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ABSTRACT OF THE DISSERTATION

Scalable Approximate Bayesian Inference

By

Tian Chen

Doctor of Philosophy in Statistics

University of California, Irvine, 2019

Associate Professor Babak Shahbaba, Chair

The availability of massive computational resources has led to a wide-spread application and

development of Bayesian methods. However, in recent years, due to the explosive growth of

data volume, developing advanced Bayesian methods for large-scale problems is still a very

active area of research. This dissertation is an effort to develop more scalable computational

tools for Bayesian inference in big data problems.

At its core, Bayesian inference involves evaluating high dimensional integrals with respect

to the posterior distribution of model parameters and/or latent variables. However, the

integration does not have closed form in general, and approximation methods are usually the

only feasible option. Approximation can be divided into two main categories: deterministic

approximation based on variational optimization, and stochastic approximation based on

sampling methods.

We start with developing a new variational framework — geometric approximation of posterior

(GAP) — based on ambient Fisher geometry. As a variational method, GAP has the potential

to scale well to large problems compared to computationally expensive sampling methods.

It not only has a well-established mathematical basis — information geometry, but also

works as a better alternative to other variational methods such as variational free energy and

expectation propagation under certain scenarios.
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Next, we focus on another class of approximation scheme based on MCMC sampling. Our

method combines auto-encoders with Hamiltonian Monte Carlo (HMC). While HMC is

efficient in exploring parameter space with high dimension or complicated geometry, it is

computationally demanding since it has to evaluate additional geometric information of

the parameter space. Our proposed method, Auto-encoding HMC, is designed to simulate

Hamiltonian dynamics in a latent space with a much lower dimension, while still maintaining

efficient exploration of the original space. Our method achieves a good balance between

efficiency and accuracy for high-dimensional problems.

Besides our work on scalable approximation methods for Bayesian inference, we have also

developed a variational auto-encoder (VAE) model based on determinantal point process

(DPP) for big data classification problems with imbalanced classes. VAE is a generative

model based on variational Bayes and is typically applied to high-dimensional data such as

images and texts. In the presence of imbalanced data, our method balances the latent space

by using a DPP prior to up-weight the minor classes. We successfully applied our method,

henceforth called DPP-VAE, to neural data classification and hand-written digits generation,

which are both high-dimensional in nature. Our method provides better results compared to

standard VAE when datasets have imbalanced classes.
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Chapter 1

Introduction

1.1 Background: Approximate Bayesian Inference

In probabilistic models, there are generally two sets of random variables: observable variables

and latent variables. The probabilistic distribution associated with the latter one is referred to

as posterior distribution, which is conditional on the observed data. Particularly, in Bayesian

statistics, parameters are treated as such latent variables, and the central goal of Bayesian

inference is to evaluate integrals with respect to the posterior distribution of the parameters.

More formally, we denote Z to be the parameters or latent variables of interest, and X to be

the observable variables. Given the prior information of Z, which is represented by a prior

distribution pZ(z), and the underlying data generating scheme, which is represented by a

likelihood function pX|Z(x|z), we have the posterior distribution of Z defined as below:

pZ|X(z|x) =
pZ(z)pX|Z(x|z)∫
pZ(z)pX|Z(x|z)dz

(1.1)
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The task is to evaluate the integral:

EZ|X(f(z)) =

∫
pZ|X(z|x)f(z)dz (1.2)

where f(z) is a function of interest of the latent variables.

However, in many cases, the integration does not have an analytically solvable form and

hence is infeasible to calculate. Therefore, in practice, a realistic goal is to obtain good

approximation to the integrals.

There are two major branches of approximation methods: deterministic approximation

and stochastic approximation. Theoretically, stochastic approximation based on sampling

methods are guaranteed to generate exact samples given unlimited computational resources.

Consequently, a good approximation based on sampling is always computationally expensive.

Deterministic approximation, on the other hand, is less computationally demanding and thus

scales better to large problems, but is at the compromise of less accuracy.

Important deterministic approximation methods include Laplace’s approximation and vari-

ational Bayes. As for sampling methods, the most popular algorithms include rejection

sampling, importance sampling, and Markov chain Monte Carlo (MCMC). In the next session,

we will mainly review the two most commonly used methods — variational Bayes and Markov

chain Monte Carlo, respectively.

1.1.1 Variational Bayes

Variational Bayes originates from the idea of optimizing a functional, which is defined to be

a mapping from functions to a quantity. The optimization can be simplified by restricting

the form of the candidate functions. For example, we can assume that the functions are

factorizable.
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Given that we are interested in approximating a posterior distribution, the main idea of

variational Bayesian inference is to restrict the approximating distributions q(z) ∈ Q, where

Q is a family of candidate densities. The goal is to find an optimal density q∗ such that the

Kullback–Leibler (KL) divergence between the posterior and the approximating density is

minimized. KL-divergence is a measure of the difference between two probability densities,

which is defined as:

KL(p1‖p2) = −
∫
p1(x) log

p2(x)

p1(x)
dx

The optimization can be written as follows:

q∗(z) = arg min
q(z)∈Q

KL(q(z)‖pZ|X(z|x)) (1.3)

Notice that the KL-divergence can be decomposed as below:

KL(q(z)‖pZ|X(z|x)) = Eq(log(q(z)))− Eq(log(pZ|X(z|x)))

= Eq(log(q(z)))− Eq(log(pX,Z(x, z))) + log pX(x)

Here, pX(x) is referred to as the evidence, and the log of evidence is in fact independent of the

selection of q(z). To this end, we will not optimize KL-divergence directly since the problem

is rarely tractable. Instead, we will maximize the term −Eq(log(q(z))) + Eq(log(pX,Z(x, z)))

with respect to q(z), which is equivalent to the original optimization goal. The term is

introduced as the evidence lower bound (ELBO), because it can be regarded as the lower

bound the log of evidence. Notice we have the following decomposition:

log pX(x) = ELBO(q(z)) +KL(q(z)‖pZ|X(z|x)) (1.4)

Given KL-divergence is non-negative, we always have log pX(x) ≥ ELBO(q(z)).
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The intuition behind the evidence lower bound is straightforward. We observe that:

ELBO(q(z)) = Eq(log(pX|Z(x|z)))−KL(q(z)‖pZ(z)) (1.5)

The first term indicates maximizing the expected log-likelihood, and the second term encour-

ages the approximating density to match the prior [12].

The most commonly used method to approach this optimization problem is by assuming a

mean-field family of distributions and solve it by coordinate ascent algorithm. The mean-field

family assumes that q(z) can be factorized to individual qj(zj)’s with their own variational

parameters:

q(z) =
∏
j=1

qj(zj|θj)

However, the independence assumption will limit the method’s ability to capture the covariance

structure among latent variables.

With q(z) restricted to belong to the mean-field family, one can show that the optimal density

can be found by updating qj sequentially as follows:

qj(zj) ∝ exp(E−j(log p(zj|z−j, x))) (1.6)

which is the exponential of the expected log complete conditional of Zj with respect to the

distribution over other latent variables. The update is terminated when the lower bound

converges.
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1.1.2 Markov chain Monte Carlo (MCMC)

In MCMC algorithm, we aim at constructing a Markov chain with the posterior pZ|X(z|x) as

its stationary distribution. We then collect samples after the chain converges and approximate

the integral of interest with the empirical average of the samples:

E(f(z)) ' 1

T

T∑
t=1

f(z(t))

First of all, a Markov chain is a stochastic process which satisfies the Markov property, which

states that for a series of random variables Z(1), Z(2), · · · , Z(n), the next state only depends

on current state and is independent of all previous states. More formally, for a discrete-time

Markov chain, we have:

p(z(t+1)|z(t), · · · , z(1)) = p(z(t+1)|z(t))

To construct a Markov chain such that each state is from the target density p(z), we need to

choose a transition probability T (z′|z) to satisfy detailed balance condition:

p(z)T (z′|z) = p(z′)T (z|z′) (1.7)

One can show that with this property, the Markov chain will leave the distribution of Z

invariant:

p(z′) =
∑
z

p(z)T (z′|z) (1.8)

Finding such a transition probability is challenging. Metropolis-Hastings algorithm provides

a general solution by proposing a state followed by an acceptance step, as shown in Algorithm

5



1.1. One can easily show that it satisfies detailed balance condition:

Algorithm 1.1 Metropolis-Hastings algorithm

Initialize z(0)

for 1 to number of iterations do
1. Given current state z(t), generate a proposal z′ ∼ q(z′|z(t))
2. Accept the new proposal z′ with a certain probability, which is designed such that

the limiting distribution is guaranteed to be p(z). More specifically, take

z(t+1) =

{
z′ with probability α(z(t), z′)

z(t) with probability 1− α(z(t), z′)

where α(x, y) = min

{
p(y)q(x|y)

p(x)q(y|x)
, 1

}
end for

p(z)q(z′|z)α(z, z′) = p(z′)q(z|z′)α(z′, z) (1.9)

One most popular Metropolis-Hastings algorithm is Gibbs sampling, where the conditional

probability p(zi|z−i) can be explicitly obtained for each variable zi. Then each variable can

be sampled sequentially from the conditional probability respectively. Another simple and

widely used algorithm is random walk Metropolis, with a Gaussian distribution centered at

current state as the transition probability.

In the context of Bayesian statistics, the target density we would like to sample from is the

posterior distribution of the parameter z : pZ|X(z|x). The samples can be used to perform

Bayesian Inference for z. For example, we can use the mode of the samples as a point

estimation for z, which is referred to as maximum a posteriori(MAP) estimation.

6



1.2 Related Work

Our work mainly focuses on improving advanced methods of Variational Bayes and MCMC

algorithm, aiming at developing methods which scales well to large applications. Next, we

would like to review some work related to our research.

1.2.1 The Geometry of Statistical Models

Information geometry investigates the differential geometric structure of families of probability

distributions [5], which provides a new framework to approach statistical analysis.

Smooth Manifolds

We first discuss the concept of topological manifold [40]. Consider a topological space S.

We name it a topological n-manifold if: 1) S is a Hausdorff space: for each pair of points

p, q ∈ S, there exist disjoint open subsets U, V ⊂ S such that p ∈ U and q ∈ V . 2) S is second

countable: there exists a countable basis for the topology of S. 3) S is locally Euclidean of

dimension n: every point in the space has a neighborhood which is homeomorphic to an open

subset of Rn.

More formally, the third property indicates that for all p ∈ S, we can always find an

open subset U ⊆ S which contains p, and an open subset Ũ ⊆ Rn, such that there is a

homeomorphism ϕ : U → Ũ . Homeomorphism is a continuous bijective map with continuous

inverse. A pair of (U,ϕ) is called a coordinate chart of Manifold S.

The components we defined so far are not sufficient for calculus on manifolds. We next

discuss smooth manifold to make sense of derivatives of functions. Smoothness refers to

infinitely differentiable, but it’s not a property which is invariant under homeomorphisms.

7



We therefore need to only focus on “smooth charts”. Consider two charts (U,ϕ) and (V, ψ) of

S. If the map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is bijective and has a smooth inverse map

(diffeomorphism), then these two charts are smoothly compatible.

We could then define a smooth structure on S with a maximal collection (atlas) A of such

charts, i.e., every pair of charts in the atlas are smoothly compatible and the collection is not

contained in any larger such collections. We call the pair (S,A) a smooth manifold.

A smooth function is then well-defined on (S,A) —f : S → R is smooth if and only if for

each coordinate chart (U,ϕ) in the atlas A, we have f ◦ ϕ−1 : Ũ → R to be smooth.

Statistical Manifolds and Fisher Metric

In the context of statistical distributions, we currently only consider smooth manifold S with a

global coordinate system. Suppose we have observations x = (x1, · · · , xN ) and an underlying

distribution p(x; θ) which governs the generation of the data. S = {pθ ≡ p(x; θ)|θ =

[θ1, · · · , θD] ∈ Θ} represents a statistical model consisting of probability distributions p(x; θ)

such that every distribution is uniquely parameterized by a θ. The parameter space Θ is

assumed to be an open subset of Rn.

Consider the mapping ϕ : S → Θ defined by ϕ(pθ) = θ. S then can be regarded as an

D-dimensional manifold with a coordinate system θ. We can always conflate the distribution

pθ (a point on manifold) and the parameterization θ (the coordinate) .

Consider the example of Normal distribution:

S = {p(x; θ) =
1√
2πσ

exp

{
− (x− µ)2

2σ2

}
|(µ, σ) ∈ Θ}

where Θ = {(µ, σ)| −∞ < µ <∞, 0 < σ <∞}. Every distribution p(x; θ) paramerized by a

8



pair θ = (µ, σ) is a point on the 2-dimensional manifold S.

Let’s denote by ∂i =
∂

∂θi
the tangent vector ei of the ith coordinate θi at point θ. We

also denote lθ = log p(x; θ). Then we can define Fisher information matrix of S at θ as

G(θ) = [gij(θ)]D×D where

gij(θ) = Eθ[∂ilθ∂jlθ] =

∫
∂ilθ∂jlθp(x; θ)dx (1.10)

Then by defining the inner product of [θi] as 〈∂i, ∂j〉 = gij(θ), we specify a Riemannian metric

in the tangent space Tθ, which is invariant over the choice of coordinate system. We call it

the Fisher metric.

1.2.2 Hamiltonian Monte Carlo

In this section, we will use q to represent parameters of interest, to be consistent with

conventions in literature.

Compared to random walk Metropolis, Hamiltonian Monte Carlo (HMC) enables more

efficient exploration of the parameter space by using geometric information contained in the

gradient of the target distribution to inform the proposals.

Hamilton’s equations

From a physical perspective, Hamiltonian mechanics is a reformulation of classical mechanics

and Lagrangian mechanics, which predicts the same outcomes as these non-Hamiltonian

mechanics. Consider a physical system with d degrees of freedom. We denote the position

(q1, · · · , qd) ≡ q, potential energy U(q) ≡ U , momentum (p1, · · · , pd) ≡ p, and kinetic energy

K(p) ≡ K, then we have equivalent equations of motion (i.e. the time evolution of the system
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is determined by the equations):

Classical: m
d2q

dt2
= − ∂

∂q
U

Lagrange:
d

dt

∂L

∂q̇
− ∂L

∂q
= 0

Hamiltonian:
dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

where Langrange L = L(q, q̇, t) = K − U and Hamiltonian H = H(q, p) = U +K.

In Hamiltonian mechanics, a classical physical system is described by a set of canonical

coordinates z = (q, p), which is used to describe a physical system at any given point in time

(locating the system within phase space R2d ). In the phase space, we can write Hamilton’s

equations as:

dz

dt
= J

∂H

∂z
, where J =

 0d×d Id×d

−Id×d 0d×d


We usually use a quadratic kinetic energy: K(p) = pTM−1p/2, which allows the Hamilton’s

equations to be written as:

dqi
dt

= [M−1p]i (1.11)

dpi
dt

= −∂H
∂qi

(1.12)

We can further set the mass matrix to be diagonal.

Hamiltonian dynamics has the following important properties:

• Reversibility: if we use the Hamiltonian dynamics to propose in a Metropolis algorithm

, this property leaves the desired distribution invariant. More specially, for a one-to-one
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mapping Ts from the state at time t to the state at time t+ s, we have:

Ts(q(t), p(t)) = (q(t+ s), p(t+ s))

Ts(q(t+ s),−p(t+ s)) = (q(t),−p(t))

• Conservation of the Hamilton: we have
dH

dt
= 0, which indicates that theoretically

the acceptance rate is one, though this is not the case in practice.

• Volume preservation: The phase space distribution ρ(p, q) determines the probability

ρ(p, q)dnqdnp that the system will be found in the infinitesimal phase space volume

dnqdnp. Liouville’s theorem states that the distribution function is constant along any

trajectory in phase space. That’s saying:
dρ

dt
= 0. This property holds even when the

dynamic is approximated by discretizing time.

• Symplecticness: Hamiltonian systems are equipped with a symplectic structure which

is preserved by the dynamics. The conservation of the Hamiltonian is only a consequence

of this symplectic structure. (This property is stronger than volume preservation when

d > 1.)

In most cases, we have to discretize time to approximate the Hamilton’s equation. It will

introduce errors at the same time. A commonly used discretization scheme is leapfrog. One

leapfrog iteration is displayed as follows:

pi(t+
ε

2
) = pi(t)−

ε

2

∂U

∂qi
(q(t)) (1.13)

qi(t+ ε) = qi(t) + ε
pi(t+

ε

2
)

mi

(1.14)

pi(t+ ε) = pi(t+
ε

2
)− ε

2

∂U

∂qi
(q(t+ ε)) (1.15)

which provides a proposal from the state at time t for position and momentum variable to
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the state at time t+ ε.

