
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Large-scale sparse regression models under weak assumptions

Permalink
https://escholarship.org/uc/item/0bm0j7z0

Author
Raskutti, Garvesh

Publication Date
2012
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0bm0j7z0
https://escholarship.org
http://www.cdlib.org/


Large-scale sparse regression models under weak assumptions

by

Garvesh Raskutti

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

and the Designated Emphasis

in

Communication, Computation and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Bin Yu, Professor Martin Wainwright, Co-chairs
Professor Noureddine El Karoui
Professor Laurent El Ghaoui

Fall 2012



Large-scale sparse regression models under weak assumptions

Copyright 2012
by

Garvesh Raskutti



1

Abstract

Large-scale sparse regression models under weak assumptions

by

Garvesh Raskutti

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Professor Martin Wainwright, Co-chairs

Many modern problems in science and other areas involve extraction of useful information
from so-called ’big data.’ However, many classical statistical techniques are not equipped
to meet with the challenges posed by big data problems. Furthermore, existing statistical
methods often result in intractable algorithms. Consequently the last 15−20 years has seen a
flurry of research on adapting existing methods and developing new methods that overcome
some of the statistical and computational challenges posed by problems involving big data.

Regression is one of the oldest statistical techniques. For many modern regression prob-
lems involving big datasets, the number of predictors or covariates d is large compared the
number of samples n, causing significant computational and statistical challenges. To over-
come these challenges, many researchers have proposed imposing sparsity on the vector of
regression co-efficients β ∈ Rd. Furthermore, researchers have proposed using ℓ1-based con-
vex penalties for estimating β under the sparsity assumption since they yield implementable
algorithms with desirable performance guarantees. While there was already an established
body of work on developing procedures for sparse regression models, most existing results
rely on very restrictive model assumptions. These assumptions are often not satisfied for
many scientific problems. In this thesis, we relax 3 restrictive model assumptions that are
commonly imposed in the literature for estimating sparse regression models.

The 3 assumptions are: (1) Strict sparsity, that is the vector of regression co-efficients β
contains only a small number of non-zeros; (2) The covariates or predictors are independent;
(3) Response depends linearly on covariates. Given that these 3 model assumptions are
often not satisfied for many practical settings, it is important to understand whether existing
theoretical results exhibit robustness to these assumptions.

In Chapter 2, we impose a weaker notion of sparsity known as ℓq-ball sparsity on β which
ensures the vector of regression co-efficients lies in an ℓq ball, but need not have any non-
zeros. We prove that under the weaker ℓq-ball sparsity assumption, it is possible to develop
estimators with desirable mean-squared error behavior, even in the regime where d ≫ n.

The weakest known condition under which the Lasso achieves optimal mean-squared
error rate is the restricted eigenvalue condition [84, 11, 64]. Existing results prove that in
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cases when the covariates are independent, the restricted eigenvalue condition is satisfied.
However, the setting when predictors or covariates are correlated are also of interest and
there was considerably less work dealing with this case. In Chapter 3, we prove that the
restricted eigenvalue condition is satisfied for various correlated Gaussian designs, including
time series models, spiked covariance models and others.

Finally, in Chapter 4 we analyze sparse additive models, a non-parametric analog of
sparse linear models, in which each component function lies in an ellipsoid or more formally
a Reproducing kernel Hilbert space H. Hence we weaken the assumption that our response
depends on the covariate via a linear function. A new ℓ1-based polynomial-time method is
developed and we prove that this method has desirable mean-squared error performance,
even when d ≫ n. Furthermore, we prove lower bounds on the mean-squared error for
estimating sparse additive models that match the upper bounds for our method. Hence our
algorithm is optimal in terms of mean-squared error rate.
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Chapter 1

Introduction

With the rapid advancement of web-based technologies, we now have unprecedented ac-
cess to massive amounts of data. With this data deluge, we as individuals, organizations,
and researchers are constantly trying to find more efficient ways to extract relevant infor-
mation from the mass of available data. Companies such as Netflix and Amazon are aiming
to develop good recommender systems for individuals based on data from millions of users
and products. Medical researchers are using data from the entire human genome to pinpoint
causes for cancer and other genetic diseases. These are just some of the problems where we
encounter the challenge of trying to automatically extract useful information from a massive
dataset.

Given the sheer size and complexity of the datasets, automatically extracting useful in-
formation present a number of challenges including: (i) developing quantitative models that
pinpoints the relevant information; and (ii) implementing these models given limited com-
putational resources. Prior to the data deluge that begun in the 1990s, statistical methods
were mainly developed for problems involving smaller datasets. Hence, these earlier methods
are often not equipped to meet the challenges posed by modern large-scale data problems.
Consequently the last 20 years have seen a large amount of research addressing some of the
challenges posed by problems involving large datasets.

There are a number of approaches for addressing the first challenge of developing quan-
titative models for information extraction. A general framework that has been applied with
some success is the principle of parsimony. The principle of parsimony arises from ’Oc-
cam’s Razor,’ which can be summarized as ’other things being equal, a simpler explanation
is better than a more complex one.’ Simple explanations are desirable in terms of human
interpretability, since they are easier for individuals to parse and may often capture most of
the relevant information within the data. If we consider the problem of developing movie
recommendations for an individual based on the ratings of over millions of users for millions
of films, one might expect that a small number of factors such as genre, actors, directors
and others would capture most of the relevant information. Simple explanations are also
attractive from a statistical and computational perspective. From a statistical point of view,
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simple models are less prone to overfit data than large complex models. The benefit from
a computational perspective is that once a simple explanation is found, data storage and
processing becomes much more straightforward. In this thesis, we apply the principle of
parsimony to analyze and develop methods for regression problems involving large data.

A naiive approach for finding simple models for large datasets is to exhaustively search
over all possible models. As you can imagine, for large complicated datasets, there are often
millions or even trillions of different models. Consider the problem of predicting whether a
patient has a type of cancer based on data consisting of gene expression measurements for
approximately 50, 000 genes, which is a common scenario in medical research. Any subset of
the 50, 000 genes is a reasonable model for prediction and if we wanted to find the best one,
we would need to search over 250,000 models which is several orders of magnitude greater than
the number of atoms in the universe. Hence, an exhaustive search is clearly impossible. As
a result, computation and algorithmic issues have started to play a more significant role in
the development of statistical methods and ideas from convex optimization, approximation
algorithms and computer science theory have been applied to large-scale statistical inference
problems. This marriage of ideas between statistical methods and computation has seen the
development of a number of computationally efficient algorithms for finding parsimonious
models, even when datasets contain many more than 50, 000 predictors.

The focus of this thesis is on developing and analyzing parsimonious regression models
for large-scale inference problems. Regression is one of the simplest and most widely used
statistical methods. The goal of regression is to predict a response y based on predictors
[x1, x2, ..., xd]. In the next section we illustrate how Occam’s Razor, combined with ideas from
convex optimization may be used to develop methods for large-scale regression problems.
First we provide a brief overview of past work. We then describe the main contributions of
this thesis. A high-level summary of the challenge we address in this thesis is as follows:
while a lot of progress has been made on the problem of estimating sparse or parsimonious
regression models, most existing approaches rely on the data satisfying restrictive model
assumptions including (1) the predictors being independent; (2) the response is dependent
on only a small number of predictors; and (3) the relationship between the response and
the predictors follows a parametric linear model. Many real-world scientific problems do not
satisfy these assumptions and it is vital to develop reliable methods for these settings. In
this thesis, we develop and analyze statistical models for reliably estimating sparse regression
models when each of the 3 aforementioned assumptions is relaxed.

1.1 Sparse regression models

Regression is one of the oldest statistical methods, dating back to the early 1800’s when Leg-
endre and Gauss used the method of least-squares to determine the orbits of bodies around
the sun. Since regression problems have arisen so frequently over the last two centuries,
there is a large body of work on how and when to use different regression approaches. How-
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ever prior to the 1990s, regression was generally applied to problems where the number of
predictors d was quite small, on the order 5− 100. Now, with the vastly increasing size and
complexity of datasets arising, the number of predictors d may be 1000’s or even millions.
When the number of predictors is so large, classical approaches require a large number of
samples n which are often not available, and even if samples were available, fitting such a
large regression model is computationally intensive.

To deal with these statistical and computational issues, for problems where the number
of predictors d is large, a common statistical goal is to provide domain experts with simple,
interpretable models which require fewer samples and less computation. This is where it is
useful to combine the principle of parsimony with classical regression models. Applying this
principle, one often aims to find the sparsest regression model that explains the data, that is
the model containing the smallest numbers of predictors capturing the relevant information
to predict y. Returning to the problem of determining whether a patient has a type of
cancer based on the expression level of 50, 000 genes, the principle of parsimony would imply
the response might only depend on a small handful of genes are useful predictors. The
challenge then is to find a good small subset of genes. Classical approaches to finding a good
small set of predictors involved using model selection methods such as Akaike Information
Criterion [2], Bayesian Information Criterion [79] and minimum description length [73], which
involve exhaustively searching over all 2d subsets. As discussed earlier, such approaches are
not feasible when d is large meaning new efficient approaches were required for finding sparse
models.

Consequently, ideas from optimization theory have been successfully used to develop com-
putationally efficient methods for estimating sparse regression models. In particular, instead
of finding the best model over all 2d models, many researchers have proposed optimizing
over a convex set of models that encourages sparse solutions. There are a number of fast
algorithms for optimization over convex sets [15] meaning convex methods can be applied to
much larger problems than methods that involve exhaustive combinatorial searches. As a re-
sult methods that use convex algorithms are becoming increasingly popular in statistics. One
of the best known convex method for estimating sparse regression models is the Lasso [82]
(basis pursuit in the noiseless case [23]). The Dantzig selector [19] is another well-known
convex approach that has many similar properties to the Lasso (see e.g. [11]). There has
been a large body of work demonstrating that in addition to their computational benefits,
the Lasso and Dantzig selectors have a number of desirable properties from an estimation
and interpretation perspective (see e.g. [11, 60, 84, 90, 95, 97]).

While the use of convex methods for estimating sparse regression models has lead to
reliable, computationally-efficient methods, there still remain a number of unresolved issues.
One of the most significant issues is that existing analysis of convex methods rely on restric-
tive model assumptions including the 3 assumptions listed in the previous section. There are
numerous important real-world regression problems that do not satisfy these aforementioned
assumptions. Hence it is vital to develop methods that apply even when these assumptions
do not hold. In this thesis, we provide analysis and methodology with provable guarantees
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in terms of ℓ2 error and ℓ2-prediction error for estimation of sparse regression models when
we relax each of the aforementioned restrictive model assumptions. In the next section, we
provide a summary of how we relax the 3 model assumptions and outline the main technical
contributions of this thesis.

1.2 Contributions of this thesis

In this section, we provide a summary for Chapters 2, 3, and 4. First we describe each of
the assumptions, explain how we weaken each assumption, and then summarize our results
under the weakened assumptions.

1.2.1 Chapter 2: From strict to weak sparsity

Let us consider the standard linear model for regression:

y =

d∑

j=1

βjxj + w,

where w is Gaussian noise. Recall that we are most interested in the setting where d is large
relative to the number of samples n. Strict sparsity requires that most of the βj ’s are 0 or
equivalently most of the xj’s have absolutely no effect on the response y. Requiring that
most predictors have no effect on the response may be too restrictive for some problems. In
image analysis for example, it is standard that co-efficients for images expressed in a wavelet
basis exhibit sharp decay, but need not be exactly 0 (see e.g Hyvärinen at al. [46]). Hence a
weaker form of sparsity that allows many of the predictors to be weekly correlated with the
response is more appropriate.

In Chapter 2 in this thesis, we impose a weaker notion of sparsity by assuming the vector
of regression co-efficients β = [β1, β2, ..., βd] ∈ Rd lies in an ℓq-ball where 0 < q ≤ 1. ℓq-

ball sparsity requires that ‖β‖qq : =
∑d

j=1 |βj|q is bounded. Hence the regression co-efficients
decay at a rate that is determined by q but none of the co-efficients need to be 0 exactly. We
demonstrate in Chapter 2 that a number of desirable properties exhibited by strictly sparse
models, also hold under weak ℓq-ball sparsity.

More concretely, we study the minimax error rate for estimating the regression parameter
β = [β1, β2, ...βd] ∈ Rd both in terms of ℓ2-error and ℓ2-prediction error, assuming that β
belongs to an ℓq-ball Bq(Rq) = {β ∈ Rd | ‖β‖qq ≤ Rq} for some q ∈ [0, 1]. We show that
under suitable regularity conditions on the predictors [x1, x2, ..., xd], the optimal minimax

rates in both ℓ2 and ℓ2-prediction error scale as Rq

(
log d
n

)1− q
2 .

Our proofs of the lower bounds are information-theoretic in nature, based on Fano’s
inequality and results on the metric entropy of the balls Bq(Rq), whereas our proofs of the
upper bounds are constructive, involving direct analysis of the least-squares estimator over
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ℓq-balls. Subsequent work by Negahban et al. [64] demonstrates that the Lasso estimator
achieves the optimal mean-squared error rate under ℓq-ball sparsity. Hence it is possible to
reliable estimate β under ℓq sparsity even when d is much larger than the sample size n.

One of the main contributions of this chapter is that we carefully characterize the con-
ditions on the design matrix X ∈ Rn×d = [x1, x2, ..., xd] required for minimax optimal rates.
Our analysis reveals that conditions on the design matrix X enter into the error rates for
parameter estimation and prediction error in complementary ways in the upper and lower
bounds. Our results also show that although computationally efficient convex methods can
achieve the minimax rates up to constant factors, they require slightly stronger assump-
tions on the covariates [x1, x2, ..., xd] than optimal algorithms involving least-squares over
the ℓq-ball.

1.2.2 Chapter 3: From independent to correlated predictors

Existing analysis on estimation of sparse regression models impose identifiability assump-
tions on the predictors [x1, x2, ..., xd] that are proven only to be satisfied if all d predictors
are independent. In particular, well-known conditions such as restricted isometry property
(RIP) [20], the irrepresentable condition [97], restricted eigenvalue (RE) [11, 84], restricted
nullspace (RN) [25, 29, 33]. In particular, the RE condition is the weakest known condition
for establishing optimal mean-squared error rate in the noisy setting, and RN is the weakest
known condition for exact recovery in the noiseless setting. Previous results have shown that
RE and RN conditions are satsified when all d predictors are independent. There has been
considerably less work on understanding whether such identifiability conditions are satisfied
when predictors are correlated.

In practice, it is rare that predictors are independent and they often exhibit a specific
correlation structure (e.g. time series, spatial etc.). Hence it is important to understand
whether existing identifiability assumptions hold when predictors may be correlated. In
Chapter 3, we demonstrate that the RE and RN conditions are satisfied in many settings
when predictors are correlated.

In particular, we prove directly that the RN and RE conditions hold with high probability
for quite general classes of Gaussian matrices where each row has covariance Σ ∈ Rd×d for
which the predictors may be highly dependent. Examples not covered by previous results
include when Σ is a Toeplitz matrix, a spiked covariance matrix, or any positive definite
matrix. In this way, our results extend the attractive theoretical guarantees for ℓ1-based
methods to a much broader class of problems than the case of completely independent or
unitary designs.

1.2.3 Chaoter 4: From linear to non-parametric models

There is a large body work on estimating sparse regression models under the assumption
that the response variable y depends linearly on the predictors. While linear models are
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useful for many problems, non-parametric models are more suitable when the nature of
the relation between the response and predictors is unknown. In a recent problem, Vu et
al. [87] demonstrate that a sparse non-parametric model substantially outperforms existing
parametric approaches in their problem involving image reconstruction using fMRI data.

While there has been some work on developing and analyzing sparse non-linear regres-
sion models (see e.g. [50, 54, 58, 71, 94]), the guarantees for practical problems that use
high-dimensional non-parametric models and associated algorithms are considerably less un-
derstood compared to sparse linear models. In Chapter 4 we analyze and develop a new
method for estimating sparse additive models, a sparse non-parametric model.

Sparse additive models are families of d-variate functions with the additive decomposition
f(x1, x2, ..., xd) =

∑
j∈S fj(xj), where S is an unknown subset of cardinality s ≪ d. Sparse

additive models are a non-parametric analog of sparse linear models, where for linear models
we would assume each univariate function fj is linear. In Chapter 4, we consider the case
where each fj lies in a reproducing kernel Hilbert space (RKHS) H, and analyze a method
for estimating the unknown function f based on kernels combined with a convex penalty.
Working within a framework that allows both the dimension d and sparsity s to increase
with n, we derive sharp bounds on both the mean-squared prediction error and population
integrated mean-squared error over the class of sparse additive models.

The mean-sqaured error rate is s log d
n

+ sδ2n, where δ2n is the mean-squared error rate for
estimating a single univariate function in the RKHS H. Our result captures the intuition
that estimating sparse additive models decomposes into two low-dimensional sub-problems,
a subset selection problem that has mean-squared error s log d

n
, and an s-variate estimation

problem that has mean-squared error sδ2n. We complement our upper bounds by deriving
lower bounds, thereby showing the optimality of our method. Thus, we obtain optimal
mean-sqaured error rates for many interesting classes of sparse additive models, including
polynomials, splines, and Sobolev classes.

One of the main challenges in proving our upper bound was that many existing results
for non-parametric problems rely on a global boundedness assumption on the function f . We
prove that if instead of our conditions on each univariate function fj , the d-variate function
class Fd,s,H is assumed to be globally bounded, then much faster mean-squared error rates
are possible for any sparsity s = Ω(

√
n). Hence we prove that global boundedness is a

significant restriction in the setting where both s and d scale with n. Proving optimal upper
bounds with only our univariate conditions requires new techniques that we present and
discuss in Chapter 4.
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Chapter 2

Minimax rates of estimation for weak
ℓq-ball sparse high-dimensional linear
regression

2.1 Outline

As was discussed in the introductory chapter, there has been an active line of research in high-
dimensional inference is based on imposing various types of structural constraints, including
sparsity, manifold structure, or Markov conditions, and then studying the performance of
different estimators. For instance, in the case of models with some type of sparsity constraint,
a great deal of work has studied the behavior of ℓ1-based relaxations. Complementary to the
understanding of computationally efficient procedures are the fundamental or information-
theoretic limitations of statistical inference, applicable to any algorithm regardless of its
computational cost. There is a rich line of statistical work on such fundamental limits,
an understanding of which can have two types of consequences. First, they can reveal
gaps between the performance of an optimal algorithm compared to known computationally
efficient methods. Second, they can demonstrate regimes in which practical algorithms
achieve the fundamental limits, which means that there is little point in searching for a more
effective algorithm. As we shall see, the results in this chapter lead to understanding of both
types.

2.1.1 Problem set-up

The focus of this chapter is a canonical instance of a high-dimensional inference problem,
namely that estimating a high-dimensional regression vector β∗ ∈ Rd with sparsity con-
straints based on observations from a linear model. In this problem, we observe a pair
(y,X) ∈ Rn × Rn×d, where X is the design matrix and y is a vector of response variables.



CHAPTER 2 8

These quantities are linked by the standard linear model

y = Xβ∗ + w, (2.1)

where w ∼ N(0, σ2In×n) is observation noise. The goal is to estimate the unknown vector
β∗ ∈ Rd of regression coefficients. The sparse instance of this problem, in which the regression
vector β∗ satisfies some type of sparsity constraint, has been investigated extensively over
the past decade. A variety of practical algorithms have been proposed and studied, many
based on ℓ1-regularization, including basis pursuit [23], the Lasso [82, 23], and the Dantzig
selector [20]. Various authors have obtained convergence rates for different error metrics,
including ℓ2-norm error [11, 20, 60, 95], prediction loss [11, 36, 84], as well as model selection
consistency [59, 90, 95, 97]. In addition, a range of sparsity assumptions have been analyzed,
including the case of hard sparsity meaning that β∗ has exactly s ≪ d non-zero entries, or
soft sparsity assumptions, based on imposing a certain decay rate on the ordered entries of
β∗. Intuitively, soft sparsity means that while many of the co-efficients of the co-variates may
be non-zero, many of the co-variates only make a small overall contribution to the model,
which may be more applicable in some practical settings.

Sparsity constraints One way in which to capture the notion of sparsity in a precise
manner is in terms of the ℓq-balls

1 for q ∈ [0, 1], defined as

Bq(Rq) : =
{
β ∈ Rd | ‖β‖qq : =

d∑

j=1

|βj|q ≤ Rq

}
.

Note that in the limiting case q = 0, we have the ℓ0-ball

B0(s) : =
{
β ∈ Rd |

d∑

j=1

I[βj 6= 0] ≤ s
}
,

which corresponds to the set of vectors β with at most s non-zero elements. For q ∈ (0, 1],
membership of β in Bq(Rq) enforces a “soft” form of sparsity, in that all of the coefficients
of β may be non-zero, but their absolute magnitude must decay at a relatively rapid rate.
This type of soft sparsity is appropriate for various applications of high-dimensional linear
regression, including image denoising, medical reconstruction and database updating, in
which exact sparsity is not realistic.

Loss functions We consider estimators β̂ : Rn × Rn×d → Rd that are measurable functions
of the data (y,X). Given any such estimator of the true parameter β∗, there are many
criteria for determining the quality of the estimate. In a decision-theoretic framework, one

1Strictly speaking, these sets are not “balls” when q < 1, since they fail to be convex.
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introduces a loss function such that L(β̂, β∗) represents the loss incurred by estimating β̂
when β∗ ∈ Bq(Rq) is the true parameter. In the minimax formalism, one seeks to choose an
estimator that minimizes the worst-case loss given by

min
β̂

max
β∗∈Bq(Rq)

L(β̂, β∗). (2.2)

Note that the quantity (2.2) is random since β̂ depends on the noise w, and therefore,
we must either provide bounds that hold with high probability or in expectation. In this
chapter, we provide results that hold with high probability, as shown in the statements our
main results in results in Theorems 7 through 4.

Moreover, various choices of the loss function are possible, including (i) themodel selection

loss, which is zero if and only if the support supp(β̂) of the estimate agrees with the true
support supp(β∗), and one otherwise; (ii) the ℓ2-loss

L2(β̂, β
∗) : = ‖β̂ − β∗‖22 =

d∑

j=1

|β̂j − β∗
j |22, (2.3)

and (iii) the ℓ2-prediction loss ‖X(β̂ − β∗)‖22/n. The information-theoretic limits of model
selection have been studied extensively in past work (e.g., [89, 3, 91]); in contrast, the analysis
of this paper is focused on understanding the minimax rates associated with the ℓ2-loss and
the ℓ2-prediction loss.

More precisely, the goal of this paper is to provide upper and lower bounds on the
following four forms of minimax risk:

M2(Bq(Rq), X) : = min
β̂

max
β∗∈Bq(Rq)

‖β̂ − β∗‖22,

M2(B0(s), X) : = min
β̂

max
β∗∈B0(s)

‖β̂ − β∗‖22,

Mn(Bq(Rq), X) : = min
β̂

max
β∗∈Bq(Rq)

1

n
‖X(β̂ − β∗)‖22,

Mn(B0(s), X) : = min
β̂

max
β∗∈B0(s)

1

n
‖X(β̂ − β∗)‖22.

These quantities correspond to all possible combinations of minimax risk involving either
the ℓ2-loss or the ℓ2-prediction loss, and with either hard sparsity (q = 0) or soft sparsity
(q ∈ (0, 1]).
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2.1.2 Our contributions

The main contributions are derivations of optimal minimax rates both for ℓ2-norm and
ℓ2-prediction losses, and perhaps more significantly, a thorough characterization of the con-
ditions that are required on the design matrix X in each case. The core of the paper consists
of four main theorems, corresponding to upper and lower bounds on minimax rate for the
ℓ2-norm loss (Theorems 7 and 2 respectively) and upper and lower bounds on ℓ2-prediction
loss (Theorems 3 and Theorem 4) respectively. We note that for the linear model (3.1), the
special case of orthogonal design X =

√
nIn×n (so that n = d necessarily holds) has been

extensively studied in the statistics community (for example, see the papers [13, 30, 8] as well
as references therein). In contrast, our emphasis is on the high-dimensional setting d > n,
and our goal is to obtain results for general design matrices X .

More specifically, in Theorem 7, we provide lower bounds for the ℓ2-loss that involves
a maximum of two quantities: a term involving the diameter of the null-space restricted
to the ℓq-ball, measuring the degree of non-identifiability of the model, and a term arising
from the ℓ2-metric entropy structure for ℓq-balls, measuring the complexity of the parameter
space. Theorem 2 is complementary in nature, devoted to upper bounds that obtained by
direct analysis of a specific estimator. We obtain upper and lower bounds that match up
to factors that independent of the triple (n, d, Rq), but depend on constants related to the
structure of the design matrix X (see Theorems 7 and 2). Finally, Theorems 3 and 4 are
for ℓ2-prediction loss. For this loss, we provide upper and lower bounds on minimax rates
that are again matching up to factors independent of (n, d, Rq), but dependent again on the
conditions of the design matrix.

