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Recent work has considerably advanced the definition, identification and estimation of different 

types of effects in causal mediation analysis. It extended the traditional approaches for mediation 

analysis by using the counterfactual or potential-outcome framework to allow for nonlinearities 

and exposure-mediator interaction. Despite the various estimation methods and statistical 

routines being developed, a unified approach is lacking, which incorporates recently introduced 

causal decompositions. Also, relatively few studies explored scenarios with more than one 

mediator. In this work, we used causal diagrams and potential-outcome framework to contribute 

to the literature on causal mediation analysis. We first provided a unified framework for 

estimating targeted effect(s) from the most recent 4-way decomposition in the single-mediator 
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setting. We demonstrated that g-computation, implemented via Monte Carlo simulations in 

standard statistical software, can offer such unification and is flexible in accommodating 

different types of exposure, mediator and outcome variables. We also extended some of the 

existing estimation techniques to more complicated mediation settings that involve contextual 

exposure, intermediate confounding, multiple causally ordered mediators, time-varying 

mediators, and time-to-event outcomes. We applied regression-based techniques, g-computation, 

and inverse-probability-weighted (IPW) fitting of marginal structural model (MSM) to 

investigate mechanisms underlying the effects of human development on individual health, the 

health disparity in education, and the effect of different physical activity domains on acute 

myocardial infarction. The flexibility of g-computation comes at a large cost: it becomes 

computationally intensive as the number of variables and sample size grow. Alternatively, 

mediator and outcome regression-based methods and IPW fitting of MSM can be applied in 

general linear systems and survival context respectively. The use of causal inference techniques 

did not preclude the possibility of model misspecification and the presence of uncontrolled 

confounding, which may bias our results. Future work should explore the properties of different 

estimation techniques and their use in estimating targeted quantities, and incorporate sensitivity 

analysis for uncontrolled confounding in causal mediation analysis.    
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Chapter 1.   Introduction 

1.1   Importance of Mediation Analysis 

The traditional approach to chronic disease epidemiology has been labeled as ”black box” 

paradigm.1 This approach largely focuses on establishing exposure-disease association but paid 

little attention to the mechanisms underlying such association. By comparison, we are able to 

see, via mediation analysis, a more comprehensive picture of why and how an exposure has the 

effect that it does on disease. Mediation analysis can inform strategic interventions to block the 

harmful effect(s) of exposure at different points along the causal chain.  

 

By probing for mechanisms from a cause to its effect, mediation analysis helps improve causal 

inference. First, identification of a hypothesized mediator can provide evidence that the observed 

relationship between exposure and disease is causal.1 For instance, it has been suggested that 

between 40% and 60% of the protective effect of alcohol is mediated through increased levels of 

high density lipoprotein cholesterol (HDL-C).2,3 This finding supports the hypothesis of a 

protective effect of moderate alcohol consumption against coronary heart disease (CHD).  

 

Second, in certain cases, the overall effect of an exposure seems to be weak or even non-exist 

due to the cancellation of effect via different mechanisms. In the alcohol-CHD example, the 

beneficial effect of alcohol via increasing HDL-C might be offset to some degree by the 

alcohol’s adverse effects on increasing blood pressure.4 Mediation analysis provides a tool to 

uncover such mechanisms by quantifying mediated effects via different pathways.  
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Third, it allows us to test pathway-specific hypotheses. As the socioeconomic status (SES) has 

been consistently linked to various health outcomes, the interest of social scientists shifts to 

answering the mechanisms that explain the socioeconomic gradient in health.1 For example, we 

can use mediation analysis to test if SES affects health through providing more resources for 

people to maintain good health. 

 

Regarding policy implication, mediation analysis offers quantitative evidence for decision-

making. If low neighborhood SES affects obesity incidence mainly through restricting people’s 

food choice to fast food or processed food, priority might be given to affordable and accessible 

healthier food options in the efforts to fight obesity. Mediation analysis also helps us in 

evaluating and improving an intervention. If we know that a multifaceted intervention improves 

a certain health outcome, a more important question is which components of such intervention 

are most effective in achieving the desired outcome. This is crucial for future implementation 

and refinement of the intervention, especially when it is carried out in places with scant 

resources. By measuring mediators along the proposed pathways and quantifying each pathway, 

we are able to evaluate through which pathways the intervention has bigger impact. Accordingly, 

this intervention can be improved to increase its overall efficacy by focusing on the components 

that leads to those effective mediators. 

 

Mediation analysis has its roots in social science and psychometrics, dating back to Wright’s5,6 

method of path analysis. The adoption of this method was delayed in epidemiology, mainly 

because the strong assumptions it imposes, i.e., linearity and no exposure-mediator interaction, 

are less plausible with epidemiologic data. Recent work has considerably advanced the 
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definition, identification and estimation of different types of effect in mediation analysis defined 

under the potential outcome framework and incorporate non-linear models and interactions.7–12 

Next, we briefly reviewed the most commonly used method for assessing mediation and its 

limitations, and how causal mediation analysis developed under the potential outcome 

framework can overcome these limitations. 

 

1.2   Mediation Analysis in the Parametric Tradition and Its Limitations 

In social science, the most widely used method for assessing mediation is the four-step approach 

based on traditional linear structural equation models (SEMs).13–15 Let us consider a basic 

mediation structure represented in Figure 1.1 with single exposure or treatment (X), single 

outcome (Y), and single mediator (M). We wish to assess the role of M in transmitting the effect 

of X on Y. Throughout this dissertation, we will assume that X occurs before M, which occurs 

before Y.  

 

Figure 1.1 Graphical representation of a causal mechanism and the corresponding structural 

parameters involving three variables in a linear system. 

 

In a linear system, the causal structure can be represented as linear structural equations: 

𝑥 = 𝛾𝑋 + 휀𝑋    

𝑚 = 𝛼𝑀 + 𝛼𝑋𝑥 + 휀𝑀    

𝑦 = 𝛽𝑌 + 𝛽𝑋𝑥 + 𝛽𝑀𝑚 + 휀𝑌 
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where lower-case symbols (x, m, y) represent the values that the variables (X, M, Y) may take, 

and the sum of the intercept and error term represents the variation explained in M, and Y by 

omitted factors 𝑈𝑋 , 𝑈𝑀, 𝑈𝑌. These omitted factors are unknown or unmeasured causes of X, M, Y 

and assumed to be mutually independent and thus are not drawn in Figure 1.1 above (i.e. a graph 

in which the direction of each edge represents causation and all the common parents of pairs of 

nodes are depicted). Structural parameters 𝛼𝑋, 𝛽𝑋, and 𝛽𝑀 need to be estimated from the data. 

Then following the four steps: (1) estimate and test the total effect of X on Y, using a model 

without the mediator (defined as τ = 𝛽𝑋 + 𝛼𝑋𝛽𝑀), (2) estimate and test the X-M path, (3) 

estimate and test the M-Y path conditional on X, (4) estimate and test the X-Y path conditional on 

M (𝛽𝑋), to see if it is zero, one can infer the presence of complete or partial mediation. 

Accordingly, indirect effect is defined as 𝛼𝑋𝛽𝑀.  

 

In the health sciences, “difference method” is often used to estimate the indirect effect of X on Y 

through M. It considers the outcome model under two adjustment schemes: with and without 

adjusting for the mediator. Then it takes the difference in the coefficients for the exposure as the 

measure of indirect effect. Advantages include its simplicity and reliance on standard regression. 

However, it has two major drawbacks. First, it will lead to distorted and irreconcilable results 

when non-linearities or interactions are present in the underlying causal mechanism.16–19 Second, 

its validity depends on the untested assumption that there is no uncontrolled confounding 

between X-Y, X-M, and M-Y relationship. Successful randomization of the exposure will support 

the assumption of no uncontrolled confounding of the X-Y and X-M relationship but will not 

guarantee the absence of uncontrolled confounding of the M-Y relationship.20
 If there is an 

unmeasured common cause L (Figure 1.2 (a), (b) in the next section) between M and Y, adjusting 
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for M will create spurious correlation1 between X and Y and thus prevent the proper estimation of 

𝛽𝑋 or 𝛽𝑀.21–23 

 

In the last two decades, several researchers have extended mediation analysis to non-linear 

structural equations system and relaxed the “no interaction between mediator and outcome” 

assumption,7–12 thanks to the symbiosis of causal diagram and counterfactual thinking. Below we 

will define the common mediation parameters controlled direct effect (CDE), pure direct effect 

(PDE), and total indirect effect (TIE) using causal diagrams 24,25 and the potential outcomes 

(counterfactual) framework.26 

 

A note on mediator and modifier (moderator) 

Older literature frequently used “mediator” and “moderator” interchangeably until the 

clarification by Baron and Kenny.13  “Mediator” refers to intersecting variable on the causal 

chain from the exposure to the outcome whereas “moderator”, also termed “modifier” in 

epidemiologic studies, refers to any variable that interacts (either biologically or statistically) 

with another variable in affecting the outcome. A modifier can be a mediator or a covariate. Both 

mediator and modifier are relative to the exposure-outcome relation of interest. The presence of a 

                                                 

 

1 An example of such phenomenon, called “collider bias” in epidemiology, is the sprinkler example. Assume X=1 means the 

sprinkler is on and L=1 means it is raining and the two events are independent. Both X=1 and L=1 lead to M=1 (arrows going 

from X and L to M), which denotes the floor is wet. Thus, by observing the floor is wet (meaning conditioning on a collider) and 

sprinkler is off, we can infer that it must be raining (thus creating dependency between X and L). 
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mediator causes the phenomenon “mediation”. Similarly, the presence of a modifier causes the 

phenomenon “effect measure modification”, or sometimes called “heterogeneity” or “(statistical) 

interaction”. Throughout the dissertation, we will use “modifier” to be consistent with the 

epidemiologic literature. “Effect measure modification”, “heterogeneity”, and “(statistical) 

interaction” will be used interchangeably.  

 

1.3   Mediation Analysis under the Potential Outcome Framework 

Brief review of directed acyclic graph (DAG) in causal mediation analysis 

Directed acyclic graphs (DAGs) are graphical representations of causal structures that contain no 

feedback loops (acyclic) (Figure 1.2). In a DAG, variables are called nodes and connectors 

(arrows) are called edges. The direction of each edge represents causation and all the common 

parents of pairs of nodes are depicted. We use a square bracket around a node to indicate 

conditioning on the variable. A collider is a variable on a specific path where two arrowheads 

meet (M is a collider on the path X  M  L in Figure 1.2 (a)). A path is said to be open or 

unblocked unconditionally if there is no collider on the path. Otherwise, the path is closed or 

blocked. In Figure 1.2 (a), path X  M  L is blocked by the collider M, whereas path X  M 

 Y is unblocked. Conditioning on a non-collider M on a path blocks the path at M. However, 

conditioning on a collider M, or any consequence of M, or any combination of M or its 

consequence, opens the path at M. In Figure 1.2 (b), X  [M]  Y is blocked at M but path X  

[M]  L is opened at M due to conditioning on M. A backdoor path between any two nodes is a 

non-causal path between them that starts with an arrow pointing into the starting node, e.g., M  

L  Y is backdoor path between M and Y. Thus, if we are interested in the causal effect of M on 
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Y, we need to block such backdoor path via conditioning on L, which is thus called a confounder 

of the effect of M on Y. DAGs have been discussed extensively in the literature.24,25,27 

 

 

Figure 1.2 DAGs depicting a causal mechanism involving exposure X, mediator M, outcome Y, 

and a confounder L of the M-Y relationship without (a) and with (b) conditioning on M. 

