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Abstract
Power systems are undergoing a paradigm shift due to the influx

of variable renewable generation to the supply side. The result-
ing increased uncertainty has system operators looking to new re-
sources, enabled by smart grid technologies, on the demand side to
maintain the balance between supply and demand. This study uses
a unique data set to estimate and validate models of demand re-
sponse from residential thermostatically controlled loads (TCLs)—
specifically, HVAC units—and quantifies the extent to which a pop-
ulation of TCLs can provide demand response (DR). We use mea-
sured temperature setpoints, internal temperatures, compressor cy-
cling ratio and metered energy data collected from over 4200 homes
in Texas during the summer of 2012. Using autoregressive mov-
ing average (ARMA) models for individual households, we investi-
gate the instantaneous power shed, the duration of the power shed,
steady state energy savings and total energy savings. Specifically,
we provide insight into the dependency of household DR availabil-
ity to the temperature setpoint schedule, outdoor air temperature
and time of the day.
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Miscellaneous; H.2 [Data]: Data mining
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1 Introduction
Renewable portfolio standards adopted in 29 states in the US

require a certain percentage of their electricity generation to come
from renewable generation sources. This requirement is intended
to reduce the green house gas emissions caused by traditional fossil
fuel-based power generation. However, increasing the penetration
of renewable energy resources into the power grid calls for an in-
crease in the availability of additional reserves in the power system
to keep the supply and demand in balance [7, 6]. Automated de-
mand response (ADR), in which load adjustments are made by au-
tomated actions (in contrast to price-based demand response, which
relies on consumer actions), is a promising resource that can pro-
vide the required flexibility and eliminate the need to hold fossil
fuel-based generators in reserve [7, 6, 15].

In recent years, thermostatically controlled loads (TCLs) such
as heating, ventilation, and air conditioning (HVAC) systems, re-
frigerators, and water heaters have been garnering interest in the
research community as ADR resources. This is partly because of
their wide availability and partly because of the thermal storage that
they possess; this storage allows them to be turned on and off for an
undetermined amount of time without affecting the performance of
the thermostatic control.

Direct load control (DLC) of a population of residential TCLs
has been studied by various researchers [10, 11, 12, 17, 2, 8, 19].
A linear time-invariant representation and a Markov decision pro-
cess (MDP)-based representation of a heterogeneous TCL popula-
tion using state-bin transition models is given in [14] and in [10],
respectively. A priority stack-based algorithm to provide ancillary
services is presented by [8]. The authors of [18] use household re-
frigeration units that are modified with additional thermal storage
to provide peak shaving.

In addition, the quantification of TCLs’ capability to provide DR
has also been investigated by various researchers through bottom-
up simulation methods, where simulation model parameters are
based on educated guesses [8, 13]. Studies investigating the im-
pacts of ADR on the power grid level include, but are not limited
to, [4, 3, 9, 1].

However, in existing studies, quantification of the resources are



based on bottom-up simulations using plausible but not rigorously
identified parameters. To the best of our knowledge, [5] is the only
work that uses real electricity consumption data to estimate models
that can then be used to compute DR potential. However, the dataset
used in [5] consists of whole-building smart meter data, so a great
deal of the modeling effort (and uncertainty) is due to the challenge
of disaggregating HVAC demand from whole-buildings’ demand.

This study’s central contributions are (1) a method to use direct
HVAC measurements to estimate DR potential, and (2) initial esti-
mates of DR potential from a large aggregation of residential loads
using this method. We use a unique dataset in which HVAC con-
sumption, temperature setpoint and measured indoor temperature
were recorded for over 4200 households. This allows us to sidestep
the issue of disaggregation encountered in [5]. Using ARMA mod-
els trained based on historical data from individual households, we
investigate the impacts of varying exogenous parameters on flexi-
bility metrics such as instantaneous power shed, the load shed du-
ration, steady-state energy savings and total energy savings. We
investigate the dependency of household DR availability to the tem-
perature setpoint schedule, outdoor air temperature and time of day.

We find that the constant exogenous input assumption made
commonly in the literature (e.g. [10, 11]) yields to a significant
over-estimation of the number of loads that can provide a requested
shed duration under certain cases. For the cases with a larger set-
point adjustment, the steady-state energy savings are higher for both
weekday and weekend profiles.