One trick to implement the leapfrog method is to combine the last half step of one iteration

with the first half step of the next iteration to be a full step, except for the very first update

and the very last update, where we still use half steps for momentum:


pi(t+ ε) = pi(t+

ε

2
)− ε

2

∂U

∂qi
(q(t+ ε))

pi(t+ ε+
ε

2
) = pi(t+ ε)− ε

2

∂U

∂qi
(q(t+ ε))

⇐⇒ pi(t+ ε+
ε

2
) = pi(t+

ε

2
)− ε∂U

∂qi
(q(t+ ε))

Notice that Leapfrog method preserves phase space volume, because the transformation from

(q(t), p(t)) to (q(t), p(t+ ε/2)) is a shear transformation. This only applies to Hamiltonians

when there’s no interaction between position and momentum, i.e. H(q, p) = U(q) + K(p).

Also, leapfrog method is time reversible, simply by applying it with a negative p and then

negating p again. Lastly, the leapfrog integrator also preserves the symplectic structure of

the Hamiltonian system.

HMC algorithm

Suppose we want to use Metropolis algorithm to sample from a density function f(q) (the

space is Rd). In HMC, we use Hamiltonian dynamics to propose a new state for q.

More specifically, we regard the variable of interest q as the position in a Hamiltonian system,

and introduce an auxiliary variable p as the momentum variable in this system. We define a

joint distribution of q and p which takes a canonical distribution (this concept is adopted
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from statistical mechanics):

P (q, p) =
1

Z
exp(−H(q, p)/T )

where T is the temperature of the system, and Z is the normalizing constant. The distribution

f(q) and the distribution of momentum p are specified by H(q, p).

If we considerH(q, p) = U(q)+K(p), where q and p are independent, the canonical distribution

becomes:

P (q, p) =
1

Z
exp(−U(q)/T ) exp(−K(p)/T ) ∝ f(q)g(p)

where f(q) is the target density and g(p) is some distribution we define for momentum p.

We set the potential energy U(q) = − log(f(q)). We usually define a zero-mean multivariate

Gaussian distribution for p, thus K(p) = pTM−1p/2 with some mass matrix M .

The steps of HMC can be summarized as below:

1. Suppose the current state is q(t) ≡ q(τ).

2. Resample momentum p from some distribution to be the current p(t) ≡ p(τ). (We

usually use zero-mean Gaussian distribution.)

3. Use leapfrog method to propose a state (q(τ + ε), p(τ + ε)) from (q(τ), p(τ)) , where ε is

the step size. (ε is a parameter we should tune for good performance of the algorithm.)

4. Repeat 3 for L times. L is also a parameter of the algorithm. So eventually we get the

state (q(τ + εL), p(τ + εL)).

5. Set (q∗, p∗) = (q(τ + εL),−p(τ + εL)). (We negate p to guarantee this proposal to be

symmetric.)

6. Compute the acceptance rate: a = min[1,
P (q∗, p∗)

P (q(t), p(t))
]. If we set T = 1 and H(q, p) =
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U(q) +K(p), we have:

a = min[1, exp(−H(q∗, p∗) +H(q, p))]

= min[1, exp(−U(q∗) + U(q)−K(p∗) +K(p))]

7. Generate u ∼ U(0, 1). We set q(t+1) =


q∗ u < a

q(t) otherwise

We next show a informal proof of the validity of the algorithm. We hope that the chain

of q we obtained could finally converges to f(q). Since q and p are independent, and we

resample p from the same distribution at each iteration, we just need to show that P (q, p)

is the stationary distribution of the Markov chain we obtained by Hamiltonian dynamic

proposal. That being said, if the current distribution is P (·), the distribution after one HMC

update will remain the same.

We first partition the R2d phase space (q, p) into small regions Ak with the same volume

V . P (Ak) is the probability under the canonical distribution. As the volume V goes to

zero, we get the corresponding density P (q, p). We use T (Bk|Ak) to represent the mapping

from current state Ak to a new state Bk after one HMC iteration, which involves L steps of

leapfrog with stepsize ε and negation of the momentum variable. Then for all i, j:

P (Ai)T (Bj|Ai) = P (Bj)T (Ai|Bj)

This is because if i 6= j, this equation holds since T (Ai|Bj) = T (Bj|Ai) = 0. If i = j ≡ k, it’s

obvious that an equivalent equation holds:

V/Z exp(−HAk)min[1, exp(−HBk +HAk)] = V/Z exp(−HBk)min[1, exp(−HAk +HBk)]

14



This implies that detailed balance is satisfied and we have:

P (Bk)R(Bk) +
∑
i

P (Ai)T (Bk|Ai) = P (Bk)

where R(X) is the probability that the update for a state in region X leads to rejection of

the proposed state. Thus the canonical distribution P (q, p) is the stationary distribution.

(Notice P (Bk)→ P (q, p) as V → 0.)

Riemannian HMC

In Riemannian HMC, Fisher Information G(q) is used to adapt the mass Matrix M , which

enables more efficient exploration of the parameter space since curvature information is used.

An analogy is that for the problem of minimizing a function, Newton’s method (second-order,

Hessian) is more efficient than gradient descent (first-order). In our case, instead of finding a

"optimal" point, we would like to find a “optimal” distribution based on the data, and this

is realized by the random kick of momentum p in each iteration. Notice that in Euclidean

space, the norm of q̇ is ‖q̇‖2
M = q̇TMq̇ = pTM−1p (since dq/dt = M−1p ⇒ p = Mq̇) with

metric M = I, while for a statistical model defined on a Riemannian manifold, ‖q̇‖2
G(q) =

q̇TG(q)q̇ = pTG−1(q)p.

1.2.3 Variational Auto-encoder

Variational Auto-encoder (VAE) is a generative model based on variational Bayes and neural

networks approximation. It’s particularly applicable to high-dimensional data X, such as

images and texts. Instead of learning posterior distribution of the latent variables Z, we are

more interested in learning the data distribution pX(x) and generating data from the learned
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distribution [20]. Our goal is to maximize the likelihood:

pX(x) =

∫
pX|Z(x|z)pZ(z)dz

First of all, VAE assumes that pX|Z(x|z) is a distribution which is easy to sample from. If X is

continuous, pX|Z(x|z) can be a Gaussian distribution with mean f(z), where f(z) is modeled

by a neural network. If X is binary, we can model pX|Z(x|z) by Bernoulli distribution with

mean f(z). The prior of Z could simply be a standard normal or other densities which are

easy to compute from. In this way, VAE avoids explicitly specifying the latent variables and

their correlations, but still capture the latent structure via f(z), in the hope that neural

networks can automatically learn the structure given that the model can reproduce X well.

Notice that the induced posterior of Z is also intractable. Similar to variational Bayesian

method, VAE uses a simpler distribution qZ(z) with closed form to approximate the true

posterior of Z. Further, it assumes that this simple distribution is conditional on X:

qZ(z) = qZ|X(z|x). In practice, qZ|X(z|x) is usually selected to be N(z|µ(x),Σ(x)). µ(x)

and Σ(x) are also approximated by neural networks. Then qZ|X(z|x) can be regarded as a

‘encoder’ which encodes X into Z. Together with pX|Z(x|z) which decodes Z to ‘reconstruct’

X, the structure resembles a conventional auto-encoder.

The optimization objective of VAE is closely related to variational Bayesian inference.

Combining equation (1.4) and (1.5), we have:

log p(x)−KL(q(z|x)‖p(z|x)) = Eq(log(p(x|z)))−KL(q(z|x)‖p(z)) (1.16)

We observe that we can optimize right hand side with respect to neural network parameters

of f(z), µ(x) and Σ(x) via back propagation. It’s equivalent to maximizing pX(x) — our

ultimate goal, with the bonus of minimizing the KL-divergence between qZ|X(z|x) and the
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Output:
‖X − f(z)‖2

Output:
KL(N(µ(X),Σ(X))‖N(0, I))

f(z)

Sample z ∼ N(µ(X),Σ(X))

Σ(X)µ(X)

Input: X

Figure 1.1: Variational Auto-encoder Architecture (X is continuous)

true posterior.

The first term Eq(log(p(x|z))) can be approximated by Monte Carlo estimate with samples

from q. In practice, we implement it stochastically by taking only one sample. When

X is continuous and pX|Z(x|z) is Gaussian with mean f(z), we are actually minimizing a

“reconstruction loss” −Eq(log(p(x|z))) which is proportional to ‖X − f(z)‖2. The second

term has a closed form:

KL(N(µ,Σ))‖N(0, I)) =
1

2
(− log(det(Σ))−D + tr(Σ) + µTµ) (1.17)

where D is the latent dimension. The network structure and optimization goal is displayed

in Figure 1.1.

However, in practice, we need to implement a “reparameterization trick" (Figure 1.2) to

make back propagation work. Instead of sampling z from N(µ(x),Σ(x)), we first sample ε

from N(0, I) and construct z = µ(x) + ε · Σ(x)1/2. In this way, z becomes a deterministic
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Output:
‖X − f(z)‖2

Output:
KL(N(µ(X),Σ(X))‖N(0, I))

f(z)

z = µ(X) + εΣ(X)1/2 Sample ε ∼ N(0, I)

Σ(X)µ(X)

Input: X

Figure 1.2: Reparameterization Trick (X is continuous)

and continuous function with respect to the neural network parameters, and we could then

calculate the gradient.

1.3 Contributions

We now briefly summarize the contributions of this dissertation:

• A Geometric View of Posterior Approximation (Chapter 2) provides a novel

framework for posterior approximation based on ambient Fisher geometry. As opposed

to computationally expensive sampling methods, the method is variational and thus has

the potential to scale well to large problems. Instead of optimizing asymmetrical KL-

divergence, the objective is a true distance measure derived from a newly constructed

geometric structure for the manifold of all probability distributions. The manifold can

be regarded as a “unit ball” with infinite dimensions. We name the distance measure
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spherical Fisher distance. An optimization algorithm is developed. We showed in our

experiments that our method overcomes the shortcomings of other variational methods.

For example, unlike variational free energy, our method does not underestimate posterior

variance, and unlike variational method based on reverse KL optimization, it does not

account for neglectable modes for multi-modal distributions.

• Speeding Hamiltonian Monte Carlo with Auto-encoders (Chapter 3) focus on

another branch of approximation scheme: MCMC sampling. As discussed in section

1.2.2, HMC is capable of exploring the parameter space more efficiently with distant

proposals compared to other MCMC methods, but it is at the cost of spending more

computational resource on evaluating geometric information of the space. In the effort

of making HMC more scalable to large applications, we developed auto-encoding HMC,

which performs dimensionality reduction for the parameters via auto-encoder, and

simulates Hamiltonian dynamics in the latent space with a much lower dimension. The

proposed latent state is then projected back to the original space as a new proposal.

The method is less computationally demanding, while still making efficient proposals in

the original space. Our method achieves a good balance between efficiency and accuracy,

which is supported by our empirical experiments of high-dimensional simulated data

classification and text classification.

• Determinantal Point Processes as Balancing Priors for Variational Auto-

encoder (Chapter 4) is a work which contributes to improving variational auto-encoder

(VAE), a generative model based on variational Bayes, for class imbalance problem.

Variational auto-encoder is usually applied to high-dimensional data such as images and

texts. In the presence of imbalanced data, the latent space is dominated by the major

classes. We correct this by applying a non-parametric prior —- determinantal point

process — to up-weight the minor classes. This is due to the property of determinantal

point process that it assigns higher probability to dissimilar data points, while we assume
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that data from the same class are more similar. The latent representation learned by

our method leads to more accurate classification results compared to standard VAE,

which uses standard normal as the prior. Our method also is capable of generating

more balanced synthetic data given that the training data is extremely imbalanced.
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Chapter 2

A Geometric View of Posterior

Approximation

Although Bayesian methods are robust and principled, their application in practice could be

limited since they typically rely on computationally intensive Markov Chain Monte Carlo

algorithms for their implementation. One possible solution is to find a fast approximation of

posterior distribution and use it for statistical inference. For commonly used approximation

methods, such as Laplace and variational free energy, the objective is mainly defined in terms

of computational convenience as opposed to a true distance measure between the target

and approximating distributions. In this paper, we provide a geometric view of posterior

approximation based on a valid distance measure derived from ambient Fisher geometry.

Our proposed framework is easily generalizable and can inspire a new class of methods for

approximate Bayesian inference.
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2.1 Introduction

In this paper, we are interested in approximating pZ|X(z|x), where Z denotes model parameters

or latent variables with prior distribution pZ(z) and X denotes the observed data [11].

Inference regarding Z typically involves integrating functions over the posterior,

EZ|X(g(z)) =

∫
g(z)pZ|X(z|x)dz (2.1)

For instance, g(z) = z if we are interested in estimating the posterior mean. Unfortunately,

the integration problem in Bayesian inference is not analytically tractable in most cases.

To address this issue, we could use Markov Chain Monte Carlo (MCMC) algorithms by

simulating large samples from intractable posterior distributions and using these samples to

approximate the above integral. However, MCMC algorithms tend to be computationally

intensive, especially for large scale problems. Although many methods have been proposed

in recent years to improve computational efficiency of MCMC algorithms (see for example,

[49, 48, 28, 47, 55, 58, 29, 61, 19, 13, 52, 51, 50, 7, 46, 6, 38, 15, 16, 62, 27, 57, 56, 63, 66, 2,

30, 32, 59, 9, 14, 39]), extending these methods to high dimensional and complex distributions

remains a challenge.

Here, we focus on an alternative family of methods based on deterministic approximation

of posterior distribution to cope with intractable problems in Bayesian inference. These

methods aim at finding an approximate, but tractable, distribution to replace the exact

posterior distribution in order to make statistical inference easier. For example, Laplace’s

method approximates posterior distribution by a Gaussian distribution with the mean set at

the mode of the posterior distribution and the covariance set to the second derivative of the

log posterior density evaluated at the mode. While this approach is quite easy to implement,

in most cases it could only provide good local approximation around the mode; that is, it
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could fail to capture global features of the posterior distribution [11]

An alternative approach is to use variational Bayes methods that approximate the posterior

distribution by a much simpler distribution, p′Z(z), which is assumed to belong to a specific

family of models. A divergence is then specified to quantify the dissimilarity between pZ|X(z|x)

and p′Z(z). An optimal p′Z(z) is chosen from the family of valid distributions by minimizing

the divergence.

The variational free energy method (VFE) developed by Feynman and Bogoliubov [42] uses

the relative entropy, usually referred to as Kullback-Leibler divergence (KL-divergence), as

the measure of dissimilarity between the target and approximating distribution. Consider

the following decomposition of the log marginal likelihood:

log pX(x) =

∫
p′Z(z) log

pX,Z(x, z)

p′Z(z)
dz −

∫
p′Z(z) log

pZ|X(z|x)

p′Z(z)
dz (2.2)

= L(p′Z) +KL(p′Z‖pZ|X) (2.3)

Because KL divergence is non-negative, L(p′Z) serves as a lower bound for log pX . L(p′Z) is

often referred to as the (negative) variational free energy. Because log pX is fixed with respect

to p′Z , minimizing KL-divergence is equivalent to maximizing the lower bound L(p′Z); that is,

the optimal approximation distribution can be obtained by

p′
∗
Z = arg min

p′Z∈P ′
KL(p′Z‖pZ|X) = arg max

p′Z∈P ′
L(p′Z) (2.4)

where P ′ is the set of all valid densities. The purpose of restricting p′Z to P ′ is to make the

integration over p′Z tractable and to simplify the optimization problem. In practice, it is

common to assume that p′Z(z) is factorizable.
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Note that KL-divergence is not symmetric in general: KL(p′‖p) is not the same as its

reverse KL(p‖p′). While methods based on variational free energy typically use KL(p′‖p), an

alternative method, known as “expectation propagation” [45], uses the reverse KL: KL(p‖p′).

In this case, by restricting p′Z(z) to the exponential family, minimization of the reverse KL

is simply a moment matching algorithm; that is, by setting the expectation of sufficient

statistics of p′Z equal to that of pZ|X , we minimize the reverse KL-divergence. However, the

results from direct optimization can be highly inaccurate. Expectation propagation views the

joint distribution as a product of factors: pX,Z(x, z) =
∏n

i=0 ti(z) where t0(z) represents the

prior and ti(z) corresponds to the likelihood of data point xi. The approximating distribution

p′Z(z) is then also assumed to be factorizable: p′Z(z)) ∝∏n
i=0 t̃i(z). Each t̃i(z) represents an

approximating function of ti(z). The algorithm starts by initializing t̃i(z) for i = 1, . . . , n.

Then, given t̃i 6=j(z), each t̃j(z) is updated iteratively by moment matching between p′Z(z)

and tj(z)
∏

i 6=j t̃i(z).