 

Notation: observed random variables and potential outcomes 

Consider the same structure as presented in Figure 1.1. Let X denote the exposure of interest, Y 

the outcome of interest, M the mediator of interest, and Z a set of covariates not affected by the 

exposure but which are assumed to be sufficient for confounding control for total, direct and 

indirect effects estimation. Let 𝑌𝑥 and 𝑀𝑥 denote respectively the potential values of the outcome 

and mediator that would have occurred had exposure X been set, possibly counter to fact, to a 

specific value x. Similarly, let 𝑌𝑥𝑚 denote the potential value of Y that would have occurred had 

X and M been set, possibly counter to fact, to x and m respectively. We use 𝑌𝑥𝑀𝑥∗  to express 

potential outcome value had the exposure X been set to x and M to 𝑀𝑥∗ . For simplicity, we will 

use 1 and 0 to represent index and reference values of exposure respectively. 
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The average total effect (TE), defined as 𝐸[𝑌1 − 𝑌0], compares exposure level 1 to 0, while 

allowing the mediator to obtain its natural value under each exposure level across the population. 

By assuming generalized consistency [10], TE can also be defined as 𝐸[𝑌1𝑀1
− 𝑌0𝑀0

].  

 

The average controlled direct effect (CDE), defined as 𝐸[𝑌1𝑚 − 𝑌0𝑚], compares exposure level 1 

to 0 while fixing the mediator to a specific level m. The CDE estimates the effect of X on Y while 

fixing M to m for every individual in the population and it can be different for different levels of 

m in the presence of X-M interaction.8,11 

 

Total effect can be decomposed into pure direct effect (PDE) and total indirect effect (TIE) as 

follows: 𝑇𝐸 = 𝐸[𝑌1,𝑀0
− 𝑌0,𝑀0

] + 𝐸[𝑌1,𝑀1
− 𝑌0,𝑀1

] = 𝐸[𝑌1,𝑀0
− 𝑌0] + 𝐸[𝑌1 − 𝑌0,𝑀1

]. The 

average PDE compares exposure level 1 to 0 while the mediator M is set to the natural value it 

would have attained under the reference level 0 of exposure (i.e., 𝑀0).  On the other hand, the 

average TIE compares mediator level M1 to M0 while setting exposure to index level 1. 

 

We will use an example that has the same structure as presented in Figure 1.1 to illustrate how 

direct and indirect effects defined under the potential outcome framework generalizes that under 

linear structural equation models. Assume X, M, and Y are continuous variables. We can express 

each variable as a function of its determinants as follows: 

 

𝑚 = 𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 휀𝑀        (1) 

𝑦 = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚 + 휀𝑌     (2) 
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∫ 𝐸(𝑌|𝑥, 𝑚, 𝑐)𝑑𝐹(𝑚|𝑥, 𝑐) 

= 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ (𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 휀𝑀) + 𝛽𝑋𝑀 ∙ 𝑥 ∙ (𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 휀𝑀) 

= 𝛽𝑌 + 𝛽𝑀𝛼𝑀 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀𝛼𝑋 ∙ 𝑥 + 𝛽𝑋𝑀𝛼𝑀 ∙ 𝑥 + (𝛽𝑋𝑀𝛼𝑋 ∙ 𝑥) ∙ 𝑥   (3) 

 

For binary exposure variable that takes values 1(index) and 0 (reference), PDE and TIE can be 

expressed in terms of regression coefficients from equation (1) and (2): 

 

𝑃𝐷𝐸 = 𝛽𝑋 + 𝜷𝑿𝑴𝛼𝑀 

𝑇𝐼𝐸 = 𝛽𝑀𝛼𝑋 + 𝜷𝑿𝑴𝛼𝑋 

 

In the absence of exposure-mediation interaction (i.e., 𝛽𝑋𝑀 = 0), direct (𝛽𝑋) and indirect (𝛽𝑀𝛼𝑋) 

effects coincide under the potential outcome framework and using the traditional SEM. Direct 

and indirect effects defined in terms of path tracing in linear SEMs can be considered a special 

case of the pathway-specific effects defined under the potential outcome framework. We will use 

“causal mediation analysis” to refer to mediation analysis under potential outcome framework. 

 

1.4   Gaps in the Literature 

The past decade has seen the flourishing of identification criteria and estimation techniques in 

causal mediation analyses. These estimation techniques are designed for the single-mediator 

setting and only a few extends the method to settings with intermediate confounding (that is, 

exposure-induced confounding of the mediator-outcome relation),28 or with multiple 
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mediators,29–31 or with time-varying exposure and mediators.32 Among these estimation 

techniques for a single-mediator setting, with some notable exceptions,33–35 relatively few 

approaches can incorporate general types of mediator and outcome variables. Despite the 

existing statistical programs and procedures, relatively few applied studies have been 

published,36,37 and even fewer applied studies that considered situations beyond the single-

mediator setting.38 Reasons may be that some of the methods impose strong assumptions that 

applied research may not support such as no intermediate confounding or multiple mediators not 

being causally related to each other after conditioning on exposure.  

 

This dissertation embraces the current advancement and aims to extend the use of causal 

mediation analyses by offering a unified framework for estimating targeted effects of interest and 

particularly in probing mediation questions in the global health and occupational health contexts. 

We begin with reviewing effect definition, identification and estimation, and providing a unified 

framework for effect estimation in the single-mediator setting (Chapter 2). Then we explore 

different estimation techniques in more complex settings involving intermediate confounding 

(Chapter 3), multiple causally ordered mediators (Chapter 4), and time-varying mediators 

(Chapter 5), based on research questions in global health and occupational health. For mediation 

analysis applied in specific contexts (Chapters 3-5), we define the targeted effects based on 

specific research questions, describe the identification criteria and estimation techniques, present 

and discuss the results. We conclude with a general discussion and some implications for future 

research.    
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1.5   Specific Aims for This Dissertation 

The specific aims and a brief statement of the objective of each chapter are listed below: 

1) To formalize and demonstrate the use of g-computation in estimating different targeted 

effects in causal mediation analysis (Chapter 2). This chapter provides a brief overview 

of causal mediation analysis under the most recent 4-way decomposition in the single-

mediator setting and illustrates the utility of (parametric) g-computation with a partially 

simulated data set.  

2) To explore the pathways from human development to individual health, that are through 

individual education or weight status (Chapter 3). This chapter involves quantifying 

education path-specific effect and body mass index path-specific effect (a scenario with 

education being an intermediate confounder) of human development, a contextual factor, 

on individual health. 

3) To investigate the mediating role of social factors and health behaviors in explaining 

health disparities in education (Chapter 4). We decompose the total effect of education on 

health into a portion involving compositional factors and a portion involving health 

behaviors only, accounting for the fact that health behaviors can be affected by these 

compositional factors even after conditioning on education.  

4) To assess both the modifying and mediating roles of leisure-time physical activity in the 

effect of occupational physical activity on acute myocardial infarction (Chapter 5). This 

chapter examines the complex interplay between these two types of physical activity on 

cardiovascular health by implementing both interaction and mediation analysis, and 

explores the mediating role of both baseline and follow-up leisure-time physical activity. 
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Chapter 2.   G-Computation Demonstration in Causal Mediation Analysis 

2.1   Abstract  

Recent work has considerably advanced the definition, identification and estimation of controlled 

direct, and natural direct and indirect effects in causal mediation analysis. Despite the various 

estimation methods and statistical routines being developed, a unified approach for effect 

estimation under different effect decomposition scenarios is still needed for epidemiologic 

research. G-computation offers such unification and has been used for total effect and joint 

controlled direct effect estimation settings, involving different types of exposure and outcome 

variables. In this study, we demonstrate the utility of parametric g-computation in estimating 

various components of the total effect, including (1) natural direct and indirect effects, (2) 

standard and stochastic controlled direct effects, and (3) reference and mediated interaction 

effects, using Monte Carlo simulations in standard statistical software. For each study subject, 

we estimated their nested potential outcomes corresponding to the (mediated) effects of an 

intervention on the exposure wherein the mediator was allowed to attain the value it would have 

under a possible counterfactual exposure intervention, under a pre-specified distribution of the 

mediator independent of any causes, or under a fixed controlled value. A final regression of the 

potential outcome on the exposure intervention variable was used to compute point estimates and 

bootstrap was used to obtain confidence intervals. Through contrasting different potential 

outcomes, this analytical framework provides an intuitive way of estimating effects under the 

recently introduced 3- and 4- way effect decomposition.  This framework can be extended to 

complex multivariable and longitudinal mediation settings. 
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2.2   Introduction 

Recent work has considerably advanced the definition, identification and estimation of different 

controlled or natural effects in causal mediation analysis. As a result, various estimation methods 

such as linear structural equation modeling, outcome and mediator regression-based methods, 

parametric g-computation, inverse-probability-weighted (IPW) fitting of marginal structural 

models (MSMs), and sequential g-estimation39,40 have been applied to mediation settings. With 

some notable exceptions,33–35 relatively few approaches can incorporate general types of 

mediator and outcome variables. The simulation-based approach introduced by Imai et al.35 and 

the regression-based approach proposed by Valeri & VanderWeele34 are increasingly popular 

approaches; the former may be unfamiliar to epidemiologists, and the latter requires different 

regressions or approximations for different mediator and outcome types. Meanwhile, g-

computation,39 as an alternative for computing marginal effects over IPW fitting of MSM,41 

holds promise to provide a unified framework for effect estimation in causal mediation analysis, 

especially given its capability in dealing with time-varying exposure and confounding.32,33 

However, a didactic demonstration of the application of g-computation in causal mediation 

analysis, reflecting recent decompositions for mediation and interaction, is lacking.  

 

In this paper, we demonstrate the utility of (parametric) g-computation in estimating various 

components of the total effect, such as (1) natural direct and indirect effects, (2) standard and 

stochastic controlled direct effects, and (3) reference and mediated interactions, using standard 

statistical software. We focus on marginal effects (standardized over covariates). The current 

approach extends the previous work on g-computation demonstration for total effect41 and the 

gformula package (mediation option) in Stata33 by showing the actual steps in estimation and 
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incorporating estimation for various component effects under 2-, 3- and 4-way effect 

decomposition.42,43 The paper is organized as follows: we will first review the definition and 

identification criteria for different effects in mediation context. Then we will review the g-

computation algorithm and introduce steps for mediation analysis. After an illustrative example 

using a partially simulated data set, we will discuss the strengths and limitations of g-

computation and its relation to other existing estimation procedures. Readers familiar with the 

background material on mediation analysis under the potential outcomes framework can go 

directly to g-computation steps section. 