A key part of our analysis is devoted to understanding the link between the prediction
semi-norm—more precisely, the quantity ‖Xθ‖2/

√
n—and the ℓ2 norm ‖θ‖2. In the high-

dimensional setting (with X ∈ Rn×d with d ≫ n), these norms are in general incomparable,
since the design matrix X has a null-space of dimension at least d−n. However, for analyzing
sparse linear regression models, it is sufficient to study the approximate equivalence of these
norms only for elements θ lying in the ℓq-ball, and this relationship between the two semi-
norms plays an important role for the proofs of both the upper and the lower bounds. Indeed,
for Gaussian noise models, the prediction semi-norm ‖X(β − β∗)‖2/

√
n corresponds to the

square-root Kullback-Leibler divergence between the distributions on y indexed by β and β∗,
and so reflects the discriminability of these models. Our analysis shows that the conditions
on X enter in quite a different manner for ℓ2-norm and prediction losses. In particular, for
the case q > 0, proving upper bounds on ℓ2-norm error and lower bounds on prediction error
require relatively strong conditions on the design matrixX , whereas lower bounds on ℓ2-norm
error and upper bounds on prediction error require only a very mild column normalization
condition.

The proofs for the lower bounds in Theorems 7 and 3 involve a combination of a standard
information-theoretic techniques (e.g. [12, 41, 92]) with results in the approximation theory
literature (e.g., [38, 51]) on the metric entropy of ℓq-balls. The proofs for the upper bounds
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in Theorems 2 and 4 involve direct analysis of the least-squares optimization over the ℓq-ball.
The basic idea involves concentration results for Gaussian random variables and properties
of the ℓ1-norm over ℓq-balls (see Lemma 5).

The remainder of this paper is organized as follows. In Section 4.3, we state our main
results and discuss their consequences. While we were writing up the results of this paper, we
became aware of concurrent work by Zhang [96], and we provide a more detailed discussion
and comparison in Section 2.2.5, following the precise statement of our results. In addition,
we also discuss a comparison between the conditions on X imposed in our work, and related
conditions imposed in the large body of work on ℓ1-relaxations. In Section 3.4, we provide
the proofs of our main results, with more technical aspects deferred to the appendices.

2.2 Main results and their consequences

This section is devoted to the statement of our main results, and discussion of some of their
consequences. We begin by specifying the conditions on the high-dimensional scaling and the
design matrix X that enter different parts of our analysis, before giving precise statements
of our main results.

2.2.1 Assumptions on design matrices

Let X(i) denote the ith row of X and Xj denote the jth column of X . Our first assumption,
which remains in force throughout most of our analysis, is that the columns {Xj, j = 1, . . . , d}
of the design matrix X are bounded in ℓ2-norm.

Asumption 1 (Column normalization). There exists a constant 0 < κc < +∞ such that

1√
n

max
j=1,...,d

‖Xj‖2 ≤ κc. (2.4)

This is a fairly mild condition, since the problem can always be normalized to ensure that
it is satisfied. Moreover, it would be satisfied with high probability for any random design
matrix for which 1

n
‖Xj‖22 = 1

n

∑n
i=1X

2
ij satisfies a sub-exponential tail bound. This column

normalization condition is required for all the theorems except for achievability bounds for
ℓ2-prediction error when q = 0.

We now turn to a more subtle condition on the design matrix X :
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Asumption 2 (Bound on restricted lower eigenvalue). For q ∈ (0, 1], there exists a constant
κℓ > 0 and a function fℓ(Rq, n, d) such that

‖Xθ‖2√
n

≥ κℓ

(
‖θ‖2 − fℓ(Rq, n, d)

)
(2.5)

for all θ ∈ Bq(2Rq).

A few comments on this assumption are in order. For the case q > 0, this assumption is
imposed when deriving upper bounds for the ℓ2-error and lower bounds for ℓ2-prediction error.
It is required in upper bounding ℓ2-error because for any two distinct vectors β, β ′ ∈ Bq(Rq),
the prediction semi-norm ‖X(β − β ′)‖2/

√
n is closely related to the Kullback-Leibler diver-

gence, which quantifies how distinguishable β is from β ′ in terms of the linear regression
model. Indeed, note that for fixed X and β, the vector Y ∼ N (Xβ, σ2In×n), so that the
Kullback-Leibler divergence between the distributions on Y indexed by β and β ′ is given by
1

2σ2 ‖X(β − β ′)‖22. Thus, the lower bound (2.5), when applied to the difference θ = β − β ′,
ensures any pair (β, β ′) that are well-separated in ℓ2-norm remain well-separated in the
ℓ2-prediction semi-norm. Interestingly, Assumption 2 is also essential in establishing lower
bounds on the ℓ2-prediction error. Here the reason is somewhat different—namely, it ensures
that the set Bq(Rq) still suitably “large” when its diameter is measured in the ℓ2-prediction
semi-norm. As we show, it is this size that governs the difficulty of estimation in the predic-
tion semi-norm.

The condition (2.5) is almost equivalent to bounding the smallest singular value of
X/

√
n restricted to the set Bq(2Rq). Indeed, the only difference is the “slack” provided

by fℓ(Rq, n, d). The reader might question why this slack term is actually needed. In fact,
it is essential in the case q ∈ (0, 1], since the set Bq(2Rq) spans all directions of the space
Rd. (This is not true in the limiting case q = 0.) Since X must have a non-trivial null-space
when d > n, the condition (2.5) can never be satisfied with fℓ(Rq, n, d) = 0 whenever d > n
and q ∈ (0, 1].

Interestingly, for appropriate choices of the slack term fℓ(Rq, n, d), the restricted eigen-
value condition is satisfied with high probability for many random matrices, as shown by the
following result.

Proposition 1. Consider a random matrix X ∈ Rn×d formed by drawing each row i.i.d. from

a N (0,Σ) distribution with maximal variance ρ2(Σ) = max
j=1,...,d

Σjj. If
ρ(Σ)

λmin(
√
Σ)
Rq

(
log d
n

)1/2−q/4
<

c1 for a sufficiently small universal constant c1 > 0, then

‖Xθ‖2√
n

≥ λmin(Σ
1/2)

4
‖θ‖2 − 18 ρ(Σ) Rq

( log d
n

)1−q/2
, (2.6)

for all θ ∈ Bq(2Rq) with probability at least 1− c2 exp(−c3n).



CHAPTER 2 13

An immediate consequence of the bound (2.6) is that Assumption 2 holds with

fℓ(Rq, n, d) = c
ρ(Σ)

λmin(Σ1/2)
Rq

( log d
n

)1−q/2

(2.7)

for some universal constant c. We make use of this condition in Theorems 2(a) and 3(a) to
follow. The proof of Proposition 1, provided in the Appendix in Raskutti et al. [67]. In the
same paper, on pp. 2248 − 49 it is demonstrated that there are many interesting classes of
non-identity covariance matrices, among them Toeplitz matrices, constant correlation ma-
trices and spiked models, to which Proposition 1 can be applied.

For the special case q = 0, the following conditions are needed for upper and lower bounds
in ℓ2-norm error, and lower bounds in ℓ2-prediction error.

Asumption 3 (Sparse Eigenvalue Conditions).

(a) There exists a constant κu < +∞ such that

1√
n
‖Xθ‖2 ≤ κu ‖θ‖2 for all θ ∈ B0(2s). (2.8)

(b) There exists a constant κ0,ℓ > 0 such that

1√
n
‖Xθ‖2 ≥ κ0,ℓ ‖θ‖2 for all θ ∈ B0(2s). (2.9)

Assumption 2 adapted to the special case of q = 0 corresponding to exactly sparse mod-
els; however, in this case, no slack term fℓ(Rq, n, d) is involved. As we discuss at more
length in Section 2.2.5, Assumption 3 is closely related to conditions imposed in analyses of
ℓ1-based relaxations, such as the restricted isometry property [20] as well as related but less
restrictive sparse eigenvalue conditions [11, 60, 84]. Unlike the restricted isometry property,
Assumption 3 does not require that the constants κu and κ0,ℓ are close to one; indeed, they
can be arbitrarily large (respectively small), as long as they are finite and non-zero. In this
sense, it is most closely related to the sparse eigenvalue conditions introduced by Bickel et
al. [11], and we discuss these connections at more length in Section 2.2.5. The set B0(2s)
is a union of 2s-dimensional subspaces, which does not span all direction of Rd. Since the
condition may be satisfied for d > n, no slack term fℓ(Rq, n, d) is required in the case q = 0.

In addition, our lower bounds on ℓ2-error involve the set defined by intersecting the null
space (or kernel) of X with the ℓq-ball, which we denote by Nq(X) : = Ker(X) ∩ Bq(Rq). We
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define the Bq(Rq)-kernel diameter in the ℓ2-norm as

diam2(Nq(X)) : = max
θ∈Nq(X)

‖θ‖2 = max
‖θ‖qq≤Rq,
Xθ=0

‖θ‖2. (2.10)

The significance of this diameter should be apparent: for any “perturbation” ∆ ∈ Nq(X),
it follows immediately from the linear observation model (3.1) that no method could ever
distinguish between β∗ = 0 and β∗ = ∆. Consequently, this Bq(Rq)-kernel diameter is a
measure of the lack of identifiability of the linear model (3.1) over the set Bq(Rq).

It is useful to recognize that Assumptions 2 and 3 are closely related to the diameter
condition (2.10); in particular, these assumptions imply an upper bound bound on the
Bq(Rq)-kernel diameter in ℓ2-norm, and hence limit the lack of identifiability of the model.

Lemma 1 (Bounds on non-identifiability).
(a) Case q ∈ (0, 1]: If Assumption 2 holds, then the Bq(Rq)-kernel diameter is upper bounded
as

diam2(Nq(X)) = O(fℓ(Rq, n, d)).

(b) Case q = 0: If Assumption 3(b) is satisfied, then diam2(N0(X)) = 0. (In words, the only
element of B0(2s) in the kernel of X is the 0-vector.)

These claims follow in a straightforward way from the definitions given in the assump-
tions. In Section 2.2.5, we discuss further connections between our assumptions, and the
conditions imposed in analysis of the Lasso and other ℓ1-based methods [11, 20, 59, 64], for
the case q = 0.

2.2.2 Universal constants and non-asymptotic statements

Having described our assumptions on the design matrix, we now turn to the main results
that provide upper and lower bounds on minimax rates. Before doing so, let us clarify our
use of universal constants in our statements. Our main goal is to track the dependence of
minimax rates on the triple (n, d, Rq), as well as the noise variance σ2 and the properties of
the design matrix X . In our statement of the minimax rates themselves, we use c to denote
a universal positive constant that is independent of (n, d, Rq), the noise variance σ2 and
the parameters of the design matrix X . In this way, our minimax rates explicitly track the
dependence of all of these quantities in a non-asymptotic manner. In setting up the results,
we also state certain conditions that involve a separate set of universal constants denoted
c1, c2 etc.; these constants are independent of (n, d, Rq) but may depend on properties of the
design matrix.
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In this paper, our primary interest is the high-dimensional regime in which d ≫ n. Our
theory is non-asymptotic, applying to all finite choices of the triple (n, d, Rq). Throughout
the analysis, we impose the following conditions on this triple. In the case q = 0, we
require that the sparsity index s = R0 satisfies d ≥ 4s ≥ c2. These bounds ensure that our
probabilistic statements are all non-trivial (i.e., are violated with probability less than 1).
For q ∈ (0, 1], we require that for some choice of universal constants c1, c2 > 0 and δ ∈ (0, 1),
the triple (n, d, Rq) satisfies

d

Rqnq/2

(i)

≥ c1 d
δ

(ii)

≥ c2. (2.11)

The condition (ii) ensures that the dimension d is sufficiently large so that our probabilistic
guarantees are all non-trivial (i.e., hold with probability strictly less than 1). In the regime
d > n that is of interest in this paper, the condition (i) on (n, d, Rq) is satisfied as long as
the radius Rq does not grow too quickly in the dimension d. (As a concrete example, the

bound Rq ≤ c3d
1

2
−δ′ for some δ′ ∈ (0, 1/2) is one sufficient condition.)

2.2.3 Optimal minimax rates in ℓ2-norm loss

We are now ready to state minimax bounds, and we begin with lower bounds on the ℓ2-norm
error:

Theorem 1 (Lower bounds on ℓ2-norm error). Consider the linear model (3.1) for a fixed
design matrix X ∈ Rn×d.

(a) Case q ∈ (0, 1]: Suppose that X is column-normalized (Assumption 1 holds with κc < ∞),
and Rq(

log d
n

)1−q/2 < c1 for a universal constant c1. Then

M2(Bq(Rq), X) ≥ c max
{
diam2

2(Nq(X)), Rq

(σ2

κ2
c

log d

n

)1−q/2}
(2.12)

with probability greater than 1/2.

(b) Case q = 0: Suppose that Assumption 3(a) holds with κu > 0, and s log(d/s)
n

< c1 for a
universal constant c1. Then

M2(B0(s), X) ≥ c max
{
diam2

2(N0(X)),
σ2

κ2
u

s log(d/s)

n

}
(2.13)

with probability greater than 1/2.
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The choice of probability 1/2 is a standard convention for stating minimax lower bounds
on rates.2 Note that both lower bounds consist of two terms. The first term corresponds
to the diameter of the set Nq(X) = Ker(X) ∩ Bq(Rq), a quantity which reflects the extent
which the linear model (3.1) is unidentifiable. Clearly, one cannot estimate β∗ any more
accurately than the diameter of this set. In both lower bounds, the ratios σ2/κ2

c (or σ2/κ2
u)

correspond to the inverse of the signal-to-noise ratio, comparing the noise variance σ2 to the
magnitude of the design matrix measured by κu, since constants cq and c0 do not depend on
the design X . As the proof will clarify, the term [log d]1−

q
2 in the lower bound (2.12), and

similarly the term log(d
s
) in the bound (2.13), are reflections of the complexity of the ℓq-ball,

as measured by its metric entropy. For many classes of random Gaussian design matrices,
the second term is of larger order than the diameter term, and hence determines the rate.

We now state upper bounds on the ℓ2-norm minimax rate over ℓq balls. For these results,
we require the column normalization condition (Assumption 1), and Assumptions 2 and 3.
The upper bounds are proven by a careful analysis of constrained least-squares over the set
Bq(Rq)—namely, the estimator

β̂ ∈ arg min
β∈Bq(Rq)

‖y −Xβ‖22. (2.14)

Theorem 2 (Upper bounds on ℓ2-norm loss). Consider the model (3.1) with a fixed design
matrix X ∈ Rn×d that is column-normalized (Assumption 1 with κc < ∞).

(a) For q ∈ (0, 1]: Suppose that Rq(
log d
n

)1−q/2 < c1 and X satisfies Assumption 2 with κℓ > 0

and fℓ(Rq, n, d) ≤ c2Rq(
log d
n

)1−q/2. Then

M2(Bq(Rq), X) ≤ c Rq

[κ2
c

κ2
ℓ

σ2

κ2
ℓ

log d

n

]1−q/2

(2.15)

with probability greater than 1− c3 exp (−c4 log d).

(b) For q = 0: Suppose that X satisfies Assumption 3(b) with κ0,ℓ > 0. Then

M2(B0(s), X) ≤ c
κ2
c

κ2
0,ℓ

σ2

κ2
0,ℓ

s log d

n
(2.16)

2This probability may be made arbitrarily close to 1 by suitably modifying the constants in the statement.
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with probability greater than 1− c1 exp (−c2 log d). If, in addition, the design matrix satisfies
Assumption 3(a) with κu < ∞, then

M2(B0(s), X) ≤ c
κ2
u

κ2
0,ℓ

σ2

κ2
0,ℓ

s log(d/s)

n
, (2.17)

this bound holding with probability greater than 1− c1 exp (−c2s log(d/s)).

In the case of ℓ2-error and design matrices X that satisfy the assumptions of both The-
orems 7 and 2, these results identify the minimax optimal rate up to constant factors. In
particular, for q ∈ (0, 1], the minimax rate in ℓ2-norm scales as

M2(Bq(Rq), X) = Θ
(
Rq

[σ2 log d

n

]1−q/2)
, (2.18)

whereas for q = 0, the minimax ℓ2-norm rate scales as

M2(B0(s), X) = Θ
(σ2 s log(d/s)

n

)
. (2.19)

2.2.4 Optimal minimax rates in ℓ2-prediction norm

In this section, we investigate minimax rates in terms of the ℓ2-prediction loss ‖X(β̂−β∗)‖22/n,
and provide both lower and upper bounds on it. The rates match the rates for ℓ2, but the
conditions on design matrix X enter the upper and lower bounds in a different way, and we
discuss these complementary roles in Section 2.2.6.

Theorem 3 (Lower bounds on prediction error). Consider the model (3.1) with a fixed de-
sign matrix X ∈ Rn×d that is column-normalized (Assumption 1 with κc < ∞).

(a) For q ∈ (0, 1]: Suppose that Rq(
log d
n

)1−q/2 < c1, and the design matrix X satisfies As-

sumption 2 with κℓ > 0 and fℓ(Rq, n, d) < c2Rq(
log d
n

)1−q/2. Then

Mn(Bq(Rq), X) ≥ c Rq κ
2
ℓ

[σ2

κ2
c

log d

n

]1−q/2

(2.20)

with probability at least 1/2.
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(b) For q = 0: Suppose that X satisfies Assumption 3(b) with κ0,ℓ > 0 and Assumption 3(a)

with κu < ∞, and that s log(d/s)
n

< c1, for some universal constant c1. Then

Mn(B0(s), X) ≥ c κ2
0,ℓ

σ2

κ2
u

s log(d/s)

n
(2.21)

with probability least 1/2.

In the other direction, we state upper bounds obtained via analysis of least-squares
constrained to the ball Bq(Rq), a procedure previously defined (2.14).

Theorem 4 (Upper bounds on prediction error). Consider the model (3.1) with a fixed de-
sign matrix X ∈ Rn×d.

(a) Case q ∈ (0, 1]: If X satisfies the column normalization condition, then with probability
at least 1− c1 exp (−c2Rq(log d)

1−q/2nq/2), we have

Mn(Bq(Rq), X) ≤ c κ2
c Rq

[σ2

κ2
c

log d

n

]1− q
2

. (2.22)

(b) Case q = 0: For any X, with probability greater than 1− c1 exp (−c2s log(d/s)), we have

Mn(B0(s), X) ≤ c
σ2 s log(d/s)

n
. (2.23)

We note that Theorem 4(b) was stated and proven in Bunea et. al [10] (see Theorem
3.1). However, we have included the statement here for completeness and so as to facilitate
discussion.

2.2.5 Some remarks and comparisons

In order to provide the reader with some intuition, let us make some comments about the
scalings that appear in our results. We comment on the conditions we impose on X in the
next section.

• For the case q = 0, there is a concrete interpretation of the rate s log(d/s)
n

, which appears

in Theorems 7(b), 2(b), 3(b) and 4(b). Note that there are
(
d
s

)
subsets of size s

within {1, 2, . . . , d}, and by standard bounds on binomial coefficients [26], we have

log
(
d
s

)
= Θ(s log(d/s)). Consequently, the rate s log(d/s)

n
corresponds to the log number

of models divided by the sample size n. Note that in the regime where d/s ∼ dγ for
some γ > 0, this rate is equivalent (up to constant factors) to s log d

n
.
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• For q ∈ (0, 1], the interpretation of the rate Rq

(
log d
n

)1−q/2
, which appears in parts (a) of

Theorems 7 through 4 can be understood as follows. Suppose that we choose a subset
of size sq of coefficients to estimate, and ignore the remaining d − sq coefficients. For
instance, if we were to choose the top sq coefficients of β∗ in absolute value, then the
fast decay imposed by the ℓq-ball condition on β∗ would mean that the remaining d−sq
coefficients would have relatively little impact. With this intuition, the rate for q > 0

can be interpreted as the rate that would be achieved by choosing sq = Rq

(
log d
n

)−q/2
,

and then acting as if the problem were an instance of a hard-sparse problem (q = 0)
with s = sq. For such a problem, we would expect to achieve the rate sq log d

n
, which is

exactly equal to Rq

(
log d
n

)1−q/2
. Of course, we have only made a very heuristic argument

here; we make this truncation idea and the optimality of the particular choice sq precise
in Lemma 5 to follow in the sequel.

• It is also worthwhile considering the form of our results in the special case of the
Gaussian sequence model, for which X =

√
nIn×n and d = n. With these special

settings, our results yields the same scaling (up to constant factors) as seminal work
by Donoho and Johnstone [30], who determined minimax rates for ℓp-losses over ℓq-
balls. Our work applies to the case of general X , in which the sample size n need not
be equal to the dimension d; however, we re-capture the same scaling (Rq(

logn
n

)1−q/2))
as Donoho and Johnstone [30] when specialized to the case X =

√
nIn×n and ℓp = ℓ2.

Other work by van de Geer and Loubes [55] derives bounds on prediction error for
general thresholding estimators, again in the case d = n, and our results agree in this
particular case as well.

• As noted in the introduction, during the process of writing up our results, we became
aware of concurrent work by Zhang [96] on the problem of determining minimax upper
and lower bounds for ℓp-losses with ℓq-sparsity for q > 0 and p ≥ 1. There are
notable differences between our and Zhang’s results. First, we treat the ℓ2-prediction
loss not covered by Zhang, and also show how assumptions on the design X enter in
complementary ways for ℓ2-loss versus prediction loss. We also have results for the
important case of hard sparsity (q = 0), not treated in Zhang’s paper. On the other
hand, Zhang provides tight bounds for general ℓp-losses (p ≥ 1), not covered in this
paper. It is also worth noting that the underlying proof techniques for the lower bounds
are very different. We use a direct information-theoretic approach based on Fano’s
method and metric entropy of ℓq-balls. In contrast, Zhang makes use of an extension
of the Bayesian least favorable prior approach used by Donoho and Johnstone [30].
Theorems 1 and 2 from his paper [96] (in the case p = 2) are similar to Theorems 1(a)
and 2(a) in our paper, but the conditions on the design matrix X imposed by Zhang
are different from the ones imposed here. Furthermore, the conditions in Zhang are
not directly comparable so it is difficult to say whether our conditions are stronger or
weaker than his.
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• Finally, in the special cases q = 0 and q = 1, subsequent work by Rigollet and Tsy-
bakov [72] has yielded sharper results on the prediction error (compare our Theorems 3
and 4 to equations (5.24) and (5.25) in their paper). They explicitly take effects of the
rank of X into account, yielding tighter rates in the case rank(X) ≪ n. In contrast,
our results are based on the assumption rank(X) = n, which holds in many cases of
interest.

2.2.6 Role of conditions on X

In this subsection, we discuss the conditions on the design matrix X involved in our analysis,
and the different roles that they play in upper/lower bounds and different losses.

Upper and lower bounds require complementary conditions

It is worth noting that the minimax rates for ℓ2-prediction error and ℓ2-norm error are
essentially the same except that the design matrix structure enters minimax rates in very
different ways. In particular, note that proving lower bounds on prediction error for q > 0
requires imposing relatively strong conditions on the designX—namely, Assumptions 1 and 2
as stated in Theorem 3. In contrast, obtaining upper bounds on prediction error requires
very mild conditions. At the most extreme, the upper bound for q = 0 in Theorem 3 requires
no assumptions on X while for q > 0 only the column normalization condition is required.
All of these statements are reversed for ℓ2-norm losses, where lower bounds for q > 0 can be
proved with only Assumption 1 on X (see Theorem 7), whereas upper bounds require both
Assumptions 1 and 2.

In order to appreciate the difference between the conditions for ℓ2-prediction error and ℓ2
error, it is useful to consider a toy but illuminating example. Consider the linear regression
problem defined by a design matrix X =

[
X1 X2 · · · Xd

]
with identical columns—that

is, Xj = X̃1 for all j = 1, . . . , d. We assume that vector X̃1 ∈ Rd is suitably scaled so
that the column-normalization condition (Assumption 1) is satisfied. For this particular

choice of design matrix, the linear observation model (3.1) reduces to y = (
∑d

j=1 β
∗
j )X̃1 +w.

For the case of hard sparsity (q = 0), an elementary argument shows that the minimax
rate in ℓ2-prediction error scales as Θ( 1

n
). This scaling implies that the upper bound (2.23)

from Theorem 4 holds (but is not tight). It is trivial to prove the correct upper bounds
for prediction error using an alternative approach. 3 Consequently, this highly degenerate
design matrix yields a very easy problem for ℓ2-prediction, since the 1/n rate is essentially
low-dimensional parametric. In sharp contrast, for the case of ℓ2-norm error (still with hard
sparsity q = 0), the model becomes unidentifiable. To see the lack of identifiability, let
ei ∈ Rd denote the unit-vector with 1 in position i, and consider the two regression vectors

3Note that the lower bound (2.21) on the ℓ2-prediction error from Theorem 3 does not apply to this
model, since this degenerate design matrix with identical columns does not satisfy Assumption 3(b).



CHAPTER 2 21

β∗ = c e1 and β̃ = c e2, for some constant c ∈ R. Both choices yield the same observation
vector y, and since the choice of c is arbitrary, the minimax ℓ2-error is infinite. In this case,
the lower bound (2.13) on ℓ2-error from Theorem 7 holds (and is tight, since the kernel
diameter is infinite). In contrast, the upper bound (2.16) on ℓ2-error from Theorem 2(b)
does not apply, because Assumption 3(b) is violated due to the extreme degeneracy of the
design matrix.