It is worth noting that above divergence measures are special cases of a family of divergence

measure known as α-divergence ([67], [44]),

Dα(p‖p′) =

∫
αp(x) + (1− α)p′(x)− p(x)αp′(x)1−αdx

α(1− α)
, α ∈ (−∞,∞) (2.5)

The variational free energy method is a special case when α→ 0 so we have limα→0Dα(p‖p′) =

KL(p′‖p), while the reverse KL divergence corresponds to limα→1Dα(p‖p′) = KL(p‖p′).

Setting α = 0.5, we obtain a symmetric measure D0.5(p‖p′) = 2
∫

(
√
p(x) −

√
p′(x))2dx =

4H2(p, p′) where H(p, p′) represents the Hellinger distance defined as

H(p, p′) =

(
1

2

∫
(
√
p(x)−

√
p′(x))2dx

) 1
2

=
1√
2
‖
√
p(x)−

√
p′(x)‖2 (2.6)
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Note that α-divergence is not symmetric except for the case of the Hellinger distance (α = 0.5),

which is rarely used in variational Bayes methods. Most existing variational methods, such as

variational free energy and expectation propagation, do not use a real metric for quantifying

the approximation error. In contrast to these existing methods, our proposed method, called

Geometric Approximation of Posterior (GAP), is based on the ambient Fisher information

metric that uses a true distance measure, which we call spherical Fisher distance. Theoretically,

this method provides a novel view of approximate Bayesian inference from the perspective of

statistical geometry. Practically, it is a promising method that has the potential to overcome

the shortcomings of existing methods. More specifically, unlike MCMC methods, our method

does not require computationally intensive simulations. Compared to existing approximation

methods, it relies on a true metric and is more flexible in terms of defining the approximating

family of distributions.

This paper is organized as follows. In the following section, we present our method based

on the spherical Fisher distance. In Section 2.3, we illustrate this approach using simple

examples. Finally, we discuss several future directions in Section 2.4.

2.2 Methods

In this section, we present our geometry-based method for approximating posterior distri-

butions. First, we provide a brief overview on geometry of statistical models in general.

Next, we discuss “Ambient” Fisher geometry (AFG), which is a particular view of statistical

models first observed by [18] (cf. [4? ]), but has remained relatively unknown in the statistics

community. Finally, we show how this geometric view of statistical models can be used to

approximate posterior distributions.
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2.2.1 The Fisher Metric

Let (M, g) be a smooth Riemannian manifold and let P denote the space of probability

distributions on M . We will use the volume form dVg to identify distributions with smooth

functions which integrate to 1 against this volume form. We can interpret a model Θ as a

map from an open set in some parameter space U ⊂ RDto P , i.e.

Θ : U → P , (θ1, . . . , θD)→ pθ.

Denote the associated set of distributions by S = {pθ|θ = [θ1, · · · , θD]}, which lies in L1

space and is a subset of P . S is often regarded as an D-dimensional manifold endowed with

a Riemannian metric using Fisher information matrix. By introducing a Riemannian metric

(i.e. a local inner product on the tangent space at each point) on the manifold, we can derive

many geometric notions such as length of curves, geodesic and distance. The Fisher metric is

a Riemannian metric defined by Fisher information matrix:

gΘ
F

(
∂

∂θi
,
∂

∂θj

)
p

=

∫
M

(∂θi log pθ)
(
∂θj log pθ

)
pθdVg.

where ∂
∂θi
, ∂
∂θj

are the ith and jth basis vectors of the tangent space at point pθ.

2.2.2 Ambient Fisher geometry

In what follows we give a brief summary of “Ambient” Fisher geometry (AFG). This point

of view has appeared in the literature, although is not very well-known. Our particular

viewpoint was first observed in [18] (cf. [4? ]).

The Fisher information metric can be interpreted as the Riemannian metric induced by an

ambient metric on the infinite dimensional manifold P. To do this we observe that for a
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given p ∈ P , the tangent space can be identified with

TpP :=

{
φ ∈ C∞(M) |

∫
M

φdVg = 0

}
,

which arises by differentiating the unit mass condition on probability distributions. We can

then define the ambient Fisher metric on P(X) by

gPF (φ, ψ)p :=

∫
M

φψ

p
dVg. (2.7)

A direct calculation shows that for a model Θ : U → P , we have Θ∗gPF = gΘ
F . In other words,

the Riemannian geometry induced by the ambient metric on the image of the embedding of

the model into P is the usual Fisher metric.

Our goal is to use the ambient geometric structure of P to better understand properties

of specific models Θ. As it turns out, many geometric properties become clearer when one

changes point of view and interprets probability distributions as the unit sphere in the L2

metric as opposed to the L1 metric. Specifically, let Q = {q : M → R|
∫
M
q2dVg = 1}. We

can endow the space of L2 functions on M with the usual flat inner product, although now

interpreted as a Riemannian metric. This induces an inner product on Q, called gQF , which is

in direct analogy with the geometry inherited by the unit sphere in an ambient Euclidean

space. Moreover, direct calculations show that the map S : Q → P defined by S(q) = q2 is a

Riemannian isometry, i.e. S∗gPF = gQF . Thus it is equivalent to work in the space Q instead

of P , which we will now do exclusively.

Using the picture of Q as the unit sphere of the space of L2 functions, we can formally derive

many basic equations which are fundamental in understanding the ambient Fisher geometry.

For instance, we can explicitly solve for geodesics in Q. First, given q0 ∈ Q and f ∈ TqQ a

unit tangent vector, the geodesic with initial value q0 and initial unit norm velocity f exists
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on (−∞,∞) and takes the form

qt = q0 cos t+ f sin t. (2.8)

The obvious 2π-periodicity is no surprise, as this curve corresponds to a great circle in the

infinite dimensional sphere Q. Also, given q, q′ ∈ Q, the geodesic connecting them takes the

form

qt = q cos t+
q′ − q 〈q′, q〉
|q′ − q 〈q′, q〉| sin t (2.9)

Observe that this is well-defined if and only if q′ 6= ±q. This makes sense as there is no

canonical direction to point in to head from the north pole to the south pole. In this

exceptional case one can obtain a geodesic connecting q and q′ by choosing an arbitrary initial

velocity f and using (2.8). Moreover, a direct integration using (2.9) shows that the distance

between two point q, q′ is the “arccosine” distance, i.e.

dQF (q, q′) = arccos

∫
M

qq′dVg, (2.10)

which we refer to as spherical Fisher distance in this paper. But since the map S : Q → P is

an isometry, we have the distance between two distributions p = q2, p′ = q′2 ∈ P defined as:

dSF (p, p′) ≡ dPF (p, p′) = dQF (q, q′) = arccos

∫
M

√
pp′dVg (2.11)

Notice that the distance associated with the usual flat inner product in the ambient “Euclidean
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space” (i.e. the space of L2 functions) is:

dH(p, p′) =

(∫
M

(
√
p−

√
p′)2dVg

) 1
2

, (2.12)

which is directly related to the Hellinger distance. In contrast, spherical Fisher distance is

the distance associated with the inner product on the “unit sphere” manifold Q (the space of

square roots of probability distributions) induced by the usual flat inner product. Although

the metric used in our method is different from the Hellinger distance, the two metrics are

related in that minimizing spherical Fisher distance is equivalent to minimizing the Hellinger

distance between the target and approximating distributions. Geometrically, however, using

the spherical Fisher distance is more justifiable and can be optimized more smoothly.

2.2.3 Variational Bayes using AFG

In spite of the difficulty in visualizing a class of distributions (e.g., normal distribution) on the

“unit sphere" Q, we could still make use of this idea to approximate complicated distributions

through variational methods: after we specify a class of distributions, our task is to find a

member of this family with the shortest distance to the target distribution (e.g., posterior

distribution). That is, we approximate the target distribution by p′Z(z), i.e., a member of the

assumed family of distributions, by minimizing the spherical Fisher distance to pZ(z). Notice

that unlike KL, the spherical Fisher distance used in our method is based on a true metric.

In what follows, we illustrate this idea using a simple problem with analytical solution.

Consider a Gaussian model, x ∼ N(µ, τ−1), with unknown mean, µ, and variance, τ−1 (here,

τ is the precision parameter). Although the posterior distribution is not tractable in general,

it is possible to simplify the problem and find an analytical form for the posterior distribution
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by connecting the prior variance of µ to the variance of data as follows:

Prior: µ|τ ∼ N(µ0, (λ0τ)−1)

τ ∼ Gamma(α0, β0)

This prior is known as the Normal-Gamma distribution. In this case, given n observed values

for x, the posterior distribution has a closed form:

(µ, τ |x) ∼ N(µ∗N , (λ
∗
Nτ)−1)Gamma(α∗N , β

∗
N),

where

µ∗N =
nx̄+ λ0µ0

n+ λ0

λ∗N = λ0 + n

α∗N = α0 +
n

2

β∗N = β0 +
S

2
+
nλ0(x̄− µ0)2

2(n+ λ0)

In Appendix 2.5.1, we show that if we limit our approximating distributions also to the

Normal-Gamma family:

µ|τ ∼ N(µN , (λNτ)−1)

τ ∼ Gamma(αN , βN)

then minimizing spherical Fisher distance with respect to (µN , λN , αN , βN ) leads to the exact
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same posterior distribution shown above. That is, by minimizing the spherical Fisher distance

between the true posterior p and the approximating distribution p′, the optimal p′ is exactly

p.

2.2.4 Gradient Descent Algorithm

In general, there is no analytical solution for the optimization problem in our method. To

address this issue, we develop a gradient-descent optimization algorithm to minimize the

distance function. Suppose p0 is an intractable target distribution (here, posterior distribution)

that we want to approximate using a parametric model from Θ. We start from an arbitrary

point θ0 ∈ Θ and improve the approximation via a modified gradient descent in Q. Note that
√
p0 ∈ Q and the model Θ is naturally embedded in Q. Using (2.10), we can calculate the

gradient of the distance function. In particular, given a single parameter family θt ∈ Θ with

derivative θ̇, a direct calculation shows that the directional derivative takes the following

form:

∇θ̇d(θ,
√
p0) = −

〈
θ̇,
√
p0

〉
√

1−
〈
θ,
√
p0

〉2
. (2.13)

Because our possible choices of θ̇ are restricted to TθΘ, it is clear that this directional

derivative will be minimized by projecting the vector √p0 onto TθΘ,

projTθΘ

√
p0 =

∑
wi〈wi,

√
p0〉,
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where {wi} are orthonormal basis for TθΘ. Ultimately combining this with (2.13) yields the

negative gradient vector

−→v0 =
projTθΘ

√
p0√

1−
〈
θ,
√
p0

〉2
=

∑
wi
〈
wi,
√
p0

〉√
1−

〈
θ,
√
p0

〉2
. (2.14)

Therefore, to find an optimal solution for an arbitrary class of models, Θ, we start from an

initial point θ0 on Θ and follow these steps (Figure 2.1):

Step 1 Given θ0, compute v0 as in (2.14).

Step 2 Move from θ0 to θ1 guided by −→v0 while confined to Θ. For this, ideally we

could follow the geodesic of Θ with θ0 as the initial position and −→v0 as the

initial velocity to update the parameters. However, because of the difficulty in

obtaining such geodesics in general cases, we can instead follow an approximate

path. To this end, we set −→v0 =
D∑
i=1

αiwi and update the parameters separately

in each direction: θi1 = θi0 + εαi for i = 1, . . . , D, where ε is the step size.

Iterate the above steps until the updated values of parameters remain close

to the current values (i.e., current negative gradient vector −→v ≈ 0) or the

distance between the target and approximating distributions falls below a

predefined threshold.

We iterate through the above steps to obtain the closest point on Θ to √p0.

2.2.5 Gaussian approximation

As discussed above, in practice we usually define a simple class of models to approximate target

distributions. Here, we discuss how any arbitrary target distribution can be approximated by
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Figure 2.1: A schematic representation of our method. Θ represents the class of approximation
distributions. We start from an arbitrary point θ0 on Θ. Its tangent space with respect to
the manifold Θ is denoted as Tθ0Θ. We move from θ0 to a new point on Θ directed by the
negative gradient vector of the distance function. This is the same direction as the projection
of √p0 onto Tθ0Θ.

a multivariate Gaussian distribution using our method. The resulting algorithm is based on

the matrix representation of Gram-Schmidt process. The full details of the procedure can be

found in Appendix 2.5.2.

Suppose Θ represents the family of Gaussian models N(z|µ,Σ). Then any point on Θ can be

expressed as:

p(z|µ,Σ) = (2π)−
D
2 |Σ|− 1

2 exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
,

with the corresponding square root of the density,

q(z|µ,Σ) = (2π)−
D
4 |Σ|− 1

4 exp

(
−1

4
(z − µ)TΣ−1(z − µ)

)

. Since Σ is constrained to be positive definite, we use its Cholesky decomposition, Σ = LLT ,

and minimize the distance with respect to the lower triangular matrix, L, with unconstrained

parameterization. Also, we sometimes express the covariance parameters in a vector form for
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simplicity. This is achieved by using the vech operator which vectorizes a matrix column-wise,

while excluding the upper part of the matrix [22]:vech(L) = l.

In order to obtain an orthonormal basis of the tangent space at any point on Θ, consider

the push-forwards of basis vectors { ∂
∂θi
} with respect to the map from parameter space to

root distribution space: { ∂q
∂θi
}. Thus, starting from an initial point on Θ, θ0 = (µ0, L0) ≡

q(z|µ0,Σ0) ≡ q0, the orthonormal basis {wi} of the tangent space Tθ0Θ can be obtained by

orthonormalizing the following basis:

vµ =
∂q

∂µ

∣∣∣
µ=µ0,L=L0

= q(z|µ0,Σ0)
1

2
(z − µ0)TΣ−1

0 , (1×D vector)

vl =
∂q

∂vech(L)

∣∣∣
µ=µ0,L=L0

= q(z|µ0,Σ0)

[
−1

4
vec(Σ−T0 )T +

1

4
((z − µ0)T ⊗ (z − µ0)T )(Σ−T0 ⊗ Σ−1

0 )

]
[
I + T TD,D −RT

D

]
[(ID ⊗ L0)TD,D + (L0 ⊗ ID)]STD, (1× D(D + 1)

2
vector)

Given {wi} ≡
(
{wµi}Di=1, {wli}

D(D+1)
2

i=1

)
, we have

−→v0 =

D∑
i=1

〈wµi,
√
p0〉wµi +

D(D+1)/2∑
i=1

〈wli,
√
p0〉wli√

1− 〈θ0,
√
p0〉2

Finally, we update the parameters as follows:

µ
(t+1)
i = µ

(t)
i + εαi〈wµi ,

√
p0〉/

√
1− 〈θ0,

√
p0〉2 i = 1, · · · , D

l
(t+1)
i = l

(t)
i + εβi〈wli,

√
p0〉/

√
1− 〈θ0,

√
p0〉2 i = 1, · · · , D(D + 1)

2
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Algorithm 2.2 GAP: obtaining 〈wµj ,
√
p0〉

Generate iid samples z(t), t = 1, · · · , T from q2(z|µ0,Σ0)

Calculate ai: the mean of
√
p0(zt)

q(z(t)|µ0,Σ0)
1
2

[
(z(t) − µ0)TΣ−1

0

]
i
, t = 1, · · · , T for each i = 1, · · · , D

Let A = 1
4
Σ−1

0

for j = 1 to D do
Obtain Aj as the jth order leading principal submatrix of A
Calculate Dj as the determinant of Aj
Calculate Mj,i for each i = 1, · · · , j, where Mj,i is a minor of Aj

Calculate 〈wµj ,
√
p0〉 = 1√

Dj−1Dj

j∑
i=1

(−1)j+iMj,iai

end for

where εαi , εβi are stepsizes. Algorithm 2.2 and 2.3 show the steps to obtain 〈wµi ,
√
p0〉 and

〈wli,
√
p0〉 respectively.

2.3 Illustrations

In this section, we evaluate our approximation method using three illustrative examples.

We first start with a toy example, where we approximate a t-distribution with a normal

distribution. Next, we use our method to find a normal approximation to the posterior

distribution of parameters in a Bayesian logistic regression model. Our final example involves

approximating a bimodal distribution, which is a mixture of two normals.

2.3.1 A toy example: approximating the t(1) distribution

For our first example, we use our method to find a normal approximation, N(µ, σ2), to the

t-distribution with 1 degree of freedom, t(1). Although this is just a one-dimensional case of

the procedure discussed in section 2.2.5, we would like to elaborate it in more details here.
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Algorithm 2.3 GAP: obtaining 〈wlj,
√
p0〉

Pre-calculate TD,D, RD, SD as defined in Appendix 2.5.2.
Pre-calculate UD = I + T TD,D −RT

D.