 

2.3   Methods 

2.3.1   Notation and definitions 

Let X denote the exposure of interest, Y the outcome of interest, M the mediator of interest, and Z 

a set of covariates not affected by the exposure but which are assumed to be sufficient for 

confounding control for total, direct and indirect effects estimation. Throughout, we assumed X 

preceded M, which preceded Y. Let 𝑌𝑥 and 𝑀𝑥 denote respectively the potential values of the 

outcome and mediator that would have occurred had exposure X been set, possibly counter to 

fact, to a specific value x. Similarly, let 𝑌𝑥𝑚 denote the potential value of Y that would have 

occurred had X and M been set, possibly counter to fact, to x and m respectively. We use 𝑌𝑥𝑀𝑥∗  to 

express potential outcome value had the exposure X been set to x and M to 𝑀𝑥∗ . Let x (index) and 

x* (reference) denote two values of the exposure we wish to compare, and m (index) and m* 

(reference) denote two controlled values of the mediator we wish to compare. 
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Total effect (TE) compares exposure level x to x*, while allowing the mediator to obtain its 

natural value under each exposure level. Thus, by assuming generalized consistency,44 TE can 

also be defined as E[𝑌𝑥𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ]. TE can be decomposed into different types of component 

effects. There are two-way, three-way, and four-way decompositions of the total effect as 

presented in Table 2.1.8,11,42,43 The counterfactual definitions are listed in Table 2.2 (left column). 

The choice of effect decomposition should be guided by substantive research questions (Table 

2.3). 

 

There are four types of “direct” effects. The standard controlled direct effect (CDE) compares 

exposure level x to x* while fixing the mediator to a specific level. The CDE estimates the effect 

of X on Y while fixing M to m for every individual in the population and it can be different for 

different levels of m.8,11 The stochastic CDE (CDEsto) compares exposure level x to x* while 

randomizing the mediator to a pre-specified distribution M’. Accordingly, the stochastic CDE 

subsumes both the standard CDE and the stochastic mediation contrast37 in that the standard 

CDE corresponds to M’ being a constant m for the total population (i.e., full intervention) while 

the stochastic mediation contrast corresponds to M’ being a constant for a subset of the 

population and being the observed distribution for the rest (i.e., partial intervention).  

 

The average pure direct effect (PDE) compares exposure level x to x* while the mediator M is set 

to the natural value it would have attained under the reference level x* of exposure (i.e., 𝑀𝑥∗). 

Accordingly, the average total direct effect (TDE) differs from PDE in that the mediator M is set 

to the natural value it would have attained under the index level x of exposure (i.e., 𝑀𝑥). Direct 
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effects are relative to the mediator M of interest, that is, they are effects through alternative 

pathways other than through M.  

 

The average pure indirect effect (PIE) compares mediator level Mx to Mx* while setting exposure 

to reference level x*. The average total indirect effect (TIE) differs from the PIE in that the 

exposure is set to index level x.  

 

Reference interaction effect (RIE) and mediated interaction effect (MIE) capture the effect of X 

on Y due to interaction only and the effect of X on Y due to both interaction and mediation 

respectively.43 RIE and MIE are sometimes combined to reflect the effect of X on Y due to 

overall interaction and termed “portion attributable to interaction” (PAI).43 
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Table 2.1 Summary of effect decomposition in causal mediation analysisa 

N-way 

decomposition  Counterfactual definition (individual level) 

2-way TEb   = PDE + TIE = (𝑌𝑥𝑀𝑥∗ − 𝑌𝑥∗𝑀𝑥∗ ) + (𝑌𝑥𝑀𝑥
− 𝑌𝑥𝑀𝑥∗ ) 

= TDE + PIE = (𝑌𝑥𝑀𝑥
− 𝑌𝑥∗𝑀𝑥

) + (𝑌𝑥∗𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ) 

= CDE + PE = (𝑌𝑥𝑚 − 𝑌𝑥∗𝑚) + [(𝑌𝑥 − 𝑌𝑥∗) − (𝑌𝑥𝑚 − 𝑌𝑥∗𝑚)] 

3-way TE   = PDE + MIE + PIE = (𝑌𝑥𝑀𝑥∗ − 𝑌𝑥∗𝑀𝑥∗ ) + (𝑌𝑥𝑀𝑥
− 𝑌𝑥𝑀𝑥∗ − 𝑌𝑥∗𝑀𝑥

+ 𝑌𝑥∗𝑀𝑥∗ ) + (𝑌𝑥∗𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ) 

= (𝑌𝑥𝑀𝑥∗ − 𝑌𝑥∗𝑀𝑥∗ ) + (𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥 − 𝑀𝑥∗) + (𝑌𝑥∗𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ) 

= CDE + PAI + PIE = (𝑌𝑥𝑚 − 𝑌𝑥∗𝑚) + (𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥) + (𝑌𝑥∗𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ) 

4-way TE = CDE + RIE  

+ MIE + PIE 

= (𝑌𝑥𝑚 − 𝑌𝑥∗𝑚) + (𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥∗) 

+(𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥 − 𝑀𝑥∗) + (𝑌𝑥∗𝑀𝑥
− 𝑌𝑥∗𝑀𝑥∗ ) 

a Table adapted from VanderWeele (2014) Tables 5-6.43  
b TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: 

controlled direct effect (standard), PE: portion eliminated, MIE: mediated interaction effect (referred to as “INTmed” by 

VanderWeele), PAI: portion attributable to interaction, RIE: reference interaction effect (referred to as “INTref” by VanderWeele). 
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Table 2.2 Definition and empirical analog of total effect and component effectsa 

Effect Counterfactual definition Empirical analogb  

TEc E[𝑌𝑥 − 𝑌𝑥∗]d ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛)𝑃(𝑚|𝑥, 𝒛)𝑚𝑧 − 𝐸(𝑌|𝑥∗, 𝑚, 𝒛)𝑃(𝑚|𝑥∗, 𝒛)}𝑃(𝒛) e 

PDE E[𝑌𝑥𝑀𝑥∗ − 𝑌𝑥∗𝑀𝑥∗ ]  ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛) − (𝑌|𝑥∗, 𝑚, 𝒛)}𝑃(𝑚|𝑥∗, 𝒛)𝑃(𝒛)𝑚𝑧
f  

TIE E[𝑌𝑥𝑀𝑥
− 𝑌𝑥𝑀𝑥∗ ] ∑ ∑ 𝐸(𝑌|𝑥, 𝑚, 𝒛){𝑃(𝑚|𝑥, 𝒛)𝑚𝑧 − 𝑃(𝑚|𝑥∗, 𝒛)}𝑃(𝒛)  

TDE E[𝑌𝑥𝑀𝑥
− 𝑌𝑥∗𝑀𝑥

] ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛) − (𝑌|𝑥∗, 𝑚, 𝒛)}𝑃(𝑚|𝑥, 𝒛)𝑃(𝒛)𝑚𝑧   
PIE E[𝑌𝑥∗𝑀𝑥

− 𝑌𝑥∗𝑀𝑥∗ ] ∑ ∑ 𝐸(𝑌|𝑥∗, 𝑚, 𝒛){𝑃(𝑚|𝑥, 𝒛)𝑚𝑧 − 𝑃(𝑚|𝑥∗, 𝒛)}𝑃(𝒛)f 

CDEM=m* E[𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚∗] ∑ {𝐸(𝑌|𝑥, 𝑚∗, 𝒛)𝑧 − 𝐸(𝑌|𝑥∗, 𝑚∗, 𝒛)}𝑃(𝒛)  
CDEsto E[𝑌𝑥𝑀′ − 𝑌𝑥∗𝑀′] ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛)𝑚𝑧 − 𝐸(𝑌|𝑥∗, 𝑚, 𝒛)}𝑃(𝑚′)𝑃(𝒛)  

RIE E[(𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥∗)] ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛) − 𝐸(𝑌|𝑥, 𝑚∗, 𝒛) − 𝐸(𝑌|𝑥∗, 𝑚, 𝒛) +𝑚𝑧

𝐸(𝑌|𝑥∗, 𝑚∗, 𝒛)} 𝑃(𝑚|𝑥∗, 𝑧)𝑃(𝒛)  
MIE E[(𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 

+𝑌𝑥∗𝑚∗)(𝑀𝑥 − 𝑀𝑥∗)] 
∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛) − 𝐸(𝑌|𝑥, 𝑚∗, 𝒛) − 𝐸(𝑌|𝑥∗, 𝑚, 𝒛) +𝑚𝑧

𝐸(𝑌|𝑥∗, 𝑚∗, 𝒛)} {𝑃(𝑚|𝑥, 𝒛) − 𝑃(𝑚|𝑥∗, 𝒛)}𝑃(𝒛)  

PAI E[(𝑌𝑥𝑚 − 𝑌𝑥𝑚∗ − 𝑌𝑥∗𝑚 + 𝑌𝑥∗𝑚∗)(𝑀𝑥)] ∑ ∑ {𝐸(𝑌|𝑥, 𝑚, 𝒛) − 𝐸(𝑌|𝑥, 𝑚∗, 𝒛) − 𝐸(𝑌|𝑥∗, 𝑚, 𝒛) +𝑚𝑧

𝐸(𝑌|𝑥∗, 𝑚∗, 𝒛)} 𝑃(𝑚|𝑥, 𝑧)𝑃(𝒛)  
a Y: outcome, X: exposure, M: mediator, Z: covariates; x and m represent the index values whereas x* and m* represent the reference 

values. 
b Under the stable unit treatment value assumption, consistency, conditional exchangeability, positivity,  different types of effect can be identified 

and estimated using the empirical analogs We use 𝐸(𝑌|𝑥, 𝑚, 𝒛) as a shorthand for 𝐸(𝑌|𝑋 = 𝑥, 𝑀 = 𝑚, 𝒁 = 𝒛), and 𝑃(𝑚|𝑥, 𝒛) as a 

shorthand for 𝑃(𝑀 = 𝑚|𝑋 = 𝑥, 𝒁 = 𝒛). 
c TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: 

controlled direct effect (standard), CDEsto: stochastic controlled direct effect, RIE: reference interaction effect (referred to as 

“INTref” by VanderWeele), MIE: mediated interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to 

interaction. 
d Effects are defined as risk differences here but other measures of effects are possible (risk ratio, odds ratio etc.). 

e For continuous M and Z, summations are replaced by integrals and the probability functions by appropriate density functions 
f These two expressions are known as the mediation formula.45 
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Table 2.3 Potential research questions related to various effects under effect decomposition. 