Comparison to conditions required for ℓ1-based methods

Naturally, our work also has some connections to the vast body of work on ℓ1-based methods
for sparse estimation, particularly for the case of hard sparsity (q = 0). Based on our results,
the rates that are achieved by ℓ1-methods, such as the Lasso and the Dantzig selector, are
minimax optimal up to constant factors for ℓ2-norm loss, and ℓ2-prediction loss. However the
bounds on ℓ2-error and ℓ2-prediction error for the Lasso and Dantzig selector require different
conditions on the design matrix. We compare the conditions that we impose in our minimax
analysis in Theorem 2(b) to various conditions imposed in the analysis of ℓ1-based methods,
including the restricted isometry property of Candes and Tao [20], the restricted eigenvalue
condition imposed in Meinshausen and Yu [60], the partial Riesz condition in Zhang and
Huang [95] and the restricted eigenvalue condition of Bickel et al. [11]. We find that in
the case where s is known, “optimal” methods which are based on minimizing least-squares
directly over the ℓ0-ball, can succeed for design matrices where ℓ1-based methods are not
known to work for q = 0, as we discuss at more length in Section 2.2.6 to follow. As noted by
a reviewer, unlike the direct methods that we have considered, ℓ1-based methods typically
do not assume any prior knowledge of the sparsity index, but they do require knowledge or
estimation of the noise variance.

One set of conditions, known as the restricted isometry property [20] or RIP for short,
is based on very strong constraints on the condition numbers of all sub-matrices of X up
to size 2s, requiring that they be near-isometries (i.e., with condition numbers close to 1).
Such conditions are satisfied by matrices with columns that are all very close to orthogonal
(e.g., when X has i.i.d. N(0, 1) entries and n = Ω(log

(
d
2s

)
)), but are violated for many

reasonable matrix classes (e.g., Toeplitz matrices) that arise in statistical practice. Zhang
and Huang [95] imposed a weaker sparse Riesz condition, based on imposing constraints
(different from those of RIP) on the condition numbers of all submatrices of X up to a size
that grows as a function of s and n. Meinshausen and Yu [60] impose a bound in terms of
the condition numbers or minimum and maximum restricted eigenvalues for submatrices of
X up to size s logn. It is unclear whether the conditions in Meinshausen and Yu [60] are
weaker or stronger than the conditions in Zhang and Huang [95]. Bickel et al. [11] show that
their restricted eigenvalue condition is less severe than both the RIP condition [20] and an
earlier set of restricted eigenvalue conditions due to Meinshausen and Yu [60].

Here we state a restricted eigenvalue condition that is very closely related to the condition
imposed in Bickel et. al [11], and as shown by Negahban et. al [64], and is sufficient for
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bounding the ℓ2-error in the Lasso algorithm. In particular, for a given subset S ⊂ {1, . . . , d}
and constant α ≥ 1, let us define the set

C(S;α) : =
{
θ ∈ Rd | ‖θSc‖1 ≤ α ‖θS‖1 + 4‖β∗

Sc‖1
}
, (2.24)

where β∗ is the true parameter. Note that for q = 0, the term ‖β∗
Sc‖1 = 0 which is very

closely related to the restricted eigenvalue condition in Bickel et al. [11], while for q ∈ (0, 1],
this term is non-zero. With this notation, the restricted eigenvalue condition in Negahban
et al. [64] can be stated as follows: there exists a constant κ > 0 such that

1√
n
‖Xθ‖2 ≥ κ‖θ‖2 for all θ ∈ C(S; 3).

Negahban et. al [64] show that under this restricted eigenvalue condition, the Lasso estimator
has squared ℓ2-error upper bounded by O

(
Rq(

log d
n

)1−q/2
)
. (To be clear, Negahban et al. [64]

study a more general class of M-estimators, and impose a condition known as restricted
strong convexity; however, it reduces to an RE condition in this special case.) For the case
q ∈ (0, 1], the analogous restricted lower eigenvalue condition we impose is Assumption 2.
Recall that this states that for q ∈ (0, 1], the eigenvalues restricted to the set

{θ ∈ Rd | θ ∈ Bq(2Rq) and ‖θ‖2 ≥ fℓ(Rq, n, d)}

remain bounded away from zero. Both conditions impose lower bounds on the restricted
eigenvalues over sets of weakly sparse vectors.

Comparison with restricted eigenvalue condition

It is interesting to compare the restricted eigenvalue condition in Bickel et al. [11] with
the condition underlying Theorem 2, namely Assumption 3(b). In the case q = 0, the
condition required by the estimator that performs least-squares over the ℓ0-ball—namely,
the form of Assumption 3(b) used in Theorem 2(b)—is not stronger than the restricted
eigenvalue condition in Bickel et al. [11]. This fact was previously established by Bickel
et al. (see p.7, [11]). We now provide a simple pedagogical example to show that the ℓ1-
based relaxation can fail to recover the true parameter while the optimal ℓ0-based algorithm
succeeds. In particular, let us assume that the noise vector w = 0, and consider the design
matrix

X =

[
1 −2 −1
2 −3 −3

]
,

corresponding to a regression problem with n = 2 and d = 3. Say that the regression
vector β∗ ∈ R3 is hard sparse with one non-zero entry (i.e., s = 1). Observe that the
vector ∆ :=

[
1 1/3 1/3

]
belongs to the null-space of X , and moreover ∆ ∈ C(S; 3) but

∆ /∈ B0(2). All the 2 × 2 sub-matrices of X have rank two, we have B0(2) ∩ ker(X) = {0},
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so that by known results from Cohen et. al. [25] (see, in particular, their Lemma 3.1), the
condition B0(2) ∩ ker(X) = {0} implies that (in the noiseless setting w = 0), the ℓ0-based
algorithm can exactly recover any 1-sparse vector. On the other hand, suppose that, for
instance, the true regression vector is given by β∗ =

[
1 0 0

]
. If the Lasso were applied to

this problem with no noise, it would incorrectly recover the solution β̂ : =
[
0 −1/3 −1/3

]
,

since ‖β̂‖1 = 2/3 < 1 = ‖β∗‖1.
Although this example is low-dimensional with (s, d) = (1, 3), higher-dimensional exam-

ples of design matrices that satisfy the conditions required for the minimax rate but not
satisfied for ℓ1-based methods may be constructed using similar arguments. This construc-
tion highlights that there are instances of design matrices X for which ℓ1-based methods fail
to recover the true parameter β∗ for q = 0 while the optimal ℓ0-based algorithm succeeds.

In summary, for the hard sparsity case q = 0, methods based on ℓ1-relaxation can achieve
the minimax optimal rate O

(
s log d

n

)
for ℓ2-error. However the current analyses of these ℓ1-

methods [11, 20, 60, 84] are based on imposing stronger conditions on the design matrix
X than those required by the estimator that performs least-squares over the ℓ0-ball with s
known.

2.3 Proofs of main results

In this section, we provide the proofs of our main theorems, with more technical lemmas
and their proofs deferred to the appendices. To begin, we provide a high-level overview that
outlines the main steps of the proofs.

2.3.1 Basic steps for lower bounds

The proofs for the lower bounds follow an information-theoretic method based on Fano’s
inequality [26], as used in classical work on nonparametric estimation [47, 92, 93]. A key
ingredient is a sharp characterization of the metric entropy structure of ℓq balls [21, 51]. At
a high-level, the proof of each lower bound follows three basic steps. The first two steps are
general and apply to all the lower bounds in this paper, while the third is different in each
case:

(1) In order to lower bound the minimax risk in some norm ‖ · ‖∗, we let M(δn,Bq(Rq))
be the cardinality of a maximal packing of the ball Bq(Rq) in the norm ‖ · ‖∗, say with
elements {β1, . . . , βM}. A precise definition of a packing set is provided in the next
section. A standard argument (e.g., [42, 92, 93]) yields a lower bound on the minimax
rate in terms of the error in a multi-way hypothesis testing problem: in particular, the
probability P

[
minβ̂ maxβ∈Bq(Rq) ‖β̂− β‖2∗ ≥ δ2n/4

]
is at most minβ̃ P[β̃ 6= B], where the

random vector B ∈ Rd is uniformly distributed over the packing set {β1, . . . , βM}, and
the estimator β̃ takes values in the packing set.
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(2) The next step is to derive a lower bound on P[B 6= β̃]; in this paper, we make use of
Fano’s inequality [26]. Since B is uniformly distributed over the packing set, we have

P[B 6= β̃] ≥ 1− I(y;B) + log 2

logM(δn,Bq(Rq))
,

where I(y;B) is the mutual information between random parameter B in the packing
set and the observation vector y ∈ Rn. (Recall that for two random variables X and
Y , the mutual information is given by I(X, Y ) = EY [D(PX|Y ‖PX)].) The distribution
PY |B is the conditional distribution of Y on B, where B is the uniform distribution on
β over the packing set and Y is the gaussian distribution induced by model (3.1).

(3) The final and most challenging step involves upper bounding I(y;B) so that P[β̃ 6=
B] ≥ 1/2. For each lower bound, the approach to upper bounding I(y;B) is slightly
different. Our proof for q = 0 is based on Generalized Fano method [41], whereas for
the case q ∈ (0, 1], we upper bound I(y;B) by a more intricate technique introduced
by Yang and Barron [92]. We derive an upper bound on the ǫn-covering set for Bq(Rq)
with respect to the ℓ2-prediction semi-norm. Using Lemma 3 in Section 2.3.3 and the
column normalization condition (Assumption 1), we establish a link between covering
numbers in ℓ2-prediction semi-norm to covering numbers in ℓ2-norm. Finally, we choose
the free parameters δn > 0 and ǫn > 0 so as to optimize the lower bound.

2.3.2 Basic steps for upper bounds

The proofs for the upper bounds involve direct analysis of the natural estimator that performs
least-squares over the ℓq-ball:

β̂ ∈ arg min
‖β‖qq≤Rq

‖y −Xβ‖22.

The proof is constructive and involves two steps, the first of which is standard while the
second step is more specific to each problem:

(1) Since ‖β∗‖qq ≤ Rq by assumption, it is feasible for the least-squares problem, meaning

that we have ‖y − Xβ‖22 ≤ ‖y − Xβ∗‖22. Defining the error vector ∆̂ = β̂ − β∗ and
performing some algebra, we obtain the inequality

1

n
‖X∆̂‖22 ≤

2|wTX∆̂|
n

.

(2) The second and more challenging step involves computing upper bounds on the supre-

mum of the Gaussian process over Bq(2Rq), which allows us to upper bound |wTX∆̂|
n

.
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For each of the upper bounds, our approach is slightly different in the details. Common
steps include upper bounds on the covering numbers of the ball Bq(2Rq), as well as on
the image of these balls under the mapping X : Rd → Rn. We also make use of some
chaining and peeling results from empirical process theory (e.g., van de Geer [83]).
For upper bounds in ℓ2-norm error (Theorem 2), Assumptions 2 for q > 0 and 3(b)

for q = 0 are used to upper bound ‖∆̂‖22 in terms of 1
n
‖X∆̂‖22.

2.3.3 Packing, covering, and metric entropy

The notion of packing and covering numbers play a crucial role in our analysis, so we begin
with some background, with emphasis on the case of covering/packing for ℓq-balls in ℓ2
metric.

Definition 1 (Covering and packing numbers). Consider a compact metric space consisting
of a set S and a metric ρ : S × S → R+.

(a) An ǫ-covering of S in the metric ρ is a collection {β1, . . . , βN} ⊂ S such that for all
β ∈ S, there exists some i ∈ {1, . . . , N} with ρ(β, βi) ≤ ǫ. The ǫ-covering number
N(ǫ;S, ρ) is the cardinality of the smallest ǫ-covering.

(b) A δ-packing of S in the metric ρ is a collection {β1, . . . , βM} ⊂ S such that ρ(βi, βj) > δ
for all i 6= j. The δ-packing number M(δ;S, ρ) is the cardinality of the largest δ-
packing.

It is worth noting that the covering and packing numbers are (up to constant factors)
essentially the same. In particular, the inequalities

M(ǫ;S, ρ) ≤ N(ǫ;S, ρ) ≤ M(ǫ/2;S, ρ)

are standard (e.g., [66]). Consequently, given upper and lower bounds on the covering
number, we can immediately infer similar upper and lower bounds on the packing number.
Of interest in our results is the logarithm of the covering number logN(ǫ;S, ρ), a quantity
known as the metric entropy.

A related quantity, frequently used in the operator theory literature [21, 51, 78], are the
(dyadic) entropy numbers ǫk(S; ρ), defined as follows for k = 1, 2, . . .

ǫk(S; ρ) : = inf
{
ǫ > 0 | N(ǫ;S, ρ) ≤ 2k−1

}
. (2.25)

By definition, note that we have ǫk(S; ρ) ≤ δ if and only if log2N(δ;S, ρ) ≤ k. For the
remainder of this paper, the only metric used will be ρ = ℓ2, so to simplify notation, we
denote the ℓ2-packing and covering numbers by M(ǫ;S) and N(ǫ;S).
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Metric entropies of ℓq-balls

Central to our proofs is the metric entropy of the ball Bq(Rq) when the metric ρ is the ℓ2-
norm, a quantity which we denote by logN(ǫ;Bq(Rq)). The following result, which provides
upper and lower bounds on this metric entropy that are tight up to constant factors, is
an adaptation of results from the operator theory literature [38, 51]; see the Appendix of
Raskutti et al. [68] for the details. All bounds stated here apply to a dimension d ≥ 2.

Lemma 2. For q ∈ (0, 1] there is a constant Uq, depending only on q, such that for all

ǫ ∈ [UqRq
1/q

(
log d
d

) 2−q
2q , Rq

1/q], we have

logN(ǫ;Bq(Rq)) ≤ Uq

(
Rq

2

2−q
(1
ǫ

) 2q
2−q log d

)
. (2.26)

Conversely, suppose in addition that ǫ < 1 and ǫ2 = Ω
(
R

2/(2−q)
q

log d
dν

)1− q
2 for some fixed ν ∈

(0, 1), depending only on q. Then there is a constant Lq ≤ Uq, depending only on q, such
that

logN(ǫ;Bq(Rq)) ≥ Lq

(
Rq

2

2−q
(1
ǫ

) 2q
2−q log d

)
. (2.27)

Remark: In our application of the lower bound (2.27), our typical choice of ǫ2 will be of

the order O
(
log d
n

)1− q
2 . It can be verified that under the condition (3.10) from Section 2.2.2,

we are guaranteed that ǫ lies in the range required for the upper and lower bounds (2.26)
and (2.27) to be valid.

Metric entropy of q-convex hulls

The proofs of the lower bounds all involve the Kullback-Leibler (KL) divergence between
the distributions induced by different parameters β and β ′ in Bq(Rq). Here we show that
for the linear observation model (3.1), these KL divergences can be represented as q-convex
hulls of the columns of the design matrix, and provide some bounds on the associated metric
entropy.

For two distributions P and Q that have densities dP and dQ with respect to some base
measure µ, the Kullback-Leibler (KL) divergence is given by D(P ‖Q) =

∫
log dP

dQ
P(dµ). We

use Pβ to denote the distribution of y ∈ R under the linear regression model—in particular,
it corresponds to the distribution of a N(Xβ, σ2In×n) random vector. A straightforward
computation then leads to

D(Pβ ‖Pβ′) =
1

2σ2
‖Xβ −Xβ ′‖22.

Note that the KL-divergence is proportional to the squared prediction semi-norm. Hence
control of KL-divergences are equivalent up to constant to control of the prediction semi-
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norm. Control of KL-divergences requires understanding of the metric entropy of the q-
convex hull of the rescaled columns of the design matrix X . In particular, we define the
set

absconvq(X/
√
n) : =

{ 1√
n

d∑

j=1

θjXj | θ ∈ Bq(Rq)
}
. (2.28)

We have introduced the normalization by 1/
√
n for later technical convenience.

Under the column normalization condition, it turns out that the metric entropy of this
set with respect to the ℓ2-norm is essentially no larger than the metric entropy of Bq(Rq), as
summarized in the following

Lemma 3. Suppose that X satisfies the column normalization condition (Assumption 1 with

constant κc) and ǫ ∈ [UqRq
1/q

(
log d
d

) 2−q
2q , Rq

1/q]. Then there is a constant U ′
q depending only

on q ∈ (0, 1] such that

logN(ǫ, absconvq(X/
√
n)) ≤ U ′

q

[
Rq

2

2−q
(κc

ǫ

) 2q
2−q log d

]
.

The proof of this claim is provided in Appendix A in Raskutti et al. [68]. Note that apart
from a different constant, this upper bound on the metric entropy is identical to that for
logN(ǫ;Bq(Rq)) from Lemma 2.

2.3.4 Proof of lower bounds

We begin by proving our main results that provide lower bounds on minimax rates, namely
Theorems 7 and 3.

Proof of Theorem 7

Recall that for ℓ2-norm error, the lower bounds in Theorem 7 are the maximum of two
expressions, one corresponding to the diameter of the set Nq(X) intersected with the ℓq-ball,
and the other correspond to the metric entropy of the ℓq-ball.

We begin by deriving the lower bound based on the diameter ofNq(X) = Bq(Rq)∩ker(X).
The minimax rate is lower bounded as

min
β̂

max
β∈Bq(Rq)

‖β̂ − β‖22 ≥ min
β̂

max
β∈Nq(X)

‖β̂ − β‖22,

where the inequality follows from the inclusion Nq(X) ⊆ Bq(Rq). For any β ∈ Nq(X), we
have y = Xβ + w = w, so that y contains no information about β ∈ Nq(X). Consequently,

once β̂ is chosen, there always exists an element β ∈ Nq(X) such that ‖β̂ − β‖2 ≥ 1
2
diam2(Nq(X)).
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Indeed, if ‖β̂‖2 ≥ 1
2
diam2(Nq(X)), then the adversary chooses β = 0 ∈ Nq(X). On the

other hand, if ‖β̂‖2 ≤ 1
2
diam2(Nq(X)), then there exists β ∈ Nq(X) such that ‖β‖2 =

diam2(Nq(X)). By triangle inequality, we then have

‖β − β̂‖2 ≥ ‖β‖2 − ‖β̂‖2 ≥
1

2
diam2(Nq(X)).

Overall, we conclude that

min
β̂

max
β∈Bq(Rq)

‖β̂ − β‖22 ≥
{1
2
diam2(Nq(X))

}2
.

In the following subsections, we follow steps (1)–(3) outlined earlier so as to obtain the
second term in our lower bounds on the ℓ2-norm error and the ℓ2-prediction error. As has
already been mentioned, steps (1) and (2) are general, whereas step (3) is different in each
case.

Proof of Theorem 7(a) Let M(δn,Bq(Rq)) be the cardinality of a maximal packing of
the ball Bq(Rq) in the ℓ2 metric, say with elements {β1, . . . , βM}. Then, by the standard
arguments referred to earlier in step (1), we have

P
[
min
β̂

max
β∈Bq(Rq)

‖β̂ − β‖22 ≥ δ2n/4
]
≥ min

β̃
P[β̃ 6= B],

where the random vector B ∈ Rd is uniformly distributed over the packing set {β1, . . . , βM},
and the estimator β̃ takes values in the packing set. Applying Fano’s inequality (step (2))
yields the lower bound

P[B 6= β̃] ≥ 1− I(y;B) + log 2

logM(δn,Bq(Rq))
, (2.29)

where I(y;B) is the mutual information between random parameter B in the packing set
and the observation vector y ∈ Rn.

It remains to upper bound the mutual information (step (3)); we do so using a procedure
due to Yang and Barron [92]. It is based on covering the model space {Pβ, β ∈ Bq(Rq)}
under the square-root Kullback-Leibler divergence. As noted prior to Lemma 3, for the
Gaussian models given here, this square-root KL divergence takes the form

√
D(Pβ ‖Pβ′) =

1√
2σ2

‖X(β − β ′)‖2.

Let N(ǫn;Bq(Rq)) be the minimal cardinality of an ǫn-covering of Bq(Rq) in ℓ2-norm. Using
the upper bound on the metric entropy of absconvq(X) provided by Lemma 3, we conclude
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that there exists a set {Xβ1, . . . , XβN} such that for all Xβ ∈ absconvq(X), there exists
some index i such that ‖X(β − βi)‖2/

√
n ≤ c κc ǫn for some c > 0. Following the argument

of Yang and Barron [92], we obtain that the mutual information is upper bounded as

I(y;B) ≤ logN(ǫn;Bq(Rq)) +
c2 n

σ2
κ2
cǫ

2
n.

Combining this upper bound with the Fano lower bound (2.29) yields

P[B 6= β̃] ≥ 1− logN(ǫn;Bq(Rq)) +
c2 n
σ2 κ

2
c ǫ

2
n + log 2

logM(δn;Bq(Rq))
. (2.30)

The final step is to choose the packing and covering radii (δn and ǫn respectively) such that
the lower bound (2.30) is greater than 1/2. In order to do so, suppose that we choose the
pair (ǫn, δn) such that

c2 n

σ2
κ2
c ǫ

2
n ≤ logN(ǫn,Bq(Rq)), (2.31a)

logM(δn,Bq(Rq)) ≥ 4 logN(ǫn,Bq(Rq)). (2.31b)

As long as N(ǫn,Bq(Rq)) ≥ 2, we are then guaranteed that

P[B 6= β̃] ≥ 1− logN(ǫn,Bq(Rq)) + log 2

4 logN(ǫn,Bq(Rq))
≥ 1/2,

as desired.
It remains to determine choices of ǫn and δn that satisfy the relations (2.31). From

Lemma 2, relation (2.31a) is satisfied by choosing ǫn such that c2 n
2σ2 κ

2
c ǫ

2
n = Lq

[
Rq

2

2−q
(

1
ǫn

) 2q
2−q log d

]
,

or equivalently such that

(
ǫn
) 4

2−q = Θ
(
Rq

2

2−q
σ2

κ2
c

log d

n

)
.

In order to satisfy the bound (2.31b), it suffices to choose δn such that

Uq

[
Rq

2

2−q
( 1

δn

) 2q
2−q log d

]
≥ 4Lq

[
Rq

2

2−q
( 1

ǫn

) 2q
2−q log d

]
,
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or equivalently such that

δ2n ≤
[ Uq

4Lq

] 2−q
q

{(
ǫn
) 4

2−q

} 2−q
2

=
[ Uq

4Lq

] 2−q
q L

2−q
2

q Rq

[σ2

κ2
c

log d

n

] 2−q
2

Substituting into equation (2.12), we obtain

P

[
M2(Bq(Rq), X) ≥ cq Rq

(σ2

κ2
c

log d

n

)1− q
2

]
≥ 1

2
,

for some absolute constant cq. This completes the proof of Theorem 7(a).

Proof of Theorem 7(b) In order to prove Theorem 7(b), we require some definitions and
an auxiliary lemma. For any integer s ∈ {1, . . . , d}, we define the set

H(s) : =
{
z ∈ {−1, 0,+1}d | ‖z‖0 = s

}
.

Although the set H depends on s, we frequently drop this dependence so as to simplify
notation. We define the Hamming distance ρH(z, z

′) =
∑d

j=1 I[zj 6= z′j ] between the vectors
z and z′. Next we require the following result:

Lemma 4. For d, s even and s < 2d/3, there exists a subset H̃ ⊂ H with cardinality

|H̃| ≥ exp( s
2
log d−s

s/2
) such that ρH(z, z

′) ≥ s
2
for all z, z′ ∈ H̃.

Note that if d and/or s is odd, we can embed H̃ into a d − 1 and/or s − 1-dimensional
hypercube and the result holds. Although results of this type are known (e.g., see Lemma
4, [13]), for completeness, we provide a proof of Lemma 4 in Appendix D of Raskutti et

al. [68]. Now consider a rescaled version of the set H̃, say
√

2
s
δnH̃ for some δn > 0 to be

chosen. For any elements β, β ′ ∈
√

2
s
δnH̃, we have

2

s
δ2n × ρH(β, β

′) ≤ ‖β − β ′‖22 ≤
8

s
δ2n × ρH(β, β

′).

Therefore by applying Lemma 4 and noting that ρH(β, β
′) ≤ s for all β, β ′ ∈ H̃, we have the

following bounds on the ℓ2-norm of their difference for all elements β, β ′ ∈
√

2
s
δnH̃:

‖β − β ′‖22 ≥ δ2n, and (2.32a)

‖β − β ′‖22 ≤ 8δ2n. (2.32b)
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Consequently, the rescaled set
√

2
s
δnH̃ is an δn-packing set of B0(s) in ℓ2 norm withM(δn,B0(s)) =

|H̃| elements, say {β1, . . . , βM}. Using this packing set, we now follow the same classical
steps as in the proof of Theorem 7(a), up until the Fano lower bound (2.29) (steps (1) and
(2)).

At this point, we use an alternative upper bound on the mutual information (step (3)),
namely the bound I(y;B) ≤ 1

(M2 )

∑
i 6=j D(βi ‖ βj), which follows from the convexity of mutual

information [26]. For the linear observation model (3.1), we haveD(βi ‖ βj) = 1
2σ2‖X(βi − βj)‖22.

Since (β − β ′) ∈ B0(2s) by construction, from the assumptions on X and the upper bound
bound (2.32b), we conclude that

I(y;B) ≤ 8nκ2
u δ

2
n

2σ2
.

Substituting this upper bound into the Fano lower bound (2.29), we obtain

P[B 6= β̃] ≥ 1−
8nκ2

u

2σ2 δ2n + log(2)
s
2
log d−s

s/2

.

Setting δ2n = 1
16

σ2

κ2
u

s
2n

log d−s
s/2

ensures that this probability is at least 1/2. Consequently,

combined with the lower bound (2.12), we conclude that

P

[
M2(B0(s), X) ≥ 1

16

(σ2

κ2
u

s

2n
log

d− s

s/2

)]
≥ 1/2.