The paper is organized as follows: Section 2 describes the
dataset used in this study. Section 3 introduces the ARMA model
built on [16] and evaluates the performance of this model for a
single household. Section 4 uses the model proposed in Section 3
to estimate the DR flexibility, and discusses the sensitivity of these
estimations to exogenous inputs. Section 5 presents the results of
the DR flexibility estimation, and finally, conclusions are drawn
and future work is suggested in Section 6.

2 Dataset
The dataset used in this study is obtained from 4297 house-

holds located in Texas. The data include temperature setpoint, in-
door temperature, compressor cycling ratio and energy consump-
tion measurements sampled every 5 minutes during the summer of
2012. The compressor cycling ratio is defined as the ratio of the
time that the HVAC compressor is ON within a sampling period
to the sampling period. In addition, hourly weather data obtained
from weather stations in the Texas area closest to the households
are used to capture the external temperature. The energy consump-
tion measurements are converted into average power measurements
assuming constant power use within each sampling interval. A so-
lar earth geometry model was used to find the solar insolation on
a horizontal surface at each home’s approximate location at each
time of day, assuming no cloud cover. Specific data fields used in
this study along with their sampling rate and resolution information
are given in Table 1. Data was only collected from homes with com-
municating thermostats, and thus are not a representative sample of
all homes in the service territory. However, if a demand response
program is to only control homes which have communicating ther-
mostats (a very likely case), the sample does represent homes that
are currently capable of participating.

A daily snapshot of each data field in Table 1 for a sample
household is given in Figure 1.

3 Estimating Thermal Models
We fit thermal models to each building monitored in our dataset

with the objective of simulating transient dynamics of internal
temperature and power consumption during an ADR event. Two

Table 1. Data field characteristics
Data Field Resolution Sampling Rate

Temperature setpoint,
Tset(t)

1 [oF ]

5 minsInternal Temperature,
Tint(t)

1 [oF ]

Duty Ratio, d(t) 0.001
Average Power, Pavg 0.01 [W ]

External Temperature,
Text(t)

0.1 [oC] 1 hour
Solar Insolation, φsol(t) 0.01 W/m2
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Figure 1. A daily snapshot of each data field used in this study
for a sample household.

important parameters of our model were apparent from the data
without detailed statistical models: average temperature setpoint
of the thermostat, and instantaneous HVAC power consumption.
We used linear regression to fit an ARMA model to account for
appliance efficiencies, thermal masses, thermal resistances, interior
heat gains and solar gains.

3.1 ARMA Model
Eq. (1) shows an ARMA model for the thermal dynamics of a

building, reproduced from [16] by Ari Rabl. ARMA models allow
predictions of internal temperature to be dependent on both coin-
cident and prior (a.k.a. “lagged”) values of physical inputs such
as cooling energy, outdoor temperature, and solar isolation. In [16],
Rabl shows that ARMA models are the most general possible build-
ing model; he also shows that models with more direct physical
analogies are reducible to ARMA models (e.g. differential equa-
tion models and networks of thermal resistances/capacitances). In
the remainder of this section, we fully describe the ARMA model
described in Eq. (1). We also detail how we constrained the param-
eters such that physical principles hold at steady state.

In Eq. (1), Tint(t) is the room temperature of the house at time
t, Text(t) is the outdoor ambient temperature, φaux(t) is the aver-
age auxiliary power over the interval (from an air conditioner or a
heater), and φsol(t) is solar insolation. The summation terms in-
clude time-lagged readings of each variable; Nx is the number of



lagged readings included for the variable defined by the subscript x.
Model coefficients are denoted as ax( j) where the subscript, x,

indicates the corresponding variable and j indicates the timing of
the lag (in number of readings prior to present). aocc is an intercept
term which is analogous to a constant internal heat gain resulting
from occupants and devices.

Nint

∑
i=0

aint(i)Tint(t− i) = aocc +
Nout

∑
i=0

aext(i)Text(t− i)+

Nsol

∑
i=0

asol(i)φsol(t− i)+
Naux

∑
i=0

aaux(i)φaux(t− i)+ ε(t) (1)

We applied two constraints to the ARMA model. The first con-
straint simply scales all coefficients such that aint(0) = 1. The sec-
ond constraint, shown in Eq. (5), ensures that the steady state ther-
mal properties of the wall are consistent and was originally pre-
sented in [16]. We re-derive the second constraint for the reader
in Eqs. (2)-(4). Eq. (2) shows the rearranged ARMA model from
Eq. (1) where all variables are in steady-state; we define steady-
state variables as X̄ = X(t) ∀t, and steady state coefficient as āx =

∑
Nx
i=0 ax(i).