Effect Research question 

TEa Overall, to what extent does X cause Y? 

PDE In particular, to what extent does X cause Y via pathways other than through M? 

TIE In particular, to what extent does X cause Y via M (i.e. due to X affecting M and subsequently, M 

affecting Y) and the possible interaction between X and M in affecting Y? In other words, the effect of 

exposure that “would be prevented if the exposure did not cause the mediator” (i.e. the portion of the 

effect for which mediation is “necessary”) [47,48].  

TDE In particular, to what extent does X cause Y via pathways other than through M, allowing M to boost 

up or tune down such effect at the same time? 

PIE In particular, to what extent does X cause Y via M only (i.e. due to X affecting M and subsequently, M 

affecting Y), not accounting for the possible interaction between X and M? In other words, the effect 

that the exposure would have had if “its only action were to cause the mediator” (i.e. the portion of the 

effect for which mediation is “sufficient”) [47,48]. 

CDE What would be the effect of X on Y, when fixing M at a specific value for everyone in the population? 

CDEsto What would be the effect of X on Y, when allowing M to attain certain controlled distribution (via 

intervention) in the population? 

RIE What would be the effect of X on Y that is due to interaction between X and M only? 

MIE What would be the effect of X on Y that is due to both interaction between X and M and the fact that X 

causes M? 

PAI What would be the effect of X on Y that is due to interaction between X and M, regardless whether X 

causes M? 
a TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect 

effect, CDE: controlled direct effect (standard), CDEsto: stochastic controlled direct effect, RIE: reference 

interaction effect (referred to as “INTref” by VanderWeele), MIE: mediated interaction effect (referred to as 

“INTmed” by VanderWeele), PAI: portion attributable to interaction. 
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2.3.2   Assumptions for identification and estimation 

To identify and estimate the effect decomposition quantities, we invoke the stable unit treatment 

value assumption (SUTVA),39,46 and assumptions of consistency,47 conditional exchangeability 

(no-uncontrolled-confounding), and positivity.48 The conditional exchangeability assumption for 

mediation analysis includes the following:11,28 (i) the effect of the exposure X on the outcome Y 

is unconfounded conditional on a set Z of measured covariates; (ii) the effect of the mediator M 

on Y is unconfounded conditional on both X and Z; (iii) the effect of X on M is unconfounded 

conditional on Z. For identifying standard CDE, (i) and (ii) are sufficient but for stochastic CDE, 

all three assumptions are needed. Successful randomization of the exposure will support the 

assumption of no uncontrolled confounding of the exposure-mediator and exposure-outcome 

relations but will not guarantee the absence of uncontrolled confounding of the mediator-

outcome relation.20 In the presence of possible violation of this assumption, sensitivity analysis 

are needed.35,49 To identify natural effects, a fourth conditional exchangeability assumption is 

needed: (iv) none of the mediator-outcome confounders are affected by exposure. Assumption 

(iv) is known as the cross-world independence assumption50 because it requires that conditional 

on Z, the mediator that would have been observed in a world under X=x* is independent of the 

outcome that would have been observed in a world under X=x (i.e. 𝑀𝑥∗  ⫫  𝑌𝑥𝑀𝑥
). This 

assumption is problematic because these two variables 𝑀𝑥∗  and 𝑌𝑥𝑀𝑥
 can never be observed 

together.28,51 Recent research proposed identification criteria52 and effect decomposition28 aimed 

at circumventing the violation of this fourth assumption. However, this issue is beyond the scope 

of this article. In addition, we assume no selection bias and measurement error. Under the above 

assumptions, different types of effect can be nonparametrically identified and estimated using the 
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empirical analogs listed in Table 2.2 (right column). For the current paper, we adopted a fully 

parametric approach, i.e., positing parametric (regression) models for each expectation in these 

empirical analogs to estimate their parameters from the observed data and then integrating over 

the covariate and/or mediator distribution.53 We further assumed no model misspecification. 

 

2.3.3   G-computation  

G-computation algorithm was first introduced by Robins in 198639 to estimate the causal effect 

of a time-varying exposure in the presence of time-varying confounders that are affected by 

exposure, a scenario where traditional regression-based methods would fail. In recent years, 

several didactic examples were given in the literature,41,54,55 promoting the use of this causal 

analytic technique. Increasingly, more studies have applied this methodology in estimating the 

effect of dynamic treatment regimes56,57 or projecting the impact of hypothetical interventions.58–

62 In a simple setting with a single-time exposure and an outcome, g-computation can be seen as 

the generalization of standardization. Accessible examples of g-computation with detailed 

discussion of its strengths and limitations can be found elsewhere.33,40,41,59  

 

2.3.4   G-computation steps in causal mediation analysis 

The g-computation steps have been summarized in Figure 2.1. Step 1 involves obtaining the 

parameters of the assumed covariate distributions, and fitting the assumed models for the 

mediator (M model) and the outcome (Y model) using observed data. The key covariates needed 

for the M model are confounders of the exposure-mediator relation. The key covariates needed 

for the Y model are confounders of the exposure-outcome relation and mediator-outcome 

relation. To avoid simulating the covariate set Z, one can replace steps 1a and 2a with resampling 
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(Figure 2.1). Step 2 entails simulating the covariate set Z (step 2a), an exposure intervention 

variable X (step 2b), and the potential mediator (step 2c), and outcome Y (step 2d) sequentially 

for J (J can be as large as computationally feasible) copies of the original sample. The simulation 

repetition done here is to reduce Monte Carlo simulation error. The intervention variable X 

should be distinguished from the observed exposure variable as the intervention X and the 

simulated covariates are marginally independent of each other. In step 2c, we simulate each 

potential mediator as a function of the simulated covariates and intervention X from the previous 

steps (2a and 2b), using the parameters obtained from the M model in step 1b. Similarly, in step 

2d, we simulate a potential outcome variable that corresponds to each specific type of effect as a 

function of the simulated covariates, exposure intervention, and mediator from the previous 

steps, using the parameters obtained from the Y model in step 1c. Step 3 involves regressing each 

different potential outcome variable on the intervention variable X to obtain estimates of each 

marginal effect using the pooled data with J copies of the original sample. Repeat step 2-3 on K 

(usually 200 or more) bootstrapped samples taken at random with replacement from the original 

data. The Wald type 95% confidence interval (CI) was calculated as: point estimate ± 1.96  SD, 

where SD was the standard deviation of the K resultant point estimates from the final regression 

in the third step. 
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Figure 2.1 Steps for G-computation marginal structural model (G-comp MSM) in causal mediation analysis. Let Z denote a set of 

covariates, X denote exposure, M denote mediator, and Y denote outcome of interest. Variables in step 1 are observed variables 

whereas var 
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2.4   Illustration 

We used a directed acyclic graph (DAG)24 to represent the data generating process for the 

illustration example (Figure 2.2). We used the India sample from the World Health Survey 

(WHS).63 We used all the observed covariates to simulate exposure smoking, mediator body 

mass index (BMI, 5-unit increase), and outcome composite health score (0-100) sequentially 

according to the data generating process shown in Figure 2.2. Covariates for confounding control 

included age, gender, education, urbanicity, and depression. Detailed description for generating 

this partially simulated data set can be found in the Appendix. In the illustrative example, we will 

focus on the interpretations for PDE and TIE from the most common decomposition used in 

epidemiology and the interpretations for component effects based on the recently introduced 4-

way decomposition. Since smoking was binary, we used 1 to represent “yes” and 0 “no”. A 

second illustrative example using binary exposure, mediator and outcome was included in the 

Appendix. All analyses were done using SAS version 9.4 (SAS Institute Inc., Cary, NC).  

 

 

 

Figure 2.2 DAG representing the data generating process for the first illustrative example. X, M, 

and Y represent the exposure smoking, mediator body mass index, and outcome composite health 

score. Z represents a set of exposure-mediator, exposure-outcome and mediator-outcome 

confounders that includes age, gender, education, urbanicity, and depression. 
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To estimate different component effects of smoking on health, we implemented the following 

steps: 

Step 1. Obtaining empirical parameters 

(1a) We obtained the marginal expectation of each variable except the outcome, and the standard 

deviation for the continuous age variable.  

(1b) The mediator BMI was regressed on smoking, age, gender, education, urbanicity and 

depression to obtain the regression coefficients and root mean square error (RMSE) for the linear 

M model.  

(1c) The outcome, overall health score, was then regressed on smoking, BMI, smoking × BMI, 

age, gender, education and depression to obtain the regression coefficients and RMSE for the 

linear Y model.  

 

Step 2. Simulating the potential mediators and outcomes 

(2a) We created 1000 copies of the original sample and simulated age, gender, education, 

urbanicity, and depression that followed the same distribution as the observed variables.  

(2b) We simulated a smoking intervention variable (X) that followed the observed smoking 

prevalence but was marginally independent of all simulated covariates. 

(2c) We simulated each potential BMI variable as a function of the smoking intervention, age, 

gender, education, urbanicity and depression (Table 2.4, simulating M), using the regression 

coefficients and RMSE from the M model fit in (1b).  

(2d) We simulated a potential health score variable for each type of effect as a function of the 

smoking intervention, potential BMI from (2c), product term between smoking intervention and 
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potential BMI, age, gender, education and depression (Table 2.4, simulating Y), using the 

regression coefficients and RMSE from the Y model fit in (1c).  

 

We will use PDE and TIE as examples to explain steps (2c) and (2d) further. For binary 

exposure, recall that PDE compares X=1 to X=0 while setting the mediator M to M0 (natural 

value under reference exposure). In (2c), we simulated the potential BMI variable (M0) as a 

function of non-smoking (setting X=0 in the equation for simulating M) and other determinants 

of BMI. Next, we simulated the potential health score variable (YPDE) as a function of the 

smoking intervention variable (X), potential BMI variable (M0) from (2c), and other determinants 

of health in (2d). On the other hand, TIE compares mediator level M1 to M0 while setting 

exposure to index level 1. In (2c), we simulated the potential BMI variable (Mx) as a function of 

smoking intervention (setting X=x in the equation for simulating M) and other determinants of 

BMI. Then, we simulated the potential health score variable (YTIE) as a function of smoking 

(setting X=1 in the equation for simulating Y), potential BMI variable (Mx) from (2c), and other 

determinants of health in (2d). In this way, the potential BMI variable (Mx) transmitted the effect 

of smoking intervention to health. 