As long as d/s ≥ 3/2, we are guaranteed that log(d/s− 1) ≥ c log(d/s) for some constant
c > 0, from which the result follows.

Proof of Theorem 3

We use arguments similar to the proof of Theorem 7 in order to establish lower bounds on
prediction error ‖X(β̂ − β∗)‖2/

√
n.

Proof of Theorem 3(a) For some universal constant c > 0 to be chosen, define

δ2n : = c Rq

(σ2

κ2
c

log d

n

)1−q/2
, (2.33)

and let {β1, . . . , βM} be an δn packing of the ball Bq(Rq) in the ℓ2 metric, say with a
total of M(δn;Bq(Rq)) elements. We first show that if n is sufficiently large, then this
set is also a κℓδn-packing set in the prediction (semi)-norm. From the theorem assump-
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tions, we may choose universal constants c1, c2 such that fℓ(Rq, n, d) ≤ c2Rq

(
log d
n

)1−q/2
and

Rq

(
log d
n

)1−q/2
< c1. From Assumption 2, for each i 6= j, we are guaranteed that

‖X(βi − βj)‖2√
n

≥ κℓ‖βi − βj‖2, (2.34)

as long as ‖βi − βj‖2 ≥ fℓ(Rq, n, d). Consequently, for any fixed c > 0, we are guaranteed
that

‖βi − βj‖2
(i)

≥ δn
(ii)

≥ c2Rq

( log d
n

)1−q/2
.

where inequality (i) follows since {βj}Mj=1 is a δn-packing set. Here step (ii) follows because
the theorem conditions imply that

Rq

( log d
n

)1−q/2 ≤ √
c1

[
Rq

( log d
n

)1−q/2
]1/2

,

and we may choose c1 as as small as we please. (Note that all of these statements hold
for an arbitrarily small choice of c > 0, which we will choose later in the argument.)

Since fℓ(Rq, n, d) ≤ c2Rq

(
log d
n

)1−q/2
by assumption, the lower bound (2.34) guarantees

that {β1, β2, . . . , βM} form a κℓδn-packing set in the prediction (semi)-norm ‖X(βi − βj)‖2.
Given this packing set, we now follow a standard approach, as in the proof of Theo-

rem 7(a), to reduce the problem of lower bounding the minimax error to the error probability
of a multi-way hypothesis testing problem. After this step, we apply the Fano inequality to
lower bound this error probability via

P[XB 6= Xβ̃] ≥ 1− I(y;XB) + log 2

logM(δn;Bq(Rq))
,

where I(y;XB) now represents the mutual information4 between random parameter XB
(uniformly distributed over the packing set) and the observation vector y ∈ Rn.

From Lemma 3, the κc ǫ-covering number of the set absconvq(X) is upper bounded (up
to a constant factor) by the ǫ covering number of Bq(Rq) in ℓ2-norm, which we denote by
N(ǫn;Bq(Rq)). Following the same reasoning as in Theorem 2(a), the mutual information is
upper bounded as

I(y;XB) ≤ logN(ǫn;Bq(Rq)) +
n

2σ2
κ2
c ǫ

2
n.

4Despite the difference in notation, this mutual information is the same as I(y;B), since it measures the
information between the observation vector y and the discrete index i.
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Combined with the Fano lower bound, P[XB 6= Xβ̃] is lower bounded by

1− logN(ǫn;Bq(Rq)) +
n
σ2 κ

2
c ǫ

2
n + log 2

logM(δn;Bq(Rq))
. (2.35)

Lastly, we choose the packing and covering radii (δn and ǫn respectively) such that the lower
bound (2.35) remains bounded below by 1/2. As in the proof of Theorem 7(a), it suffices
to choose the pair (ǫn, δn) to satisfy the relations (2.31a) and (2.31b). The same choice of
ǫn ensures that relation (2.31a) holds; moreover, by making a sufficiently small choice of the
universal constant c in the definition (2.33) of δn, we may ensure that the relation (2.31b)
also holds. Thus, as long as N2(ǫn) ≥ 2, we are then guaranteed that

P[XB 6= Xβ̃] ≥ 1− logN(δn;Bq(Rq)) + log 2

4 logN(δn;Bq(Rq))

≥ 1/2,

as desired.

Proof of Theorem 3(b) Recall the assertion of Lemma 4, which guarantees the exis-

tence of a set δ2n
2s
H̃ is an δn-packing set in ℓ2-norm with M(δn;Bq(Rq)) = |H̃| elements,

say {β1, . . . , βM}, such that the bounds (2.32a) and (2.32b) hold, and such that log |H̃| ≥
s
2
log d−s

s/2
. By construction, the difference vectors (βi − βj) ∈ B0(2s), so that by Assump-

tion 3(a), we have
‖X(βi − βj)‖√

n
≤ κu‖βi − βj‖2 ≤ κu

√
8 δn. (2.36)

In the reverse direction, since Assumption 3(b) holds, we have

‖X(βi − βj)‖2√
n

≥ κ0,ℓδn. (2.37)

We can follow the same steps as in the proof of Theorem 7(b), thereby obtaining an upper
bound the mutual information of the form I(y;XB) ≤ 8κ2

unδ
2
n. Combined with the Fano

lower bound, we have

P[XB 6= Xβ̃] ≥ 1−
8nκ2

u

2σ2 δ2n + log(2)
s
2n

log d−s
s/2

.
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Remembering the extra factor of κℓ from the lower bound (2.37), we obtain the lower bound

P

[
Mn(B0(s), X) ≥ c′0,q κ

2
ℓ

σ2

κ2
u

s log
d− s

s/2

]
≥ 1

2
.

Repeating the argument from the proof of Theorem 7(b) allows us to further lower bound
this quantity in terms of log(d/s), leading to the claimed form of the bound.

2.3.5 Proof of achievability results

We now turn to the proofs of our main achievability results, namely Theorems 2 and 4, that
provide upper bounds on minimax rates. We prove all parts of these theorems by analyzing
the family of M-estimators

β̂ ∈ arg min
‖β‖qq≤Rq

‖y −Xβ‖22. (2.38)

Note that (2.38) is a non-convex optimization problem for q ∈ [0, 1), so it is not an algorithm
that would be implemented in practice. Step (1) for upper bounds provided above implies

that if ∆̂ = β̂ − β∗, then

1

n
‖X∆̂‖22 ≤

2|wTX∆̂|
n

. (2.39)

The remaining sections are devoted to step (2), which involves controlling |wTX∆̂|
n

for each of
the upper bounds.

Proof of Theorem 2

We begin with upper bounds on the minimax rate in squared ℓ2-norm.

Proof of Theorem 2(a) Recall that this part of the theorem deals with the case q ∈ (0, 1].

We split our analysis into two cases, depending on whether the error ‖∆̂‖2 is smaller or larger
than fℓ(Rq, n, d).

Case 1: First, suppose that ‖∆̂‖2 < fℓ(Rq, n, d). Recall that the theorem is based on

the assumption Rq

(
log d
n

)1−q/2
< c2. As long as the constant c2 ≪ 1 is sufficiently small (but

still independent of the triple (n, d, Rq)), we can assume that

c1Rq

( log d
n

)1−q/2 ≤
√

Rq

[κ2
c

κ2
ℓ

σ2

κ2
ℓ

log d

n

]1/2−q/4

.
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This inequality, combined with the assumption fℓ(Rq, n, d) ≤ c1Rq

(
log d
n

)1−q/2
imply that the

error ‖∆̂‖2 satisfies the bound (4.24) for all c ≥ 1.

Case 2: Otherwise, we may assume that ‖∆̂‖2 > fℓ(Rq, n, d). In this case, Assumption 2

implies that
‖X∆̂‖2

2

n
≥ κ2

ℓ‖∆̂‖22, and hence, in conjunction with the inequality (2.39), we obtain

κ2
ℓ‖∆̂‖22 ≤ 2|wTX∆̂|/n ≤;

2

n
‖wTX‖∞‖∆̂‖1.

Since wi ∼ N(0, σ2) and the columns of X are normalized, each entry of 2
n
wTX is zero-mean

Gaussian vector with variance at most 4σ2κ2
c/n. Therefore, by union bound and standard

Gaussian tail bounds, we obtain that the inequality

κ2
ℓ‖∆̂‖22 ≤ 2σκc

√
3 log d

n
‖∆̂‖1 (2.40)

holds with probability greater than 1− c1 exp(−c2 log d).
It remains to upper bound the ℓ1-norm in terms of the ℓ2-norm and a residual term.

Since both β̂ and β∗ belong to Bq(Rq), we have ‖∆̂‖qq =
∑d

j=1 |∆̂j |q ≤ 2Rq. We exploit the
following lemma:

Lemma 5. For any vector θ ∈ Bq(2Rq) and any positive number τ > 0, we have

‖θ‖1 ≤
√
2Rqτ

−q/2‖θ‖2 + 2Rqτ
1−q. (2.41)

Although this type of result is standard (e.g, [30]), we provide a proof in Appendix A of
Raskutti et al. [68].

We can exploit Lemma 5 by setting τ = 2σκc

κ2
ℓ

√
3 log d

n
, thereby obtaining the bound ‖∆̂‖22 ≤

τ‖∆̂‖1, and hence

‖∆̂‖22 ≤
√

2Rqτ
1−q/2‖∆̂‖2 + 2Rqτ

2−q.

Viewed as a quadratic in the indeterminate x = ‖∆̂‖2, this inequality is equivalent to the
constraint g(x) = ax2 + bx+ c ≤ 0, with a = 1,

b = −
√

2Rqτ
1−q/2, and c = −2Rqτ

2−q.

Since g(0) = c < 0 and the positive root of g(x) occurs at x∗ = (−b+
√
b2 − 4ac)/(2a), some

algebra shows that we must have

‖∆̂‖22 ≤ 4max{b2, |c|} ≤ 24Rq

[κ2
c

κ2
ℓ

σ2

κ2
ℓ

log d

n

]1−q/2

,
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with high probability (stated in Theorem 2(a) which completes the proof of Theorem 2(a).

Proof of Theorem 2(b) In order to establish the bound (2.16), we follow the same steps
with fℓ(s, n, d) = 0, thereby obtaining the following simplified form of the bound (2.40):

‖∆̂‖22 ≤
κc

κℓ

σ

κℓ

√
3 log d

n
‖∆̂‖1.

By definition of the estimator, we have ‖∆̂‖0 ≤ 2s, from which we obtain ‖∆̂‖1 ≤
√
2s‖∆̂‖2.

Canceling out a factor of ‖∆̂‖2 from both sides yields the claim (2.16).

Establishing the sharper upper bound (2.17) requires more precise control on the right-
hand side of the inequality (2.39). The following lemma, proved in Appendix A of Raskutti
et al. [68], provides this control:

Lemma 6. Suppose that ‖Xθ‖2√
n‖θ‖2 ≤ κu for all θ ∈ B0(2s). Then there are universal positive

constants c1, c2 such that for any r > 0, we have

sup
‖θ‖0≤2s,‖θ‖2≤r

1

n

∣∣wTXθ
∣∣ ≤ 6 σ r κu

√
s log(d/s)

n
(2.42)

with probability greater than 1− c1 exp(−c2 min{n, s log(d/s)}).

Lemma 6 holds for a fixed radius r, whereas we would like to choose r = ‖∆̂‖2, which
is a random quantity. To extend Lemma 6 so that it also applies uniformly over an interval
of radii (and hence also to a random radius within this interval), we use a “peeling” result,
stated in Appendix H of Raskutti et al. [68]. In particular, consider the event E that there
exists some θ ∈ B0(2s) such that

1

n

∣∣wTXθ
∣∣ ≥ 6σκu‖θ‖2

√
s log(d/s)

n
. (2.43)

Then we claim that

P[E ] ≤ 2 exp(−c s log(d/s))

1− exp(−c s log(d/s))

for some c > 0. This claim follows from Lemma 9 in Appendix H of Raskutti et al. [68]
by choosing the function f(v;X) = 1

n
|wTXv|, the set A = B0(2s), the sequence an = n, and

the functions ρ(v) = ‖v‖2, and g(r) = 6σrκu

√
s log(d/s)

n
. For any r ≥ σκu

√
s log(d/s)

n
, we are

guaranteed that g(r) ≥ σ2κ2
u
s log(d/s)

n
, and µ = σ2κ2

u
s log(d/s)

n
, so that Lemma 9 in Appendix H
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may be applied. We use a similar peeling argument for two of our other achievability results.

Returning to the main thread, we have

1

n
‖X∆̂‖22 ≤ 6 σ ‖∆̂‖2 κu

√
s log(d/s)

n
,

with high probability. By Assumption 3(b), we have ‖X∆̂‖22/n ≥ κ2
ℓ‖∆̂‖22. Canceling out

a factor of ‖∆̂‖2 and re-arranging yields ‖∆̂‖2 ≤ 12 κuσ
κ2
ℓ

√
s log(d/s)

n
with high probability as

claimed.

Proof of Theorem 4

We again make use of the elementary inequality (2.39) to establish upper bounds on the
prediction error.

Proof of Theorem 4(a) So as to facilitate tracking of constants in this part of the proof,

we consider the rescaled observation model, in which w̃ ∼ N(0, In) and X̃ : = σ−1X . Note

that ifX satisfies Assumption 1 with constant κc, then X̃ satisfies it with constant κ̃c = κc/σ.

Moreover, if we establish a bound on ‖X̃(β̂ − β∗)‖22/n, then multiplying by σ2 recovers a
bound on the original prediction loss.

We first deal with the case q = 1. In particular, we have

∣∣ 1
n
w̃T X̃θ

∣∣ ≤ ‖w̃
T X̃

n
‖∞‖θ‖1

≤

√
3κ̃c

2σ2 log d

n
(2R1),

where the second inequality holds with probability 1− c1 exp(−c2 log d), using standard

Gaussian tail bounds. (In particular, since ‖X̃i‖2/
√
n ≤ κ̃c, the variate w̃T X̃i/n is zero-

mean Gaussian with variance at most κ̃c
2/n.) This completes the proof for q = 1.

Turning to the case q ∈ (0, 1), in order to establish upper bounds over Bq(2Rq), we require
the following analog of Lemma 6, proved in Appendix G. So as to lighten notation, let us
introduce the shorthand h(Rq, n, d) : =

√
Rq (

log d
n

)
1

2
− q

4 .

Lemma 7. For q ∈ (0, 1), suppose that there is a universal constant c1 such that h(Rq, n, d) <
c1 < 1. Then there are universal constants ci, i = 2, . . . , 5 such that for any fixed radius r
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with r ≥ c2κ̃c

q
2 h(Rq, n, d), we have

sup
θ∈Bq(2Rq)

‖X̃θ‖2√
n

≤r

1

n

∣∣w̃T X̃θ
∣∣ ≤ c3r κ̃c

q
2

√
Rq (

log d

n
)
1

2
− q

4 ,

with probability greater than 1− c4 exp(−c5 nh2(Rq, n, d)).

Once again, we require the peeling result (Lemma 9 from Appendix H to extend Lemma 7
to hold for random radii. In this case, we define the event E as there exists some θ ∈ Bq(2Rq)
such that

1

n

∣∣w̃T X̃θ
∣∣ ≥ c3

‖X̃θ‖2√
n

κ̃c

q
2

√
Rq (

log d

n
)
1

2
− q

4 .

By Lemma 9 in Appendix H with the choices f(v;X) = |wTXv|/n, A = Bq(2Rq), an = n,

ρ(v) = ‖Xv‖2√
n

, and g(r) = c3 r κ̃c

q
2h(Rq, n, d), we have

P[E ] ≤ 2 exp(−c n h2(Rq, n, d))

1− exp(−c n h2(Rq, n, d))
.

Returning to the main thread, from the basic inequality (2.39), when the event E from
equation (2.43) holds, we have

‖X̃∆‖22
n

≤ ‖X̃∆‖2√
n

√
κ̃c

qRq

( log d
n

)1−q/2
.

Canceling out a factor of ‖X∆‖2√
n

, squaring both sides, multiplying by σ2 and simplifying yields

‖X∆‖22
n

≤ c2 σ2
(κc

σ

)q
Rq

( log d
n

)1−q/2

= c2 κ2
c Rq

(σ2

κ2
c

log d

n

)1−q/2
,

as claimed.

Proof of Theorem 4(b) For this part, we require the following lemma, proven in Ap-
pendix F:
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Lemma 8. As long as d
2s

≥ 2, then for any r > 0, we have

sup
θ∈B0(2s)
‖Xθ‖2√

n
≤r

1

n

∣∣wTXθ
∣∣ ≤ 9 r σ

√
s log(d

s
)

n

with probability greater than 1− exp
(
− 10s log( d

2s
)
)
.

By using a peeling technique (see Lemma 9 in Appendix H, we now extend the result to
hold uniformly over all radii. Consider the event E that there exists some θ ∈ B0(2s) such
that

1

n

∣∣wTXθ
∣∣ ≥ 9σ

‖X̃θ‖2√
n

√
s log(d/s)

n

}
.

We now apply Lemma 9 in Appendix H with the sequence an = n, the function f(v;X) = 1
n
|wTXv|,

the set A = B0(2s), and the functions

ρ(v) =
‖Xv‖2√

n
, and g(r) = 9 r κ̃c

q
2

√
s log(d/s)

n
.

We take r ≥ σκu

√
s log(d/s)

n
, which implies that g(r) ≥ σ2κ2

u
s log(d/s)

n
, and µ = σ2κ2

u
s log(d/s)

n
in

Lemma 9 in Appendix H. Consequently, we are guaranteed that

P[E ] ≤ 2 exp(−c s log(d/s))

1− exp(−c s log(d/s))
.

Combining this tail bound with the basic inequality (2.39), we conclude that

‖X∆‖22
n

≤ 9
‖X∆‖2√

n
σ

√
s log(d

s
)

n
,

with high probability, from which the result follows.

2.4 Conclusion

The main contribution of this paper is to obtain optimal minimax rates of convergence for the
linear model (3.1) under high-dimensional scaling, in which the sample size n and problem
dimension d are allowed to scale, for general design matrices X . We provided matching upper
and lower bounds for the ℓ2-norm and ℓ2-prediction loss, so that the optimal minimax rates
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are determined in these cases. To our knowledge, this is the first paper to present minimax
optimal rates in ℓ2-prediction error for general design matrices X and general q ∈ [0, 1]. We
also derive optimal minimax rates in ℓ2-error, with similar rates obtained in concurrent work
by Zhang [96] under different conditions on X .

Apart from the rates themselves, our analysis highlights how conditions on the design
matrix X enter in complementary manners for the ℓ2-norm and ℓ2-prediction loss functions.
On one hand, it is possible to obtain lower bounds on ℓ2-norm error (see Theorem 7) or
upper bounds on ℓ2-prediction error (see Theorem 4) under very mild assumptions on X—in
particular, our analysis requires only that the columns of X/

√
n have bounded ℓ2-norms (see

Assumption 1). On the other hand, in order to obtain upper bounds on ℓ2-norm error (The-
orem 2) or lower bound on ℓ2-norm prediction error (Theorem 3), the design matrix X must
satisfy, in addition to column normalization, other more restrictive conditions. Indeed both
lower bounds in prediction error and upper bounds in ℓ2-norm error require that elements of
Bq(Rq) are well separated in prediction semi-norm ‖X(·)‖2/

√
n. In particular, our analysis

was based on imposed on a certain type of restricted lower eigenvalue condition on XTX
measured over the ℓq-ball, as formalized in Assumption 2. As shown by our results, this
lower bound is intimately related to the degree of non-identifiability over the ℓq-ball of the
high-dimensional linear regression model. Finally, we note that similar techniques can be
used to obtain minimax-optimal rates for more general problems of sparse non-parametric
regression [69].
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Chapter 3

Restricted eigenvalue properties for
correlated Gaussian designs

3.1 Introduction

Using the ℓ1-norm to enforce sparsity has been very successful, as evidenced by the widespread
use of methods such as basis pursuit [23], the Lasso [82] and the Dantzig selector [20]. There is
now a well-developed theory on what conditions are required on the design matrix X ∈ Rn×d

for such ℓ1-based relaxations to reliably estimate β∗. In the case of noiseless observation mod-
els, it is known that imposing a restricted nullspace property on the design matrix X ∈ Rn×d

is both necessary and sufficient for the basis pursuit linear program to recover β∗ exactly.
The nullspace property and its link to the basis pursuit linear program has been discussed
in various papers [25, 29, 33]. In the case of noisy observations, exact recovery of β∗ is no

longer possible, and one goal is to obtain an estimate β̂ such that the ℓ2-error ‖β̂ − β∗‖2
is well-controlled. To this end, various sufficient conditions for the success of ℓ1-relaxations
have been proposed, including restricted eigenvalue conditions [11, 60] and the restricted
Riesz property [95]. Of the conditions mentioned, one of weakest known sufficient conditions
for bounding ℓ2-error are the restricted eigenvalue (RE) conditions due to [11] and [84]. In
this chapter, we consider a restricted eigenvalue condition that is essentially equivalent to
the RE condition in [11]. As shown by [70], a related restriction is actually necessary for
obtaining good control on the ℓ2-error in the minimax setting.

Thus, in the setting of linear regression with random design, the interesting question
is the following: for what ensembles of design matrices do the restricted nullspace and
eigenvalue conditions hold with high probability? To date, the main routes to establishing
these properties have been via either incoherence conditions [29, 33] or via the restricted
isometry property [19], both of which are sufficient but not necessary conditions [25, 85].
The restricted isometry property (RIP) holds with high probability for various classes of
random matrices with i.i.d. entries, including sub-Gaussian matrices [62] with sample size
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n = Ω(s log(d/s)), and for i.i.d. subexponential random matrices [1] provided that n =
Ω(s log2(d/s)). It has also been demonstrated that RIP is satisfied for matrices from unitary
ensembles (e.g., [39, 40, 74, 75]), for which the rows are generated based on independent
draws from a set of uncorrelated basis functions.

Design matrices based on i.i.d. or unitary ensembles are well-suited to the task of com-
pressed sensing [19, 28], where the matrix X can be chosen by the user. However, in most
of machine learning and statistics, the design matrix is not under control of the statistician,
but rather is specified by nature. As a concrete example, suppose that we are fitting a linear
regression model to predict heart disease on the basis of a set of d covariates (e.g., diet, exer-
cise, smoking etc.). In this setting, it is not reasonable to assume that the different covariates
are i.i.d. or unitary—for instance, one would expect a strong positive correlation between
amount of exercise and healthiness of diet. Nonetheless, at least in practice, ℓ1-methods still
work very well in settings where the covariates are correlated and non-unitary, but currently
lacking is the corresponding theory that guarantees the performance of ℓ1-relaxations for
dependent designs.

The main contribution of this chapter is a direct proof that both the restricted nullspace
and eigenvalue conditions hold with high probability for a broad class of dependent Gaussian
design matrices. In conjunction with known results on ℓ1-relaxation, our main result implies
as corollaries that the basis pursuit algorithm reliably recovers β∗ exactly in the noiseless
setting, and that in the case of observations contaminated by Gaussian noise, the Lasso

and Dantzig selectors produces a solution β̂ such that ‖β̂ − β∗‖2 = O(
√

s log d
n

). Our theory

requires that the sample size n scale as n = Ω(s log d), where s is the sparsity index of the
regression vector β∗ and d is its dimensions. For sub-linear sparsity (s/d → 0), this scaling
matches known optimal rates in a minimax sense for the sparse regression problem [70], and
hence cannot be improved upon by any algorithm. The class of matrices covered by our
result allows for correlation among different covariates, and hence covers many matrices for
which restricted isometry or incoherence conditions fail to hold but the restricted eigenvalue
condition holds. Interestingly, one can even sample the rows of the design matrix X from a
multivariate Gaussian with a degenerate covariance matrix Σ, and nonetheless, our results
still guarantee that the restricted nullspace and eigenvalue conditions will hold with high
probability (see Section 3.3.3). Consequently, our results extend theoretical guarantees on
ℓ1-relaxations with optimal rates of convergence to a much broader class of random designs.

The remainder of this chapter is organized as follows. We begin in Section 4.2 with
background on sparse linear models, the basis pursuit and Lasso ℓ1-relaxations, and sufficient
conditions for their success. In Section 4.3, we state our main result, discuss its consequences
for ℓ1-relaxations, and illustrate it with some examples. Section 3.4 contains the proof of our
main result, which exploits Gaussian comparison inequalities and concentration of measure
for Lipschitz functions.
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3.2 Background

We begin with background on sparse linear models and sufficient conditions for the success
of ℓ1-relaxations.

3.2.1 High-dimensional sparse models and ℓ1-relaxation

In the classical linear model, a scalar output yi ∈ R is linked to a d-dimensional vector
Xi ∈ Rd of covariates via the relation yi = XT

i β
∗+wi, where wi is a scalar observation noise.

If we make a set of n such observations, then they can be written in the matrix-vector form

y = Xβ∗ + w, (3.1)

where y ∈ Rn is the vector of outputs, the matrix X ∈ Rn×d is the set of covariates (in
which row Xi ∈ Rd represents the covariates for ith observation), and w ∈ Rn is a noise
vector where w ∼ N (0, σ2In×n). Given the pair (y,X), the goal is to estimate the unknown
regression vector β∗ ∈ Rd.