T̄int āint − T̄ext āext = φ̄auxāaux + φ̄sol āsol +aocc (2)

Eq. (2) is arranged such that all values on the right-hand side rep-
resent heat flows into or out of the building, and values on the left
represent indoor/outdoor temperatures. At steady state, heat trans-
ferred across the constant positive indoor/outdoor temperature dif-
ferential ∆T should be equal and opposite to that transferred across
its negative, −∆T , implying that the sum of the coefficient on in-
ternal temperatures are equal to the sum of coefficients on outdoor
temperatures, shown in Eqs.(3)-(4). Eq. (5) shows the second con-
straint, which is a rearrangement of this equality condition.

L(T̄int − T̄ext) = φ̄auxāaux + φ̄sol āsol +aocc =⇒ (3)

L =
Nint

∑
i=0

aint(i) =
Nout

∑
i=0

aext(i) =⇒ (4)

aint(Nint) =
Nout

∑
i=0

aext(i)−
Nint−1

∑
i=0

aint(i) (5)

Eq. (6) shows the linear model following the substitution of both
constraints into Eq.(1) and solving for the latest internal tempera-
ture.

Tint(t)−Tint(t−Nint) =

Nint−1

∑
j=1

ain, j(Tint(t− j)−Tint(t−Nint))

+
Next

∑
j=0

aout, j(Text(t− j)−Tint(t−Nint))

+
Nsol

∑
j=0

asol, jφsol(t− j)

+
Naux

∑
j=0

aaux, jφaux(t− j)

+aocc + εt (6)

We fit the parameters shown in Eq. (6) for each household in the
dataset using ordinary least square regression. We did not measure

auxiliary heating/cooling energy directly; as a proxy, we substituted
the average power consumption of the AC over the interval. This
substitution implicitly assumes that the coefficient of performance
(COP) of the AC is constant during the study period, thus the power
consumption of the AC is directly proportional to the cooling en-
ergy provided by the AC. In actuality, the COP decreases as the
difference between indoor and outdoor temperature increases. We
explore the effects of this assumption in the conclusions.

For the purposes of this paper, the model order was chosen by
visual inspection on a few houses: Nint = 20, Next = 0, Naux = 2,
and Nsol = 0. A more appropriate model selection process will
be developed for future work. Twenty lagged internal tempera-
tures were more than sufficient for most homes, as indicated by
coefficients of long lags estimates to not be significantly different
from zero. However, including superfluous lags did not affect the
performance of the model and gave a conservative estimate of the
model’s complexity. Coefficients for lagged outdoor temperatures
were difficult to identify and were left out of the model. Outdoor
temperature was measured at roughly hourly intervals and then
linearly interpolated; thus, there was not much variation at short
lags. Including a few lagged values of auxiliary power was
necessary, as there was often a noticeable delay between energy
consumed by the HVAC and any response in room air temperature.

3.2 Thermal Properties of Buildings
Figures 2 and 3 show box plots of estimated properties of each

building in the dataset. In these plots, boxes represent the interquar-
tile range (25th to 75th percentile), and whiskers represent the 2.5th

and 97.5th percentiles.
The setpoints of thermostats in our dataset varied frequently

and regularly, presumably in an attempt to conserve energy by mit-
igating heat losses. Figure 2 presents distributions of the average
setpoint of each thermostat at each hour ending compared to the
average during the hour beginning at 3AM (HB 3); results are also
stratified by weekday versus weekend. As shown, during the week,
most households raised their set points by up to 4◦F during the af-
ternoon as compared to the night. Fewer than 5% of households
lowered their set points by more than 5◦F , or raised it by more than
10◦F . During the weekend, households were less likely to raise
their set points during the afternoon.

Panel A of Figure 3 shows the distribution of estimated rated
power use for all HVACs in the dataset, which is defined as the av-
erage power used by HVACs during intervals when the compressor
cycling ratio is 1. Most HVACs consume between 2 and 4 kW of
electricity when running at full load, though estimates vary widely,
from 0.5 to 6 kW.