 

Step 3. Fitting final marginal structural models (MSMs)  

We regressed each different potential health score variable on the smoking intervention to obtain 

point estimates of each marginal effect using the pooled sample. We repeated step 2-3 on 200 

bootstrapped samples of the same size taken at random with replacement from the original data 

to obtain Wald type 95% CIs.  
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Table 2.4 Equations used to simulate potential mediators and outcomes in step 2 of the G-computation marginal structural model for 

the illustrative example.a 

M model and Y model from step 1b: 

𝐸(𝑀|𝑥, 𝒛; 𝛼) = 𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 𝛼𝒁 ∙ 𝒛 

𝐸(𝑌|𝑥, 𝑚, 𝒛; 𝛽) = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚 + 𝛽𝑍 ∙ 𝒛 

Effect Simulating Mc Simulating Yc 

TEd 𝑀𝑥 = 𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀
e YTE = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚𝑥 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌

e 

PDE 𝑀0 = 𝛼𝑀 + 𝛼𝑋 ∙ 0 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YPDE = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚0 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚0 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
TIE 𝑀𝑥 = 𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YTIE = 𝛽𝑌 + 𝛽𝑋 ∙ 1 + 𝛽𝑀 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 1 ∙ 𝑚𝑥 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
TDE 𝑀1 = 𝛼𝑀 + 𝛼𝑋 ∙ 1 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YTDE = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚1 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚1 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
PIE 𝑀𝑥 = 𝛼𝑀 + 𝛼𝑋 ∙ 𝑥 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YPIE = 𝛽𝑌 + 𝛽𝑋 ∙ 0 + 𝛽𝑀 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 0 ∙ 𝑚𝑥 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
CDEM=m*

 𝑚∗ = 4.8f YCDE = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚∗ + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚∗ + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
CDEsto 𝑀′ = 𝐸(𝑀) + 휀𝑀 YCDEsto = 𝛽𝑌 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝑀 ∙ 𝑚′ + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚′ + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
RIE 𝑀0 = 𝛼𝑀 + 𝛼𝑋 ∙ 0 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YRIE

g = 𝛽𝑌 + 0 ∙ 𝑥 + 0 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ (𝑚0 − 𝑚∗) + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 
MIE 𝑀𝑚𝑒𝑑

h = 𝛼𝑋 ∙ 𝑥 + 휀𝑀 YMIE
g = 𝛽𝑌 + 0 ∙ 𝑥 + 0 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ 𝑚𝑚𝑒𝑑 + 𝛽𝑍 ∙ 𝐳 + 휀𝑌 

PAI 𝑀1 = 𝛼𝑀 + 𝛼𝑋 ∙ 1 + 𝛼𝒁 ∙ 𝐳 + 휀𝑀 YPAI
g = 𝛽𝑌 + 0 ∙ 𝑥 + 0 ∙ 𝑚𝑥 + 𝛽𝑋𝑀 ∙ 𝑥 ∙ (𝑚1 − 𝑚∗) + 𝛽𝑍 ∙ 𝐳 + 휀𝒀 

a Exposure: smoking (1=yes, 0=no); mediator: body mass index (5-unit increase); outcome: composite health score; covariates: age, 

gender, education, urbanicity, depression. 
b Variables used to fit the M model and Y model in step 1 were observed variables. 
c Lower case “𝑥”, “𝐳”, and “𝑚𝑥” represented specific values of the random variables intervention “X”, simulated covariate set “Z”, and 

potential mediator “𝑀𝑥” respectively and the values can differ for different individuals. Intervention “X” was independent of the 

simulated covariate set “Z”. 

d TE: total effect, PDE: pure direct effect, TIE: total indirect effect, TDE: total direct effect, PIE: pure indirect effect, CDE: controlled 

direct effect (standard), CDEsto: stochastic controlled direct effect, RIE: reference interaction effect (referred to as “INTref” by 

VanderWeele), MIE: mediated interaction effect (referred to as “INTmed” by VanderWeele), PAI: portion attributable to interaction.  
e The root mean square error (RMSE) from the M model and the Y model in step 1 respectively. 
f The mediator was fixed at 4.8 (BMI=24).  
g To simulate YRIE, YMIE, and YPAI, we assigned zero for the coefficients for random variables intervention “X” and the potential 

mediator “𝑀𝑥” but not the coefficients for the product term between these two variables to mimic “de-activating” the direct and 

indirect path from X to Y, leaving only a specific type of “interaction” between X and M to transmit the effect of X to Y. 
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h The mediated interaction captures the interaction between X and a version of M that is due to X only. Thus, to simulate 𝑀𝑚𝑒𝑑, the 

mediator M responds to no other determinants of M but X.  
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Results from the illustrative example were presented in Table 2.5. This example is for 

illustration purpose and thus the results were not intended for quotation. Estimates 

followed the effect decompositions as described in Table 2.1. Smoking had an overall 

negative impact on health (TE: –0.96, 95% CI: –1.79, –0.13), but the majority of this 

impact was through pathways other than changing BMI (PDE: –0.70, 95% CI: –1.54, 

0.14). When BMI was fixed at 24 for everyone, smoking did not appear to affect health 

directly (CDE: 0.27, 95% CI: –0.95, 1.50). In a hypothetical intervention where BMI was 

no longer affected by smoking and other covariates, smoking still had a negative impact 

on health (CDEsto: –0.81, 95% CI: –1.63, 0.02). The impact of smoking on health that 

was due to interaction with BMI (RIE: –0.99, 95% CI: –1.71, –0.26) was much larger 

than the part that was due to both mediation and interaction (MIE: –0.14, 95% CI: –0.27, 

–0.01). The presence of such smoking-BMI interaction contributed to the difference seen 

when comparing CDE to PDE and CDEsto.  

 

  



 

 
30 

 

 

Table 2.5 Effect estimate (95% Confidence Interval) for the illustrative examplea using 

g-computation of marginal structure modelsb (N=5326). 

Effect b (95% CI) 

Total Effect (TE) -0.96 (-1.79, -0.13) 

Pure Direct Effect (PDE) -0.70 (-1.54, 0.14) 

Total Indirect Effect (TIE) -0.26 (-0.42, -0.10) 

Total Direct Effect (TDE) -0.87 (-1.69, -0.04) 

Pure Indirect Effect (PIE) -0.12 (-0.22, -0.02) 

Controlled Direct Effectc (CDE) 0.27 (-0.95, 1.50) 

Stochastic Controlled Direct Effectd 

(CDEsto) -0.81 (-1.63, 0.02) 

Reference Interaction Effect (RIE) -0.99 (-1.71, -0.26) 

Mediated Interaction Effect (MIE) -0.14 (-0.27, -0.01) 

Portion Attributable to Interaction (PAI) -1.14 (-1.96, -0.32) 
a Exposure: smoking (1=yes, 0=no); mediator: body mass index (BMI, 5-unit increase); 

outcome: composite health score; covariates: age, gender, education, urbanicity, 

depression. 

b Effect estimates were based on 1000 simulation replicates and confidence intervals 

were based on 200 bootstrapped samples paired with 200 simulation replicates. 
c The mediator was fixed at 4.8 (BMI=24) for every individual in the sample. 
d The mediator was allowed to obtain a certain distribution of M’ where the mediator 

has the mean (mean BMI=20.7) and the variability of the observed mediator but was 

independent of its determinants (exposure and covariates). 
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2.5   Discussion 

In this article we demonstrated the utility of parametric g-computation in estimating 

various marginal effects under different and detailed effect decompositions as well as 

stochastic controlled direct effects, using Monte Carlo simulations in standard statistical 

software. To our knowledge, this is the first use of g-computation for 3- and 4- way 

decomposition of effects recently introduced by VanderWeele.43 Our approach yielded 

similar results as those obtained from VanderWeele’s approach43 (appendix Table A 2.3). 

However, marginal (standardized) effect measures obtained via g-computation approach 

are not conceptually equal to the conditional (on covariates) effect measures obtained 

from the latter approach and results from the two approaches may differ.64 Alternative 

imputation65 or simulation35 based methods are also available for common mediation 

parameters. 

 

G-computation has several strengths. It uses models for the outcome and the mediator, 

which produces more efficient estimates (with narrower confidence intervals) than the 

weighting approaches that use models for the mediator and/or the exposure.65,66 It can be 

used to estimate various types of effect of interest, incorporate nonlinearities and 

exposure-covariate and mediator-covariate interactions, and deal with general types of 

outcome, exposure and mediator. This simulation-based approach can be used to estimate 

various effects on both difference and ratio scales.  

 

However, g-computation is not without its limitations. The parametric g-computation 

method applied in mediation settings, like the general g-formula, relies on a correctly 
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specified model for the outcome. For natural effects specifically, it additionally requires 

that the model for the mediator is correctly specified, as with other approaches published 

previously.66–70 When such parametric distribution for M is in doubt, a distribution-free 

approach with regard to the mediator71 can be used. Alternative approaches are to use 

non-parametric g-computation method that combines bootstrapping and simulation as 

suggested in Imai et al.35 or implement a doubly robust estimator that requires at least one 

of the model for exposure and mediator being correctly specified.65 In addition, the 

computation time depends on the sample size and the number of covariates. As these two 

numbers increase, a random subset of the sample can be selected to perform the Monte 

Carlo simulation.33  

 

G-computation in mediation analysis, especially parametric g-formula implemented via 

Monte Carlo simulation, can be seen as a special application of the longitudinal time-

varying g-computation formula.32,39 In this case, both post-baseline exposure and 

confounders that are affected by exposure can be seen as mediators. The steps are similar 

in simulating the baseline confounders and exposure intervention first and then the 

consequences of the exposure following the data structure represented in a specific DAG, 

though additional assumptions are needed in the mediation setting. G-computation as a 

unifying and flexible framework will gain popularity with the increase in applications of 

mediation analysis to answer mechanistic questions about either contextual or individual 

level causes.36–38  
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By showing the steps for g-computation in estimating different quantities of interest in 

causal mediation analysis, we hope to encourage a wider audience of applied researchers 

to implement this framework, using software packages of their choice. Given the growing 

interest in adopting and applying complex systems approaches to examine complex 

disease etiologies, this method, especially with its simulation component, will be an 

important intermediate step towards this journey.72 
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2.6   Appendix 

Description of the partially simulated data set 

The simulated data set is a combination of variables from the India sample in the World Health 

Survey and simulated variables using the Monte Carlo method. The World Health Survey (WHS) 

is a cross-sectional survey administered by the World Health Organization (WHO) in 70 

countries between 2002 and 2004.63 For the current illustration, we used data from the India 

sample and restricted to participants who were at least 25 years old and with complete data on 

the exposure, mediator, outcome, and relevant covariates. We also excluded participants with 

extreme height and weight using the same method published previously.73 The resulting sample 

size is 5326 for the first example and is 6527 for the second example. We used all the observed 

covariates as they were from the original data to simulate exposure X, mediator M, and outcome 

Y sequentially according to the data generating process shown in Figure 2.2 in the main 

manuscript, using the rand function in SAS. All variables used for each example and the data 

generating protocol are listed in Table A 2.1. The magnitude between variables was taken from 

the real data (the empirical estimates based on regression). The equations used to generate X, M, 

and Y with the realized coefficients were presented in the lower part of Table A 2.1. Despite the 

cross-sectional nature of the observed dataset, we imposed causal direction between variables X, 

M, and Y in our partially simulated dataset via simulation.  
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Variables and simulation protocol for illustrative examples 

 

Table A 2.1 Variables and simulation protocol for exposure X, mediator M, and outcome Y in two illustrative examples. 