In many applications, the linear regression model is high-dimensional in nature, meaning
that the number of observations nmay be substantially smaller than the number of covariates
d. In this d ≫ n regime, it is easy to see that without further constraints on β∗, the statistical
model (3.1) is not identifiable, since (even when w = 0), there are many vectors β∗ that are
consistent1 with the observations y and X . This identifiability concern may be eliminated by
imposing some type of sparsity assumption on the regression vector β∗ ∈ Rd. The simplest
assumption is that of exact sparsity : in particular, we say that β∗ ∈ Rd is s-sparse if its
support set

S(β∗) : =
{
j ∈ {1, . . . , d} | β∗

j 6= 0
}

(3.2)

has cardinality at most s.
Disregarding computational cost, the most direct approach to estimating an s-sparse β∗

in the linear regression model would be solving a quadratic optimization problem with an
ℓ0-constraint, say

β̂ ∈ arg min
β∈Rd

‖y −Xβ‖22 such that ‖β‖0 ≤ s, (3.3)

where ‖β‖0 simply counts the number of non-zero entries in β. Of course, this problem is
non-convex and combinatorial in nature, since it involves searching over all

(
d
s

)
subsets of

size s. A natural relaxation is to replace the non-convex ℓ0 constraint with the ℓ1-norm,

1Indeed, any vector β∗ in the nullspace of X , which has dimension at least d − n, leads to y = 0 when
w = 0.
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which leads to the constrained form of the Lasso [23, 82], given by

β̂ ∈ arg min
β∈Rd

‖y −Xβ‖22 such that ‖β‖1 ≤ R, (3.4)

where R is a radius to be chosen by the user. Equivalently, by Lagrangian duality, this
program can also be written in the penalized form

β̂ ∈ arg min
β∈Rd

{
‖y −Xβ‖22 + λ‖β‖1

}
, (3.5)

where λ > 0 is a regularization parameter. In the case of noiseless observations, obtained by
setting w = 0 in the observation model (3.1), a closely related convex program is the basis
pursuit linear program [23], given by

β̂ ∈ arg min
β̂∈Rd

‖β‖1 such that Xβ = y. (3.6)

[23] also study the constrained Lasso (3.4), which they refer to as relaxed basis pursuit.
Another closely related estimator based on ℓ1-relaxation is the Dantzig selector [20].

3.2.2 Sufficient conditions for success

The high-dimensional linear model under the exact sparsity constraint has been extensively
analyzed. Accordingly, as we discuss here, there is a good understanding of the necessary
and sufficient conditions for the success of ℓ1-based relaxations such as basis pursuit and the
Lasso.

Restricted nullspace in noiseless setting: In the noiseless setting (w = 0), it is known
that the basis pursuit linear program (LP) (3.6) recovers β∗ exactly if and only if the
design matrix X satisfies a restricted nullspace condition. In particular, for a given subset
S ⊂ {1, . . . , d} and constant α ≥ 1, let us define the set

C(S;α) : =
{
θ ∈ Rd | ‖θSc‖1 ≤ α ‖θS‖1

}
. (3.7)

For a given sparsity index s ≤ d, we say that the matrix X satisfies the restricted nullspace
(RN) condition of order s if null(X) ∩ C(S; 1) = {0} for all subsets S of cardinality s.
Although this definition appeared in earlier work [29, 33], the terminology of restricted
nullspace is due to [25].

This restricted nullspace property is important, because the basis pursuit LP recovers any
vector s-sparse vector β∗ exactly if and only if X satisfies the restricted nullspace property
of order s. See the chapters [25, 29, 32, 33] for more discussion of restricted nullspaces and
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equivalence to exact recovery of basis pursuit.

Restricted eigenvalue condition for ℓ2 error: In the noisy setting, it is impossible to
recover β∗ exactly, and a more natural criterion is to bound the ℓ2-error between β∗ and an
estimate β̂. Various conditions have been used to analyze the ℓ2-norm convergence rate of
ℓ1-based methods, including the restricted isometry property [20], various types of restricted
eigenvalue conditions [84, 11, 60], and a partial Riesz condition [95]. Of all these conditions,
the least restrictive are the restricted eigenvalue conditions due to [11] and [84]. As shown by
[11], their restricted eigenvalue (RE) condition is less severe than both the RIP condition [20]
and an earlier set of restricted eigenvalue conditions due to [60]. All of these conditions
involve lower bounds on ‖Xθ‖2 that hold uniformly over the previously defined set C(S;α),

Here we state a condition that is essentially equivalent to the restricted eigenvalue condi-
tion due to [11]. In particular, we say that the d×d sample covariance matrixXTX/n satisfies
the restricted eigenvalue (RE) condition over S with parameters (α, γ) ∈ [1,∞)× (0,∞) if

1

n
θTXTXθ =

1

n
‖Xθ‖22 ≥ γ2 ‖θ‖22 for all θ ∈ C(S;α). (3.8)

If this condition holds uniformly for all subsets S with cardinality s, we say that XTX/n
satisfies a restricted eigenvalue condition of order s with parameters (α, γ). On occasion, we
will also say that a deterministic d × d covariance matrix Σ satisfies an RE condition, by
which we mean that ‖Σ1/2θ‖2 ≥ γ‖θ‖2 for all θ ∈ C(S;α). It is straightforward to show that
the RE condition for some α implies the restricted nullspace condition for the same α, so
that the RE condition is slightly stronger than the RN property.

Again, the RE condition is important because it yields guarantees on the ℓ2-error of any
Lasso estimate β̂. For instance, if X satisfies the RE condition of order s with parameters
α ≥ 3 and γ > 0, then it can be shown that (with appropriate choice of the regularization

parameter) any Lasso estimate β̂ satisfies the error bound ‖β̂ − β∗‖2 = O(
√

s log d
n

) with

high probability over the Gaussian noise vector w. A similar result holds for the Dantzig
selector provided the RE condition is satisfied for α ≥ 1. Bounds with this scaling have
appeared in various chapters on sparse linear models [18, 11, 20, 60, 84, 85]. Moreover, this
ℓ2-convergence rate is known to be minimax optimal [68] in the regime s/d → 0.

3.3 Main result and its consequences

Thus, in order to provide performance guarantees (either exact recovery or ℓ2-error bounds)
for ℓ1-relaxations applied to sparse linear models, it is sufficient to show that the RE or
RN conditions hold. Given that our interest is in providing sufficient conditions for these
properties, the remainder of the chapter focuses on providing conditions for the RE condition
to hold for random designs, which implies that the RN condition is satisfied.
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3.3.1 Statement of main result

Our main result guarantees that the restricted eigenvalue (and hence restricted nullspace)
conditions hold for a broad class of random Gaussian designs. In particular, we consider
the linear model yi = XT

i β
∗ + wi, in which each row Xi ∼ N (0,Σ). We define ρ2(Σ) =

maxj=1,...,dΣjj to be the maximal variance, and let Σ1/2 denote the square root of Σ.

Theorem 5. For any Gaussian random design X ∈ Rn×d with i.i.d. N (0,Σ) rows, there
are universal positive constants c, c′ such that

‖Xv‖2√
n

≥ 1

4
‖Σ1/2v‖2 − 9 ρ(Σ)

√
log d

n
‖v‖1 for all v ∈ Rd, (3.9)

with probability at least 1− c′ exp(−cn).

The proof of this claim is given later in Section 3.4. Note that we have not tried to obtain
sharpest possible leading constants (i.e., the factors of 1/4 and 9 can easily be improved).

In intuitive terms, Theorem 5 provides some insight into the eigenstructure of the sam-
ple covariance matrix Σ̂ = XTX/n. One implication of the lower bound (3.9) is that the
nullspace ofX cannot contain any vectors that are “overly” sparse. In particular, for any vec-

tor v ∈ Rd such that ‖v‖1/‖Σ1/2v‖2 = o(
√

n
log d

), the right-hand side of the lower bound (3.9)

will be strictly positive, showing that v cannot belong to the nullspace of X . In the following
corollary, we formalize this intuition by showing how Theorem 5 guarantees that whenever
the population covariance Σ satisfies the RE condition of order s, then the sample covariance
Σ̂ = XTX/n satisfies the same property as long as the sample size is sufficiently large.

Corollary 1 (Restricted eigenvalue property). Suppose that Σ satisfies the RE condition of
order s with parameters (α, γ). Then for universal positive constants c, c′, c′′, if the sample
size satisfies

n > c′′
ρ2(Σ) (1 + α)2

γ2
s log d, (3.10)

then the matrix Σ̂ = XTX/n satisfies the RE condition with parameters (α, γ
8
) with probability

at least 1− c′ exp(−cn).

Proof. Let S be an arbitrary subset of cardinality s, and suppose that v ∈ C(S;α). By
definition, we have

‖v‖1 = ‖vS‖1 + ‖vSc‖1 ≤ (1 + α)‖vS‖1,
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and consequently ‖v‖1 ≤ (1 + α)
√
s‖v‖2. By assumption, we also have ‖Σ1/2v‖2 ≥ γ‖v‖2

for all v ∈ C(S;α). Substituting these two inequalities into the bound (3.9) yields

‖Xv‖2√
n

≥
{
γ

4
− 9 (1 + α) ρ(Σ)

√
s log d

n

}
‖v‖2.

Under the assumed scaling (3.10) of the sample size, we have

9 (1 + α) ρ(Σ)

√
s log d

n
≤ γ/8,

which shows that the RE condition holds forXTX/n with parameter (α, γ/8) as claimed.

Remarks:

(a) From the definitions, it is easy to see that if the RE condition holds with α = 1 and
any γ > 0 (even arbitrarily small), then the RN condition also holds. Indeed, if the
matrix XTX/n satisfies the (1, γ)-RE condition, then for any v ∈ C(S; 1)\{0}, we have
‖Xv‖2√

n
≥ γ‖v‖2 > 0, which implies that C(S, 1) ∩ (X) = {0}.

(b) As previously discussed, it is known [11, 83, 85] that if XTX/n satisfies the RE condi-
tion, then the ℓ2 error of the Lasso under the sparse linear model with Gaussian noise
satisfies the bound

‖β̂ − β∗‖2 = O(

√
s log d

n
) with high probability.

Consequently, in order to ensure that the ℓ2-error is bounded, the sample size must
scale as n = Ω(s log d), which matches the scaling (3.10) required in Corollary 1, as
long as the sequence of covariance matrices Σ have diagonal entries that stay bounded.

(c) Finally, we note that Theorem 5 guarantees that the sample covarianceXTX/n satisfies
a property that is slightly stronger than the RE condition. As shown by [64], this
strengthening also leads to error bounds for the Lasso when β∗ is not exactly s-sparse,
but belongs to an ℓq-ball. The resulting rates are known to be minimax-optimal for
these ℓq-balls [70].

3.3.2 Comparison to related work

At this point, we provide a brief comparison of our results with some related results in the
literature beyond the chapters discussed in the introduction. [44] showed that a certain
class of random Toeplitz matrices, where the entries in the first row and first column are
Bernoulli random variables and the rest fill out the Toeplitz structure satisfy RIP ( and hence
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the weaker RE condition) provided that n = Ω(s3 log(d/s)). In Section 3.3.3, we demonstrate
that Gausssian design matrices where the covariance matrix is a Toeplitz matrix satisfies the
RE condition under the milder scaling requirement n = Ω(s log(d)). It would be of interest
to determine such scaling can be established for the random Toeplitz matrices considered
by [44].

It is worth comparing the scaling (3.10) to a related result due to [85]. In particular,
their Lemma 10.1 also provides sufficient conditions for a restricted eigenvalue condition to
hold for design matrices with dependent columns. They show that if the true covariance
matrix satisfies an RE condition, and if the elementwise maximum ‖Σ̂ − Σ‖∞ between the

sample covariance Σ̂ = XTX/n and true covariance Σ is suitably bounded, then the sample
covariance also satisfies the RE condition. Their result applied to the case of Gaussian
random matrices guarantees that Σ̂ satisfies the RE property as long as n = Ω(s2 log d) and
Σ satisfies the RE condition. By contrast, Corollary 1 guarantees the RE condition with
the less restrictive scaling n = Ω(s log d). Note that if s = O(

√
n), our scaling condition is

satisfied while their condition fails. This quadratic-linear gap in sparsity between s2 and s
arises from the difference between a local analysis (looking at individual entries of Σ̂) versus
the global analysis of this chapter, which studies the full random matrix. On the other
hand, the result of [85] applies more generally, including the case of sub-Gaussian random
matrices (e.g., those with bounded entries) in addition to the Gaussian matrices considered
in Theorem 5.

Finally, in work that followed up on the initial posting of this work [70], a chapter
by [98] provides an extension of Theorem 5 to the case of correlated random matrices with
sub-Gaussian entries. Theorem 1.6 in her chapter establishes that certain families of sub-
Gaussian matrices satisfy the RE condition w.h.p. with sample size n = Ω(s log(d/s).
This extension is based on techniques developed by [62], while we use Gaussian comparison
inequalities and simple concentration results for the case of Gaussian design.

3.3.3 Some illustrative examples

Let us illustrate some classes of matrices to which our theory applies. We will see that
Corollary 1 applies to many sequences of covariance matrices Σ = Σd×d that have much more
structure than the identity matrix. Our theory allows for the maximal eigenvalue of Σ to be
arbitrarily large, or for Σ to be rank-degenerate, or for both of these degeneracies to occur
at the same time. In all cases, we consider sequences of matrices for which the maximum
variance ρ2(Σ) = maxj=1,...,dΣjj stays bounded. Under this mild restriction, we provide
several examples where the RE condition is satisfied with high probability. For suitable
choices, these same examples show that the RE condition can hold with high probability, even
when the restricted isometry property (RIP) of [19] is violated with probability converging
to one.
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Example 1 (Toeplitz matrices). Consider a covariance matrix with the Toeplitz structure
Σij = a|i−j| for some parameter a ∈ [0, 1). This type of covariance structure arises naturally
from autoregressive processes, where the parameter a allows for tuning of the memory in
the process. The minimum eigenvalue of Σ is 1 − a > 0, independent of the dimension
d, so that the population matrix Σ clearly satisfies the RE condition. Since ρ2(Σ) = 1,

Theorem 5 implies that the sample covariance matrix Σ̂ = XTX/n obtained by sampling
from this distribution will also satisfy the RE condition with high probability as long as
n = Ω(s log d). This provides an example of a matrix family with substantial correlation
between covariates for which the RE property still holds.

However, regardless of the sample size, the submatrices of the sample covariance Σ̂ will
not satisfy restricted isometry properties (RIP) if the parameter a is sufficiently large. For

instance, defining S = {1, 2, . . . , s}, consider the sub-block Σ̂SS of the sample covariance

matrix. Satisfying RIP requires that that the condition number λmax(Σ̂SS)/λmin(Σ̂SS) be
very close to one. As long as n = Ω(s log d), known results in random matrix theory [27]

guarantee that the eigenvalues of Σ̂SS will be very close to the population versions ΣSS; see
also the concrete calculation in Example 2 to follow. Consequently, imposing RIP amounts
to requiring that the population condition number λmax(ΣSS)/λmin(ΣSS) be very close to
one. This condition number grows as the parameter a ∈ [0, 1) increases towards one [35], so
RIP will be violated once a < 1 is sufficiently large.

We now consider a matrix family with an even higher amount of dependency among the
covariates, where the RIP constants are actually unbounded as the sparsity s increases, but
the RE condition is still satisfied.

Example 2 (Spiked identity model). For a parameter a ∈ [0, 1), the spiked identity model
is given by the family of covariance matrices

Σ := (1− a)Id×d + a~1 ~1T , (3.11)

where ~1 ∈ Rd is the vector of all ones. The minimum eigenvalue of Σ is 1 − a, so that
the population covariance clearly satisfies the RE condition for any fixed a ∈ [0, 1). Since
this covariance matrix has maximum variance ρ2(Σ) = 1, Corollary 1 implies that a sample

covariance matrix Σ̂ = XTX/n will satisfy the RE property with high probability with
sample size n = Ω(s log d).

On the other hand, the spiked identity matrix Σ has very poorly conditioned sub-matrices,
which implies that a sample covariance matrix Σ̂ = XTX/n will violate the restricted isome-
try property (RIP) with high probability as n grows. To see this fact, for an arbitrary subset
S of size s, consider the associated s × s submatrix ΣSS. An easy calculation shows that
λmin(ΣSS) = 1 − a > 0 and λmax(ΣSS) = 1 + a (s − 1), so that the population condition
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number of this sub-matrix is

λmax(ΣSS)

λmin(ΣSS)
=

1 + a (s− 1)

1− a
.

For any fixed a ∈ (0, 1), this condition number diverges as s increases. We now show that
the same statement applies to the sample covariance with high probability, showing that the
RIP is violated. Let u ∈ Rs and v ∈ Rs denote (respectively) unit-norm eigenvectors corre-
sponding to the minimum and maximum eigenvalues of ΣSS, and define the random variables
Zu = ‖Xu‖22/n and Zv = ‖Xv‖22/n. Since 〈Xi, v〉 ∼ N(0, λmax(ΣSS)) by construction, we
have

Zv =
1

n

n∑

i=1

〈Xi, v〉2 d
= λmax(ΣSS)

{1
n

n∑

i=1

y2i
}
,

where yi ∼ N(0, 1) are i.i.d. standard Gaussians, and
d
= denotes equality in distribution. By

χ2 tail bounds, we have P[ 1
n

∑n
i=1 y

2
i ≥ 1

2

]
≤ c1 exp(−c2n), so that Zv ≥ λmax(ΣSS)/2 with

high probability. A similar argument shows that Zu ≤ 2λmin(ΣSS) with high probability,
and putting together the pieces shows that w.h.p.

λmax(Σ̂SS)

λmin(Σ̂SS)
≥ 1

4

λmax(ΣSS)

λmin(ΣSS)
≥ 1

4

1 + a(s− 1)

1− a
,

which diverges as s increases.

In both of the preceding examples, the minimum eigenvalue of Σ was bounded from
below and the diagonal entries of Σ were bounded from above, which allowed us to assert
immediately that the RE condition was satisfied for the population covariance matrix. As
a final example, we now consider sampling from population covariance matrices that are
actually rank degenerate, but for which our theory still provides guarantees.

Example 3 (Highly degenerate covariance matrices). Let Σ be any matrix with bounded
diagonal that satisfies the RE property of some order s. Suppose that we sample n times
from a N(0,Σ) distribution, and then form the empirical covariance matrix Σ̂ = XTX/n. If

n < d, then Σ̂ must be rank degenerate, but Corollary 1 guarantees that Σ̂ will satisfy the
RE property of order s with high probability as long as n = Ω(s log d). Moreover, by χ2-tail

bounds, the maximal diagonal element ρ2(Σ̂) will be bounded with high probability under
this same scaling.

Now if we condition on the original design matrix X in the high probability set, we may
view Σ̂ as a fixed but highly rank-degenerate matrix. Suppose that we draw a new set of n
i.i.d. vectors X̃i ∼ N(0, Σ̂) using this degenerate covariance matrix. Such a resampling pro-
cedure could be relevant for a bootstrap-type calculation for assessing errors of the Lasso. We
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may then form a second empirical covariance matrix Σ̃ = 1
n
X̃T X̃ . Conditionally on Σ̂ having

the RE property of order s and a bounded diagonal, Corollary 1 shows that the resampled
empirical covariance Σ̃ will also have the RE property of order s with high probability, again
for n = Ω(s log d).

This simple example shows that in the high-dimensional setting d ≫ n, it is possible for
the RE condition to hold with high probability even when the original population covariance
matrix (Σ̂ in this example) has a d − n-dimensional nullspace. Note moreover that this is
not an isolated phenomenon—-rather, it will hold for almost every sample covariance matrix
Σ̂ constructed in the way that we have described.

3.4 Proof of Theorem 5

We now turn to the proof of Theorem 5. The main ingredients are the Gordon-Slepian
comparison inequalities [34] for Gaussian processes, concentration of measure for Lipschitz
functions [52], and a peeling argument. The first two ingredients underlie classical proofs on
the ordinary eigenvalues of Gaussian random matrices [27], whereas the latter tool is used
in empirical process theory [83].

3.4.1 Proof outline

Recall that Theorem 5 states that the condition

‖Xv‖2√
n

≥ 1

4
‖Σ1/2v‖2 − 9 ρ(Σ)

√
log d

n
‖v‖1 for all v ∈ Rd, (3.12)

holds with probability at least 1 − c′ exp(−cn), where c, c′ are universal positive constants.
Hence, we are bounding the random quantity ‖Xv‖2 in terms of ‖Σ1/2v‖2 and ‖v‖1 for all v
with high probability. It suffices to prove Theorem 5 for ‖Σ1/2v‖2 = 1. Indeed, for any vector
v ∈ Rd such that Σ1/2v = 0, the claim holds holds trivially. Otherwise, we may consider
the rescaled vector v̆ = v/‖Σ1/2v‖2, and note that ‖Σ1/2v̆‖2 = 1 by construction. By scale
invariance of the condition (3.12), if it holds for the rescaled vector v̆, it also holds for v.

Therefore, in the remainder of the proof, our goal is to lower bound the quantity ‖Xv‖2
over the set of v such that ‖Σ1/2v‖2 = 1 in terms of ‖v‖1. At a high level, there are three
main steps to the proof:

(1) We begin by considering the set V(r) : = {v ∈ Rd | ‖Σ1/2v‖2 = 1, ‖v‖1 ≤ r}, for a fixed
radius r. Although this set may be empty for certain choices of r > 0, our analysis
only concerns those choices for which it is non-empty. Define the random variable

M(r,X) : = 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1− ‖Xv‖2√

n

}
. (3.13)
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Our first step is to upper bound the expectation E[M(r,X)], where the expectation is
taken over the random Gaussian matrix X .

(2) Second, we establish that M(r,X) is a Lipschitz function of its Gaussian arguments,
and then use concentration inequalities to assert that for each fixed r > 0, the random
variable M(r,X) is sharply concentrated around its expectation with high probability.

(3) Third, we use a peeling argument to show that our analysis holds with high probability
and uniformly over all possible choice of the ℓ1-radius r, which then implies that the
condition (3.12) holds with high probability as claimed.

In the remainder of this section, we provide the details of each of these steps.

3.4.2 Bounding the expectation E[M(r,X)]

This subsection is devoted to a proof of the following lemma:

Lemma 9. For any radius r > 0 such that V(r) is non-empty, we have

E[M(r,X)] ≤ 1

4
+ 3ρ(Σ)

√
log d

n
r. (3.14)

Proof. : Let Sn−1 = {u ∈ Rn | ‖u‖2 = 1} be the Euclidean sphere of radius 1, and
recall the previously defined set V(r) : = {v ∈ Rd | ‖Σ1/2v‖2 = 1, ‖v‖1 ≤ r}. For each pair
(u, v) ∈ Sn−1 × V(r), we may define an associated zero-mean Gaussian random variable
Yu,v : = uTX v. This representation is useful, because it allows us to write the quantity of
interest as a min-max problem in terms of this Gaussian process. In particular, we have

− inf
v∈V(r)

‖Xv‖2 = − inf
v∈V(r)

sup
u∈Sn−1

uTXv = sup
v∈V(r)

inf
u∈Sn−1

uTXv. (3.15)

We may now upper bound the expected value of the above quantity via a Gaussian compar-
ison inequality; here we state a form of Gordon’s inequality used in past work on Gaussian
random matrices [27]. Suppose that {Yu,v, (u, v) ∈ U × V } and {Zu,v, (u, v) ∈ U × V } are
two zero-mean Gaussian processes on U × V . Using σ(·) to denote the standard deviation
of its argument, suppose that these two processes satisfy the inequality

σ(Yu,v − Yu′,v′) ≤ σ(Zu,v − Zu′,v′) for all pairs (u, v) and (u′, v′) in U × V , (3.16)

and this inequality holds with equality when v = v′. Then we are guaranteed that

E[sup
v∈V

inf
u∈U

Yu,v] ≤ E[sup
v∈V

inf
u∈U

Zu,v]. (3.17)
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We use Gordon’s inequality to show that

E[M(r,X)] = 1 + E[ sup
v∈V(r)

inf
u∈Sn−1

Yu,v] ≤ 1 + E[ sup
v∈V(r)

inf
u∈Sn−1

Zu,v],

where we recall that Yu,v = uTXv and Zu,v is a different Gaussian process to be defined
shortly.

We begin by computing σ2(Yu,v−Yu′,v′). To simplify notation, we note that the X ∈ Rn×d

can be written as WΣ1/2, where W ∈ Rn×d is a matrix with i.i.d. N (0, 1) entries, and Σ1/2

is the symmetric matrix square root. In terms of W , we can write

Yu,v = uTWΣ1/2v = uTWṽ,

where ṽ = Σ1/2v. It follows that

σ2(Yu,v − Yu′,v′) : = E
( n∑

i=1

d∑

j=1

Wi,j(uiṽj − u′
iṽ

′
j)
)2

= |||uṽT − (u′)(ṽ′)T |||2F ,

where |||·|||F is the Frobenius norm (ℓ2-norm applied elementwise to the matrix). This equality
follows immediately since the Wij variables are i.i.d N (0, 1).