Calculate VD = [(ID ⊗ L0)TD,D + (L0 ⊗ ID)]STD
Calculate E(W T

DWD) (Appendix 2.5.2. First obtain vec(Σ0), Σ−1
0 , vec(Σ−1

0 ), Σ0 ⊗ Σ0,
Σ−1

0 ⊗ Σ−1
0 . Permute Σ0 ⊗ Σ0 to obtain [(Σ0 ⊗ Σ0)ikjl] , [(Σ0 ⊗ Σ0)iljk])

Calculate B = V T
DU

T
DE(W T

DWD)UDVD

Generate iid samples z(t), t = 1, · · · , T from q2(z|µ0,Σ0)

Calculate bi: the mean of
√
p0(zt)

q(z(t)|µ0,Σ0)
[(−1

4
vec(Σ−T0 )T +

1

4
((z(t)− µ0)T ⊗ (z(t)− µ0)T )(Σ−T0 ⊗

Σ−1
0 )UDVD]i, t = 1, · · · , T for each i = 1, · · · , D(D+1)

2

for j = 1 to D(D+1)
2

do
Obtain Bj as the jth order leading principal submatrix of B
Calculate Ej as the determinant of Bj

Calculate Nj,i for each i = 1, · · · , j, where Nj,i is a minor of Bj

Calculate 〈wlj ,
√
p0〉 = 1√

Ej−1Ej

j∑
i=1

(−1)j+iNj,ibi

end for

For this problem, we have

the square root density of t(1):
√
p0(x) = π−

1
2 (1 + x2)−

1
2

the square root density of N(µ, σ2) :
√
p(x|µ, σ2) = (2π)−

1
4 (σ2)−

1
4 exp(− 1

4σ2
(x− µ)2)

≡ q(x|µ, σ2)

To obtain unconstrained parameterization, we update σ (−∞ < σ <∞) instead of σ2. The

basis for the tangent space Tθ0Θ are as follows:

vµ =
∂q

∂µ

∣∣∣
µ=µ0,σ=σ0

= q(x|µ0, σ
2
0)

1

2σ2
0

(x− µ0)

vσ =
∂q

∂σ

∣∣∣
µ=µ0,σ=σ0

= q(x|µ0, σ0)

[
−1

2
(σ0)−1 +

1

2
σ−3

0 (x− µ0)2

]
, where −∞ < σ <∞
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from which, we obtain an orthonormal basis of Tθ0Θ,

wµ = q(x|µ0, σ
2
0)

1√
σ2

0

(x− µ0)

wσ = q(x|µ0, σ
2
0)

√
2

2
(
(x− µ0)2

σ2
0

− 1)

Finally, the negative gradient vector at θ0 is −→v0 =
〈wµ,√p0〉wµ + 〈wσ,√p0〉wσ√

1− 〈θ0,
√
p0〉2

, where

〈wµ,
√
p0〉 =

(
π

2σ2
0

)− 1
4 c2√

σ2
0

〈wσ,
√
p0〉 =

(
π

2σ2
0

)− 1
4

(

√
2c1

2σ2
0

−
√

2c3

2
)

〈θ0,
√
p0〉 =

(
π

2σ2
0

)− 1
4

c3

Here, c1, c2, c3 are integrals over q0 and can be expressed as expectations with respect to

q(x|µ0, σ
2
0),

c1 = Eq20(
(x− µ0)2

√
1 + x2 exp(− 1

4σ2
0
(x− µ0)2)

)

c2 = Eq20(
x− µ0√

1 + x2 exp(− 1
4σ2

0
(x− µ0)2)

)

c3 = Eq20(
1√

1 + x2 exp(− 1
4σ2

0
(x− µ0)2)

We approximate these integrals using the Monte Carlo approximation method.
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Figure 2.2: Approximating t(1) with N(µ, σ2). As we can see, the distance reaches its
minimum after 400 iterations, where µ and σ2 converge to 0.0005 and 3.7468 respectively.

Ideally, we can update θ0 by following the geodesic flow γ(t) with γ(0) = θ0 and γ′(0) = −→v0 .

For simplicity, however, we follow an approximate path and update the parameters as follows:

µ(t+1) = µ(t) + εα
〈wµ,√p0〉√

1− 〈θ0,
√
p0〉2

σ(t+1) = σ(t) + εβ
〈wσ,√p0〉√

1− 〈θ0,
√
p0〉2

σ2(t+1)
= (σ(t+1))2

See Appendix 2.5.3 for more details.

We initialize (µ, σ) = (10, 5) and set stepsizes εα = 0.1, εβ = 5. The sequence of parameters

and the distance between the target and approximating distributions over 1000 iterations are

shown in Figure 2.2. The approximating distribution is converging to N(0.0005, 3.7468) and

the distance reaches its minimum after 400 iterations. Note that the stochastic path towards

the end is due to the Monte Carlo approximation. The corresponding density functions for

the target and approximating distributions are shown in Figure 2.3.
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Figure 2.3: Approximating t(1) with N(0.0005, 3.7468) based on our method.

2.3.2 Logistic Regression

For our next example, we consider Bayesian inference based on the following logistic regression

model:

Likelihood: yi|Xi, β ∼ Bernoulli(pi =
eX

T
i β

1 + eX
T
i β

) i = 1, · · · , n

Prior: β ∼ ND(µ∗,Σ∗)
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Figure 2.4: Comparing our approximation method (GAP) to Laplace’s approximation, and
variational free energy (VFE) based on a logistic regression model.

The posterior distribution of model parameters and its square root are

p0(β|X, y) = p(y|β)p(β)/p(y)

=
1

p(y)

n∏
i=1

(
eX

T
i β

1 + eX
T
i β

)yi (
1− eX

T
i β

1 + eX
T
i β

)1−yi

(2π)−
D
2 |Σ∗|−

1
2 exp

(
−1

2
(β − µ∗)TΣ∗

−1(β − µ∗)
)

√
p0(β|X, y) = p(y)−

1
2

[
n∏
i=1

e
yi
2
XT
i β(1 + eX

T
i β)−

1
2

]
(2π)−

D
4 |Σ∗|−

1
4

exp

(
−1

4
(β − µ∗)TΣ∗

−1(β − µ∗)
)

For approximation, we use the family of the D-dimensional Gaussian distributions and imple-

ment the algorithm presented in Section 2.2.5. Figure 2.4 shows the normal approximation

based on our method along with approximations obtained by Laplace’s method and variational

free energy (VFE) based on a dataset of size N = 100 with β0 = 0.5, β1 = −1.5, and β2 = 1.

For this example, we generated (x1, x2) from a bivariate normal distribution with zero means,

unit variances and correlation 0.7.
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As expected, the approximating distribution based on variational free energy is more compact

than the true distribution [42]. Note that here we used a local variational method, where a

lower bound is found for a part of the entire probabilistic model to simplify the approximation

([11] [34]). For Bayesian logistic regression, a lower bound h(β, ξ) for p(y|β) can be derived

using the convex duality framework, where ξ are variational parameters. The variational pos-

terior then can be obtained by maximizing L(ξ) ≡ ln
∫
h(β, ξ)p(β)dβ 6 ln

∫
p(yβ)p(β)dβ =

ln p(y) using the Expectation-Maximization (EM) algorithm.

For this example, our approximating distribution is almost the same as what we obtain from

Laplace’s method. However, as illustrated by our next example, this is not the case in general.

2.3.3 Approximating a bimodal distribution

For our final example, we use our method to find a univariate Gaussian approximation to

mixture of normals. First, we use our method to find a normal approximation to the following

bimodal distribution:

x ∼ 0.7N(0, 1) + 0.3N(5, 1).

The left panel of Figure 2.5 compares the result of our model to those based on Laplace’s ap-

proximation and α-divergence, for different values of α (KL-divergence, reverse KL-divergence,

and the Hellinger distance). As we can see, while Laplace’s approximation and variational

free energy (VFE) capture the first mode only (hence, underestimating the variance), our

method increases the variance to cover both modes. Similar results are obtained based on

reverse KL-divergence and the Hellinger distance. As expected, the results based on GAP

and the Hellinger distance are almost indistinguishable.

Recall that limα→0Dα(p‖p′) = KL(p′‖p) and limα→1Dα(p‖p′) = KL(p‖p′). When α < 0,

minimizing Dα(p‖p′) tends to give zero-forcing results, because when p is close to zero, p′
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(a) x ∼ 0.7N(0, 1) + 0.3N(5, 1) (b) x ∼ 0.9N(0, 1) + 0.1N(15, 1)

Figure 2.5: Approximating bimodal distributions using our method (GAP), Laplace’s ap-
proximation, variational free energy, Reverse KL and the Hellinger distance.

also has to be close to zero to avoid large penalties. Therefore, the VFE method in this case

captures a single mode. However, when α > 1, the result is zero-avoiding, i.e., p′ tends to be

greater than zero in regions where p is greater than zero. Thus, results based on reverse KL

will average across both modes. When 0 < α < 1, the results are in between: they are neither

zero-forcing nor zero-avoiding, so it tends to cover across modes but will fail to find modes

that are far from the main mass [44]. To see this, we consider another mixture distribution

which has a mode far from the main mass:

x ∼ 0.9N(0, 1) + 0.1N(15, 1).

The right panel of Figure 2.5 shows the corresponding results. Here, we observe that the

Hellinger distance fails to capture the far mode, as opposed to reverse KL. As discussed before,

minimizing spherical Fisher distance is equivalent to minimizing the Hellinger distance, so

the approximating distribution based of our method (GAP) is similar to the distribution

based on the the Hellinger distance in both examples.
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2.4 Discussion

We have proposed a novel framework for approximating posterior distributions and illustrated

its performance using several examples. Application of our method, however, can go well

beyond what discussed here. As a deterministic approximation approach, our method has

the potential to scale better compared to MCMC methods. Compared to other deterministic

approaches, our method’s flexibility and generalizability could lead to substantially more

accurate approximation of posterior distribution, which in turn would lead to more accurate

statistical inference.

Although in this paper we limited the class of approximating distributions to normals, our

method can be generalized to other approximating distributions as long as we could obtain

the orthonormal basis {wi} with respect to each particular point θ on Θ. For example, we

can set Θ to be mixture of normals. This would allow for more flexibility in approximating

target distributions.

To make our method more practical, we should substantially improve its computational

efficiency. Currently, the computational cost of our method is mainly dominated by finding the

orthonormal basis of TθΘ. Also, finding alternatives to Monte Carlo method for approximating

intractable integrals in our algorithm could help to make our method more efficient.

Finally, we need to further study the properties of our proposed method and its connection to

other approximation approaches such as those based on α-divergence. It will also be of great

importance to identify classes of approximating distributions that lead to convex optimization

problems. For non-convex problems, we need to improve our numerical optimization method

to avoid falling into local minima.
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2.5 Supplementary

2.5.1 An illustrative example with analytical solution

We now provide the details for the illustrative example with analytical solution discussed in

Section 2.2.3. For this problem we have,

Posterior density:

p ∝ P (x|µ, τ)P (µ|τ)P (τ)

= (2π)−
n
2 τ

n
2 exp

(
−τ

2

∑
(xi − µ)2

)
· (2π)−

1
2 (λ0τ)

1
2 exp(−λ0τ

2
(µ− µ0)2)

βα0
0

Γ(α0)
τα0−1 exp(−β0τ)

Its square root:

√
p ∝ (2π)−

n
4 τ

n
4 exp

(
−τ

4

∑
(xi − µ)2

)
· (2π)−

1
4 (λ0τ)

1
4 exp(−λ0τ

4
(µ− µ0)2)√

βα0
0

Γ(α0)
τ
α0−1

2 exp(−β0τ

2
)

Approximating density:

p′ = P ′(µ|τ)P ′(τ)

= (2π)−
1
2 (λNτ)

1
2 exp(−λNτ

2
(µ− µN)2)

βαNN
Γ(αN)

ταN−1 exp(−βNτ)

Its square root:

√
p′ = (2π)−

1
4 (λNτ)

1
4 exp(−λNτ

4
(µ− µN)2)

√
βαNN

Γ(αN)
τ
αN−1

2 exp(−βNτ
2

)
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The spherical Fisher distance between p and p′ is

dSF (p, p′) = arccos

∫ ∫ √
pp′dµdτ

∝ arccos

∫ ∫
f(µ, τ)

√
βαNN

Γ(αN)
λ

1
4
N

Γ(α∗)
√

2π

β∗α
∗
λ∗

1
2

dµdτ

where

f(µ, τ) =
β∗α

∗
λ∗

1
2

Γ(α∗)
√

2π
τα
∗− 1

2 exp(−β∗τ) exp(−λ
∗τ(µ− µ∗)2

2
)

is the joint Normal-Gamma density of (µ, τ) parameterized by (µ∗, λ∗, α∗, β∗):

µ∗ =
nx̄+ λ0µ0 + λNµN

n+ λ0 + λN

λ∗ =
n+ λ0 + λN

2

α∗ =
n

4
+
α0 + αN

2

β∗ =
S

4
+
β0 + βN

2
+
nλ0(x̄− µ0)2 + nλN(x̄− µN)2 + λ0λN(µ0 − µN)2

4(n+ λ0 + λN)

with S =
∑

(xi − x̄)2

Therefore, we have: dSF (p, p′) ∝ arccos

√
βαNN

Γ(αN)

λ
1
4
NΓ(α∗)

β∗α
∗
λ∗

1
2

≡ arccos g(µN , λN , αN , βN).

Since arccos function is monotone decreasing and log function is monotone increasing,

minimizing the spherical Fisher distance between p and p′ with respect to µN , λN , αN , βN is

equivalent to maximizing:

log g(µN , λN , αN , βN) =
αN
2

log βN−
1

2
log Γ(αN)+

1

4
log λN +log Γ(α∗)−α∗ log β∗− 1

2
log λ∗.

To maximize the above function, we need to solve
∂ log g

∂µN
= 0,

∂ log g

∂λN
= 0,

∂ log g

∂αN
= 0,
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∂ log g

∂βN
= 0. Note that

∂α∗
∂αN

=
1

2
,

∂β∗
∂βN

=
1

2
,

∂λ∗

∂λN
=

1

2

∂β∗
∂λN

=
(n(µN − x̄) + λ0(µN − µ0))2

4(n+ λ0 + λN)2

∂β∗
∂µN

=
λNµN(n+ λ0)− λN(nx̄+ λ0µ0)

2(n+ λ0 + λN)

To find the optimal µN , λN , we solve

∂ log g

∂µN
= 0⇒ µN =

nx̄+ λ0µ0

n+ λ0

∂ log g

∂λN
= 0⇒ 1

4λN
− 1

4λ∗
− α∗

β∗
(n(µN − x̄) + λ0(µN − µ0))2

4(n+ λ0 + λN)2
= 0

But given µN =
nx̄+ λ0µ0

n+ λ0

, we have λN = λ∗ ⇒ λN = λ0 + n

Finally, we find the optimal αN and βN as follows:

∂ log g

∂αN
= 0 ⇒ log βN − log β∗ = ψ(αN)− ψ(α∗), where ψ(x) =

d

dx
ln Γ(x) =

Γ′(x)

Γ(x)

∂ log g

∂βN
= 0 ⇒ βN

β∗
− αN
α∗

= 0

Trivially, we solve logαN − logα∗ = ψ(αN) − ψ(α∗) by setting αN = α∗, so the optimal
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αN = α0 +
n

2
. Finally, we have:

βN = β∗

=
αN

(n+ λ0 + λN)(n+ 2α0)

(
(n+ λ0 + λN)(S + 2β0) + nλ0(x̄− µ0)2 + nλN(x̄− µN)2

+ λ0λN(µ0 − µN)2

)
= β0 +

S

2
+
nλ0(x̄− µ0)2 + nλN(x̄− µN)2 + λ0λN(µ0 − µN)2

2(n+ λ0 + λN)

= β0 +
S

2
+
nλ0(x̄− µ0)2

2(n+ λ0)

2.5.2 Gaussian approximation

For our general Gaussian approximation methods, the algorithm involves several steps as

described below. These steps are summarized in Algorithm 2.2 and Algorithm 2.3.