Variable Example 1: binary X, continuous M and Y (N=5326) Example 2: binary X, M and Y (N=6527) 

X Ever smoking (yes versus no), P(smoking) = 0.37 Urbanicity (urban versus rural), P(urban) = 0.30  

M Body mass index (BMI, 5-unit increase), mean = 

4.15 (SD = 0.67) 

Overweight (yes: BMI>=25 versus no BMI<25), 

P(overweight) = 0.10 

Y Composite health score (0-100), mean = 76.03 (SD = 

15.06) 

Ever diagnosed with diabetes (yes versus no), P(diabetes) 

= 0.037 

X-M 

confounders Urbanicity (urban versus rural) , P(urban) = 0.29 None 

X-Y confounders None None 

M-Y 

confounders Depression (yes versus no), P(depression) = 0.11 None 

X-M, X-Y, and 

M-Y 

confounders 

Age (continuous, re-centered to 25 years,10-year 

increase), mean = 1.83 (SD = 1.38) 

Gender (female versus male), P(female) = 0.50 

Education (primary school completed and beyond 

versus less than primary school), P(primplus) = 0.48 

Age (continuous, re-centered to 25 years,10-year 

increase), mean = 1.79 (SD = 1.37) 

Gender (female versus male), P(female) = 0.51 

Education (primary school completed and beyond versus 

less than primary school), P(primplus) = 0.48 

Equation for X X ~ B (1, 1/ (1 + exp(−(0.71 + 0.084 ∙ age −
2.17 ∙ gender − 0.25 ∙ urbanicity − 0.80 ∙
education))))  

X ~ B (1, 0.10 − 0.015 ∙ age + 0.082 ∙ gender + 0.27 ∙
education)  

Equation for M M ~ N (3.93 − 0.090 ∙ 𝑥 + 0.051 ∙ age − 0.11 ∙
gender + 0.21 ∙ urbanicity + 0.12 ∙ education −
0.078 ∙ depression, 0.65)  

M ~ B (1, 0.016 + 0.076 ∙ 𝑥 + 0.013 ∙ age + 0.037 ∙
gender + 0.047 ∙ education)  

Equation for Y Y ~ N (79.11 − 7.52 ∙ 𝑥 + 1.23 ∙ 𝑚 + 1.62 ∙ 𝑥𝑚 −
3.80 ∙ age − 2.90 ∙ gender + 3.11 ∙ education −
8.01 ∙ depression, 13.51)  

Y ~ B (1, 0.016 + 0.028 ∙ 𝑥 + 0.022 ∙ 𝑚 + 0.058 ∙ 𝑥𝑚 +
0.010 ∙ age − 0.013 ∙ gender + 0.011 ∙ education)  
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Detailed description for g-computation steps for the second illustrative example 

To estimate different component effects of smoking on health, we implemented the 

following steps: 

Step 1. Obtaining empirical parameters 

(1a) We obtained the marginal expectation of each variable except the outcome, and the 

standard deviation for the continuous age variable.  

(1b) The mediator overweight indicator was regressed on urbanicity, age, gender and 

education to obtain the regression coefficients for the linear risk M model.  

(1c) The outcome, diabetes indicator, was then regressed on urbanicity, overweight 

indicator, urbanicity× overweight indicator, age, gender and education to obtain the 

regression coefficients for the linear risk Y model.  

 

Step 2. Simulating the potential mediators and outcomes 

(2a) We created 1000 copies of the original sample and simulated age, gender and 

education that followed the same distribution as the observed variables.  

(2b) We simulated an urbanicity intervention variable (X) that followed the observed 

prevalence of living in urban area but was marginally independent of all simulated 

covariates. 

(2c) We simulated each potential overweight indicator as a function of the urbanicity 

intervention, age, gender and education, using the regression coefficients from the M 

model fit in (1b).  

(2d) We simulated a potential diabetes indicator for each type of effect as a function of 

the urbanicity intervention, potential overweight indicator from (2c), product term 
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between urbanicity intervention and potential overweight indicator, age, gender and 

education, using the regression coefficients from the Y model fit in (1c).  

 

Step 3. Fitting final marginal structural models (MSMs)  

We regressed each different potential diabetes indicator on the urbanicity intervention to 

obtain point estimates of each marginal effect using the pooled sample. We repeated step 

2-3 on 200 bootstrapped samples of the same size taken at random with replacement from 

the original data to obtain Wald type 95% CIs. 

 

Results from the second illustrative example 

Table A 2.2 Effect estimate (95% Confidence Interval) for the second illustrative 

examplea using g-computation of marginal structure modelsb (N=6527). 

Effect RD (95% CI) 

Total Effect (TE) -0.039 (-1.788, -0.130) 

Pure Direct Effect (PDE) -0.033 (-1.536, 0.135) 

Total Indirect Effect (TIE) -0.006 (-0.415, -0.098) 

Total Direct Effect (TDE) -0.037 (-1.690, -0.041) 

Pure Indirect Effect (PIE) -0.002 (-0.220, -0.023) 

Controlled Direct Effectc (CDE) -0.028 (-0.953, 1.502) 

Stochastic Controlled Direct Effectd 

(CDEsto) -0.034 (-1.633, 0.021) 

Reference Interaction Effect (RIE) -0.005 (-1.708, -0.262) 

Mediated Interaction Effect (MIE) -0.005 (-0.270, -0.009) 

Portion Attributable to Interaction (PAI) -0.009 (-1.960, -0.317) 
a Exposure: urbanicity (1=urban, 0=rural); mediator: overweight (1=yes, 0=no); 

outcome: diabetes (1=yes, 0=no); covariates: age, gender, education. 

b Effect estimates were based on 1000 simulation replicates and confidence intervals 

were based on 200 bootstrapped samples paired with 200 simulation replicates. 
c The mediator is fixed at 0 (non-overweight) for every individual in the sample. 
d Allow the mediator to obtain a certain distribution of M’ where the mediator has 

prevalence of the observed mediator but is independent of its determinants (exposure 

and covariates). 
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Results from the first illustrative example using the approach by VanderWeele 

(2014)43 

Table A 2.3 Effect estimate (95% Confidence Interval) for the first illustrative examplea 

using VanderWeele’s approachb (N=5326). 

Effect b (95% CI) 

Total Effect (TE) -0.99 (-1.84, -0.14) 

Pure Direct Effect (PDE) -0.73 (-1.58, 0.12) 

Total Indirect Effect (TIE) -0.26 (-0.40, -0.12) 

Total Direct Effect (TDE) -0.88 (-1.73, -0.03) 

Pure Indirect Effect (PIE) -0.11 (-0.19, -0.03) 

Controlled Direct Effectc (CDE) 0.27 (-0.89, 1.44) 

Stochastic Controlled Direct Effectd 

(CDEsto) -- 

Reference Interaction Effect (RIE) -1.01 (-1.72, -0.30) 

Mediated Interaction Effect (MIE) -0.15 (-0.27, -0.02) 

Portion Attributable to Interaction (PAI) -1.15 (-1.97, -0.34) 
a Exposure: smoking (1=yes, 0=no); mediator: body mass index (BMI, 5-unit increase); 

outcome: composite health score; covariates: age, gender, education, urbanicity, 

depression. 

b All effect estimates were obtained at the mean value of the covariates. 
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Chapter 3.   The Impact of Human Development on Individual Health: a 

Causal Mediation Analysis Examining Pathways Through Education 

and Body Mass Index 

3.1   Abstract 

Introduction: Improved health is known to predict national economic growth and 

development. Yet, the reciprocal effect of development on individual health is rarely 

examined. This study examined the impact of human development on individual health 

and the possible mediating roles of education and body mass index (BMI).  

Methods: We analyzed data on 109,448 participants aged 25 or older from 42 low- and 

middle-income countries that participated in the World Health Survey 2002-2004. These 

data were augmented with the 1990 human development index (HDI). The outcome was 

a health score based on measures from eight health state domains, years of schooling was 

used as education indicator, and BMI was calculated from self-reported height and 

weight. We used modern causal mediation analytical techniques implemented as linear 

mixed models with random intercepts to analyze the multilevel data. 

Results: Below a reference HDI level of 0.48, HDI was negatively associated with good 

health (total effect at HDI of 0.23: b = –3.44, 95% CI: –6.39, –0.49 for males and b = –

5.16, 95% CI: –9.24, –1.08 for females) but was positively associated with good health 

above this reference level (total effect at HDI of 0.75: b = 4.16, 95% CI: –0.33, 8.66 for 

males and b = 6.62, 95% CI: 0.85, 12.38 for females). A small positive effect of HDI on 

health was found via education across reference HDI levels (b ranging from 0.24 to 0.29 

for males and 0.40 to 0.49 for females) but not pathways involving BMI only. 
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Conclusion: Human development has a non-linear effect on individual health, and 

mainly through pathways other than individual level education and BMI. Modern causal 

mediation analysis seems promising for examining and decomposing contextual health 

effects of human development in global comparative studies. 

 

3.2   Introduction 

Better health is central to human happiness and well-being. It also makes an important 

contribution to economic progress. Accumulating evidence showed that increased 

investment in health translated into improved individual productivity, longer work life, 

and in turn, country’s income.74 Besides the old adage of “health before wealth”, it is 

important to learn the other side of the coin: the reciprocal loop from development to 

health, and more importantly, the underlying mechanisms. Huge amount of evidence 

demonstrated how individual educational attainment affects our health and efforts have 

been made to reduce the disparity in health due to one’s socioeconomic achievement. 

Evidence is relatively scant on questions such as “how the social environment we live in 

projects what we can achieve and how we behave, and then in turn shapes our health?” A 

person may have much higher chance of staying at the high tier of social ladder and adopt 

a healthy lifestyle when he or she lives in a country where higher education is covered by 

government than a country where basic schooling is not ensured. The health benefits of 

education were found to be dependent on a country’s level of human development75 or 

country context76. Indeed, we cannot discuss a person’s health without considering the 

‘contextual web’ the person lives in, as suggested in previous literature.77  
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Adoption of health behaviors is one of the important potential mechanisms connecting 

country development, education and health. Obesity, a crucial indicator closely related to 

individual health behavior, has been linked to various adverse health outcomes.73,78,79 

Studies have shown that obesity prevalence is much higher among people with low 

socioeconomic status (SES) in developed countries but the burden of obesity shifts 

towards the poor rapidly in the developing world as their economies grow.80 As countries 

develop and globalize, foreign fast-food companies replace the farmer’s market in local 

areas, and skyscrapers replace walkable areas, exposing citizens to obesogenic 

environments. Interesting questions are to what extent the macro environment we live in 

shapes our health via influencing our education, and to what extent it shapes our health 

via affecting our weight status. This study aimed at addressing these two issues. More 

specifically, we used standardized global data to investigate (1) the impact of country’s 

human development level as measured by human development index on individual 

health, and (2) the mediating role of both education and body mass index in the relation 

between human development and health. 