Now consider a second zero-mean Gaussian process Zu,v indexed by Sn−1 × V(r), and
given by

Zu,v = ~gTu+ ~hTΣ1/2v, (3.18)

where ~g ∼ N(0, In×n) and ~h ∼ N(0, Id×d) are standard Gaussian random vectors. With
ṽ = Σ1/2v, we see immediately that

σ2(Zu,v − Zu′,v′) = ‖u− u′‖22 + ‖ṽ − ṽ′‖22. (3.19)

Consequently, in order to apply the Gaussian comparison principle to {Yu,v} and {Zu,v},
we need to show that

|||uṽT − (u′)(ṽ′)T |||2F ≤ ‖u− u′‖22 + ‖ṽ − ṽ′‖22 (3.20)
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for all pairs (u, ṽ) and (u′, ṽ′) in the set of interest. Since the Frobenius norm ||| · |||F is simply
the ℓ2-norm on the vectorized form of a matrix, we can compute

|||u ṽT − u′(ṽ′)T |||2F = |||(u− u′)ṽT + u′(ṽ − ṽ′)T |||2F

=

n∑

i=1

d∑

j=1

[(ui − u′
i)ṽj + u′

i(ṽj − ṽ′j)]
2

= ‖ṽ‖22 ‖u− u′‖22 + ‖u′‖22‖ṽ − ṽ′‖22 + 2(uTu′ − ‖u′‖22)(‖ṽ‖22 − ṽT ṽ′)

= ‖u− u′‖22 + ‖ṽ − ṽ′‖22 − 2(‖u′‖22 − uTu′)(‖ṽ‖22 − ṽT ṽ′),

where we have used equalities ‖u‖2 = ‖u′‖2 = 1 and ‖ṽ‖2 = ‖ṽ′‖2 = 1. By the Cauchy-
Schwarz inequality, we have ‖u‖22 − uTu′ ≥ 0, and ‖ṽ‖22 − ṽT ṽ′ ≥ 0, from which the claimed
inequality (3.20) follows. When v = v′, we also have ṽ = Σ1/2v = Σ1/2v′ = ṽ′, so that
equality holds in the condition (3.20) when ṽ = ṽ′.

Consequently, we may apply Gordon’s inequality to conclude that

E
[
sup

v∈V(r)
inf

u∈Sn−1
uTXv

]
≤ E

[
sup

v∈V(r)
inf

u∈Sn−1
Zu,v

]

= E[ inf
u∈Sn−1

~gTu] + E[ sup
v∈V(r)

~hTΣ1/2v]

= −E[‖~g‖2] + E[ sup
v∈V(r)

~hTΣ1/2v].

We now observe that by definition of V(r), we have

sup
v∈V(r)

|~hTΣ1/2v| ≤ sup
v∈V(r)

‖v‖1 ‖Σ1/2~h‖∞ ≤ r‖Σ1/2~h‖∞.

Each element (Σ1/2~h)j is zero-mean Gaussian with variance Σjj . Consequently, known results

on Gaussian maxima (c.f. [53], equation (3.13)) imply that E[‖Σ1/2h‖∞] ≤ 3
√
ρ2(Σ) log d,

where ρ2(Σ) = maxj Σjj. Noting2 that E[‖~g‖2] ≥ 3
4

√
n for all n ≥ 10 by standard χ2 tail

bounds and putting together the pieces, we obtain the bound

E[− inf
v∈V(r)

‖Xv‖2] ≤ −3

4

√
n+ 3

[
ρ2(Σ) log d

]1/2
r.

Dividing by
√
n and adding 1 to both sides yields

E[M(r,X)] = E[1 − inf
v∈V(r)

‖Xv‖2/
√
n] ≤ 1/4 + 3 ρ(Σ)

√
log d

n
r,

2In fact, |E[‖~g‖2]−
√
n| = o(

√
n), but this simple bound is sufficient for our purposes.
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as claimed.

3.4.3 Concentration around the mean for M(r,X)

Having controlled the expectation, the next step is to establish concentration of M(r,X)
around its mean. Note that Lemma 9 shows that E[M(r,X)] ≤ tℓ(r), where

tℓ(r) : =
1

4
+ 3 r ρ(Σ)

√
log d

n
. (3.21)

Now we prove the following claim:

Lemma 10. For any r such that V(r) is non-empty, we have

P

[
M(r,X) ≥ 3tℓ(r)

2

]
≤ 2 exp(−nt2ℓ (r)/8).

Proof. In order to prove this lemma, it suffices to show that

P
[
|M(r,X)− E[M(r,X)]| ≥ tℓ(r)/2

]
≤ 2 exp(−nt2ℓ(r)/8),

and use the upper bound on E[M(r,X)] derived in Lemma 9.
By concentration of measure for Lipschitz functions of Gaussians (see Appendix B of

our journal paper [67]), this tail bound will follow if we show that the Lipschitz constant
of M(r,X) as a function of the Gaussian random matrix is less than 1/

√
n. To make this

functional dependence explicit, let us write M(r,X) as the function h(W ) = supv∈V(r)
(
1 −

‖WΣ1/2v‖2/
√
n
)
. We find that

√
n
[
h(W )− h(W ′)

]
= sup

v∈V(r)
−‖WΣ1/2v‖2 − sup

v∈V(r)
−‖W ′Σ1/2v‖2.

Since V(r) is closed and bounded and the objective function is continuous, there exists
v̂ ∈ V(r) such that v̂ = argmaxv∈V(r) −‖WΣ1/2v‖2. Therefore

sup
v∈V(r)

(
− ‖WΣ1/2v‖2

)
− sup

v∈V(r)

(
− ‖W ′Σ1/2v‖2

)
= −‖WΣ1/2v̂‖2 − sup

v∈V(r)

(
− ‖W ′Σ1/2v‖2

)

≤ ‖W ′Σ1/2v̂‖2 − ‖WΣ1/2v̂‖2
≤ sup

v∈V(r)

(
‖(W ′ −W )Σ1/2v‖2

)
.
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For a matrix A, we define its spectral norm |||A|||2 = sup‖u‖2=1 ‖Au‖2. With this notation, we
can bound the Lipschitz constant of h as

√
n
[
h(W )− h(W ′)

]
≤ sup

v∈V(r)

(
‖(W −W ′)Σ1/2v‖2

)

(a)

≤
{

sup
v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W −W ′)|||2

(b)

≤
{

sup
v∈V(r)

(
‖Σ1/2v‖2

)}
|||(W −W ′)|||F

(c)
= |||W −W ′|||F .

In this argument, inequality (a) follows by definition of the matrix spectral norm ||| · |||2;
inequality (b) follows from the bound |||(W − W ′)|||2 ≤ |||(W − W ′)|||F between the spectral
and Frobenius matrix norms [45]; and equality (c) follows since ‖Σ1/2v‖2 = 1 for all v ∈ V(r).
Thus, we have shown that h has Lipschitz constant L ≤ 1/

√
n with respect to the Euclidean

norm on W (viewed as a vector with nd entries). Finally we use a standard result on the
concentration for Lipschitz functions of Gaussian random variables [52, 57]—see Appendix
B of Raskutti et al. [67] for one statement. Applying the concentration result Eq. (9) in
from Appendix B of Raskutti et al. [67] with m = np, g̃ = W , and t = t(r)/2 completes the
proof.

3.4.4 Extension to all vectors via peeling

Thus far, we have shown that

M(r,X) = 1− inf
v∈V(r)

‖Xv‖2√
n

= sup
v∈V(r)

{
1− ‖Xv‖2√

n

}
≥ 3tℓ(r)/2, (3.22)

with probability no larger than 2 exp(−nt2ℓ(r)/8) where tℓ(r) =
1
4
+ 3 r ρ(Σ)

√
log d
n

. The set

V(r) requires that ‖v‖1 ≤ r for some fixed radius r, whereas the claim of Theorem 5 applies
to all vectors v. Consequently, we need to extend the bound (3.22) to an arbitrary ℓ1 radius.

In order do so, we define the event

T : =
{
∃ v ∈ Rd s.t. ‖Σ1/2v‖2 = 1 and

(
1− ‖Xv‖2/

√
n) ≥ 3tℓ(‖v‖1)

}
.

Note that there is no r in the definition of T , because we are setting ‖v‖1 to be the argument
of the function tℓ. We claim that there are constants positive constants c, c′ such that
P[T ] ≤ c exp(−c′n), from which Theorem 5 will follow. We establish this claim by using
a device known as peeling [4, 83]; for the version used here, see Lemma 3 proved in the
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Appendix in Raskutti et al. [67]. In particular, we apply Lemma 3 with the functions

f(v,X) = 1− ‖Xv‖2/
√
n, h(v) = ‖v‖1, and g(r) = 3tℓ(r)/2,

the sequence an = n, and the set A = {v ∈ Rd | ‖Σ1/2v‖2 = 1}. Recall that the quantity
tℓ, as previously defined (3.21), satisfies tℓ(r) ≥ 1/4 for all r > 0 and is strictly increasing.
Therefore, the function g(r) = 3tℓ(r)/2 is non-negative and strictly increasing as a function
of r, and moreover satisfies g(r) ≥ 3/8, so that Lemma 3 is applicable with µ = 3/8. We
can thus conclude that P[T c] ≥ 1− c exp(−c′n) for some numerical constants c and c′.

Finally, conditioned on the event T c, for all v ∈ Rd with ‖Σ1/2v‖2 = 1, we have

1− ‖Xv‖2/
√
n ≤ 3tℓ(‖v‖1) =

3

4
+ 9 ‖v‖1 ρ(Σ)

√
log d

n
,

which implies that

‖Xv‖2/
√
n ≥ 1

4
− 9 ‖v‖1 ρ(Σ)

√
log d

n
.

As noted in the proof outline, this suffices to establish the general claim.

3.5 Conclusion

Methods based on ℓ1-relaxations are very popular, and the weakest possible conditions on
the design matrix X required to provide performance guarantees—namely, the restricted
nullspace and eigenvalue conditions—are well-understood. In this chapter, we have proved
that these conditions hold with high probability for a broad class of Gaussian design matrices
allowing for quite general dependency among the columns, as captured by a covariance
matrix Σ representing the dependence among the different covariates. As a corollary, our
result guarantees that known performance guarantees for ℓ1-relaxations such as basis pursuit
and Lasso hold with high probability for such problems, provided the population matrix Σ
satisfies the RE condition. Interestingly, our theory shows that ℓ1-methods can perform well
when the covariates are sampled from a Gaussian distribution with a degenerate covariance
matrix. Some follow-up work [98] has extended these results to random matrices with sub-
Gaussian rows. In addition, there are a number of other ways in which this work could be
extended. One is to incorporate additional dependence across the rows of the design matrix,
as would arise in modeling time series data for example. It would also be interesting to
relate the allowable degeneracy structures of Σ to applications involving real data. Finally,
although this chapter provides various conditions under which the RE condition holds with
high probabability, it does not address the issue of how to determine whether a given sample
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covariance matrix matrix Σ̂ = XTX/n satisfies the RE condition. It would be interesting to
study if there are computationally efficient methods for verifying the RE condition.
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Chapter 4

Minimax-Optimal Rates For Sparse
Additive Models Over Kernel Classes
Via Convex Programming

4.1 Introduction

While a large body of work has focused on sparse linear models, many applications call for
the additional flexibility provided by non-parametric models. In the general setting, a non-
parametric regression model takes the form y = f ∗(x1, . . . , xd)+w, where f ∗ : Rd → R is the
unknown regression function, and w is scalar observation noise. Unfortunately, this general
non-parametric model is known to suffer severely from the so-called “curse of dimensionality”,
in that for most natural function classes (e.g., twice differentiable functions), the sample size
n required to achieve any given error grows exponentially in the dimension d. Given this
curse of dimensionality, it is essential to further constrain the complexity of possible functions
f ∗. One attractive candidate is the class of additive non-parametric models [43], in which
the function f ∗ has an additive decomposition of the form

f ∗(x1, x2, . . . , xd) =
d∑

j=1

f ∗
j (xj), (4.1)

where each component function f ∗
j is univariate. Given this additive form, this function class

no longer suffers from the exponential explosion in sample size of the general non-parametric
model. Nonetheless, one still requires a sample size n ≫ d for consistent estimation; note
that this is true even for the linear model, which is a special case of Equation (4.1).
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A natural extension of sparse linear models is the class of sparse additive models, in which
the unknown regression function is assumed to have a decomposition of the form

f ∗(x1, x2 . . . , xd) =
∑

j∈S
f ∗
j (xj), (4.2)

where S ⊆ {1, 2, . . . , d} is some unknown subset of cardinality |S| = s. Of primary interest
is the case when the decomposition is genuinely sparse, so that s ≪ d. To the best of
our knowledge, this model class was first introduced by [54], and has since been studied by
various researchers [50, 58, 71, 94]. Note that the sparse additive model (4.2) is a natural
generalization of the sparse linear model, to which it reduces when each univariate function
is constrained to be linear.

In past work, several groups have proposed computationally efficient methods for esti-
mating sparse additive models (4.2). Just as ℓ1-based relaxations such as the Lasso have
desirable properties for sparse parametric models, more general ℓ1-based approaches have
proven to be successful in this setting. [54] proposed the COSSO method, which extends the
Lasso to cases where the component functions f ∗

j lie in a reproducing kernel Hilbert space
(RKHS); see also [94] for a similar extension of the non-negative garrote [16]. [7] analyzes a
closely related method for the RKHS setting, in which least-squares loss is penalized by an
ℓ1-sum of Hilbert norms, and establishes consistency results in the classical (fixed d) setting.
Other related ℓ1-based methods have been proposed in independent work by [49], [71] and
[58], and analyzed under high-dimensional scaling (d ≫ n). As we describe in more detail
in Section 4.3.4, each of the above chapters establish consistency and convergence rates for
the prediction error under certain conditions on the covariates as well as the sparsity s and
dimension d. However, it is not clear whether the rates obtained in these chapters are sharp
for the given methods, nor whether the rates are minimax-optimal. Past work by [50] es-
tablishes rates for sparse additive models with an additional global boundedness condition,
but as will be discussed at more length in the sequel, these rates are not minimax optimal
in general.

This chapter makes three main contributions to this line of research. Our first contribu-
tion is to analyze a simple polynomial-time method for estimating sparse additive models
and provide upper bounds on the error in the L2(P) and L2(Pn) norms. The estimator1 that
we analyze is based on a combination of least-squares loss with two ℓ1-based sparsity penalty
terms, one corresponding to an ℓ1/L

2(Pn) norm and the other an ℓ1/‖ · ‖H norm. Our first
main result (Theorem 6) shows that with high probability, if we assume the univariate func-
tions are bounded and independent, the error of our procedure in the squared L2(Pn) and
L2(P) norms is bounded by O

(
s log d

n
+sν2

n

)
, where the quantity ν2

n corresponds to the optimal
rate for estimating a single univariate function. Importantly, our analysis does not require a
global boundedness condition on the class Fd,s,H of all s-sparse models, an assumption that

1The same estimator was proposed concurrently by [50]; we discuss connections to this work in the sequel.
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is often imposed in classical non-parametric analysis. Indeed, as we discuss below, when such
a condition is imposed, then significantly faster rates of estimation are possible. The proof
of Theorem 6 involves a combination of techniques for analyzing M-estimators with decom-
posable regularizers [64], combined with various techniques in empirical process theory for
analyzing kernel classes [9, 61, 83]. Our second contribution is complementary in nature, in
that it establishes algorithm-independent minimax lower bounds on L2(P) error. These min-
imax lower bounds, stated in Theorem 7, are specified in terms of the metric entropy of the
underlying univariate function classes. For both finite-rank kernel classes and Sobolev-type
classes, these lower bounds match our achievable results, as stated in Corollaries 2 and 3, up
to constant factors in the regime of sub-linear sparsity (s = o(d)). Thus, for these function
classes, we have a sharp characterization of the associated minimax rates. The lower bounds
derived in this chapter initially appeared in the Proceedings of the NIPS Conference (De-
cember 2009). The proofs of Theorem 2 is based on characterizing the packing entropies of
the class of sparse additive models, combined with classical information theoretic techniques
involving Fano’s inequality and variants [42, 92, 93].

Our third contribution is to determine upper bounds on minimax L2(P) and L2(Pn) error
when we impose a global boundedness assumption on the class Fd,s,H. More precisely, a global

boundedness condition means that the quantity B(Fd,s,H) = supf∈Fd,s,H supx |
∑d

j=1 fj(xj)| is
assumed to be bounded independently of (s, d). As mentioned earlier, our upper bound in
Theorem 6 does not impose a global boundedness condition, whereas in contrast, the analysis
of [50], or KY for short, does impose such a global boundedness condition. Under global
boundedness, their work provides rates on the L2(P) and L2(Pn) norm that are of the same
order as the results presented here. It is natural to wonder whether or not this difference
is actually significant—that is, do the minimax rates for the class of sparse additive models
depend on whether or not global boundedness is imposed? In Section 4.3.5, we answer
this question in the affirmative. In particular, Theorem 8 and Corollary 4 provide upper
bounds on the minimax rates, as measured in either the L2(P) and L2(Pn)-norms, under
a global boundedness condition. These rates are faster than those of Theorem 3 in the
KY chapter, in particular showing that the KY rates are not optimal for problems with
s = Ω(

√
n). In this way, we see that the assumption of global boundedness, though relatively

innocuous for classical (low-dimensional) non-parametric problems, can be quite limiting in
high dimensions.

The remainder of the chapter is organized as follows. In Section 4.2, we provide back-
ground on kernel spaces and the class of sparse additive models considered in this chapter.
Section 4.3 is devoted to the statement of our main results and discussion of their conse-
quences; it includes description of our method, the upper bounds on the convergence rate
that it achieves, and a matching set of minimax lower bounds. Section 4.3.5 investigates the
restrictiveness of the global uniform boundedness assumption and in particular, Theorem 8
and Corollary 4 demonstrate that there are classes of globally bounded functions for which
faster rates are possible. Section 4.4 is devoted to the proofs of our three main theorems,
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with the more technical details deferred to the Appendices in our journal version [69]. We
conclude with a discussion in Section 4.5.

4.2 Background and Problem Set-up

We begin with some background on reproducing kernel Hilbert spaces, before providing a
precise definition of the class of sparse additive models studied in this chapter.

4.2.1 Reproducing Kernel Hilbert Spaces

Given a subset X ⊂ R and a probability measure Q on X , we consider a Hilbert space
H ⊂ L2(Q), meaning a family of functions g : X → R, with ‖g‖L2(Q) < ∞, and an associated
inner product 〈·, ·〉H under which H is complete. The space H is a reproducing kernel
Hilbert space (RKHS) if there exists a symmetric function ker : X × X → R+ such that
for each x ∈ X : (a) the function ker(·, x) belongs to the Hilbert space H, and (b) we have
the reproducing relation f(x) = 〈f, ker(·, x)〉H for all f ∈ H. Any such kernel function
must be positive semidefinite; under suitable regularity conditions, Mercer’s theorem ([63])
guarantees that the kernel has an eigen-expansion of the form

ker(x, x′) =
∞∑

k=1

µkφk(x)φℓ(x
′), (4.3)

where µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and {φk}∞k=1 are
the associated eigenfunctions, taken to be orthonormal in L2(Q). The decay rate of these
eigenvalues will play a crucial role in our analysis, since they ultimately determine the rate
νn for the univariate RKHS’s in our function classes.

Since the eigenfunctions {φk}∞k=1 form an orthonormal basis, any function f ∈ H has an
expansion of the f(x) =

∑∞
k=1 akφk(x), where ak = 〈f, φk〉L2(Q) =

∫
X f(x)φk(x) dQ(x) are

(generalized) Fourier coefficients. Associated with any two functions inH—say f =
∑∞

k=1 akφk

and g =
∑∞

k=1 bkφk—are two distinct inner products. The first is the usual inner product in
L2(Q), 〈f, g〉L2(Q) : =

∫
X f(x)g(x) dQ(x). By Parseval’s theorem, it has an equivalent repre-

sentation in terms of the expansion coefficients—namely

〈f, g〉L2(Q) =

∞∑

k=1

akbk.
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The second inner product, denoted 〈f, g〉H, is the one that defines the Hilbert space; it can
be written in terms of the kernel eigenvalues and generalized Fourier coefficients as

〈f, g〉H =

∞∑

k=1

akbk
µk

.

Using this definition, the Hilbert ball of unit radius for a kernel with eigenvalues {µk}∞k=1

and eigenfunctions {φk}∞k=1 is given by

BH(1) : =
{
f =

∞∑

k=1

akφk |
∞∑

k=1

a2k
µk

≤ 1
}
.

For more background on reproducing kernel Hilbert spaces, we refer the reader to various
standard references [6, 76, 77, 88].

4.2.2 Sparse Additive Models Over RKHS

For each j = 1, . . . , d, let Hj ⊂ L2(Q) be a reproducing kernel Hilbert space of univariate
functions on the domain X ⊂ R. We assume that

E[fj(x)] =

∫

X
fj(x)dQ(x) = 0 for all fj ∈ Hj , and for each j = 1, 2, . . . , d.

As will be clarified momentarily, our observation model (4.5) allows for the possibility of a
non-zero mean f , so that there is no loss of generality in this assumption. For a given subset
S ⊂ {1, 2, . . . , d}, we define

H(S) : =
{
f =

∑

j∈S
fj | fj ∈ Hj , and fj ∈ BHj

(1) ∀ j ∈ S
}
,

corresponding to the class of functions f : X d → R that decompose as sums of univariate
functions on co-ordinates lying within the set S. Note that H(S) is also (a subset of) a
reproducing kernel Hilbert space, in particular with the norm

‖f‖2H(S) =
∑

j∈S
‖fj‖2Hj

,
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where ‖ · ‖Hj
denotes the norm on the univariate Hilbert space Hj . Finally, for s ∈

{1, 2, . . . , ⌊d/2⌋}, we define the function class

Fd,s,H : =
⋃

S⊂{1,2,...,d}
|S|=s

H(S). (4.4)

To ease notation, we frequently adopt the shorthand F = Fd,s,H, but the reader should recall
that F depends on the choice of Hilbert spaces {Hj}dj=1, and moreover, that we are actually
studying a sequence of function classes indexed by (d, s).

Now let P = Qd denote the product measure on the space X d ⊆ Rd. Given an arbitrary
f ∗ ∈ F , we consider the observation model

yi = f + f ∗(xi) + wi, for i = 1, 2, . . . , n, (4.5)

where {wi}ni=1 is an i.i.d. sequence of standard normal variates, and {xi}ni=1 is a sequence of
design points in Rd, sampled in an i.i.d. manner from P.

Given an estimate f̂ , our goal is to bound the error f̂ − f ∗ under two norms. The first
is the usual L2(P) norm on the space F ; given the product structure of P and the additive
nature of any f ∈ F , it has the additive decomposition ‖f‖2L2(P) =

∑d
j=1 ‖fj‖2L2(Q). In

addition, we consider the error in the empirical L2(Pn)-norm defined by the sample {xi}ni=1,
defined as

‖f‖2L2(Pn)
: =

1

n

n∑

i=1

f 2(xi).

Unlike the L2(P) norm, this norm does not decouple across the dimensions, but part of our
analysis will establish an approximate form of such decoupling. For shorthand, we frequently
use the notation ‖f‖2 = ‖f‖L2(P) and ‖f‖n = ‖f‖L2(Pn) for a d-variate function f ∈ F . With
a minor abuse of notation, for a univariate function fj ∈ Hj, we also use the shorthands
‖fj‖2 = ‖fj‖L2(Q) and ‖fj‖n = ‖fj‖L2(Qn).

4.3 Main Results and Their Consequences

This section is devoted to the statement of our three main results, and discussion of some of
their consequences. We begin in Section 4.3.1 by describing a regularized M-estimator for
sparse additive models, and we state our upper bounds for this estimator in Section 4.3.2. We
illustrate our upper bounds for various concrete instances of kernel classes. In Section 4.3.3,
we state minimax lower bounds on the L2(P) error over the class Fd,s,H, which establish the
optimality of our procedure. In Section 4.3.4, we provide a detailed comparison between
our results to past work, and in Section 4.3.5 we discuss the effect of global boundedness
conditions on optimal rates.
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4.3.1 A Regularized M-Estimator For Sparse Additive Models

For any function of the form f =
∑d

j=1 fj , the (L2(Qn), 1) and (H, 1)-norms are given by

‖f‖n,1 : =
d∑

j=1

‖fj‖n, and ‖f‖H,1 : =
d∑

j=1

‖fj‖H,

respectively. Using this notation and defining the sample mean ȳn = 1
n

∑n
i=1 yi, we define

the cost functional

L(f) = 1

2n

n∑

i=1

(
yi − ȳn − f(xi)

)2
+ λn‖f‖n,1 + ρn‖f‖H,1.