Finding non-orthonormal basis of Tθ0Θ In this paper, we define the derivatives of the

map f : Rn → Rm as [ df
dx

]ij = ∂fi(x)
xj

and we use the following notations [22], [54]:

A⊗B: Kronecker product

A ◦B: Hadamard (elementwise) product

vec: an operator which vectorizes the matrix column-wisely

vech: an operator which vectorizes the matrix column-wisely but excludes the upper part of

the matrix

Tm,n: Tm,nvec(Am×n) = vec(AT )

Rn: Rnvec(An×n) = vec(An×n ◦ I)
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Sn: vech(An×n) = Snvec(An×n)

We calculate the basis as follows:

vµ =
∂q

∂µ

∣∣∣
µ=µ0,L=L0

= q(z|µ0,Σ0)
1

2
(z − µ0)TΣ−1

0 , (1×D vector)

vl =
∂q

∂vech(L)

∣∣∣
µ=µ0,L=L0

= q(z|µ0,Σ0)

[
−1

4
vec(Σ−T0 )T +

1

4
((z − µ0)T ⊗ (z − µ0)T )(Σ−T0 ⊗ Σ−1

0 )

]
[
I + T TD,D −RT

D

]
[(ID ⊗ L0)TD,D + (L0 ⊗ ID)]STD, (1× D(D + 1)

2
vector)

The basis vl is obtained by using the chain rule:

∂q

∂vech(L)
=

∂q

∂vec(Σ)

dvec(Σ)

dvech(L)

If we assume that Σ is an unstructured matrix (i.e. the entries of Σ are entirely independent),

we have:

dq

dvec(Σ)
= q(z|µ,Σ)

[
−1

4
vec(Σ−T )T +

1

4
((z − µ)T ⊗ (z − µ)T )(Σ−T ⊗ Σ−1)

]

But because Σ is symmetric, the general rules do not apply. Instead, we have 1

∂q

∂Σ
=
dq

dΣ
+

(
dq

dΣ

)T
− dq

dΣ
◦ I

1We use symbol d for derivatives with respect to unstructured Σ and symbol ∂ for symmetric Σ
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Correspondingly,

∂q

∂vec(Σ)
= vec

(
dq

dΣ

)T
+ vec

(
dq

dΣ

T)T
− vec

(
dq

dΣ
◦ I
)T

=
dq

dvec(Σ)
+

dq

dvec(Σ)
T TD,D −

dq

dvec(Σ)
RT
D

Finally, we have:

dvec(Σ)

dvech(L)
=

dvec(LLT )

dvech(L)

= [(ID ⊗ L)TD,D + (L⊗ ID)]
dvec(L)

dvech(L)

= [(ID ⊗ L)TD,D + (L⊗ ID)]STD

Finding the inner products of the basis Notice that the inner product in Q is defined

as:

〈ϕ, φ〉 =

∫ +∞

−∞
ϕφdz

We can then find the corresponding inner products,

〈vµi , vµj〉 =
1

4
(Σ−1

0 )ij =
1

4
σij

〈vµi , vlj〉 = 0

〈vli, vlj〉 = Bij

49



where B is the inner product matrix for vl. We show how to obtain B. For simplicity, we

denote vl = q(z|µ0,Σ0)WDUDVD, where

WD = −1

4
vec(Σ−T0 )T +

1

4
((z − µ0)T ⊗ (z − µ0)T )(Σ−T0 ⊗ Σ−1

0 )

UD = I + T TD,D −RT
D

VD = [(ID ⊗ L0)TD,D + (L0 ⊗ ID)]STD

Thus, B = Eq2(z|µ0,Σ0)(V
T
DU

T
DW

T
DWDUDVD) = V T

DU
T
DEq2(z|µ0,Σ0)(W

T
DWD)UDVD. We can

calculate E(W T
DWD) as follows:

E(W T
DWD) = E(

[
−1

4
vec(Σ−T0 ) +

1

4
(Σ−T0 ⊗ Σ−1

0 )((z − µ0)⊗ (z − µ0))

]
[
−1

4
vec(Σ−T0 )T +

1

4
((z − µ0)T ⊗ (z − µ0)T )(Σ−T0 ⊗ Σ−1

0 )

]
)

=
1

16
vec(Σ−1

0 )vec(Σ−1
0 )T − 1

16
vec(Σ−1

0 )E((z − µ0)T ⊗ (z − µ0)T )(Σ−1
0 ⊗ Σ−1

0 )

− 1

16
(Σ−T0 ⊗ Σ−1

0 )E((z − µ0)⊗ (z − µ0))vec(Σ−1
0 )T

+
1

16
(Σ−1

0 ⊗ Σ−1
0 )E((z − µ0)⊗ (z − µ0))((z − µ0)T ⊗ (z − µ0)T )(Σ−1

0 ⊗ Σ−1
0 )

Notice that we assume z follows a normal distribution, then according to Isserlis’ theorem,

we have:

E ((zi − µi)(zj − µj)(zk − µk)) = 0

E ((zi − µi)(zj − µj)(zk − µk)(zl − µl)) = σijσkl + σikσjl + σjkσil
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Therefore,

E((z − µ)T ⊗ (z − µ)T ) = vec(ΣT )T

E((z − µ)⊗ (z − µ)) = vec(ΣT )

E((z − µ)(z − µ)T ⊗ (z − µ)(z − µ)T ) = [(Σ⊗ Σ)ijkl] + [(Σ⊗ Σ)ikjl] + [(Σ⊗ Σ)iljk]

[(Σ⊗ Σ)ijkl] , [(Σ⊗ Σ)ikjl] , [(Σ⊗ Σ)iljk] correspond to different permutations of Σ⊗ Σ such

that the matrix elements are σijσkl, σikσjl, σjkσil respectively. Finally, we have

E(W T
DWD) =

1

16
vec(Σ−1

0 )vec(Σ−1
0 )T − 1

16
vec(Σ−1

0 )vec(Σ0)T (Σ−1
0 ⊗ Σ−1

0 )

− 1

16
(Σ−T0 ⊗ Σ−1

0 )vec(Σ0)vec(Σ−1
0 )T +

1

16
(Σ−1

0 ⊗ Σ−1
0 )([(Σ0 ⊗ Σ0)ijkl]

+ [(Σ0 ⊗ Σ0)ikjl] + [(Σ0 ⊗ Σ0)iljk])(Σ
−1
0 ⊗ Σ−1

0 )

Orthonormalizing the basis Because 〈vµi , vlj〉 = 0, we only need to orthonormalize the

set of basis {vµi}Di=1 and {vli}
D(D+1)

2
i=1 respectively. We use the Gram-Schmidt process to find
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the orthonormal basis. For {vµi}Di=1, for example, we have

wµj =
1√

Dj−1Dj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈vµ1 ,vµ1〉 〈vµ2 ,vµ1〉 . . . 〈vµj ,vµ1〉

〈vµ1 ,vµ2〉 〈vµ2 ,vµ2〉 . . . 〈vµj ,vµ2〉
...

... . . . ...

〈vµ1 ,vµj−1
〉 〈vµ2 ,vµj−1

〉 . . . 〈vµj ,vµj−1
〉

vµ1 vµ2 . . . vµj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
Dj−1Dj

j∑
i=1

(−1)j+ivµiMj,i

=
1√

Dj−1Dj

j∑
i=1

(−1)j+iq(z|µ0,Σ0)
1

2

[
(z − µ0)TΣ−1

0

]
i
Mj,i

where D0 = 1 and Dj is the Gram determinant for j > 1:

Dj =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈vµ1 ,vµ1〉 〈vµ2 ,vµ1〉 . . . 〈vµj ,vµ1〉

〈vµ1 ,vµ2〉 〈vµ2 ,vµ2〉 . . . 〈vµj ,vµ2〉
...

... . . . ...

〈vµ1 ,vµj〉 〈vµ2 ,vµj〉 . . . 〈vµj ,vµj〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
Mj,i is a minor of:



〈vµ1 ,vµ1〉 〈vµ2 ,vµ1〉 . . . 〈vµj ,vµ1〉

〈vµ1 ,vµ2〉 〈vµ2 ,vµ2〉 . . . 〈vµj ,vµ2〉
...

... . . . ...

〈vµ1 ,vµj−1
〉 〈vµ2 ,vµj−1

〉 . . . 〈vµj ,vµj−1
〉

vµ1 vµ2 . . . vµj
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, obtained by taking the determinant of this matrix with row j and column i removed. To

simplify the calculation, we could equivalently treat Mj,i as a minor of:

Aj =



〈vµ1 ,vµ1〉 〈vµ2 ,vµ1〉 . . . 〈vµj ,vµ1〉

〈vµ1 ,vµ2〉 〈vµ2 ,vµ2〉 . . . 〈vµj ,vµ2〉
...

... . . . ...

〈vµ1 ,vµj〉 〈vµ2 ,vµj〉 . . . 〈vµj ,vµj〉



since row j is crossed out anyway. Notice that Aj is the jth order leading principal submatrix

of
1

4
Σ−1

0 .

For basis {vli}
D(D+1)

2
i=1 , we have already obtained its Gram matrix B. We denote Bj the jth

order leading principal submatrix of B. The rest of the procedure is similar to deriving

{wµi}Di=1 from {vµi}Di=1.

Updating the approximating distribution We have

−→v0 =

D∑
i=1

〈wµi,
√
p0〉wµi +

D(D+1)/2∑
i=1

〈wli,
√
p0〉wli√

1− 〈θ0,
√
p0〉2

Therefore, we use the following updates:

µ
(t+1)
i = µ

(t)
i + εαi〈wµi ,

√
p0〉/

√
1− 〈θ0,

√
p0〉2 i = 1, · · · , D

l
(t+1)
i = l

(t)
i + εβi〈wli,

√
p0〉/

√
1− 〈θ0,

√
p0〉2 i = 1, · · · , D(D + 1)

2
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where εαi , εβi are stepsizes. As we can see, in order to update the parameters, all we need to

calculate is 〈wµj ,
√
p0〉, 〈wli,

√
p0〉 and 〈θ0,

√
p0〉:

〈wµj ,
√
p0〉 =

∫ √
p0(z)

1√
Dj−1Dj

j∑
i=1

(−1)j+iq(z|µ0,Σ0)
1

2

[
(z − µ0)TΣ−1

0

]
i
Mj,idz

=
1√

Dj−1Dj

j∑
i=1

(−1)j+iMj,iEp(z|µ0,Σ0)

( √
p0(z)

q(z|µ0,Σ0)

1

2

[
(z − µ0)TΣ−1

0

]
i

)

〈wli,
√
p0〉 =

1√
Ej−1Ej

j∑
i=1

(−1)j+iNj,iEp(z|µ0,Σ0)

( √
p0(z)

q(z|µ0,Σ0)
[WDUDVD]i

)

〈θ0,
√
p0〉 = Ep(z|µ0,Σ0)

( √
p0(z)

q(z|µ0,Σ0)

)

Here, Ej is the determinant of Bj and Nj,i is the minor of Bj. Expectations with respect to

p(z|µ0,Σ0) can be approximated by the Monte Carlo method.

2.5.3 Illustrative example: t-distribution

We now discuss the details for approximating t(1) with a normal distribution. For a specific

θ0, the basis of the tangent space Tθ0Θ is

vµ =
∂q

∂µ

∣∣∣
µ=µ0,σ=σ0

= q(x|µ0, σ
2
0)

1

2σ2
0

(x− µ0)

vσ =
∂q

∂σ

∣∣∣
µ=µ0,σ=σ0

= q(x|µ0, σ
2
0)

[
−1

2
(σ0)−1 +

1

2
σ−3

0 (x− µ0)2

]
, where −∞ < σ <∞
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with the corresponding inner product

〈vµ, vµ〉 =

∫ +∞

−∞
vµvµdx

= Eq2(x|µ0,σ2
0)(

1

2σ2
0

(x− µ0)
1

2σ2
0

(x− µ0))

=
1

4σ2
0

〈vσ, vσ〉 =

∫ +∞

−∞
vσvσdx

= Eq2(x|µ0,σ2
0)(

[
−1

2
(σ0)−1 +

1

2
σ−3

0 (x− µ0)2

] [
−1

2
(σ0)−1 +

1

2
σ−3

0 (x− µ0)2

]
)

=
1

2
σ−2

0

〈vµ, vσ〉 =

∫ +∞

−∞
vµvσdx

= Eq2(x|µ0,σ2
0)(

1

2σ2
0

(x− µ0)

[
−1

2
(σ0)−1 +

1

2
σ−3

0 (x− µ0)2

]
) = 0

Therefore, we can obtain an orthonormal basis as follows:

wµ =
vµ
‖vµ‖

=
vµ√
〈vµ, vµ〉

= q(x|µ0, σ
2
0)

1√
σ2

0

(x− µ0)

wσ =
vσ
‖vσ‖

=
vσ√
〈vσ, vσ〉

= q(x|µ0, σ
2
0)

√
2

2
(
(x− µ0)2

σ2
0

− 1)
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Given −→v0 =
〈wµ,√p0〉wµ + 〈wσ,√p0〉wσ√

1− 〈θ0,
√
p0〉2

, we use the following updates:

µ(t+1) = µ(t) + εα
〈wµ,√p0〉√

1− 〈θ0,
√
p0〉2

σ(t+1) = σ(t) + εβ
〈wσ,√p0〉√

1− 〈θ0,
√
p0〉2

We calculate 〈wµ,√p0〉, 〈wσ,√p0〉, 〈θ0,
√
p0〉 as follows

〈wµ,
√
p0〉 =

∫ +∞

−∞
wµ
√
p0dx

= Eq2(x|µ0,σ2
0)(
π−

1
2 (1 + x2)−

1
2

q(x|µ0, σ2
0)

1√
σ2

0

(x− µ0))

=

(
π

2σ2
0

)− 1
4 c2√

σ2
0

〈wσ,
√
p0〉 =

∫ +∞

−∞
wσ
√
p0dx

= Eq2(x|µ0,σ2
0)(
π−

1
2 (1 + x2)−

1
2

q(x|µ0, σ2
0)

√
2

2
(
(x− µ0)2

σ2
0

− 1))

=

(
π

2σ2
0

)− 1
4

(

√
2c1

2σ2
0

−
√

2c3

2
)

〈θ0,
√
p0〉 =

∫ +∞

−∞
q(x|µ0, σ

2
0)
√
p0dx

= Eq2(x|µ0,σ2
0)(
π−

1
2 (1 + x2)−

1
2

q(x|µ0, σ2
0)

)

=

(
π

2σ2
0

)− 1
4

c3
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where

c1 = Eq20(
(x− µ0)2

√
1 + x2 exp(− 1

4σ2
0
(x− µ0)2)

)

c2 = Eq20(
x− µ0√

1 + x2 exp(− 1
4σ2

0
(x− µ0)2)

)

c3 = Eq20(
1√

1 + x2 exp(− 1
4σ2

0
(x− µ0)2)
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Chapter 3

Speeding Hamiltonian Monte Carlo with

Auto-encoder

In this paper, we propose a new Hamiltonian Monte Carlo (HMC) sampling scheme based

on auto-encoders. We find a low dimensional representation of the parameter space and

perform HMC in the latent space, and the new state is projected back to the original space

as a Metropolis proposal. While the induced dynamics in the parameter space is no longer

Hamiltonian, it’s still time reversible, and the Markov chain still converges to the canonical

distribution with a volume correction term. We evaluated our method on high-dimensional

simulated data and text classification tasks. The empirical results show that our method

maintains a competitive ability to explore high-dimensional space with complicated geometry,

and obtains an decent prediction accuracy while achieving great computational savings

compared to standard HMC.
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3.1 Introduction

Recent years’ advances in computational resource have greatly contributed to the development

and popularity of Bayesian statistics. However, many problems in today’s world have very

high-dimensional features, from text and image processing to scientific applications such as

neuron science and astronomy. To handle the high-dimension and complicated structures of

the data, more advanced MCMC techniques such as Langevin dynamics and Hamiltonian

Monte Carlo (HMC) ([53]) have been developed.

In particular, HMC is efficient in exploring the state space by exploiting the gradient of the

target density, which reflects local geometric information of the probability distribution, but

at the cost of more computational resources. Endeavors have been put to find a balance

between efficiency and computational savings for HMC ([60], [65], [64], 41).

HMC sampling in high dimensional space is even more computationally intensive. However, in

many cases, the feature space or parameter space could be redundant. An efficient exploration

of its latent space might be sufficient for good results in the original space, while exploration

in a lower dimensional space could be less computationally intensive. While this could be

achieved by performing feature extraction first, we propose Auto-encoding HMC, which

handles this situation naturally by performing feature extraction when sampling in the

original parameter space.

We organize our paper as follows. We first reviewed the difficulty of MCMC exploration in

the high dimensional space (mostly due to its complicated geometry), and why HMC can

deal with this challenge. We then described our method, auto-encoding HMC, in details.

We also proved that our sampling method will generate a Markov chain which converges to

the target distribution. Finally, we justified our method by providing empirical results for a

simulated data analysis and a real world application using Bayesian logistic regression model,

and compared our results with standard HMC.
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3.2 Preliminaries

One central task of Bayesian inference is to calculate the high-dimensional integral:

Eπ(f) =

∫
π(q)f(q)dq

, where π(q) = p(q)p(D|q) is the posterior distribution with respect to parameter q. The

integral is not analytically solvable in general, and we usually resort to numerical sampling to

obtain samples from π(q). The samples are used to calculate a finite sum for approximating

the integral.

