, GangSTR
is far more efficient, taking around 16.6 CPU-hours to run
on a single genome compared to days for competing meth-
ods.

Remaining challenges in TR genotyping

Genome-wide TR genotyping still faces several impor-
tant limitations. First, all tools described here, including
GangSTR, require a TR panel based on the reference
genome as input. Thus they are not able to genotype TRs
that are not properly assembled in the reference genome.
Additionally, TRs with complex structures, such as se-
quence imperfections, highly repetitive flanking regions, or
multiple different adjacent repeating motifs, are ambiguous
to define and their boundaries depend highly on the choice
of parameters used to create the reference. Complex TRs are
a source of errors in GangSTR genotypes. Our realignment
step relies on aligning reads to an artificial reference cre-
ated for each possible TR allele by stitching together perfect
repetitions of the TR motif. Because of this design choice,
repetitive motifs in the flanking regions surrounding a TR
locus can reduce robustness of the realignment step. We at-
tempt to filter most of these regions from our reference set
to avoid TRs that cannot be reliably called. A more complex
model is required to account for these regions.

Most previous tools focused on STRs with motifs up
to 6bp. Here, we have expanded our reference to include
VNTRs with motifs up to 20bp. This limit can theoret-
ically be expanded. However, longer motifs tend to have
more complex imperfections. Additionally, several aspects
of GangSTR’s model rely on identifying several copies of
a repeat unit in a single read (e.g. enclosing and flanking
reads). Thus accuracy is likely to decrease slightly at longer
motifs.

Second, due to a lack of large ground truth datasets
our validation experiments relied heavily on simulated data.
These simulations assume uniform coverage and do not
capture many error modes present in real data such as PCR,
GC biases, or DNA degradation.

Third, some TRs are still not adequately captured by
short reads. For example, TRs in regions with extremely
high GC content are often very poorly covered due to bi-
ases induced by PCR and other sequencing steps. Further-
more, TRs with highly repetitive flanking regions are still
inaccessible due to poor sequence alignment of anchor-
ing or spanning reads. Additionally, while GangSTR can
genotype TRs well beyond the fragment length, it still pro-
duces noisy estimates at extremely long TRs (e.g. thousands
of bp), especially when both alleles are long. We suspect
this is primarily due to variance in FRR coverage which
grows linearly with total repeat length. While some of these
challenges may be overcome with improved modeling tech-
niques, some TRs are likely to remain out of reach using
NGS.

Finally, for some repeats we could not obtain reliable
genotypes using any technology, including short reads, long
reads, or PCR methods. This may be due to a combination
of difficulty amplifying highly repetitive regions, difficulty
sequencing complex repeats, or high error rates in long read
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data. Additionally, some unstable repeats may exhibit high
rates of somatic variation (46,47), rendering the notion of a
‘correct’ genotype meaningless. Indeed, for several loci we
saw evidence of a spectrum of repeat numbers in all tech-
nologies tested. GangSTR could be extended in the future
to incorporate somatic mosaicism into its model.

Some of the limitations mentioned above could be over-
come using long read technologies such as PacBio or ONT.
However, we focused on Illumina short reads here as Illu-
mina is rapidly becoming the clinical standard and remains
unmatched in cost and accuracy. It is likely that hybrid ap-
proaches combining both short and long read data will pro-
vide the greatest accuracy.

CONCLUSION

Overall, GangSTR allows rapid and accurate genotyping of
both short and expanded TRs and can be readily applied to
large NGS cohorts to enable novel genetic discoveries across
a broad range of applications.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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