Panel B of Figure 3 shows the distribution of steady-state heat
transfer coefficients, hss, estimated at each home. hss represents
the amount of additional power required by the air conditioner to
increase the steady state indoor/outdoor temperature differential by
1 ◦F . Eq. (7) shows our formula for calculating hss, which is de-
rived by rearranging Eq. (3):

hss =
L

āaux
=

∑i aint(i)
∑i aaux(i)

(7)

Our definition of hss deviates from convention because we refer-
ence it to power consumed by the HVAC rather than cooling energy
produced by the HVAC (which we do not measure). Thus, our co-
efficient accounts for (1) the thermal resistance of the building shell
material, (2) the building shell area, and (3) the COP of the air con-
ditioner. Most of these values are around 100 W/◦F ; however, they
vary from less than 0 (obviously erroneous estimates) to 800 W/◦F .

Panel C of Figure 3 shows the distribution of effective occu-
pant heat gain, Qocc, defined in Eq. (8) as the steady state, average
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Figure 2. Average temperature setpoint for each house in the
dataset, stratified by hour of day and by weekday-v-weekend.
All setpoints are presented as deviations from the mean during
HB3. Top panel shows average setpoints on weekdays; bottom
panel shows weekends.

HVAC power required to exactly offset the occupant heat gain:

Qocc =
aocc

āaux
=

aocc

∑i aaux(i)
(8)

Dividing Qocc by hss gives the indoor/outdoor temperature differ-
ential sustained by only the occupant heat gain and no HVAC use.

Panel D of Figure 3 shows the distribution of maximum so-
lar heat gain, Qsol , which is defined in Eq (9) as the steady
state average HVAC power required to offset solar heating gains
at 1000W/m2:

Qsol =
1000∑i asol(i)

∑i aaux(i)
(9)

As shown, distribution of these gains is centered at 0, meaning that
the model parameters indicate that 50% of buildings derive cool-
ing energy from solar insolation (or more specifically, from our
solar-earth geometry model-derived estimates of clear-sky insola-
tion). This result clearly indicates that these model parameters are
not capturing the desired effect. This is likely a result of (1) short-
comings of using solar-earth geometry model data rather than so-
lar observations (which would include cloud cover), (2) colinearity
between the solar diurnal cycle and occupancy and (3) colinearity
between the solar diurnal cycle and outside air temperature. We
discuss these effects further in the conclusions.

Panel E of Figure 3 shows the distribution of effective thermal
capacity, Ce f f , which is defined in [16] as the amount of energy
released by the building when reducing from a sustained internal
temperature above steady state to the steady state. The value of
Ce f f is independent of all external variables as long as they are
constant over time. We estimated this value by simulating the
energy released by the building when returning from a steady
temperature 1◦F above steady state. The capacity of buildings in
the dataset is typically between 1 and 2 kWh/◦F . However, some

buildings exhibit very large heat capacities.
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3.3 Validation
We validate the model by predicting the response of internal

temperature to large changes in set points that exist in the dataset.
This validation metric is chosen to mimic the transient dynamics of
an actual ADR event. Internal temperature was predicted based on
knowledge of the internal temperature prior to the change (but not
following), and the HVAC power consumption, outdoor tempera-
ture, and solar insolation throughout time period.

In order to be considered for validation, set point changes must
be 4◦F or larger and the set point must be constant for the two hours
before and four hours after the change. We refer to a set point in-
crease as a “load shed” and a set point decrease as a “load recovery,”
analogous to the beginning and end of an ADR event. There were
54,069 load sheds and 34,534 load recoveries with complete data in
the dataset, and all were used for validation.

Figure 4 shows box plots of the model prediction errors at 1,
2, 3, 4, 5, and 6 hours following a set point change. The longer
the time duration since the set point change, the greater the mag-
nitude of the prediction errors. This result is expected because the
set point change also marks the latest observations of actual inter-
nal temperature used to inform the prediction; predictions made six
hours ahead of the last piece of information are more uncertain than
those made one hour ahead.