The cost functional L(f) is least-squares loss with a sparsity penalty ‖f‖n,1 and a smoothness
penalty ‖f‖H,1. Here (λn, ρn) are a pair of positive regularization parameters whose choice
will be specified by our theory. Given this cost functional, we then consider the M-estimator

f̂ ∈ argmin
f

L(f) subject to f =
∑d

j=1 fj and ‖fj‖H ≤ 1 for all j = 1, 2, . . . , d. (4.6)

In this formulation (4.6), the problem is infinite-dimensional in nature, since it involves
optimization over Hilbert spaces. However, an attractive feature of this M-estimator is that,
as a consequence of the representer theorem [48], it can be reduced to an equivalent convex
program in Rn×Rd. In particular, for each j = 1, 2, . . . , d, let kerj denote the kernel function
for co-ordinate j. Using the notation xi = (xi1, xi2, . . . , xid) for the ith sample, we define the
collection of empirical kernel matrices Kj ∈ Rn×n, with entries Kj

iℓ = kerj(xij , xℓj). By the

representer theorem, any solution f̂ to the variational problem (4.6) can be written in the
form

f̂(z1, . . . , zd) =

n∑

i=1

d∑

j=1

α̂ij ker
j(zj, xij),

for a collection of weights
{
α̂j ∈ Rn, j = 1, . . . , d

}
. The optimal weights (α̂1, . . . , α̂d) are

any minimizer to the following convex program:

arg min
αj∈Rn

αT
j Kjαj≤1

{
1

2n
‖y − ȳn −

d∑

j=1

Kjαj‖22 + λn

d∑

j=1

√
1

n
‖Kjαj‖22 + ρn

d∑

j=1

√
αT
j K

jαj

}
. (4.7)

This problem is a second-order cone program (SOCP), and there are various algorithms for
finding a solution to arbitrary accuracy in time polynomial in (n, d), among them interior
point methods (e.g., see §11 in [15]).
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Various combinations of sparsity and smoothness penalties have been used in past work
on sparse additive models. For instance, the method of [71] is based on least-squares loss
regularized with single sparsity constraint, and separate smoothness constraints for each
univariate function. They solve the resulting optimization problem using a back-fitting pro-
cedure. [49] develop a method based on least-squares loss combined with a single penalty
term

∑d
j=1 ‖fj‖H. Their method also leads to an SOCP if H is a reproducing kernel Hilbert

space, but differs from the program (4.7) in lacking the additional sparsity penalties. [58] an-
alyzed least-squares regularized with a penalty term of the form

∑d
j=1

√
λ1‖fj‖2n + λ2‖fj‖2H,

where λ1 and λ2 are a pair of regularization parameters. In their method, λ1 controls the
sparsity while λ2 controls the smoothness. If H is an RKHS, the method in [58] reduces
to an ordinary group Lasso problem on a different set of variables, which can be cast as a
quadratic program. The more recent work of [50] is based on essentially the same estimator
as problem (4.6), except that we allow for a non-zero mean for the function, and estimate
it as well. In addition, the KY analysis involves a stronger condition of global boundedness.
We provide a more in-depth comparison of our analysis and results with the past work listed
above in Sections 4.3.4 and 4.3.5.

4.3.2 Upper Bound

We now state a result that provides upper bounds on the estimation error achieved by the
estimator (4.6), or equivalently (4.7). To simplify presentation, we state our result in the
special case that the univariate Hilbert space Hj , j = 1, . . . , d are all identical, denoted by H.
However, the analysis and results extend in a straightforward manner to the general setting
of distinct univariate Hilbert spaces, as we discuss following the statement of Theorem 6.

Let µ1 ≥ µ2 ≥ . . . ≥ 0 denote the non-negative eigenvalues of the kernel operator defining
the univariate Hilbert space H, as defined in Equation (4.3), and define the function

Qσ,n(t) : =
1√
n

[ ∞∑

ℓ=1

min{t2, µℓ}
]1/2

.

Let νn > 0 be the smallest positive solution to the inequality

40ν2
n ≥ Qσ,n(νn), (4.8)

where the 40 is simply used for technical convenience. We refer to νn as the critical univariate
rate, as it is the minimax-optimal rate for L2(P)-estimation of a single univariate function
in the Hilbert space H [61, 83]. This quantity will be referred to throughout the remainder
of the chapter.
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Our choices of regularization parameters are specified in terms of the quantity

γn : = κmax
{
νn,

√
log d

n

}
, (4.9)

where κ is a fixed constant that we choose later. We assume that each function within the
unit ball of the univariate Hilbert space is uniformly bounded by a constant multiple of its
Hilbert norm—that is, for each j = 1, . . . , d and each fj ∈ H,

‖fj‖∞ : = sup
xj

|fj(xj)| ≤ c ‖fj‖H. (4.10)

This condition is satisfied for many kernel classes including Sobolev spaces, and any uni-
variate RKHS in which the kernel function2 bounded uniformly by c. Such a condition is
routinely imposed for proving upper bounds on rates of convergence for non-parametric least
squares in the univariate case d = 1 [80, 83]. Note that this univariate boundedness does
not imply that the multivariate functions f =

∑
j∈S fj in F are uniformly bounded indepen-

dently of (d, s); rather, since such functions are the sum of s terms, they can take on values
of the order

√
s.

The following result applies to any class Fd,s,H of sparse additive models based on a
univariate Hilbert space satisfying condition (4.10), and to the estimator (4.6) based on n
i.i.d. samples (xi, yi)

n
i=1 from the observation model (4.5).

Theorem 6. Let f̂ be any minimizer of the convex program (4.6) with regularization param-
eters λn ≥ 16γn and ρn ≥ 16γ2

n. Then provided that nγ2
n = Ω(log(1/γn)), there are universal

constants (C, c1, c2) such that

P

[
max{‖f̂ − f ∗‖22, ‖f̂ − f ∗‖2n} ≥ C

{
sλ2

n + sρn
}]

≤ c1 exp(−c2nγ
2
n).

We provide the proof of Theorem 6 in Section 4.4.1.

Remarks

First, the technical condition nγ2
n = Ω(log(1/γn)) is quite mild, and satisfied in most cases

of interest, among them the kernels considered below in Corollaries 2 and 3.
Second, note that setting λn = cγn and ρn = cγ2

n for some constant c ∈ [16,∞) yields
the rate Θ(sγ2

n + sρn) = Θ( s log d
n

+ sν2
n). This rate may be interpreted as the sum of a

2Indeed, we have

sup
xj

|fj(xj)| = sup
xj

|〈fj(.), ker(., xj)〉H| ≤ sup
xj

√
ker(xj , xj)‖fj‖H.
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subset selection term ( s log d
n

) and an s-dimensional estimation term (sν2
n). Note that the

subset selection term ( s log d
n

) is independent of the choice of Hilbert space H, whereas the
s-dimensional estimation term is independent of the ambient dimension d. Depending on
the scaling of the triple (n, d, s) and the smoothness of the univariate RKHS H, either the
subset selection term or function estimation term may dominate. In general, if log d

n
= o(ν2

n),
the s-dimensional estimation term dominates, and vice versa otherwise. At the boundary,
the scalings of the two terms are equivalent.

Finally, for clarity, we have stated our result in the case where the univariate Hilbert
space H is identical across all co-ordinates. However, our proof extends with only notational
changes to the general setting, in which each co-ordinate j is endowed with a (possibly

distinct) Hilbert space Hj . In this case, the M-estimator returns a function f̂ such that
(with high probability)

max
{
‖f̂ − f ∗‖2n, ‖f̂ − f ∗‖22

}
≤ C

{
s log d

n
+
∑

j∈S
ν2
n,j

}
,

where νn,j is the critical univariate rate associated with the Hilbert space Hj, and S is the
subset on which f ∗ is supported.

Theorem 6 has a number of corollaries, obtained by specifying particular choices of ker-
nels. First, we discuss m-rank operators, meaning that the kernel function ker can be
expanded in terms of m eigenfunctions. This class includes linear functions, polynomial
functions, as well as any function class based on finite dictionary expansions. First we
present a corollary for finite-rank kernel classes.

Corollary 2. Under the same conditions as Theorem 6, consider an univariate kernel with
finite rank m. Then any solution f̂ to the problem (4.6) with λn = cγn and ρn = cγ2

n with
16 ≤ c < ∞ satisfies

P

[
max

{
‖f̂ − f ∗‖2n, ‖f̂ − f ∗‖22

}
≥ C

{s log d
n

+ s
m

n

}]
≤ c1 exp

(
− c2(m+ log d)

)
. (4.11)

Proof. : It suffices to show that the critical univariate rate (4.8) satisfies the scaling ν2
n =

O(m/n). For a finite-rank kernel and any t > 0, we have

Qσ,n(t) =
1√
n

√√√√
m∑

j=1

min{t2, µj} ≤ t

√
m

n
,

from which the claim follows by the definition (4.8).

Next, we present a result for the RKHS’s with infinitely many eigenvalues, but whose
eigenvalues decay at a rate µk ≃ (1/k)2α for some parameter α > 1/2. Among other
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examples, this type of scaling covers the case of Sobolev spaces, say consisting of functions
with α derivatives [14, 37].

Corollary 3. Under the same conditions as Theorem 6, consider an univariate kernel with
eigenvalue decay µk ≃ (1/k)2α for some α > 1/2. Then the kernel estimator defined in (4.6)
with λn = cγn and ρn = cγ2

n with 16 ≤ c < ∞ satisfies

P

[
max

{
‖f̂ − f ∗‖2n, ‖f̂ − f ∗‖22

}
≥ C

{s log d
n

+ s
(1
n

) 2α
2α+1

}]
≤ c1 exp

(
− c2(n

1

2α+1 + log d)
)
.

(4.12)

Proof. : As in the previous corollary, we need to compute the critical univariate rate νn.
Given the assumption of polynomial eigenvalue decay, a truncation argument shows that

Qσ,n(t) = O
(
t1−

1
2α√
n

)
. Consequently, the critical univariate rate (4.8) satisfies the scaling ν2

n ≍
ν
1− 1

2α
n /

√
n, or equivalently, ν2

n ≍ n− 2α
2α+1 .

4.3.3 Minimax Lower Bounds

In this section, we derive lower bounds on the minimax error in the L2(P)-norm that comple-
ment the achievability results derived in Theorem 6. Given the function class F , we define
the minimax L2(P)-error MP(Fd,s,H) to be the largest quantity such that

inf
f̂n

sup
f∗∈F

Pf∗ [‖f̂n − f ∗‖22 ≥ MP(Fd,s,H)] ≥ 1/2, (4.13)

where the infimum is taken over all measurable functions of the n samples {(xi, yi)}ni=1, and
Pf∗ denotes the data distribution when the unknown function is f ∗. Given this definition,
note that Markov’s inequality implies that

inf
f̂n

sup
f∗∈F

E‖f̂n − f ∗‖22 ≥
MP(Fd,s,H)

2
.

Central to our proof of the lower bounds is the metric entropy structure of the univariate
reproducing kernel Hilbert spaces. More precisely, our lower bounds depend on the packing
entropy, defined as follows. Let (S, ρ) be a totally bounded metric space, consisting of a set
S and a metric ρ : S × S → R+. An ǫ-packing of S is a collection {f 1, . . . , fM} ⊂ S such
that ρ(f i, f j) ≥ ǫ for all i 6= j. The ǫ-packing number M(ǫ;S, ρ) is the cardinality of the
largest ǫ-packing. The packing entropy is the simply the logarithm of the packing number,
namely the quantity logM(ǫ;S, ρ), to which we also refer as the metric entropy. In this
chapter, we derive explicit minimax lower bounds for two different scalings of the univariate
metric entropy.
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Logarithmic Metric Entropy

There exists some m > 0 such that

logM(ǫ;BH(1), L
2(P)) ≃ m log(1/ǫ) for all ǫ ∈ (0, 1). (4.14)

Function classes with metric entropy of this type include linear functions (for which m = k),
univariate polynomials of degree k (for which m = k + 1), and more generally, any function
space with finite VC-dimension [86]. This type of scaling also holds for any RKHS based on
a kernel with rank m [22], and these finite-rank kernels include both linear and polynomial
functions as special cases.

Polynomial Metric Entropy

There exists some α > 0 such that

logM(ǫ;BH(1), L
2(P)) ≃ (1/ǫ)1/α for all ǫ ∈ (0, 1). (4.15)

Various types of Sobolev/Besov classes exhibit this type of metric entropy decay [14, 37]. In
fact, any RKHS in which the kernel eigenvalues decay at a rate k−2α have a metric entropy
with this scaling [21, 22].

We are now equipped to state our lower bounds on the minimax risk (4.13):

Theorem 7. Given n i.i.d. samples from the sparse additive model (4.5) with sparsity
s ≤ d/4, there is an universal constant C > 0 such that:

(a) For a univariate class H with logarithmic metric entropy (4.14) indexed by parameter
m, we have

MP(Fd,s,H) ≥ C

{
s log(d/s)

n
+ s

m

n

}
.

(b) For a univariate class H with polynomial metric entropy (4.15) indexed by α, we have

MP(Fd,s,H) ≥ C

{
s log(d/s)

n
+ s

(1
n

) 2α
2α+1

}
. (4.16)

The proof of Theorem 7 is provided in Section 4.4.2. The most important consequence of
Theorem 7 is in establishing the minimax-optimality of the results given in Corollary 2 and 3;
in particular, in the regime of sub-linear sparsity (i.e., for which log d = O(log(d/s))), the
combination of Theorem 7 with these corollaries identifies the minimax rates up to constant
factors.
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4.3.4 Comparison With Other Estimators

It is interesting to compare these convergence rates in L2(Pn) error with those established in
the past work. [71] show that any solution to their back-fitting method is consistent in terms
of mean-squared error risk (see Theorem 3 in their chapter), but their analysis does not allow
s → ∞. The method of [49] is based regularizing the least-squares loss with the (H, 1)-norm
penalty—that is, the regularizer

∑d
j=1 ‖fj‖H; Theorem 2 in their chapter provides a rate that

holds for the triple (n, d, s) tending to infinity. In quantitative terms, however, their rates are

looser than those given here; in particular, their bound includes a term of the order s3 log d
n

,
which is larger than the bound in Theorem 6. [58] analyze a different M-estimator to the one
we analyze in this chapter. Rather than adding two separate (H, 1)-norm and an (‖.‖n, 1)-
norm penalties, they combine the two terms into a single sparsity and smoothness penalty.

For their estimator, [58] establish a convergence rate of the form O(s( log d
n

)
2α

2α+1

)
in the case

of α-smooth Sobolev spaces (see Theorem 1 in their chapter). Note that relative to optimal
rates given here in Theorem 7(b), this scaling is sub-optimal: more precisely, we either have
log d
n

< ( log d
n

)
2α

2α+1 , when the subset selection term dominates, or ( 1
n
)

2α
2α+1 < ( log d

n
)

2α
2α+1 , when

the s-dimensional estimation term dominates. In all of the above-mentioned methods, it is
unclear whether or not a sharper analysis would yield better rates. Finally, [50] analyze the
same estimator as the M-estimator (4.6), and for the case of polynomial metric entropy,
establish the same rates Theorem 6, albeit under a global boundedness condition. In the
following section, we study the implications of this assumption.

4.3.5 Upper Bounds Under A Global Boundedness Assumption

As discussed previously in the introduction, the chapter of [50], referred to as KY for short,
is based on the M-estimator (4.6). In terms of rates obtained, they establish a convergence
rate based on two terms as in Theorem 6, but with a pre-factor that depends on the global
quantity

B = sup
f∈Fd,s,H

‖f‖∞ = sup
f∈Fd,s,H

sup
x

|f(x)|,

assumed to be bounded independently of dimension and sparsity. Such types of global bound-
edness conditions are fairly standard in classical non-parametric estimation, where they have
no effect on minimax rates. In sharp contrast, the analysis of this section shows that for
sparse additive models in the regime s = Ω(

√
n), such global boundedness can substantially

speed up minimax rates, showing that the rates proven in KY are not minimax optimal for
these classes. The underlying insight is as follows: when the sparsity grows, imposing global
boundedness over s-variate functions substantially reduces the effective dimension from its
original size s to a lower dimensional quantity, which we denote by sKB(s, n), and moreover,
the quantity KB(s, n) → 0 when s = Ω(

√
n) as described below.
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Recall the definition (4.4) of the function class Fd,s,H. The model considered in the KY
chapter is the smaller function class

F∗
d,s,H(B) : =

⋃

S⊂{1,2,...,d}
|S|=s

H(S,B),

where H(S,B) : =
{
f =

∑
j∈S fj | fj ∈ H, and fj ∈ BH(1) ∀ j ∈ S and ‖f‖∞ ≤ B

}
.

The following theorem provides sharper rates for the Sobolev case, in which each uni-
variate Hilbert space has eigenvalues decaying as µk ≃ k−2α for some smoothness parameter
α > 1/2. Our probabilistic bounds involve the quantity

δn : = max
(
√

s log(d/s)

n
,B(

s
1

α log s

n
)1/4

)
, (4.17)

and our rates are stated in terms of the function

KB(s, n) : = B
√

log s(s−1/2αn1/(4α+2))2α−1,

where it should be noted that KB(s, n) → 0 if s = Ω(
√
n).

With this notation, we have the following upper bound on the minimax risk over the
function class F∗

d,s,H(B).

Theorem 8. Consider any RKHS H with eigenvalue decay k−2α, and uniformly bounded
eigenfunctions (i.e., ‖φk‖∞ ≤ C < ∞ for all k). Then there are universal constants (c1, c2, κ)
such that with probability greater than 1− 2 exp

(
− c1nδ

2
n

)
, we have

min
f̂

max
f∗∈F∗

d,s,H(B)
‖f̂ − f ∗‖22 ≤ κ2(1 +B)Csn− 2α

2α+1

(
KB(s, n) + n−1/(2α+1) log(d/s)

)

︸ ︷︷ ︸
MP(F∗

d,s,H(B))

, (4.18)

as long as nδ2n = Ω(log(1/δn)).

We provide the proof of Theorem 8 in Section 4.4.3; it is based on analyzing directly
the least-squares estimator over F∗

d,s,H(B). The assumption that ‖φk‖∞ ≤ C < ∞ for
all k includes the usual Sobolev spaces in which φk are (rescaled) Fourier basis functions.
An immediate consequence of Theorem 8 is that the minimax rates over the function class
F∗

d,s,H(B) can be strictly faster than minimax rates for the class Fd,s,H, which does not impose
global boundedness. Recall that the minimax lower bound from Theorem 7 (b) is based on
the quantity

MP(Fd,s,H) : = C1

{
s
(1
n

) 2α
2α+1 +

s log(d/s)

n

}
= C1sn

− 2α
2α+1

(
1 + n−1/(2α+1) log(d/s)

)
,
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for a universal constant C1. Note that up to constant factors, the achievable rate (4.18)
from Theorem 8 is the same except that the term 1 is replaced by the function KB(s, n).
Consequently, for scalings of (s, n) such that KB(s, n) → 0, global boundedness conditions
lead to strictly faster rates.

Corollary 4. Under the conditions of Theorem 8, we have

MP(Fd,s,H)

MP(F∗
d,s,H(B))

≥ C1(1 + n−1/(2α+1) log(d/s))

C κ2(1 +B) (KB(s, n) + n−1/(2α+1) log(d/s))
→ +∞

whenever B = O(1) and KB(s, n) → 0.

Remarks

The quantity KB(s, n) is guaranteed to decay to zero as long as the sparsity index s grows
in a non-trivial way with the sample size. For instance, if we have s = Ω(

√
n) for a problem

of dimension d = O(nβ) for any β ≥ 1/2, then it can be verified that KB(s, n) = o(1).
As an alternative view of the differences, it can be noted that there are scalings of (n, s, d)
for which the minimax rate MP(Fd,s,H) over Fd,s,H is constant—that is, does not vanish as
n → +∞—while the minimax rate MP(F∗

d,s,H(B)) does vanish. As an example, consider the
Sobolev class with smoothness α = 2, corresponding to twice-differentiable functions. For a
sparsity index s = Θ(n4/5), then Theorem 7(b) implies that MP(Fd,s,H) = Ω(1), so that the
minimax rate over Fd,s,H is strictly bounded away from zero for all sample sizes. In contrast,
under a global boundedness condition, Theorem 8 shows that the minimax rate is upper
bounded as MP(F∗

d,s,H(B)) = O
(
n−1/5

√
log n

)
, which tends to zero.

In summary, Theorem 8 and Theorem 7(b) together show that the minimax rates over
Fd,s,H and F∗

d,s,H(B) can be drastically different. Thus, global boundedness is a stringent
condition in the high-dimensional setting; in particular, the rates given in Theorem 3 of [50]
are not minimax optimal when s = Ω(

√
n).

4.4 Proofs

In this section, we provide the proofs of our three main theorems. For clarity in presentation,
we split the proofs up into a series of lemmas, with the bulk of the more technical arguments
deferred to the appendices. This splitting allows our presentation in Section 4.4 to be
relatively streamlined.

4.4.1 Proof of Theorem 6

At a high-level, Theorem 6 is based on an appropriate adaptation to the non-parametric
setting of various techniques that have been developed for sparse linear regression [11, 64].
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In contrast to the parametric setting where classical tail bounds are sufficient, controlling
the error terms in the non-parametric case requires more advanced techniques from empirical
process theory. In particular, we make use of various concentration theorems for Gaussian
and empirical processes [52, 56, 65, 83], as well as results on the Rademacher complexity of
kernel classes [9, 61].

At the core of the proof are three technical lemmas. First, Lemma 11 provides an upper
bound on the Gaussian complexity of any function of the form f =

∑d
j=1 fj in terms of the

norms ‖·‖H,1 and ‖·‖n,1 previously defined. Lemma 12 exploits the notion of decomposability
[64], as applied to these norms, in order to show that the error function belongs to a particular
cone-shaped set. Finally, Lemma 13 establishes an upper bound on the L2(P) error of our
estimator in terms of the L2(Pn) error. The latter lemma can be interpreted as proving that
our problem satisfies non-parametric analog of a restricted eigenvalue condition [11], or more
generally, of a restricted strong convexity condition [64]. The proof of Lemma 13 involves
a new approach that combines the Sudakov minoration [65] with a one-sided tail bound for
non-negative random variables [24, 31].

Throughout the proof, we use C and ci, i = 1, 2, 3, 4 to denote universal constants,
independent of (n, d, s). Note that the precise numerical values of these constants may change
from line to line. The reader should recall the definitions of νn and γn from Equations (4.8)
and (4.9) respectively. For a subset A ⊆ {1, 2, . . . , d} and a function of the form f =

∑d
j=1 fj ,

we adopt the convenient notation

‖fA‖n,1 : =
∑

j∈A
‖fj‖n, and ‖fA‖H,1 : =

∑

j∈A
‖fj‖H. (4.19)

We begin by establishing an inequality on the error function ∆̂ : = f̂ − f ∗. Since f̂
and f ∗ are, respectively, optimal and feasible for the problem (4.6), we are guaranteed that

L(f̂) ≤ L(f ∗), and hence that the error function ∆̂ satisfies the bound

1

2n

n∑

i=1

(wi + f − ȳn − ∆̂(xi))
2+λn‖f̂‖n,1+ρn‖f̂‖H,1 ≤

1

2n

n∑

i=1

(wi + f − ȳn)
2+λn‖f ∗‖n,1+ρn‖f ∗‖H,1.

Some simple algebra yields the bound

1

2
‖∆̂‖2n ≤

∣∣ 1
n

n∑

i=1

wi∆̂(xi)
∣∣+ |ȳn − f |

∣∣1
n

n∑

i=1

∆̂(xi)
∣∣+ λn‖∆̂‖n,1 + ρn‖∆̂‖H,1. (4.20)

Following the terminology of [83], we refer to this bound as our basic inequality.
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Controlling Deviation From The Mean

Our next step is to control the error due to estimating the mean |ȳn − f |. We begin by
observing that this error term can be written as ȳn − f = 1

n

∑n
i=1(yi − f). Next we observe

that yi − f =
∑

j∈S f
∗
j (xij) + wi is the sum of the s independent random variables f ∗

j (xij),
each bounded in absolute value by one, along with the independent sub-Gaussian noise term
wi; consequently, the variable yi − f is sub-Gaussian with parameter at most

√
s+ 1. (See,

for instance, Lemma 1.4 in [17]). By applying standard sub-Gaussian tail bounds, we have
P(|ȳn−f | > t) ≤ 2 exp(− nt2

2(s+1)
), and hence, if we define the event C(γn) = {|ȳn−f | ≤ √

sγn},
we are guaranteed

P[C(γn)] ≥ 1− 2 exp(−nγ2
n

4
).

For the remainder of the proof, we condition on the event C(γn). Under this conditioning,
the bound (4.20) simplifies to:

1

2
‖∆̂‖2n ≤

∣∣1
n

n∑

i=1

wi∆̂(xi)
∣∣+

√
sγn‖∆̂‖n + λn‖∆̂‖n,1 + ρn‖∆̂‖H,1,

where we have applied the Cauchy-Schwarz inequality to write
∣∣ 1
n

∑n
i=1 ∆̂(xi)

∣∣ ≤ ‖∆̂‖n.

Controlling the Gaussian Complexity Term

The following lemma provides control the Gaussian complexity term on the right-hand side
of inequality (4.20) by bounding the Gaussian complexity for the univariate functions ∆̂j ,
j = 1, 2, . . . , d in terms of their ‖ · ‖n and ‖ · ‖H norms. In particular, recalling that γn =

κmax{
√

log d
n

, νn}, we have the following lemma.

Lemma 11. Define the event

T (γn) : =

{
∀ j = 1, 2, . . . , d,

∣∣1
n

n∑

i=1

wi∆̂j(xij)
∣∣ ≤ 8γ2

n ‖∆̂j‖H + 8γn ‖∆̂j‖n
}
. (4.21)

Then under the condition nγ2
n = Ω(log(1/γn)), we have

P(T (γn)) ≥ 1− c1 exp(−c2nγ
2
n).