An accurate approximation usually relies on efficient exploration of typical set, the region in

the parameter space which contributes most to the integral ([10]).

3.2.1 Pathological Behavior of Random Walk Metropolis in High

dimensional space

One most well-known sampling method is Markov chain Monte Carlo (MCMC). MCMC

method samples from the space by generating a Markov chain which eventually converges to

the target distribution (the posterior distribution in Bayesian framework) as its stationary

distribution. A new state is proposed at each iteration according to a transition map T (q∗|q).

In particular, Metropolis-Hastings algorithm is used to construct such a Markov chain by

proposing a new state and accept it with the following probability:

a(q, q∗) = min(1,
π(q∗)T (q|q∗)
π(q)T (q∗|q) )

, which can guarantee the convergence to π(q) due to detailed balance. Random walk
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Metropolis is one of the most widely used Metropolis algorithm, with T (q∗|q) to be a

Gaussian distribution centered on current state q.

Though random walk Metropolis is simple to implement, it does not scale well to the

dimension of the parameter space — exploration of typical set in high dimensional space is

very challenging for random walk proposals. As [10] explained, the region outside the typical

set has vanishing densities and large volume, which does not contribute a lot to the integral.

Thus it does not worth exploring this area with too much computational resource. As the

dimension of the space grows, the volume of the outside region grows exponentially, and

overwhelms the volume interior. Thus random walk Metropolis will always propose a state

outside the typical set and get rejected.

3.2.2 Hamiltonian Monte Carlo

Instead of randomly jumping around the typical set, a MCMC algorithm which could efficiently

explore the typical set in high dimensional space is apparently very attractive. Hamiltonian

Monte Carlo is such a MCMC method which exploits the geometric information (gradient) of

the probability distribution, and thus scales well to high-dimensional problems and those

with complicated geometry.

In particular, HMC introduces a set of auxiliary variables named momentum p. Each pi

corresponds to each dimension of the parameter qi, where i = 1, · · · , D. The parameter space

is then expanded to a phase space (q, p), and HMC proposes new states jointly for (q, p),

according to Hamilton’s equations:

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi
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where H = H(q, p) = U(q) +K(p). U(q) is associated with the target density, and K(p) is

usually chosen to associate with the density of zero-mean Gaussian with covariance M .

U(q) = − log π(q) = − log[p(q)p(D|q)]

K(p) = pTM−1p/2

A new state will be proposed from (q(t), p(t)) to (q(t+ s), p(t+ s)). Since the Hamiltonian

equations are not analytically solvable in general, in practice, we resort to leapfrog method

by discretizing the time to approximate the dynamics. Given a step size ε and number of

steps L, s is defined to be εL.

Hamilton’s equations describes the dynamics of a physical system with conservative energy

H(q, p). q is the position of the object, and p is the momentum. Correspondingly, U(q) is

the potential energy, and K(p) is the kinetic energy. While U(q) and K(p) are varying as

the object moves, the Hamiltonian H(q, p) = U(q) +K(p) is conservative.

In its MCMC application, exp(−H(q, p)) corresponds to the joint probability of (q, p), also

referred to as canonical distribution:

π(q, p) =
1

Z
exp(−H(q, p)/T )

where Z is a normalization constant, and T represents the temperature of the system.

Eventually the Markov chain will converge to the canonical distribution due to the reversibility

and volume preservation properties of the Hamiltonian dynamics. The marginal distribution

of q is exactly the target density.
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3.2.3 Auto-encoder

Auto-encoder is a special type of feed forward neural network for learning latent representation

of the data (Figure 3.1). The data is fed from the input layer and encoded into a low-

dimensional latent representation (code). The code is then decoded into a reconstruction of

the original data. The goal of auto-encoder is to learn an identity map such that the output

(reconstruction) is closely matched with the input data. The model is trained to minimize the

difference between the input and the reconstruction. Auto-encoder could learn complicated

nonlinear dimensionality reduction and thus is widely used in challenging tasks such as image

recognition and artificial data generation.

Figure 3.1: Auto-encoder Network Architecture

According to universal approximation theorem ([17]), a feed-forward artificial neural network

can approximate any continuous function given some mild assumptions about the activation

functions. Theoretically, an auto-encoder with suitable activation functions could represent

an identity map. Therefore, auto-encoder could learn a encoder φ and decoder ψ such

that φ ◦ ψ = I. An accurate reconstruction of the data implies a good low-dimensional
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representation.

3.3 Auto-encoding HMC

One disadvantage of HMC is that single iteration is more computationally demanding since

we have to evaluate the gradient information. We thus propose Auto-encoding HMC, in the

effort of reducing computational costs, while still maintaining the efficiency of HMC.

We propose to first collect a small set of posterior samples from the target density by running

standard HMC. We then perform dimensionality reduction for the collected samples to find a

latent space of the parameter space. We then simulate Hamiltonian dynamics in the latent

space, and project the new state back to the original space to obtain proposals. While this

exploration will not be as accurate as the standard HMC, it could reduce a certain amount

of computational costs .

We now illustrate the computational benefits with a three-dimensional Gaussian example.

Notice that the application of our method is only for high-dimensional problems. Because

auto-encoder will over-fit a low-dimensional problem, we instead use Principle Component

Analysis (PCA) here for dimensionality reduction. It can be shown that the encoder of an

auto-encoder reduces to a PCA if all the activation functions are linear and the inputs are

normalized.

Suppose we are interested in sampling from a three-dimensional Gaussian distribution with

zero mean and covariance

Σ =


1 0.95 0.7

0.95 1 0.5

0.7 0.5 1


. To perform dimensionality reduction using PCA, we simply find orthornormal matrix
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P such that Σ′ = PΣP T is diagonalized, where Σ′ is the covariance of the transformed

variables. Here we extract the first two principal components with greatest variance as the

low-dimensional representation, and simulate Hamiltonian dynamics in the latent space.

As shown in Figure 3.2, 3.3, we only performed HMC in the space of two dimensions. But

when the proposals are projected back to the original space, the algorithm still efficiently

explores the space with distant proposals.

Figure 3.2: HMC trajectory in the latent space
(2-dimensional), with the red square to be the
initialized position, and blue squares HMC
proposals.

Figure 3.3: Trajectories projected back to
parameter space (3-dimensional)

When it comes to high-dimensional problems, we will use auto-encoder for dimensional-

ity reduction. More specifically, let’s denote the parameters of interest qv and its latent

representation qh. We also denote the encoder and decoder:

φ : qv 7→ qh

ψ : qh 7→ q′v

65



, where q′v is a reconstruction of qv. If the error of the auto-encoder goes to zero, we have:

ψ = φ−1 : qh 7→ qv

Our algorithm is composed of the following three stages:

1. Pre-sample a few (e.g. 1000) samples of qv using standard HMC

2. Train an auto-encoder to fit the samples, and obtain fitted encoder φ and decoder ψ

3. Run Auto-encoding HMC to propose q∗v from qv (a detailed version in Algorithm 3.4):

i Calculate qh = φ(qv)

ii Propose q∗h from qh by running HMC in the latent space

iii Obtain q∗v = ψ(q∗h)

3.3.1 HMC in the latent space

Let’s denote the complementary momentum of qv to be pv. The corresponding latent space

parameters are denoted (qh, ph). The auxiliary variables in the latent space is constructed

using the same learned encoder ph = φ(pv), with pv sampled from a Gaussian distribution.

Let’s denote the target density πqv(qv). We choose the potential energy of the latent space to

be the negative log of πqv(qv):

Uh(qh) = − log πqv(ψ(qh))

Notice that this is not a re-parameterization such that we will evaluate the integral using

a new probability density. Instead, we directly use the potential energy function from the

original space. If we use the density function of qh induced by φ(qv) to be the potential
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energy, we will need to evaluate the volume change at each leapfrog step, which increases

computational costs. As long as we could ensure detailed balance in the original space, which

we will prove in later section, the MCMC proposal mechanism will be valid.

We also set the kinetic energy

Kh(ph) = Kv(pv) = pTvM
−1pv/2 (3.1)

Thus we simulate the following Hamiltonian Monte Carlo in the latent space:

dqhi
dt

=
∂Kh(ph)

∂phi
dphi
dt

= −∂Uh(qh)
∂qhi

The evaluation of the gradient of the potential function with respect to qh can be calculated

by chain rules. For example, in our experiments, the decoder has one hidden layer with

activation function tanh, and the output layer to be linearly connected. We can calculate the

gradient function with respect to the latent qh as follows :

∂Uh(qh)

∂qh
=
∂Uh(qh)

∂qv
· ∂qv
∂qh

where
∂qv
∂qh

= W2 · diag(1− tanh2(W1qh + b1)) ·W1

tanh(z) =
ez − e−z
ez + e−z

, tanh′(z) = 1− tanh2(z)

(3.2)

where W1 and W2 are the learned weights of the decoder (Figure 3.1). A detailed calculation

of the gradient of U(qh) regarding a logistic regression example can be found in the Appendix

3.6.1. The resulting gradient evaluation is less expensive because of the much lower dimension.

The evaluation of ∂Kh(ph)
∂ph

is similar. With ∂Kh(ph)
∂pv

= M−1pv and pv = W2 tanh(W1ph + b1),
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we have:

∂Kh(ph)

∂ph
= {M−1W2 tanh(W1ph + b1)}TW2 · diag(1− tanh2(W1ph + b1)) ·W1

= tanh(W1ph + b1)TW T
2 M

−1W2 · diag(1− tanh2(W1ph + b1)) ·W1 (3.3)

where W T
2 M

−1W2 can be pre-calculated.

In practice, the Hamiltonian dynamics is simulated using leapfrog method.

3.3.2 Proposal and correction

Joint distribution of (qv, pv) The density of pv is selected to be zero-mean Gaussian

with a covariance M , corresponding to Kv(pv) defined in equation (3.1). We then have the

canonical distribution of the original phase space:

πqv ,pv(qv, pv) ∝ exp(log πqv(qv)− pTvM−1pv/2) (3.4)

Notice the induced dynamics in the phase space (qv, pv) is no longer Hamiltonian, and does

not have the property of volume preservation as standard HMC. We hereby prove that the

proposed HMC update will leave the canonical distribution for qv and pv (equation 3.4)

invariant, if we have that:

i the update is time reversible and thus symmetrical

ii an appropriate volume correction term is added in the HMC acceptance probability

Time reversibility The proof is straightforward. Let Ts represent the Hamiltonian dynamic

in the latent space from the state (qh, ph) at time t to the state (q∗h, p
∗
h) at time t+ s. The
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reversibility of Hamiltonian dynamics indicates that:

Ts(q(t), p(t)) = (q(t+ s), p(t+ s))

Ts(q(t+ s),−p(t+ s)) = (q(t),−p(t))

If we let Q(q∗h, p
∗
h|qh, ph) represent the process of negating momentum, applying mapping

Ts and negating the momentum again, and let Φ(qv, pv) = (φ(qv), φ(pv)), Ψ(qh, ph) =

(ψ(qh), ψ(ph)), our proposal can be denoted Q′ = Ψ ◦Q ◦ Φ. We must have:

Q′(q∗v , p
∗
v|qv, pv) = Q′(qv, pv|q∗v , p∗v)

A detailed proof can be found in Appendix 3.6.2.

Detailed Balance with Volume Correction Following the proof in [53], let’s show that

when accounting for volume change in the acceptance ratio, detailed balance holds for our

proposed Metropolis update.

Consider partitioning the phase space (q, p) into small regions Ak with small volume V .

Suppose by applying mapping Q′ to Ak, the image of Ak becomes Bk. The Bk will also

partition the space due to reversibility, but has a different volume V ′. We need to show

detailed balance:

P (Ai)T (Bj|Ai) = P (Bj)T (Ai|Bj) ∀i, j

Since when i 6= j, T (Bj|Ai) = T (Ai|Bj) = 0, we only consider when i = j ≡ k. Let

T (Bk|Ak) = Q′(Bk|Ak) min(1,
exp(−HBk)

exp(−HAk)

V ′

V
)
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We then have

P (Ak)T (Bk|Ak) = V exp(−HAk)Q
′(Bk|Ak) min(1,

exp(−HBk)

exp(−HAk)

V ′

V
)

= Q′(Bk|Ak) min(V exp(−HAk), V
′ exp(−HBk))

= Q′(Ak|Bk) min(V exp(−HAk), V
′ exp(−HBk))

= V ′ exp(−HBk)Q
′(Bk|Ak) min(

exp(−HAk)

exp(−HBk)

V

V ′
, 1)

= P (Bk)T (Ak|Bk)

The volume correction term
V ′

V
is simply the determinant of the Jacobian matrix

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣.
Calculation of acceptance ratio For acceptance ratio α = min(1, ρ), we have

ρ = exp(−H(q∗v , p
∗
v) +H(qv, pv))

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣
= exp(−Uv(q∗v) + Uv(qv)−Kv(p

∗
v) +Kv(pv))

∣∣∣∣∂(q∗v , p
∗
v)

∂(qv, pv)

∣∣∣∣
The determinant of

∂(q∗v , p
∗
v)

∂(qv, pv)
is infeasible to evaluate. We showed in Appendix 3.6.3 that∣∣∣∣∂(q∗v , p

∗
v)

∂(qv, pv)

∣∣∣∣ can be approximated by
V ol(q∗v , p

∗
v)

V ol(q∗h, p
∗
h)

V ol(qh, ph)

V ol(qv, pv)
. These two Jacobian matrices are

not full rank, so we use the square root of its gramian function G(·) to calculate the volume

change (Appendix 3.6.3). Thus we have:

ρ = exp(−Uv(q∗v) + Uv(qv)−Kv(p
∗
v) +Kv(pv))

√
G(

∂(q∗v , p
∗
v)

∂(q∗h, p
∗
h)

)

√
G(
∂(qh, ph)

∂(qv, pv)
) (3.5)

Algorithm 3.4 summarizes the steps for a single iteration of Auto-encoding HMC.
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Algorithm 3.4 Auto-encoding HMC
Inputs:

encoder φ, decoder ψ
Uv(qv)
grad_Uh(qh) according to equation (3.2)
grad_Kh(ph) according to equation (3.3)
auto-encoder weights and biases W, b
step size ε, number of leapfrog steps L
current qv

Initialize q(0)
v = current qv

Sample momentum p
(0)
v ∼ Normal(0,M)

Calculate q(0)
h = φ(q

(0)
v )

Calculate p(0)
h = φ(p

(0)
v )

for i = 1 to L do
p

(i−1/2)
h = p

(i−1)
h − ε/2 · grad_Uh(q(i−1)

h )

q
(i)
h = q

(i−1)
h + ε · grad_Kh(p

(i−1/2)
h )

p
(i)
h = p

(i−1/2)
h − ε/2 · grad_Uh(q(i)

h )
end for
Calculate q(L)

v = ψ(q
(L)
h )

Calculate ρ = exp(−H(q
(L)
v , p

(L)
v ) +H(q

(0)
v , p

(0)
v )) ·

∣∣∣∣∣∂(q
(L)
v , p

(L)
v )

∂(q
(0)
v , p

(0)
v )

∣∣∣∣∣ according to equation (3.5)

(W, b will be needed accordingly)
Sample u ∼ Uniform(0, 1)
if u < min(1, ρ) then

return q∗v = q
(L)
v

else
return q∗v = current qv

end if

3.4 Experiments

3.4.1 Implementation Details

Architecture of Auto-encoder The auto-encoder in our experiments is a five-layer neural

network, with one input layer, one output layer and three hidden layers. The second hidden

layer is the code, i.e., the latent representation. We used tanh as the activation function

except for the linear output layer.

71



Let’s denote the weights for each layer to be U1, U2,W1,W2 as shown in Figure 3.1, and d1, b1

to be biases corresponding to U1,W1. For this particular architecture, we have

∂(q∗v)

∂(q∗h)
= W2 · diag(1− tanh2(W1q

∗
h + b1)) ·W1

∂(qh)

∂(qv)
= diag(1− q2

h) · U2 · diag(1− tanh2(U1qv + d1)) · U1

3.4.2 High-dimensional Bayesian logistic regression with simulated

data

To demonstrate that Auto-encoding HMC maintains the ability to explore the parameter

space while greatly reducing the computational time, we conducted a high dimensional logistic

regression experiment with simulated data.

Settings In this experiment, the dimension of the parameter space is 500, and we select

the latent dimension to be 50. We also select the dimension of other hidden layers to be 100.

Design matrix X is independently sampled from N(0, 0.12). True β is uniformly sample from

[−1, 1]. And we set its prior distribution to be N(0, 102).

We first run standard HMC, and the first 1000 accepted proposals were used to train the

auto-encoder (acceptance rate is set approximately 1). We normalized the input for better

training results, and adjusted some calculation terms accordingly in the auto-encoding HMC

proposal.