 

3.3   Method  

Study sample and variables 

We used data from 49 low- and middle-income countries (LMICs) collected by the cross-

sectional World Health Survey (WHS). Conducted by the WHO from 2002 to 2004, the 

WHS used standardized methodology that provided a basis for examining individual 

health measures across countries.81 The details for study design and methods of the WHS 

can be found in the appendices and elsewhere.81,82   
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Outcome 

Individual were asked to report their perceived difficulties on eight health state domain 

(two questions per domain) using 5-point Likert scale questions: mobility, self-care, pain 

and discomfort, cognition, interpersonal activities, vision, sleep and energy, and affect.81 

The health state measures have been extensively tested83 and have been shown to have 

good consistency and reliability.82 We performed factor analysis using polychoric 

correlations to account for the covariance structure and ordinal nature of the responses to 

individual questions. Similar to a previous study,82 we chose one factor solution based on 

the high eigenvalue of the first factor (8.85, 73% as a cumulative percentage of the 

variance explained) and the high communalities of the original variables (between 0.36 

and 0.69). Then, we used the principal component method for factor extraction and the 

regression scoring method to obtain the factor scores. The factor score was rescaled with 

0 indicating worst health and 100 indicating best health. 

Exposure 

Human Development Index (HDI) is chosen as a measure of the national socioeconomic 

environment for human development in a country. HDI is a unit-free index between 0 and 

1 that is calculated for each country based on life expectancy at birth, adult literacy rate, 

combined gross enrollment ratio for primary, secondary and tertiary education, and Gross 

Domestic Product per capita (GDP/c). In this study, we used HDI reported for 199084 and 

rescaled the score to range from 0 to 10. We lag the HDI for more than 10 years to 

capture its effect on shaping individual’s education and assumed that HDI from 1990 is a 

good indicator for the country’s socioeconomic environment for periods before 1990.  
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Mediators 

Individual-level education was measured by the years of schooling (including higher 

education).  

Body mass index (BMI) was defined as an individual’s self-reported weight (kg) divided 

by self-reported height squared (m2). We excluded participants with height less than 1.22 

m (n=1174) or greater than 2.11 m (n=27), and participants with weight that was 3 SDs 

above (n=821) or 2 SDs below (n=382) the crude sample mean of 63.6 kg. We further 

excluded individuals with BMI less than 14 kg/m2 (n=252). 

Confounders 

Potential confounders are WHO region, individual age and sex. In sensitivity analyses, 

we further considered potential confounders of the BMI-health relationship that were 

possibly influenced by education and/or HDI: living in urban areas, unemployment, 

marital status, and health behaviors such as smoking, alcohol use, and physical activity. 

 

Conceptual framework 

We used a directed acyclic graph (DAG)24 to represent our assumptions about the data 

generating process (Figure 3.1). Let Y denote individual health score, X the country’s 

human development index, M the mediator of interest: education in scenario 1 and body 

mass index in scenario 2, L the exposure-induced mediator-outcome confounder: 

education in scenario 2. Let Y(x, M(x)) denote the potential Y had X been set to x, M been 

allowed to attain its natural value under intervention X = x. Let Y(x, L(x), M(x, L(x))) 

denote the potential Y had X been set to x, L been set to the natural value under X = x, M 

been set to the natural value under X = x and L = L(x). Let x1 (index) and x0
 (reference) 
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represent two exposure values we wish to compare. Table 3.1 (left column) shows the 

effect definition when education is the mediator of interest (scenario 1) or when BMI is 

the mediator of interest (scenario 2). In scenario 1, the pure direct effect captured the 

impact of human development level on individual health through pathways other than 

individual’s education (Figure 3.2a) whereas the total indirect effect measured such 

impact through education (Figure 3.2b). In examining the mediating role of BMI, a 

consequence of individual education, we further decomposed the pure direct effect of 

HDI on health into: 1) the HDI effect through BMI but not education (i.e. the BMI-path-

specific effect as presented in Figure 2c) and 2) the natural direct effect of HDI on health 

through neither education nor BMI. Detailed assumptions necessary for effect 

identification are listed in Appendix.  

 

 

Figure 3.1 DAG depicting hypothesized data generating process involving a single 

exposure, mediator, and outcome. (a) X: human development index (HDI) as contextual 

exposure, M: education, Y: health, Z: a set of measured confounders of the X-M, X-Y, and 

M-Y relationships at group or individual level. (b) X: HDI, M: education, Y: health, L: 

confounder of the M-Y relationship that is a consequence of X, called “intermediate 

confounder” or “endogenous confounder”. 
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Figure 3.2 Graphical representation (solid lines) of pure direct effect of HDI on health (a), total indirect effect of HDI via education 

(b), and natural indirect effect of HDI via BMI only (c). In scenario 1, the BMI path-specific effect was incorporated in the pure direct 

effect. 
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Statistical analysis 

We used appropriate descriptive statistics to summarize the characteristics of the participants by 

sex and WHO region. Under the assumptions of general consistency, conditional exchangeability 

(no uncontrolled confounding), and positivity28, we can estimate the effects defined in Table 3.1 

for continuous exposure, mediator, and outcome using the empirical expressions listed in Table 

3.1 (right column). To account for the clustering within country, we used generalized linear 

mixed models with country-specific random intercept for each model of health score, BMI, and 

education. We estimated point mean differences and their corresponding 95% confidence 

intervals (95% CIs) for males and females separately. All analyses were conducted in SAS 9.4 

(SAS Institute Inc., Cary, North Carolina, USA).  

 

Sensitivity analysis 

For scenario 1, we relaxed the sample restriction criteria to individuals with complete 

information on HDI, education, and health score (N=148,679) and re-estimated the pure direct 

effect, total indirect effect and total effect. In scenario 2, we further examined the robustness of 

our estimates in the presence of intermediate confounders V (affected by HDI, education or both) 

of the BMI-health relationship. We used g-estimation technique to create a confounding-free 

outcome variable where this new outcome variable is independent of V conditional on HDI, 

education, BMI, and other covariates (the set Z). Details can be found in the appendix. 
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Table 3.1 Effect definition and empirical expressions applied to the World Health Survey 2002-2004. 

Effect Counterfactual definitiona Empirical expressionb 

Scenario 1 X: HDI, M: education years, Y: health score 

𝐸(𝑀|𝑥, 𝑧𝑀; 𝛿) = 𝛿𝑀 + 𝛿𝑋 ∙ 𝑥 + 𝛿𝑍 ∙ 𝑧𝑀 

𝐸(𝑌|𝑥, 𝑚, 𝑧; 𝜃) = 𝜃𝑌 + 𝜃𝑋 ∙ 𝑥 + 𝜃𝑋2 ∙ 𝑥2 + 𝜃𝑀 ∙ 𝑚 + 𝜃𝑋𝑀 ∙ 𝑥 ∙ 𝑚 + 𝜃𝑍 ∙ 𝑧 

TEc E{Y(x1, M(x1)) 

 – Y(x0, M(x0))} 

{𝜃𝑋 + 𝜃𝑀 ∙ 𝛿𝑋 + 𝜃𝑋𝑀 ∙ [𝛿𝑀 + 𝛿𝑋 ∙ (𝑥1 − 𝑥0) + 𝛿𝑍 ∙ 𝑧𝑀]} ∙ (𝑥1 − 𝑥0) +

 𝜃𝑋2 ∙ (𝑥1
2 − 𝑥0

2)  

PDE E{Y(x1, M(x0)) 

 – Y(x0, M(x0))} 

{𝜃𝑋 + 𝜃𝑋𝑀 ∙ (𝛿𝑀 + 𝛿𝑋 ∙ 𝑥0 + 𝛿𝑍 ∙ 𝑧𝑀)} ∙ (𝑥1 − 𝑥0) +  𝜃𝑋2 ∙ (𝑥1
2 − 𝑥0

2) 

TIE E{Y(x1, M(x1)) 

 – Y(x1, M(x0))} 

{𝜃𝑀 ∙ 𝛿𝑋 + 𝜃𝑋𝑀 ∙ 𝛿𝑋 ∙ 𝑥1} ∙ (𝑥1 − 𝑥0) 

Scenario 2 X: HDI, L: education years, M: BMI, Y: health score 

𝐸(𝐿|𝑥, 𝑧𝐿; 𝛼) = 𝛼𝐿 + 𝛼𝑋 ∙ 𝑥 + 𝛼𝑍 ∙ 𝑧𝐿 

𝐸(𝑀|𝑥, 𝑧𝑀; 𝛽) = 𝛽𝑀 + 𝛽𝑋 ∙ 𝑥 + 𝛽𝐿 ∙ 𝑙 + 𝛽𝑍 ∙ 𝑧𝑀 

𝐸(𝑌|𝑥, 𝑚, 𝑧; 𝛾) = 𝛾𝑌 + 𝛾𝑋 ∙ 𝑥 + 𝛾𝑋2 ∙ 𝑥2 + 𝛾𝐿 ∙ 𝑙 + 𝛾𝑀 ∙ 𝑚 + 𝛾𝑋𝐿 ∙ 𝑥 ∙ 𝑙 + 𝛾𝑋𝑀 ∙ 𝑥 ∙ 𝑚 + 𝛾𝐿𝑀 ∙ 𝑙 ∙ 𝑚 + 𝛾𝑍 ∙ 𝑧 

NIEXMY E{Y(x1, L(x0), M(x1, L(x0))) – 

Y(x1, L(x0), M(x0, L(x0)))} 

𝛽𝑋 ∙ {𝛾𝑀 + 𝛾𝐿𝑀 ∙ 𝛼𝐿 + 𝛾𝑋𝑀 ∙ 𝑥1 + 𝛾𝐿𝑀 ∙ 𝛼𝑋 ∙ 𝑥0 + 𝛾𝐿𝑀 ∙ 𝛼𝑍 ∙ 𝑧𝐿} ∙ (𝑥1 − 𝑥0) 

a We used x1 (index) and x0 (reference) to denote the two exposure value that we wish to compare. 
b The average effect were conditional on covariates Z=z. We used 𝑧𝑀, 𝑧𝐿 and 𝑧 to denote the set of covariates included in the model 

for M, L, and Y respectively. 
c TE: total effect of HDI on health, PDE: pure direct effect, TIE: total indirect effect of HDI on health via education, NIEXMY: 

natural indirect effect of HDI on health via BMI but not education. 
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3.4   Result  

Among 195,808 participants aged 25 years or older, 109,448 (55.9%) participants from 42 

countries had complete information on all covariates. Country-specific sample size and 

characteristics are presented in Table A 3.1 of the appendix. Participants from Burkina Faso, 

Chad, Comoros, Ethiopia, Herzegovina, and Georgia (N=15,770) were excluded because of 

missing HDI.  