Median prediction errors suggest that our model may be over-
estimating the effect of each building’s thermal capacity. For load
shedding events, the model tends to under-predict internal temper-
ature directly following the change, signifying that the building is
increasing in temperature more quickly than the model is predict-
ing, and thus has less thermal capacity than predicted. However,
for load recovery events, the model appears to be unbiased for the
entire duration following the set point change.

The over-prediction of thermal capacity could be a result of an
under-prediction of the effects of air conditioning and thermal gains
on the internal temperature. In the conclusions, we suggest that this
could be an effect of the low resolution of the internal temperature
observations (1◦F), as the rounding errors will be correlated with
the effects of the cycling air conditioner.

4 Demand Response Potential
We use the ARMA model introduced in Eq. (6) to investigate the

DR potential of an HVAC population under varying exogenous con-
ditions. We simulate DR events by introducing a setpoint change in
the thermostats, and we quantify the duration of the load shed dshed

i,t



Figure 4. Model prediction errors following set point changes
of greater than 4◦F . Load shed events (top) are positive set
point changes, and load recovery events (bottom) are negative
set point changes.
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Figure 5. Event/control mechanism

given a setpoint change ∆T set
t under different conditions. Further-

more, we investigate the behavior of the aggregate power consump-
tion of the HVAC population and estimate potential energy savings
due to shifting the HVAC loads to much cooler periods of the day.

Formally, we define an ADR event as follows: The internal set
point Tset of the building is increased by a predetermined amount
∆Tt at time t. The duration of the load shed dshed

i,t for HVAC i at
time t is defined as the time that it takes for T int

i,t to reach Tset +∆Tt +

δ/2, where δ is the thermostatic dead-band width. We simulate the
behavior of each load as a 2-state load, whose thermal dynamics
are governed by Eq. (6) and a thermostat. Specifically, we assume
that the load turns OFF when the internal temperature hits the upper
thermostatic bound (i.e. Tint = Tset +δ/2) and vice versa. Figure 5
represents a typical load shed ADR event considered in this study
and depicts the parameters defined above.

As expected, time varying setpoints affect a building’s response
to an ADR event. If the temperature setpoint is maintaining a high
differential between indoor and outdoor temperature, an ADR event
is expected to create a large instantaneous magnitude of power re-
duction, with a short duration (due to the high heat transfer over the
differential). Conversely, if the temperature differential is small,
the DR program should expect more modest instantaneous power
reductions for a longer duration.

To capture this variation, we created various case studies using
different setpoint profiles and exogenous input characteristics.
We first investigate a simplistic scenario, where we assume all

of the HVACs have the same temperature setpoint, the external
air temperature is constant, and the insolation is zero. We then
select a day to use as a representative day for the exogenous
inputs such as: external temperature and insolation. We use
average hourly setpoint schedules for HVAC loads obtained from
the weekday and weekend measurements to obtain distributions
of the dshed

i,t under varying conditions. The next section intro-
duces the case studies in detail and discusses the assumptions made.

4.1 Case Studies
For all the case studies in this paper, we simulate a population

of HVACs using the ARMA model given in Eq. (6). The simulation
period and the thermostatic dead-band width is pre-determined and
for all case studies tstart is 9AM, tend is 11PM and δ is 1oF . At the
beginning of each simulation, we assume the starting temperature
for each HVAC, T int

i,tstart
, was randomly located within the thermo-

static dead-band width. The HVAC statuses are also determined
by observing the distribution of HVAC statuses at the starting hour
from measured data based on the setpoint profile. During the simu-
lation period, we assume that a single ADR event happens at tevent ,
with a predetermined setpoint change ∆T set

tevent
. Since the Electric

Reliability Council of Texas’ (ERCOT) DR programs have vary-
ing dispatch durations ranging from 1 to 4 hours, we simulate the
behavior of the aggregate load population with varying ADR event
durations DDR. Specifically, after a setpoint change of ∆T set

tevent
due to

a DR even at time tevent , the setpoint of each HVAC is overwritten
by T set

i,t +∆T set
tevent

for the duration of the ADR event, DDR. When the
event is over, all HVACs go back to their scheduled setpoint pro-
file. Three sets of different case studies (CS-1, CS-2 and CS-3) are
created to capture different exogenous input conditions. For each
of these sets, we define 4 individual scenarios (e.g. A-D for CS-1)
with varying DDR, tevent and ∆T set

tevent
parameters. As seen in Table 2,

the first set of case studies CS-1 focuses on estimating the DR po-
tential of an HVAC aggregation under constant exogenous inputs.
For the second set, we create an average weekday setpoint profile
for all the HVACs, and assume that each HVAC is scheduled based
on that. Similarly for the third set, we create an average weekend
setpoint profile to differentiate the varying setpoint profiles due to
change in occupancy patterns between weekdays and weekends.
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Figure 6. The cumulative probability distribution of dshed ob-
tained by simulating 4405 HVAC instances, available in the
dataset for CS-1, 2 and 3.