For both standard HMC and Auto-encoding HMC, we tune the acceptance rate to be around

0.65 to 0.7, which is optimal in terms of computational efficiency ([8]). We compared the

results using 1000 samples after convergence has been reached.
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Results The computational time of auto-encoding HMC is 0.134 second per iteration, but

it costs 0.488 second for standard HMC. The minimum effective sample size per second

(minESS/s) is 0.964 for our method, and 0.203 for standard HMC.

Our method is faster with higher minESS/s, though at the comprise of exploring less regions

compared to standard HMC. As shown in Figure 3.4, where we visualize the posterior

distributions of β’s for 5 dimensions for both sampling methods. Our method still provides

relatively efficient proposals, which is a good approximation to the samples obtained by

standard HMC. A quick check for other dimensions shows similar results.

Figure 3.4: Posterior approximation: Standard HMC v.s. Auto-encoding
HMC

3.4.3 Bayesian prediction for binary text classification

This experiment involves binary classification on benchmark dataset Quora question pairs

([35]). Our training data and test data includes 2,000 pairs of potential duplicate questions

on Quora. The task is to identify the actual duplicate pairs. That being said, given two

sentences, we have to determine if they have the same meaning. An example of a sentence

pair could be ”How do I read and find my YouTube comments?” and ”How can I see all my
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Youtube comments?”. The expected output should be 1, which means duplicate. Another

example is ”What’s causing someone to be jealous?”, ”What can I do to avoid being jealous

of someone?”. The expected output should be 0, which means they are not duplicate.

This is a text classification task and is high dimensional in nature. After preprocessing,

such as word embedding and sentence embedding, each pair of sentences is represented as

a 400-dimensional vector. We performed Bayesian logistic regression for classification. The

predictions are based on posterior predictive distributions p(ỹ|y) = Ep(β|y)(p(ỹ|β)).

We run both standard HMC and Auto-encoding HMC with latent dimension 50 to obtain

posterior samples of β. All the other settings are similar to the first experiment. We compared

the prediction accuracy as the computational time evolves, as shown in Figure 3.5. The

results of standard HMC eventually converges to a slightly higher accuracy compared to

Auto-encoding HMC at around 30 seconds. However, in the first 10 seconds, Auto-encoding

HMC achieves a higher prediction accuracy faster as it quickly converges.

3.5 Discussion

In this paper, we explored the possibility of simulating Hamiltonian dynamics in the latent

space of the parameter space, but still making efficient exploration and distant proposals in

the original space. The projection between the latent space and the original space is via an

auto-encoder trained on pre-sampled data. The resulting algorithm Auto-encoding HMC

achieves a good balance between computational resources and posterior approximation.

There are a set of future directions that worth pursuing.

First of all, our method lost some nice properties of standard HMC, such as volume preserving,

and we need to evaluate an additional correction term. If a volume preserving embedding
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Figure 3.5: (Quora duplicate questions classification) Bayesian Prediction Accuracy against
Computational Time

can be discovered, it will further save computational time. We also intend to find a better

way to approximate the correction term.

The computational saving mainly depends on the dimension of the latent space, but less

dimension will incur more information loss. More experiments need to be done to perform

optimal tuning of the latent dimension. In addition, the design of auto-encoder architecture

and selection of activation functions also need to be carefully tuned for better trade-off.

The experiments are still preliminary. We also need to move beyond logistic regression models.

We are also interested in comparing our method with a two-stage method in terms of prediction

results. A two-stage method means we first perform standard HMC directly in the latent

space and project the posterior samples to the original space for making Bayesian inference.

Also notice that our work can be extended to other MCMC algorithms using a similar
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framework.

3.6 Supplementary

3.6.1 Calculating the gradient of Uh(qh) for Bayesian logistic regres-

sion

Consider a logistic regression model yi|Xi, qv ∼ Bern(pi), pi = 1
1+exp(−Xiqv)

, where Xi =

(Xi1, Xi2, · · · ), qv = (qv1, qv2, · · · )T . We set the prior to be zero mean Gaussian with unit

variance.

The total Likelihood is p(y|X, qv) =
N∏
i=1

(
1

1 + exp(−Xiqv)

)yi ( 1

1 + exp(Xiqv)

)1−yi

Given that the decoder has one hidden layer and tanh is used as the activation function, we

have:

qv = W2 tanh(W1qh + b1)

. Consider

Uv(qv) = − log(p(qv))− log p(y|X, qv)

=
1

2
qTv qv −

N∑
i=1

(
yi log

1

1 + exp(−Xiqv)
+ (1− yi) log

1

1 + exp(Xiqv)

)

=
1

2
qTv qv −

N∑
i=1

yi(Xiqv) +
N∑
i=1

log(1 + exp(Xiqv))

∂Uv(qv)

∂qv
= qv −XT

D×N

(
y − 1

1 + exp(−Xqv)

)
N×1

= qv −
N∑
i=1

yiX
T
i +

N∑
i=1

1

1 + exp(−Xiqv)
XT
i
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Thus,

∂Uh(qh)

∂qh
=
∂Uv(qv)

∂qh

=
∂Uv(qv)

∂qv
· ∂qv
∂qh

=

{
W2 tanh(W1qh + b1)−

N∑
i=1

yiX
T
i +

N∑
i=1

1

1 + exp(−XiW2 tanh(W1qh + b1))
XT
i

}T

·W2 · diag(1− tanh2(W1qh + b1)) ·W1

=

{
tanh(W1qh + b1)TW T

2 W2 −
N∑
i=1

yiXiW2 +
N∑
i=1

1

1 + exp(−XiW2 tanh(W1qh + b1))
XiW2

}

· diag(1− tanh2(W1qh + b1)) ·W1

(3.6)

where W T
2 W2 and XiW2 can be pre-calculated. Notice that dim(XiW2) << dim(Xi).

3.6.2 Time reversibility

Given that ψ is the inverse map of φ, and define function h(q, p) = (q,−p) we have

Ψ(Q(Φ(qv, pv))) = Ψ(Q(φ(qv), φ(pv)))

= Ψ(Q(qh, ph))

= Ψ(h ◦ Ts ◦ h(qh, ph))

= Ψ(h ◦ Ts(qh,−ph))

= Ψ(h(q∗h,−p∗h))

= Ψ(q∗h, p
∗
h)

= (ψ(q∗h), ψ(p∗h))

= (q∗v , p
∗
v)
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and

Ψ(Q(Φ(q∗v , p
∗
v))) = Ψ(Q(Ψ−1(q∗v , p

∗
v)))

= Ψ(Q(ψ−1(q∗v), ψ
−1(p∗v)))

= Ψ(Q(q∗h, p
∗
h))

= Ψ(h ◦ Ts ◦ h(q∗h, p
∗
h))

= Ψ(h ◦ Ts(q∗h,−p∗h))

= Ψ(h(qh,−ph))

= Ψ(qh, ph)

= Φ−1(qh, ph)

= (φ−1(qh), φ
−1(ph))

= (qv, pv)

Thus Q′ = Ψ ◦Q ◦ Φ is symmetric.

3.6.3 Approximating volume correction term

Following [53], let’s consider a one dimensional example. For mapping

Tδ(q, p) =

q
p

+ δ

dq/dt
dp/dt

+O(δ2)

The Jacobian matrix:

Bδ =

1 + δ
∂2H

∂q∂p
δ
∂2H

∂p2

−δ∂
2H

∂q2
1− δ ∂

2H

∂p∂q

+O(δ2)
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Consider a 3× 2 matrix A and 2× 3 matrix C:
a11 a12

a21 a22

a31 a32



1 + δ

∂2H

∂q∂p
δ
∂2H

∂p2

−δ∂
2H

∂q2
1− δ ∂

2H

∂p∂q

+O(δ2)


c11 c12 c13

c21 c22 c23



It gives a 3× 3 matrix with element (i, j) to be

ai1c1j + ai2c2j + δ(ai1c1j
∂2H

∂q∂p
− ai2c1j

∂2H

∂p2
+ ai1c2j

∂2H

∂p2
− ai2c2j

∂2H

∂p∂q
) +O(δ2)

We could show that

det(ABδC) = det(AC) +O(δ2)

The result can be generalized to higher dimensions.

Now let’s denote z = (q, p), Ai =
∂ziv
∂zih

, Bδ =
∂zih
∂zi−1

h

, Ci =
∂zih
∂ziv

. We have:

det(
∂zLv
∂z0

v

) = det(
∂zLv
∂zLh

∂zLh
∂zL−1

h

∂zL−1
h

∂zL−1
v

· · · ∂z
1
v

∂z1
h

∂z1
h

∂z0
h

∂z0
h

∂z0
v

)

= det(ALBδCL−1AL−1 · · ·A1BδC0)

= det(ALBδCL−1) det(AL−1BδCL−2) · · · det(A1BδC0)

= (det(ALCL−1) +O(δ2))(det(AL−1CL−2) +O(δ2)) · · · (det(A1C0) +O(δ2))

=
V ol(zLv )

V ol(zLh )

V ol(z0
h)

V ol(z0
v)

+O(δ)

→ V ol(zLv )

V ol(zLh )

V ol(z0
h)

V ol(z0
v)

as δ → 0

For matrices AL and C0, the number of vectors are less than the dimension of the ambient

space. We could use the square root of the gramian function of the matrix to calculate

k-volume in n-space where k < n. In particular, for k linearly independent vectors v1, · · · , vk,
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the gramian function is G(v1, ..., vk) = det(MTM) where M = (v1, · · · , vk). The volume of

the parallelepiped with the vectors is calculated by:

V ol(v1, ..., vk) =
√
det(MTM)
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Chapter 4

Determinantal Point Processes as

Balancing Priors for Variational

Auto-encoder

Variational auto-encoder (VAE) is widely used in latent representation learning and synthetic

data generation. In the presence of class imbalance, the latent space will be redundant and

dominated by the major class. In a conventional VAE, a standard normal prior is used for

latent variable. In this paper, we propose to instead use a diversity encouraging prior —

Determinantal Point Process prior, to ‘up-weight’ the minor class. Our method achieves

higher minor class accuracy compared to the standard VAE in a multi-class imbalance case.

It also generates more balanced synthetic data in a hand-written digits generation task.
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4.1 Introduction

Class imbalance is a commonly encountered problem in real world data analysis, where some

classes might be infrequent or rare so they are not represented in finite samples. As a result,

the analysis might lead to biased estimates and inaccurate predictions. In supervised learning,

the classification model might be dominated by the most frequent classes ignoring infrequent,

but usually important classes. Imbalance can also affect data analysis in an unsupervised

manner. For example, for latent variable models, the low dimensional representation of the

data will be mainly dominated by the information collected on more frequently observed

classes.

In this paper, we propose a method for alleviating class imbalance problem in latent variable

models. A diversity encouraging point process — continuous k-DPP (determinantal point

process with fixed cardinality k) is used as a prior for latent variables, which plays the role of

regularizing the latent variables to be less redundant. In particular, we applied this prior to

Variational Auto-encoder (VAE), which is one of the most widely used deep latent model.

We show that for imbalanced data, our method can improve the performance of both the

representation learning model and the generative model. We evaluate our method on three

problems. First, we show the advantages of our method over the conventional VAE based

on an imbalanced MNIST classification task. We then use our method for neural decoding

based on data from a Neurophysiological experiment, with the setting to be a multi-class,

small sample size and high dimensional case. Finally, analysis for a image generation task

using our methods is provided, which shows that the quality of the generative model is also

enhanced by diversifying the latent variables.

The paper is organized as follows: in Section 4.2, we provide reviews for Variational Auto-

encoder and Determinantal Point Process and its variants. We also review some existing

methods for dealing with class imbalance. In Section 4.3, we describe our method in details.
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Finally, in section 4.4, we provide results and analysis for three empirical experiments.

4.2 Background

4.2.1 Related Work

As summarized in [31], there are two major branches of methods for dealing with imbalanced

learning problem: sampling methods and cost-sensitive methods. The methods are data-level

and model-level respectively. The goal of imbalanced learning is usually to improve the

performance of the underrepresented classes, even at the cost of slightly worse performance

for the dominating classes.

Random oversampling and undersampling are the most popular sampling method since they

are easy and straightforward to implement. However, undersampling has the problem of

losing important information regarding the major class, while oversampling might will result

in overfitting ([33], [43]).

Cost-sensitive methods usually associate a higher cost with misclassifying the minor class

than misclassifying the major class ([21]). The methods are model-specific, and algorithms

such as cost-sensitive boosting methods, decision trees and neural networks are developed

([31]).

Our method takes a probabilistic perspective, and thus is different from the above methods.

Instead of ‘up-weighting’ the cost of misclassifying minor classes, our method intrinsically

‘up-weight’ the prior of the data’s latent representation.
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4.2.2 Variational auto-encoder

Variational auto-encoder (VAE) ([36]) is an unsupervised model for learning low-dimensional

latent representation of a given dataset. It can also be used for learning deep generative

models to generate realistic data such as images and texts. Compared to a standard auto-

encoder, variational auto-encoder imposes a prior on the latent variable instead of treating it

as a deterministic term. The prior can also be regarded as a regularizor on the latent variable.

More formally, we are interested in a set of data X and its latent representation Z. In the

framework of graphical models, latent data z is generated from a pior pθ(z), and data x

is generated from model pθ(x|z). VAE aims at efficient marginal inference for x as well as

approximation for posterior distribution of z with a simplified model qφ(z|x) ([36]). Unlike

mean-field variational Bayes, VAE simultaneously maximizing marginal likelihood of x

(evidence) and minimizing KL-divergence between qφ(z|x) and pθ(z|x). This is achieved by

maximizing the evidence lower bound (ELBO) with respect to θ and φ:

L(θ, φ;x) = log pθ(X)−KL(qφ(z|x)‖pθ(z|x))

= Eqφ(z|x)(log pθ(x|z))−KL(qφ(z|x)‖pθ(z))

It’s equivalent to minimizing −Eqφ(z|x)(log pθ(x|z)), named as reconstruction loss, and mini-

mizing KL-divergence between qφ(z|x) and pθ(z) at the same time.

The basic steps of a VAE involves passing data x into a encoder model to learn qφ(z|x). Then

latent variable z is sampled from qφ(z|x) and fed into a decoder model and learn pθ(x|z),

which can be used to reconstruct new x. VAE involves learning both the inference model

qφ(z|x) and the generative model pθ(x|z). The inference model qφ(z|x), often referred to as

an encoder, is a posterior distribution of the latent variable given the data. Meanwhile, the

generative model pθ(x|z), also referred to as a decoder, maps latent variables to a generative

distribution for x. Both decoder and encoder models can be approximated by neural networks,

84



which is capable of learning most of the complex and nonlinear functions.

4.2.3 Determinantal Point Process (DPP) and k-DPP

Determinantal Point Process is a point process for modeling repulsion interactions between

samples ([37]). It defines distribution over subsets of a fixed ground set, and assigns higher

probability to more diverse subsets. In a discrete setting, suppose the ground set is Y , P is

defined to be a determinantal point process, if for every A ⊆ Y ,

P(A ⊆ Y ) ∝ det(LA)

where Y is a subset randomly drawn from Y according to P . L is a kernel matrix: Y×Y → R,

and LA is its submatrix corresponding to all entries in A. For example, if A = {i, j}, where

i, j ∈ Y , then:

P(A ⊆ Y ) ∝ det(LA) =

∣∣∣∣∣∣∣
Lii Lij

Lji Ljj

∣∣∣∣∣∣∣
Notice since the likelihood is proportional to the determinant of LA, and thus the square of

the volume spanned by the element vectors, the likelihood would be smaller for subsets with

similar elements.

In a continuous setting, for ground Ω ⊆ RD, similarly, we have a positive definite kernel

function L : Ω× Ω→ R. For any A ⊆ Ω, we have PL(A) ∝ det(LA).

In some cases, it’s necessary to fix the subset size for every drawn. A k-DPP is a determinantal
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point process over subsets with cardinality k. For discrete setting, the likelihood is:

PL(A) =
det(LA)∑

|B|=k
det(LB)

=
det(LA)

ek(λ1, · · · , λN)

where λ1, · · · , λN are eigenvalues of L and ek(λ1, · · · , λN) is the kth elementary symmetric

polynomial ([1]). Similarly, for continuous setting we have:

PL(A) =
det(LA)

ek(λ1:∞)

However, the term ek(λ1:∞) is generally infeasible to evaluate.

4.3 Method

4.3.1 Balance latent variable with k-DPP prior

In a conventional VAE, a standard normal prior is used for latent variable z. We propose to

instead use a continuous k-DPP prior for the continuous latent space, with the cardinality to

be the sample size N . We then have the prior

pθ(z) = PNL (z) =
det(LZ)

eN(λ1:∞)

where LZ is a N ×N kernel matrix.