The proof of this lemma, provided in Appendix B of Raskutti et al. [69], uses concentration
of measure for Lipschitz functions of Gaussian random variables [52], combined with peeling
and weighting arguments from empirical process theory [5, 83]. In particular, the subset
selection term ( s log d

n
) in Theorem 6 arises from taking the maximum over all d components.
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The remainder of our analysis involves conditioning on the event T (γn) ∩ C(γn). Using
Lemma 11, when conditioned on the event T (γn) ∩ C(γn) we have:

‖∆̂‖2n ≤ 2
√
sγn‖∆̂‖n + (16γn + 2λn)‖∆̂‖n,1 + (16γ2

n + 2ρn)‖∆̂‖H,1. (4.22)

Exploiting Decomposability

Recall that S denotes the true support of the unknown function f ∗. By the definition (4.19),

we can write ‖∆̂‖n,1 = ‖∆̂S‖n,1 + ‖∆̂Sc‖n,1, where ∆̂S : =
∑

j∈S ∆̂j and ∆̂Sc : =
∑

j∈Sc ∆̂j .

Similarly, we have an analogous representation for ‖∆̂‖H,1. The next lemma shows that

conditioned on the event T (γn), the quantities ‖∆̂‖H,1 and ‖∆̂‖n,1 are not significantly larger

than the corresponding norms as applied to the function ∆̂S.

Lemma 12. Conditioned on the events T (γn) and C(γn), and with the choices λn ≥ 16γn
and ρn ≥ 16γ2

n, we have

λn‖∆̂‖n,1 + ρn‖∆̂‖H,1 ≤ 4λn‖∆̂S‖n,1 + 4ρn‖∆̂S‖H,1 +
1

2
sγ2

n. (4.23)

The proof of this lemma, provided in Appendix C, is based on the decomposability (see [64])
of the ‖ · ‖H,1 and ‖ · ‖n,1 norms. This lemma allows us to exploit the sparsity assumption,
since in conjunction with Lemma 11, we have now bounded the right-hand side of the
inequality (4.22) by terms involving only ∆̂S.

For the remainder of the proof of Theorem 6, we assume λn ≥ 16γn and ρn ≥ 16γ2
n. In

particular, still conditioning on C(γn) ∩ T (γn) and applying Lemma 12 to inequality (4.22),
we obtain

‖∆̂‖2n ≤ 2
√
sγn‖∆̂‖n + 3λn‖∆̂‖n,1 + 3ρn‖∆̂‖H,1

≤ 2
√
sλn‖∆̂‖n + 12λn‖∆̂S‖n,1 + 12ρn‖∆̂S‖H,1 +

3

32
sρn,

Finally, since both f̂j and f ∗
j belong to BH(1), we have ‖∆̂j‖H ≤ ‖f̂j‖H + ‖f ∗

j ‖H ≤ 2, which

implies that ‖∆̂S‖H,1 ≤ 2s, and hence

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n + 12λn‖∆̂S‖n,1 + 25sρn. (4.24)

Upper Bounding ‖∆̂S‖n,1
The next step is to control the term ‖∆̂S‖n,1 =

∑
j∈S ‖∆̂j‖n that appears in the upper

bound (4.24). Ideally, we would like to upper bound it by a quantity of the order
√
s‖∆̂S‖2 =√

s
√∑

j∈S ‖∆̂j‖22. Such an upper bound would follow immediately if it were phrased in terms
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of the population ‖ · ‖2-norm rather than the empirical-‖ · ‖n norm, but there are additional
cross-terms with the empirical norm. Accordingly, a somewhat more delicate argument is
required, which we provide here. First define the events

Aj(λn) : = {‖∆̂j‖n ≤ 2‖∆̂j‖2 + λn},

and A(λn) = ∩d
j=1Aj(λn). By applying Lemma 7 from Appendix A with t = λn ≥ 16γn

and b = 2, we conclude that ‖∆̂j‖n ≤ 2‖∆̂j‖2 + λn with probability greater than 1 −
c1 exp(−c2nλ

2
n). Consequently, if we define the event A(λn) = ∩j∈SAj(λn), then this tail

bound together with the union bound implies that

P[Ac(λn)] ≤ s c1 exp(−c2nλ
2
n) ≤ c1 exp(−c′2nλ

2
n), (4.25)

where we have used the fact that λn = Ω(
√

log s
n
). Now, conditioned on the event A(λn), we

have

‖∆̂S‖n,1 =
∑

j∈S
‖∆̂j‖n ≤ 2

∑

j∈S
‖∆̂j‖2 + sλn (4.26)

≤ 2
√
s‖∆̂S‖2 + sλn ≤ 2

√
s‖∆̂‖2 + sλn.

Substituting this upper bound (4.26) on ‖∆̂S‖n,1 into our earlier inequality (4.24) yields

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n + 24

√
sλn‖∆̂‖2 + 12sλ2

n + 25sρn. (4.27)

At this point, we encounter a challenge due to the unbounded nature of our function
class. In particular, if ‖∆̂‖2 were upper bounded by Cmax(‖∆̂‖n,

√
sλn,

√
sρn), then the

upper bound (4.27) would immediately imply the claim of Theorem 6. If one were to assume

global boundedness of the multivariate functions f̂ and f ∗, as done in past work of [50], then

an upper bound on ‖∆̂‖2 of this form would directly follow from known results (e.g., Theorem
2.1 in [9].) However, since we do not impose global boundedness, we need to develop a novel
approach to this final hurdle.

Controlling ‖∆̂‖2 For Unbounded Classes

For the remainder of the proof, we condition on the event A(λn) ∩ T (γn) ∩ C(γn). We split
our analysis into three cases. Throughout the proof, we make use of the quantity

δ̃n : = Bmax(
√
sλn,

√
sρn), (4.28)

where B ∈ (1,∞) is a constant to be chosen later in the argument.
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Case 1: If ‖∆̂‖2 < ‖∆̂‖n, then combined with inequality (4.27), we conclude that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n + 24

√
sλn‖∆̂‖n + 12sλ2

n + 25sρn.

This is a quadratic inequality in terms of the quantity ‖∆̂‖n, and some algebra shows that

it implies the bound ‖∆̂‖n ≤ 15max(
√
sλn,

√
sρn). By assumption, we then have ‖∆̂‖2 ≤

15max(
√
sλn,

√
sρn) as well, thereby completing the proof of Theorem 6.

Case 2: If ‖∆̂‖2 < δ̃n, then together with the bound (4.27), we conclude that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖n + 24

√
sλnδ̃n + 12sλ2

n + 25sρn.

This inequality is again a quadratic in ‖∆̂‖n; moreover, note that by definition (4.28) of δ̃n,

we have sλ2
n + sρn = O(δ̃2n). Consequently, this inequality implies that ‖∆̂‖n ≤ Cδ̃n for

some constant C. Our starting assumption implies that ‖∆̂‖2 ≤ δ̃n, so that the claim of
Theorem 6 follows in this case.

Case 3: Otherwise, we may assume that ‖∆̂‖2 ≥ δ̃n and ‖∆̂‖2 ≥ ‖∆̂‖n. In this case, the

inequality (4.27) together with the bound ‖∆̂‖2 ≥ ‖∆̂‖n implies that

‖∆̂‖2n ≤ 2
√
sλn‖∆̂‖2 + 24

√
sλn‖∆̂‖2 + 12sλ2

n + 25sρn. (4.29)

Our goal is to establish a lower bound on the left-hand-side—namely, the quantity ‖∆̂‖2n—
in terms of ‖∆̂‖22. In order to do so, we consider the function class G(λn, ρn) defined by
functions of the form g =

∑d
j=1 gj, and such that

λn‖g‖n,1 + ρn‖g‖H,1 ≤ 4λn‖gS‖n,1 + 4ρn‖gS‖H,1 +
1

32
sρn, (4.30)

‖gS‖1,n ≤ 2
√
s‖gS‖2 + sλn and (4.31)

‖g‖n ≤ ‖g‖2. (4.32)

Conditioned on the events A(γn), T (γn) and C(γn), and with our choices of regularization

parameter, we are guaranteed that the error function ∆̂ satisfies all three of these constraints,
and hence that ∆̂ ∈ G(λn, ρn). Consequently, it suffices to establish a lower bound on ‖g‖n
that holds uniformly over the class G(λn, ρn). In particular, define the event

B(λn, ρn) : =

{
‖g‖2n ≥ ‖g‖22/2 for all g ∈ G(λn, ρn) such that ‖g‖2 ≥ δ̃n

}
. (4.33)

The following lemma shows that this event holds with high probability.
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Lemma 13. Under the conditions of Theorem 6, there are universal constants ci such that

P[B(λn, ρn)] ≥ 1− c1 exp(−c2nγ
2
n). (4.34)

We note that this lemma can be interpreted as guaranteeing a version of restricted strong
convexity [64] for the least-squares loss function, suitably adapted to the non-parametric
setting. Since we do not assume global boundedness, the proof of this lemma requires
a novel technical argument, one which combines a one-sided tail bound for non-negative
random variables [24, 31] with the Sudakov minoration [65] for the Gaussian complexity. We
refer the reader to Appendix D for the details of the proof.

Using Lemma 13 and conditioning on the event B(λn, ρn), we are guaranteed that ‖∆̂‖2n ≥
‖∆̂‖22/2, and hence, combined with our earlier bound (4.29), we conclude that

‖∆̂‖22 ≤ 4
√
sλn‖∆̂‖2 + 48

√
sλn‖∆̂‖2 + 24sλ2

n + 50sρn.

Hence ‖∆̂‖n ≤ ‖∆̂‖2 ≤ Cmax(
√
sλn,

√
sρn), completing the proof of the claim in the third

case.

In summary, the entire proof is based on conditioning on the three events T (γn), A(λn)
and B(λn, ρn). From the bound (4.25) as well as Lemmas 11 and 13, we have

P
[
T (γn) ∩A(λn) ∩ B(λn, ρn) ∩ C(γn)

]
≥ 1− c1 exp

(
− c2nγ

2
n

)
,

thereby showing that max{‖f̂ − f ∗‖2n, ‖f̂ − f ∗‖22} ≤ Cmax(sλ2
n, sρn) with the claimed prob-

ability. This completes the proof of Theorem 6.

4.4.2 Proof of Theorem 7

We now turn to the proof of the minimax lower bounds stated in Theorem 7. For both parts
(a) and (b), the first step is to follow a standard reduction to testing (see e.g. [42, 92, 93]) so
as to obtain a lower bound on the minimax error MP(Fd,s,H) in terms of the probability of
error in a multi-way hypothesis testing. We then apply different forms of the Fano inequality
[92, 93] in order to lower bound the probability of error in this testing problem. Obtaining
useful bounds requires a precise characterization of the metric entropy structure of Fd,s,H,
as stated in Lemma 14.

Reduction to Testing

We begin with the reduction to a testing problem. Let {f 1, . . . , fM} be a δn-packing of F
in the ‖ · ‖2-norm, and let Θ be a random variable uniformly distributed over the index set
[M ] : = {1, 2, . . . ,M}. Note that we are using M as a shorthand for the packing number
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M(δn;F , ‖ · ‖2). A standard argument [42, 92, 93] then yields the lower bound

inf
f̂

sup
f∗∈F

P
[
‖f̂ − f ∗‖22 ≥ δ2n/2

]
≥ inf

Θ̂
P[Θ̂ 6= Θ],

where the infimum on the right-hand side is taken over all estimators Θ̂ that are measurable
functions of the data, and take values in the index set [M ].

Note that P[Θ̂ 6= Θ] corresponds to the error probability in a multi-way hypothesis
test, where the probability is taken over the random choice of Θ, the randomness of the
design points Xn

1 : = {xi}ni=1, and the randomness of the observations Y n
1 : = {yi}ni=1. Our

initial analysis is performed conditionally on the design points, so that the only remaining
randomness in the observations Y n

1 comes from the observation noise {wi}ni=1. From Fano’s

inequality [26], for any estimator Θ̂, we have P
[
Θ̂ 6= Θ | Xn

1

]
≥ 1− IXn

1
(Θ;Y n

1
)+log 2

logM
, where

IXn
1
(Θ; Y n

1 ) denotes the mutual information between Θ and Y n
1 with Xn

1 fixed. Taking
expectations over Xn

1 , we obtain the lower bound

P
[
Θ̂ 6= Θ

]
≥ 1− EXn

1

[
IXn

1
(Θ; Y n

1 )
]
+ log 2

logM
. (4.35)

The remainder of the proof consists of constructing appropriate packing sets of F , and
obtaining good upper bounds on the mutual information term in the lower bound (4.35).

Constructing Appropriate Packings

We begin with results on packing numbers. Recall that logM(δ;F , ‖ · ‖2) denotes the δ-
packing entropy of F in the ‖ · ‖2 norm.

Lemma 14. (a) For all δ ∈ (0, 1) and s ≤ d/4, we have

logM(δ;F , ‖ · ‖2) = O
(
s logM(

δ√
s
;BH(1), ‖ · ‖2) + s log

d

s

)
.

(b) For a Hilbert class with logarithmic metric entropy (4.14) and such that ‖f‖2 ≤ ‖f‖H,
there exists set {f 1, . . . , fM} with logM ≥ C

{
s log(d/s) + sm

}
, and

δ ≤ ‖fk − f ℓ‖2 ≤ 8δ for all k 6= ℓ ∈ {1, 2, . . . ,M}.

The proof, provided in Appendix E, is combinatorial in nature. We now turn to the proofs
of parts (a) and (b) of Theorem 7.
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Proof of Theorem 7(a)

In order to prove this claim, it remains to exploit Lemma 14 in an appropriate way, and
to upper bound the resulting mutual information. For the latter step, we make use of the
generalized Fano approach [93].

From Lemma 14, we can find a set {f 1, . . . , fM} that is a δ-packing of F in ℓ2-norm, and
such that ‖fk−f ℓ‖2 ≤ 8δ for all k, ℓ ∈ [M ]. For k = 1, . . . ,M , let Qk denote the conditional
distribution of Y n

1 conditioned on Xn
1 and the event {Θ = k}, and let D(Qk ‖Qℓ) denote the

Kullback-Leibler divergence. From the convexity of mutual information [26], we have the
upper bound IXn

1
(Θ; Y n

1 ) ≤ 1

(M2 )

∑M
k,ℓ=1D(Qk ‖Qℓ). Given our linear observation model (4.5),

we have

D(Qk ‖Qℓ) =
1

2σ2

n∑

i=1

(
fk(xi)− f ℓ(xi)

)2
=

n ‖fk − f ℓ‖2n
2

,

and hence

EXn
1

[
IXn

1
(Y n

1 ; Θ)
]
≤ n

2

1(
M
2

)
∑

k 6=ℓ

EXn
1
[‖fk − f ℓ‖2n] =

n

2

1(
M
2

)
∑

k 6=ℓ

‖fk − f ℓ‖22.

Since our packing satisfies ‖fk − f ℓ‖22 ≤ 64δ2, we conclude that

EXn
1

[
IXn

1
(Y n

1 ; Θ)
]
≤ 32nδ2.

From the Fano bound (4.35), for any δ > 0 such that 32nδ2+log 2
logM

< 1
4
, then we are guaranteed

that P[Θ̂ 6= Θ] ≥ 3
4
. From Lemma 14(b), our packing set satisfies logM ≥ C

{
sm +

s log(d/s)
}
, so that so that the choice δ2 = C ′ { sm

n
+ s log(d/s)

n

}
, for a suitably small C ′ > 0,

can be used to guarantee the error bound P[Θ̂ 6= Θ] ≥ 3
4
.

Proof of Theorem 7(b)

In this case, we use an upper bounding technique due to [92] in order to upper bound
the mutual information. Although the argument is essentially the same, it does not follow
verbatim from their claims—in particular, there are some slight differences due to our initial
conditioning—so that we provide the details here. By definition of the mutual information,
we have

IXn
1
(Θ; Y n

1 ) =
1

M

M∑

k=1

D(Qk ‖PY ),
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where Qk denotes the conditional distribution of Y n
1 given Θ = k and still with Xn

1 fixed,
whereas PY denotes the marginal distribution of PY .

Let us define the notion of a covering number, in particular for a totally bounded metric
space (S, ρ), consisting of a set S and a metric ρ : S × S → R+. An ǫ-covering set of S is
a collection {f 1, . . . , fN} of functions such that for all f ∈ S there exists k ∈ {1, 2, ..., N}
such that ρ(f, fk) ≤ ǫ. The ǫ-covering number N(ǫ;S, ρ) is the cardinality of the smallest
ǫ-covering set.

Now let {g1, . . . , gN} be an ǫ-cover of F in the ‖ · ‖2 norm, for a tolerance ǫ to be chosen.
As argued in [92], we have

IXn
1
(Θ; Y n

1 ) =
1

M

M∑

j=1

D(Qj ‖PY ) ≤ D(Qk ‖ 1

N

N∑

k=1

Pk),

where Pℓ denotes the conditional distribution of Y n
1 given gℓ and Xn

1 . For each ℓ, let us
choose gℓ

∗(k) as follows: ℓ∗(k) ∈ argminℓ=1,...,N ‖gℓ − fk‖2. We then have the upper bound

IXn
1
(Θ; Y n

1 ) ≤
1

M

M∑

k=1

{
logN +

n

2
‖gℓ∗(k) − fk‖2n

}
.

Taking expectations over Xn
1 , we obtain

EXn
1
[IXn

1
(Θ; Y n

1 )] ≤
1

M

M∑

k=1

{
logN +

n

2
EXn

1
[‖gℓ∗(k) − fk‖2n]

}

≤ logN +
n

2
ǫ2,

where the final inequality follows from the choice of our covering set.
From this point, we can follow the same steps as [92]. The polynomial scaling (4.15) of

the metric entropy guarantees that their conditions are satisfied, and we conclude that the
minimax error is lower bounded by any δn > 0 such that nδ2n ≥ C logN(δn;F , ‖ · ‖2). From
Lemma 14 and the assumed scaling (4.15), it is equivalent to solve the equation

nδ2n ≥ C

{
s log(d/s) + s(

√
s/δn)

1/α

}
,

from which some algebra yields δ2n = C
{ s log(d/s)

n
+ s

(
1
n

) 2α
2α+1

}
as a suitable choice.
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4.4.3 Proof of Theorem 8

Recall the definition of F∗
d,s,H(B) and H(S,B) from Section 4.3.5; note that it guarantees

that ‖f ∗‖∞ ≤ B. In order to establish upper bounds on the minimax rate in L2(P)-error
over F∗

d,s,H(B), we analyze a least-squares estimator—albeit not the same as the original
M-estimator (4.6)—constrained to F∗

d,s,H(B), namely

f̂ ∈ arg min
f∈F∗

d,s,H(B)

n∑

i=1

(yi − ȳn − f(xi))
2. (4.36)

Since our goal is to upper bound the minimax rate in L2(P) error, it is sufficient to upper

bound the L2(P)-norm of f̂ − f ∗ where f̂ is any solution to (4.36). The proof shares many

steps with the proof of Theorem 6. First, the same reasoning shows that the error ∆̂ : = f̂−f ∗

satisfies the basic inequality

1

n

n∑

i=1

∆̂2(xi) ≤
2

n
|

n∑

i=1

wi∆̂(xi)|+ |ȳn − f |
∣∣1
n

n∑

i=1

∆̂(xi)
∣∣.

Recall the definition (4.17) of the critical rate δn. Once again, we first control the term
error due to estimating the mean |ȳn − f | = | 1

n

∑n
i=1(yi − f)|. Since |f ∗(xi)| is at most B

and wi is standard Gaussian and independent, the random variable yi − f = f ∗(xi) + wi

is sub-Gaussian with parameter
√
B2 + 1. The samples are all i.i.d., so that by standard

sub-Gaussian tail bounds, we have

P[|ȳn − f | > t] ≤ 2 exp(− nt2

2(B2 + 1)
).

Setting A(δn) = {|ȳn − f | ≤ Bδn}, it is clear that

P[A(δn)] ≥ 1− 2 exp(−nδ2n
4

).

For the remainder of the proof, we condition on the event A(δn), in which case Equa-
tion (4.20) simplifies to

1

2
‖∆̂‖2n ≤

∣∣ 1
n

n∑

i=1

wi∆̂(xi)
∣∣ +Bδn‖∆̂‖n. (4.37)

Here we have used the fact that
∣∣ 1
n

∑n
i=1 ∆̂(xi)

∣∣ ≤ ‖∆̂‖n, by the Cauchy-Schwartz inequality.
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Now we control the Gaussian complexity term
∣∣ 1
n

∑n
i=1wi∆̂(xi)

∣∣. For any fixed subset S,
define the random variable

Ẑn(w, t;H(S, 2B)) : = sup
∆∈H(S,2B)
‖∆‖n≤t

∣∣ 1
n

n∑

i=1

wi∆(xi)
∣∣. (4.38)

We first bound this random variable for a fixed subset S of size 2s, and then take the union
bound over all

(
d
2s

)
possible subsets.

Lemma 15. Assume that the RKHS H has eigenvalues (µk)
∞
k=1 that satisfy µk ≃ k−2α and

eigenfunctions such that ‖φk‖∞ ≤ C. Then we have

P
[
∃t > 0 such that Ẑn(w, t;H(S, 2B)) ≥ 16BC

√
s1/α log s

n
+ 3tδn

]
≤ c1 exp(−9nδ2n).

(4.39)

The proof of Lemma 15 is provided Appendix F. Returning to inequality (4.37), we note
that by definition,

2

n
|

n∑

i=1

wi∆̂(xi)| ≤ max
|S|=2s

Ẑn(w, ‖∆̂‖n;H(S, 2B)).

Lemma 15 combined with the union bound implies that

max
|S|=2s

Ẑn(w, ‖∆̂‖n;H(S, 2B)) ≤ 16BC

√
s1/α log s

n
+ 3δn‖∆̂‖n

with probability at least 1 − c1
(
d
2s

)
exp(−3nδ2n). Our choice (4.17) of δn ensures that this

probability is at least 1 − c1 exp(−c2nδ
2
n). Combined with the basic inequality (4.37), we

conclude that

‖∆̂‖2n ≤ 32B C

√
s1/α log s

n
+ 7Bδn ‖∆̂‖n (4.40)

with probability 1− c1 exp(−c2nδ
2
n).

By definition (4.17) of δn, the bound (4.40) implies that ‖∆̂‖n = O(δn) with high prob-

ability. In order to translate this claim into a bound on ‖∆̂‖2, we require the following
result:

Lemma 16. There exist universal constants (c, c1, c2) such that for all t ≥ cδn, we have

‖g‖2
2

≤ ‖g‖n ≤ 3

2
‖g‖2 for all g ∈ H(S, 2B) with ‖g‖2 ≥ t (4.41)
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with probability at least 1− c1 exp(−c2nt
2).

Proof. The bound (4.41) follows by applying Lemma 7 in Appendix A with G = H(S, 2B)
and b = 2B. The critical radius from (35) in Raskutti et al. [69] needs to satisfy the

relation Qw,n(ǫn;H(S, 2B)) ≤ ǫ2n
40
. From Lemma 11 in Raskutti et al. [69], the choice ǫ2n =

320BC
√

s1/α log s
n

satisfies this relation. By definition (4.17) of δn, we have δn ≥ cǫn for some

universal constant c, which completes the proof.

This lemma implies that with probability at least 1− c1 exp(−c2Bnδ2n), we have ‖∆̂‖2 ≤
2‖∆̂‖n +Cδn. Combined with our earlier upper bound on ‖∆̂‖n, this completes the proof of
Theorem 8.

4.5 Discussion

In this chapter, we have studied estimation in the class of sparse additive models in which
each univariate function lies within a reproducing kernel Hilbert space. In conjunction,
Theorems 6 and 7 provide a precise characterization of the minimax-optimal rates for esti-
mating f ∗ in the L2(P)-norm for various kernel classes with bounded univariate functions.
These classes include finite-rank kernels (with logarithmic metric entropy), as well as kernels
with polynomially decaying eigenvalues (and hence polynomial metric entropy). In order to
establish achievable rates, we analyzed a simple M-estimator based on regularizing the least-
squares loss with two kinds of ℓ1-based norms, one defined by the univariate Hilbert norm
and the other by the univariate empirical norm. On the other hand, we obtained our lower
bounds by a combination of approximation-theoretic and information-theoretic techniques.

An important feature of our analysis is we assume only that each univariate function is
bounded, but do not assume that the multivariate function class is bounded. As discussed in
Section 4.3.5, imposing a global boundedness condition in the high-dimensional setting can
lead to a substantially smaller function classes; for instance, for Sobolev classes and sparsity
s = Ω(

√
n), Theorem 8 shows that it is possible to obtain much faster rates than the optimal

rates for the class of sparse additive models with univariate functions bounded. Theorem 8
in our chapter shows that the rates obtained under global boundedness conditions are not
minimax optimal for Sobolev spaces in the regime s = Ω(

√
n).

There are a number of ways in which this work could be extended. Our work considered
only a hard sparsity model, in which at most s co-ordinate functions were non-zero, whereas
it could be realistic to use a “soft” sparsity model involving ℓq-norms. Some recent work
by [81] has studied some extensions of this type. In addition, the analysis here was based
on assuming independence of the covariates xj , j = 1, 2, . . . d; it would be interesting to
investigate the case when the random variables are endowed with some correlation structure.
One might expect some changes in the optimal rates, particularly if many of the variables
are strongly dependent. Finally, this work considered only the function class consisting
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of sums of co-ordinate functions, whereas a natural extension would be to consider nested
non-parametric classes formed of sums over hierarchies of subsets of variables.
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