10 12 14 16 18 20 22
0

5

10

A
gg

. P
ow

er
, [

M
W

]

CSï2, Scenario A

10 12 14 16 18 20 22
0

4

8

12

A
gg

. P
ow

er
, [

M
W

]

CSï2, Scenario B

10 12 14 16 18 20 22
0

4

8

12

A
gg

. P
ow

er
, [

M
W

]

CSï2, Scenario C

10 12 14 16 18 20 22
0

4

8

12

A
gg

. P
ow

er
, [

M
W

]

Hour of the Day

CSï2, Scenario D

10 12 14 16 18 20 22
0

4

8

12

CSï3, Scenario A

10 12 14 16 18 20 22
0

4

8

12

CSï3, Scenario B

10 12 14 16 18 20 22
0

4

8

12

CSï3, Scenario C

10 12 14 16 18 20 22
0

4

8

12

Hour of the Day

CSï3, Scenario D

 

 

10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

Hour of the Day

A
gg

. P
ow

er
, [

m
W

]

CSï3, Scenario D

 

 

No ADR Event
D

DR
=1 hours

D
DR

=2 hours

D
DR

=3 hours

D
DR

=4 hours

Figure 7. The behavior of the aggregate power consumption of the HVAC population for CS-2 and 3. The markers do not represent
individual data points; they are placed to differentiate different DR curves from each other.

5 Results
Figure 6 shows the empirical cumulative distribution functions

of dshed
i,t for the constant exogenous input case (CS-1), weekdays

(CS-2) and weekends (CS-3). In all case studies, for any shed du-
ration value d such that d ≤ 4, it is possible to see that scenarios
C and D have a lower Pr(dshed

i,t ≤ d) value. This is expected be-
cause the setpoint change value for both C and D is 4oF , hence
given a shed duration value, there are less loads available provide
the requested shed at least for d long. For CS-1, since the exoge-
nous inputs are assumed to be constant during the day, scenarios A,
B, C and D yield to almost identical results. When the results for
CS-1 is compared to CS-2 and 3, it is possible to see that constant
exogenous input assumption yields to a significant over-estimation
of the number of loads that can provide a requested shed duration
d for scenarios C and D. For scenarios A and B no significant dif-
ference is observed, which can be explained by the presence of less
variation in the exogenous inputs during shorter shed periods that
can be achieved by a lower setpoint change. For CS-2 and 3, it
seems that scenario C has the lowest Pr(dshed

i,t ≤ d) value among
all 4 scenarios. This suggests that an ADR event at 12PM has the
highest chance of exceeding a shed duration of 4 hours for both
weekdays and weekends. Figure 7 shows the aggregate power time
series obtained for each scenario under CS-2 and CS-3 against a no
ADR event case with identical input conditions. We choose to de-
pict CS-2 and 3, since they represent a more realistic scenario. For
all the scenarios with an ADR event starting at 12PM, it is possible
to see that the recovery peak value is increasing with the increas-
ing DDR. Since the maximum value of DDR we investigated in this
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Figure 8. Energy savings w.r.t. no ADR case for CS-2 and 3
between 9AM and 11PM.

study is 4 hours, the benefits due to decreasing exterior temperature
(if any) seems to be diminished. In contrast, for the scenarios with
ADR events scheduled at 3PM, a decrease in the rate of increase of
the aggregate power consumption is often visible after 6PM, which
helps to decrease the expected increase in the power consumption
during recovery.