Notice that the loss function of VAE is composed of reconstruction loss and KL-divergence

(KLD) loss. For DPP-VAE, the reconstruction loss remains the same, while the KLD loss is
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modified to be:

KL(qφ(z|x)‖pθ(z)) =
N∑
n=1

(− log |Σ| − P )− Eqφ(z|x)(log pθ(z))

∼=
N∑
n=1

(− log |Σ| − P )− ln det(LZ) + ln(eN(λ1:∞)

To avoid large penalty from KLD loss, the approximating distribution qφ(z|x) will be learned

to generate more diverse, thus more balanced z across all classes. This is because when most

samples are from the same class, in our case, the dominating class, det(LZ) will be smaller

since the samples from the same class will be more similar compared to when samples are

from different classes.

4.3.2 Inference procedure

The other components of our model remain similar to the conventional VAE: the approximate

posterior distribution for latent variable is parameterized as normal distribution: qφ(z|x) =

N(z|µ(X),Σ(X)). The generative model can be parametered as pθ(x|z) = pθ(x|f(z)). For

example, if x is continuous, we can use pθ(x|z) = N(x|f(z), I). If x is binary, we have

pθ(x|z) = Bern(x|f(z)). Notice here µ(X), Σ(X) and f(z) are modeled by neural networks

as nonlinear functions of X and φ, or Z and θ, where φ and θ are weights vectors in neural

networks. The neural network structure of our method is displayed in Figure ??.

Similar to the reconstruction loss, Monte Carlo estimates of expectations of log pθ(z) with

respect to qφ(z|x) is used here. In practice, we choose a positive definite kernel function
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Output:
‖X − f(z)‖2

Output:
KL(N(µ(X),Σ(X))‖ det(LZ))

f(z)

Sample z ∼ N(µ(X),Σ(X))

Σ(X)µ(X)

Input: X

Figure 4.1: DPP-VAE Architecture (X is continuous)

L(X)nm = q(xn)k(xn,xm)q(xm) as suggested by ([1], [23]), where

q(x) =
√
α

D∏
d=1

1√
πρd

exp(− x2
d

2ρd
)

k(x, y) =
D∏
d=1

exp(−(xd − yd)2

2σd
)

The eigenvalues can be obtained by:

λn = α

D∏
d=1

(
β2
d + 1

2
+

1

2γd
)−

1
2 (γd(β

2
d + 1) + 1)1−nd

Notice that the term ek(λ1:∞) in KLD loss has no explicit form, but it’s proved ([1]) that it
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has lower bound and upper bound:

ek(λ1:M) <= ek(λ1:∞) <=
k∑
j=0

(tr(L)−∑M
n=1 λn)j

j!
ek−j(λ1:M)

To maintain the KLD-loss to be positive, we can use the upper bound of the normalization

term for approximation. ek(λ1:M ) can be efficiently computed by algorithm developed in [37].

4.4 Experiments

4.4.1 Two-class MNIST data classification

We compared standard VAE and DPP-VAE on a binary classification task based on MNIST

data. The training examples include 5000 MNIST ‘0’, ‘1’ handwritten digits data. For the

balanced case, there are 2500 class 0 and 2500 class 1. We then varied the imbalance ratio

from 1 to 1 to 1 to 1000, where digit ‘1’ is the minor class. The test data is a balanced

dataset with 500 class 0 and 500 class 1.

We select the latent dimension to be 20 and set α, ρ, σ = 1000, 1, 1. All methods are trained

for 10 epochs with batch size 100. Monte Carlo sample of size 1 is used since the batch size

is large enough, as proposed in [36]. Two layer convolutional and deconvolutional neural

network with ReLU activation is used for encoding and decoding the images separately. The

latent samples are used for classification. We passed the learned features into a simple logistic

regression model with optimal hyperparameters selected by cross-validation.

The performance of the balanced test data is displayed in Figure 4.2. The results are averaged

over 20 independent runs. It shows that Variational Auto-encoder with continuous k-DPP
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prior for imbalanced data always achieves a higher classification accuracy faster compared to

standard VAE. The effect is more obvious as the imbalance ratio increases.

Figure 4.2: Comparing classification accuracy on balanced test data against computational
time, as the imbalance ratio of training data evolves from 1 to 1 to 1000 to 1

90



4.4.2 Neural decoding: an application to multi-class imbalance

Most methods for imbalance learning focus on binary class imbalance. However, we also test

our method on a multi-class problem, which is more challenging.

Many scientific studies face the challenge of collecting balanced datasets for high-quality data

analysis. In a recent neuroscience experiment ([3]), rats are required to perform a sequence

memory task and recognize five different odors in the given order A, B, C, D, E. We are

interested in decoding their corresponding neural spike signals for odor classification. Neural

decoding refers to the mapping from neural activities to stimulus. However, a sequence

always started with odor A and will be terminated once the rat made a mistake. Thus there

are more class A data than other classes, and decoding results are highly affected by this

imbalance.

Data There are 58 trials for odor A, 41 trials for odor B, 37 trials for odor C, 32 trials for

odor D and 26 trials for odor E. It’s believed that a given odor is most related to the neural

activities occurring during the 0.15s-0.4s time window after trial initiation. Thus, neural

spike train data during that time window, which is mainly a binary sequence, for 54 isolated

spikes is used for training.

Results The average performance based on a 6-fold cross-validation is displayed in Table

4.1 and ROC curves are provided in Figure 4.3, 4.4. The test data for each fold is selected to

be a balanced set, with 4 test data for each class. The model is trained for 5000 epochs. Our

proposed method enhanced the performance (e.g., f1 score) of the minor classes (C, D and

E), even though at the cost of slightly lower performance for the major classes (A, B). And

the overall performance is also improved.
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Table 4.1: VAE and DPP-VAE comparison: Cross-validated performance

Table 4.2: VAE

precision recall f1-score

A 0.706 0.875 0.776
B 0.636 0.625 0.621
C 0.233 0.417 0.294
D 0.215 0.167 0.172
E 0.139 0.083 0.103
ave 0.386 0.433 0.393

Table 4.3: DPP VAE

precision recall f1-score

A 0.751 0.917 0.809
B 0.497 0.708 0.575
C 0.361 0.458 0.377
D 0.333 0.250 0.278
E 0.333 0.083 0.133
ave 0.455 0.483 0.434

Figure 4.3: Standard VAE Figure 4.4: DPP VAE

4.4.3 Balancing data generation

In this experiment, variational auto-encoders are trained to draw MNIST digits. We showed

the effectiveness of DPP-VAE for balancing the class ratios of the generated data.

The parameter settings are the same as the first experiment. Synthetic MNIST data (digit ‘0’

and ‘1’) are generated by standard VAE and DPP-VAE separately. Random latent vectors

from standard normal distribution are fed into the trained decoder network to generate

handwritten ‘0’s and ‘1’s. The same latent vectors are used for both methods. The total

training data is 5000 and we tested on 3 different imblance ratios: 10 to 1, 100 to 1 and 1000

to 1.

Results are displayed in Table 4.4. For standard VAE, the generated minor class (digit
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‘1’) percentage is around the same as that of the training data, which means the learned

decoder is dominated by the major class. However, by implementing our proposed method,

the percentage of the minor class is substantially increased, and the effect is more significant

as the imbalance ratio increases: 1.9 times increase for ratio 10 to 1 (17.7% versus 9.1%), 3.7

times increase for ratio 100 to 1 (3.68% versus 0.99%), and 9.5 times increase for ratio 1000

to 1 (0.9469% versus 0.0999%).

Table 4.4: Generated minor class (digit ‘1’) percentage

Class ratio Training (%) VAE (%) DPP-VAE (%)

10:1 9.1% 7.2% 17.7%
100:1 0.99% 1.21% 3.68%
1000:1 0.0999% 0.0562% 0.9469%

We also visualized 900 synthetic data with training ratio 10 to 1 in Figure 4.5, 4.6, . The

digits are ordered by classes. The class of the generated data is decided by a highly accurate

convolutional neural network trainer.

Figure 4.5: Standard VAE Figure 4.6: DPP VAE
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4.5 Discussion

In this work, we propose to use Determinantal Point Process as a diversity encouraging prior

for latent variable models to alleviate imbalance learning problem . We have a particular

application, where we modified variational auto-encoder by using continuous k-DPP as latent

prior, and developed the inference algorithm. Our proposed method improved the minor

class performance compared to standard VAE in binary and multi-class classification tasks.

DPP-VAE is also capable of generating more balanced synthetic data.

Our work has significant contributions to many machine learning applications, especially when

samples of rare classes with great importance are hard to collect. For example, in self-driving

perceptron tasks, it’s expensive and time-consuming to obtain enough ground-truth training

samples for rare and extreme weather conditions. One possible solution is to generate as

many synthetic data of rare environments as possible given imbalanced training classes.
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Chapter 5

Conclusions

5.1 Summary

Bayesian inference typically involves intractable integration with respect to the posterior

distribution of model parameters or latent variables. We usually resort to either stochastic

approximation, which is based on sampling methods, or deterministic approximation, which

is based on functional optimization. In practice, sampling methods are commonly applied to

smaller problems when high precision is required, while variational methods are usually used

for large applications when only a quick approximation is needed.

We are faced with new computational challenges for Bayesian inference due to the emergence

of data intensive problems. Thus, research on new variational methods or scalable sampling

methods is crucial. To this end, we have used modern information geometry as a powerful

tool for statistical analysis in order to provide a geometric view for these approximation

methods.

We first developed a new variational framework based on differential geometry: geometric
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approximation of posterior (GAP), where we proposed a valid distance measure — spherical

Fisher distance and developed modified gradient descent algorithm to minimize the distance.

Compared to other variational methods, under certain scenarios, GAP generates better

approximating distributions. Compared to Hellinger distance, geometrically, using the

spherical Fisher distance is more justifiable and the optimization is more smooth.

For certain large applications, however, we might need more precision, and thus we have

developed auto-encoding HMC as a scalable sampling method. We explored the idea of

simulating Hamiltonian dynamics in the latent space of the parameter space, but still making

efficient exploration in the original space. Auto-encoding HMC achieves a good balance

between computational cost and accuracy.

Aside from developing Bayesian computational methods, we also modified classification models

for tackling imbalanced learning problems, motivated by a real application of neural decoding

with imbalanced classes. We then developed DPP-VAE, where we applied determinantal

point process as a diversity encouraging prior for variational auto-encoder. Our method

improved the minority class performance for classification and synthetic data generation.

5.2 Future directions

While GAP method achieves better results for multi-modal problems than other variational

methods, we limit the approximating distribution within the family of Gaussian distributions.

A future work can address this issue by developing more flexible proposals, for example, using

mixture of Gaussians or Dirichlet process mixture models.

Another research direction could be improving computational efficiency of our method.

Currently, the computational cost is dominated by orthonormalizing the basis of the tangent

space using Gram-Schmidt Matrix representation, which is computationally demanding.
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Additionally, there is a high computational cost associated with approximating intractable

integrals involved in calculating the inner products between functions. To evaluate these

integrals, we need to sample from tractable posterior approximating distribution and use

Monte Carlo estimates.

We also would like to work on identifying natural classes of convex and non-convex models,

since gradient descent has the problem of getting trapped in local minimum. For non-convex

problems, we can then develop randomized methods to escape from the local minimum.

We also need to further improve our Auto-encoding HMC method. For example, we could use

empirical KL-divergence as a metric for measuring posterior approximation results. We also

plan to experiment with different parameter, hidden and latent dimensions to find an optimal

trade-off between computational efficiency and precision. It is also potentially an important

work to quantify the errors introduced by our method, possibly using universal approximation

theorem. Lastly, it is worth extending our method to other MCMC algorithms.

Regarding our DPP-VAE method, which involves a deep generative model, we could expand

our work by applying it to more complicated tasks with higher dimensions, such as generating

synthetic texts and real-world images. We also would like to investigate the computational

complexity of DPP-VAE and how well it scales to high dimensional problems.
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Appendix A

Deep Learning for Rat’s Sequence

Memory Replay

A.1 Experiment Description

The experiment consists of five rats across three sessions. In the following analysis, we only

focus on the data from one rat ‘SuperChris’ collected during session 1.

Sequence Memory Task The core task for rats is a sequential memory task. A sequence

of different odors are presented to rats. Each sequence contains up to five trials, each of which

lasts no more than 2 seconds. Each trial involves one of five odors, which are named ‘A’, ‘B’,

‘C’, ‘D’, ‘E’ respectively. An odor is “In Sequence” (InSeq) if it occurs in the right position

during the sequence. For example, if odor C occurs during the third trial of a sequence it is

“In Sequence”. If odor B occurs during fourth trial it is then “Out of Sequence” (OutSeq).

Here are some examples:
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• ABCDE (all InSeq)

• AACDE (second trial OutSeq, the rest InSeq)

• ABDDE (third trial OutSeq)

Rat’s Performance Each trial starts with the rat poking its nose into a port, and an odor

is immediately released into the port. The rat has to decide if it’s InSeq or OutSeq. If it’s

InSeq, the rat has to hold its nose inside the port for more than 1.2 second. If it’s OutSeq,

the rat has to withdraw its nose within 1.2 second. A sequence will be terminated once

the rat made a mistake, so some sequences contain fewer than five trials. For session 1 of

SuperChris, there are 60 sequences with 248 trials in total, and the session last 50 minutes.

Neural Activities Data In each session, the neural activities of each rat are continuously

recorded, including neural spike train data (55 isolated spikes) and local field potentials (12

tetrodes). Theta and Slow gamma signals are different types of local field potentials (LFP).

The neural spike train data corresponds to the time of spikes for each neuron.

A.2 Sequence Replay Modeling

Many work has been done to analyze the neural spike train and LFP data from the experiments

([24, 25, 26, 26]). However, the fundamental question here is sequence memory replay. In

particular, whether the neural activities corresponding to the five odors are replayed in the

sequence of ABCDE or not during the session. We define neural states and associate them

with odors. Here, we name the following processes:

• Neural Encoding: mapping from stimulus to neural activities. We study how neurons

respond to stimulus, and construct models to predict neural activities.
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• Neural Decoding: reverse mapping from neural activities to stimulus. We build models

to reconstruct stimulus from neural activities.

Model f(y|X) whereX represents neural activity and y are classes of odors. In our experiment,

we believe that a given odor is most closely related to the neural activities occurring during

the 0.15 second to 0.4 second time window after nose-poke. In the framework of supervised

classification, we use the 0.15s to 0.4s neural activities as training data and odors as different

classes, and predict/reconstruct odors using neural activities during other times of the trials.

Examine sequence replay during trials For now, we are expecting to identify some

sort of replay during the -2s to 2s time window relative to the nose-poke, and we are using

the neural activities during this time period as test data. With a 0.02 second stride ,the test

windows are: [−2,−1.75], [−1.98,−1.73], ..., [0, 0.25], [0.02, 0.27], ...[1.75, 2]

Moe data details There are 55 neurons and 248 trials in total. If we only consider in

sequence and correct trials, there are 194 in total. We are also faced with imbalanced classes.

Out of 194 in sequence and correct trials, we have 58 trials for A, 41 for B, 37 for C, 32 for D

and 26 for E. This is because rats tend to memorize the first few odors, and make mistakes

later during a sequence.

A.3 Prediction Results Using Logistic Regression, CNN,

VAE and DPP-VAE

Our baseline model is logistic regression model, where we used the sum of spike counts during

the training window as the training data. The prediction results are displayed in Figure A.1.
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Figure A.1: Sequence replay predictions using logistic regression
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We also consider using Convolutional Neural Network (CNN) to approach the problem. One

challenge we have is that for each trial, even though we focus on the 0.15s to 0.4s time window,

the neural state corresponding to a specific odor can occur at any time within the window

and also occur at different time scales (e.g., some could be happening within a shorter time

frame). CNN can work better than logistic regression since it’s invariant to time shift of the

signals and can potentially help find the ‘local signals’.

Prediction results by implementing an LeNet (a type of CNN) on the dataset are displayed

in Figure A.2. We only used neural spike train as training data. The 0.15s-0.4s time window

is binned every 0.01s, and the number of spikes is accumulated for each bin, so the input is a

sequence of number of spikes. Then a CNN filter will scan through this 1× 250 sequence.

The predictions are averaged over all trials for the -2s to 2s time window. Notice that in our

results, the prediction is highly accurate for time window 0.15s-0.4s, which is the training

data, which means we should be careful about potential overfitting issues.

We also display and compare corresponding results using standard VAE and DPP-VAE in

Figure A.3 and A.4. The methods are described in Chapter 4.
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Figure A.2: Sequence replay predictions using convolutional neural network
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Figure A.3: Sequence replay predictions using variational auto-encoder

109



Figure A.4: Sequence replay predictions using DPP-VAE
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