In Figures 8, 9, and 10, we depict the aggregate energy savings
during the entire simulation period, energy savings during the event



Table 2. Characteristics of different scenarios and case studies

Case
Study External Temp. Setpoint Profile

Setpoint
Change
∆T set

tevent

Scenarios

Event Start
Hour, tevent ,
[hour of the

day]

DR event
Duration,

DDR, [hours]

CS-1 82oF , Constant 76oF , Constant
2oF A 12

[1,2,3,4] hoursB 15

4oF C 12
D 15

CS-2 Measured, Thu, 21/06/2012 Avg. Weekday Profile
2oF A 12

[1,2,3,4] hoursB 15

4oF C 12
D 15

CS-3 Measured, Sun, 17/06/2012 Avg. Weekend Profile
2oF A 12

[1,2,3,4] hoursB 15

4oF C 12
D 15
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Figure 9. Energy savings during event w.r.t. no ADR case for
CS-2 and 3.
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Figure 10. Average power during event for CS-2 and 3.

and the average power consumption during the ADR event. It is
possible to see that scenarios D and C can offer more overall energy
savings than scenarios A and B for weekdays and weekends. It
is also possible to see that a later ADR event (3PM in this case)
can provide additional benefits during weekdays, which can be
explained by the expected increase in the occupancy in households
after earlier events resulting in a lower recovery setpoint. However,
on the weekends, there is no significant difference between earlier
and later events in terms of overall energy savings. In addition, the
rate of increase in the energy savings with increasing DDR shed
duration during the ADR event diminishes with increasing DDR.
Even though some of the HVAC cannot provide a full shed during a
long DDR, their delayed schedule benefits highly from the decrease
in the external temperatures.

6 Conclusions
In this paper, we have used a unique dataset to estimate and vali-

date ARMA models that capture the thermal dynamics of individual
HVAC units. Using these models, we investigated the potential of
ADR that can be provided with an aggregation of HVACs under cer-
tain conditions. We analyzed the variability in duration of the shed
each HVAC unit can provide and we quantified the energy savings
that can be achieved through various setpoint adjustment scenarios.

In the individual ARMA models, the estimated solar heat gains
are often counter intuitive. They are relatively small and equally
likely to be positive as they are negative, signifying the implau-
sible interpretation that solar insolation acts as a cooling source
in 50% of residences. We believe that this is an effect of using a
solar-earth geometry model that does not account for cloud cover,
and thus poorly represents variation in insolation inside the home.
Instead, the regular diurnal pattern may correlate with occupancy,
where residents are less likely to be home during the high insola-
tion time (around noon). This may explain the negative coefficients
for some homes, as high solar times correlate with low occupancy,
reducing internal heat gains. Another reason may be the correlation
between the outside air temperature and the regular diurnal insola-
tion pattern. The colinearity of insolation with occupancy and/or
outside air temperature will be further investigated in future work.

Assuming a constant coefficient of performance of the air con-
ditioner also affects our estimates. We expect that this assumption
causes us to over-predict the power required to achieve a certain
level of cooling when the indoor/outdoor temperature differential is
low and to under-predict the required power when the differential
is high. Thus, on a very hot day, we should expect that the instan-
taneous savings from an ADR event will be greater than predicted,



as the HVAC unit will be operating at a lower COP.
Our validation suggests that we are over-predicting the thermal

capacity of the building, causing our model to predict longer than
observed durations of transient events following a set point change.
This over-prediction could be caused by rounding errors in our low
resolution data. For instance, when the room temperature is main-
tained at a set point, it is often measured to be constant when in fact
we know it to be fluctuating within a dead band. Thus, the effect
of HVAC cycling on internal temperature is masked by rounding
during these times.

As discussed in Section 5, the proposed demand response po-
tential estimation strategy provided important insights into the re-
sponse characteristics of an aggregate load population based on the
data collected from individual households. In particular, we devel-
oped a proof-of-concept DR potential estimation strategy from a
large aggregation of residential loads using ARMA models to rep-
resent individual thermal dynamics of HVAC units available in over
4200 households.

For future work, we propose to use an instrumental variable
(changes in the set point) to predict HVAC energy use during
times when the internal temperature is constant, thus removing
the variation caused by cycling. We expect that this will increase
the coefficients for HVAC unit power and decrease the estimated
thermal capacity. We also would like to incorporate stochasticity
in the DR potential estimation methodology used in this paper
to reflect the confidence boundaries obtained from the individual
ARMA models of HVACs.
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