 

Table 3.2 shows participant characteristics by sex and WHO region. HDI varied by WHO region, 

with the European region having the highest mean HDI (0.71) and the South-East Asia region the 

lowest (0.44). Participants from Europe were the oldest (mean age: 48.0 for males and 49.0 for 

females), most educated (mean years of schooling: 12.4 for males and 12.2 for females), had 

highest mean BMI values (25.7 for males and 25.9 for females), but reported the lowest health 

scores (86.4 for males and 82.2 for females). Participants from WHO regions other than Europe 

and the Americas had similar sex-specific mean age, education years, BMI, and health scores. 

Overall, females were less educated and reported poorer health. Descriptive table for participants 

with complete information on HDI, education, and health score only is included in the appendix 

(Table A 3.2), and revealed similar patterns.  

 

Sex-specific mean differences in health score associated with a 0.1-unit increase in HDI at the 

median HDI level (Table 3.3) or at multiple reference HDI levels (Figure 3.3). At the median 

HDI level of 0.572 in scenario 1, increase in HDI was positively associated with better health in 

both males (b = 1.58, 95% CI: –0.61, 3.77) and females (b = 2.61, 95% CI: –0.09, 5.32). The 

majority of such impact was through pathways other than individual’s education (male: b = 1.32, 
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95% CI: –0.87, 3.51; female: b = 2.18, 95% CI: –0.52, 4.88).  A small positive indirect effect of 

HDI via education was seen in both males (b = 0.26, 95% CI: 0.17, 0.35) and females (b = 0.44, 

95% CI: 0.28, 0.59). The BMI-path-specific effect of HDI was near null in both sexes (male: b = 

0.016, 95% CI: –0.005, 0.037; female: b = –0.033, 95% CI: –0.077, 0.011). All types of effects 

of HDI on health depended on the reference value of HDI. Increase in HDI below a reference 

HDI level of 0.483 was negatively associated with good health (total effect at HDI of 0.232: b = 

–3.44, 95% CI: –6.39, –0.49 for males and b = –5.16, 95% CI: –9.24, –1.08 for females) but was 

positively associated with good health above this reference level (total effect at HDI of 0.747: b 

= 4.16, 95% CI: –0.33, 8.66 for males and b = 6.62, 95% CI: 0.85, 12.38 for females). This 

pattern for the total effect was also seen in pure direct effect. As HDI increases, total indirect 

effect of HDI via education decreased slightly, with effect estimates ranging from 0.32 to 0.35. 

Natural indirect effect via BMI only also decreased and became negative for reference HDI level 

above 0.483, with effect estimates ranging from –0.07 to 0.08. The effect size among females 

was larger than that among males.   

 

Sensitivity analyses using less restricted sample revealed similar point estimates and narrower 

confidence intervals (Table A 3.3 and Figure A 3.1). Summary statistics for potential 

intermediate confounders are presented in the appendix (Table A 3.4). After accounting for these 

intermediate confounders (Figure A 3.2), effect estimates for the natural indirect effect via BMI 

only were similar as those from the main analyses (Figure A 3.3).  
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Table 3.2 Participant characteristics by WHO region, World Health Survey 2002-2004 (N=109,448). 

Characteristics, mean 

(SD) Africa 

The 

Americas 

Eastern 

Mediterranean Europe 

South-East 

Asia 

Western 

Pacific All 

Male        

Total, N (%) 

9873 

(19.6) 16072 (31.8) 2710 (5.4) 

4562 

(9.0) 8020 (15.9) 9273 (18.4) 

50510 

(100) 

Human development 

index 

0.47 

(0.11) 0.63 (0.05) 0.49 (0.08) 

0.71 

(0.02) 0.44 (0.10) 0.54 (0.09) 

0.55 

(0.12) 

Age, years 

42.2 

(14.1) 45.8 (15.3) 42.9 (13.6) 

48.0 

(15.1) 43.3 (13.4) 43.6 (13.2) 

44.3 

(14.4) 

Education, years 7.5 (5.2) 7.1 (5.1) 7.3 (5.9) 12.4 (3.4) 6.9 (4.8) 7.8 (4.3) 7.8 (5.1) 

Body mass index, 

kg/m2 23.4 (4.0) 25.4 (3.8) 23.9 (3.9) 25.7 (3.3) 21.2 (3.3) 22.4 (3.4) 23.7 (4.0) 

Health score 

88.2 

(14.2) 90.9 (11.3) 91.3 (12.6) 

86.4 

(13.2) 87.9 (14.1) 88.7 (13.5) 

89.1 

(13.1) 

Female        

Total, N (%) 
11327 
(19.2) 19789 (33.6) 2051 (3.5) 

8373 

(14.2) 7121 (12.1) 10277 (17.4) 

58938 

(100) 

Human development 

index 0.46 (0.1) 0.63 (0.05) 0.51 (0.08) 

0.71 

(0.02) 0.44 (0.11) 0.54 (0.09) 

0.56 

(0.12) 

Age, years 

41.9 

(14.5) 45.0 (15.2) 42.2 (13.8) 

49.0 

(15.3) 43.0 (13.6) 42.9 (13.3) 

44.3 

(14.7) 

Education, years 5.7 (5.0) 6.9 (5.1) 4.8 (5.7) 12.2 (3.5) 5.3 (4.8) 7.1 (4.6) 7.2 (5.2) 

Body mass index, 

kg/m2 24.1 (4.9) 25.8 (4.7) 24.6 (4.5) 25.9 (4.5) 21.2 (3.7) 22.1 (3.9) 24.2 (4.8) 

Health score 

84.2 

(15.7) 87.5 (12.7) 86.9 (15.4) 

82.2 

(14.9) 85.2 (15.8) 87.4 (13.9) 

85.8 

(14.5) 
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Table 3.3 Effect estimate (95% confidence interval) for human development level on individual health, World Health Survey 2002-

2004 (N=109,448). 

 Male Female 

 b (95% CI) b (95% CI) 

Scenario 1a   

Total effect 1.58 (-0.61, 3.77) 2.61 (-0.09, 5.32) 

Pure direct effect 1.32 (-0.87, 3.51) 2.18 (-0.52, 4.88) 

Total indirect effect 0.26 (0.17, 0.35) 0.44 (0.28, 0.59) 

Scenario 2b   

Natural indirect effect via BMI only 0.016 (-0.005, 0.037) -0.033 (-0.077, 0.011) 
a Examining the mean difference of health score associated with 0.1-unit increase of human development index (HDI) with 

reference level of median HDI of 0.572, with education being the mediator of interest. 
b BMI path-specific effect, part of the pure direct effect in Scenario 1, was further examined.  
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Figure 3.3 Effect decomposition when education is the mediator of interest (a-c), and natural indirect effect via BMI only in Scenario 

2 (d), obtained from multilevel regression analysis of the World Health Survey 2002-2004 (N=109448). Y axis: mean difference in 

health score associated with a 0.1-unit increase in HDI; X axis: selected reference HDI values.
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3.5   Discussion 

This study examined the overall and mediated impact of HDI as a measure national human 

development on individual health, with possible pathways via education and BMI, using large 

multilevel global comparative data. We found that the HDI effect on health depended on the 

reference HDI level: the total effect and pure direct effect of HDI were negative at low HDI level 

but became positive at higher levels of HDI. Such impact was mainly through pathways other 

than education and BMI. The impact of HDI on health was greater for females than for males. 

  

Our study found that at the lower end of the HDI spectrum, higher human development level 

predicted poorer individual health whereas at the upper end of this spectrum, higher human 

development level predicted better individual health. Around the median level of HDI, people 

from countries that were 0.1-unit apart in HDI tended to have similar health status. The HDI 

assesses how well countries are doing in three dimensions: health, education, and living 

standards.84 The overall health status and education achievement for residents in a country will 

tend to grow as the country’s adult literacy rate and combined gross enrollment ratio for primary, 

secondary and tertiary education increase. Yet, improved living standards, as captured by gross 

national income per capita, can affect health in a complex way. Life expectancy in LMICs has 

increased dramatically in the past century due to enormous achievements in control of infectious 

diseases via better sanitation and food safety, vaccines, antibiotics and improved nutrition.85 On 

the other hand, urbanization and globalization have led to rapid changes in lifestyle such as 

dietary and physical activity patterns. Energy-dense, poor-quality diets and sedentary behaviors 

have fueled the obesity epidemic and an increased burden in nutrition-related non-communicable 

diseases (NCDs).86–88 These countries were also experiencing epidemiological transition from 
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infectious diseases to chronic NCDs, which played an increasingly important role in people’s 

overall health status and physical functioning, especially among the elderly. In addition, the fast 

economic growth in some countries may be at the expense of the environment. All these aspects 

contributed to the complicated relationship between development and health.  

 

Our findings may reflect investment in and prioritization of different aspects in overall health 

improvement as these countries went through different stages of economic and societal 

development. Such investment may touch all aspects of health and health care: building roads to 

improve access to care, providing effective treatment for HIV/AIDS, tuberculosis, and malaria, 

promoting vaccination and proper use of antibiotics, strengthening primary care and preventive 

interventions and so on. Though all these investments and efforts may have greatly increased life 

expectancy at birth at the country level, they may differentially impact individual health 

experiences that may be heavily dependent on the presence of chronic diseases and disabilities. 

There might be lessons learn from countries at the lower end of the human development 

spectrum. All else equal, people from these countries achieved same or even higher health status 

compared to people from countries with median health development level, possibly through 

mechanisms such as targeted health investments; they may have been started experiencing the 

nutrition transition when the study was conducted.     

 

Past literature has documented the presence of effect modification of HDI on the relationship 

between education and health,75 and of education on the relationship between obesity and health 

outcomes.73,89 Incorporating such interactions is crucial for the present study. Despite the small 

effect size, we found a consistent positive indirect effect of HDI on health via increased 
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education. In countries with lower human development levels, the education channel offset part 

of the negative impact of increase development on health; in countries with higher human 

development levels, education contributed to the overall positive impact of HDI on health. 

However, pathways through BMI but not education did not appear to play an important role in 

transmitting the impact of HDI to health. Possible explanations included that the impact of HDI 

on health via BMI also went through education and other upstream variables, or that the 

mediating role of BMI depended on HDI and/or education in a complex way that the current 

model did not capture. Nonetheless, pathways via education and BMI only accounted for a 

relatively small portion of the HDI impact. Future studies can explore pathways through other 

factors such as neighborhood environment, health care infrastructure, and access to care.90  

 

Though women suffer more from ill health than men do;82,91 our study suggested that women 

could potentially have more gains in health as a country achieved higher human development. At 

a low human development level, country’s development had a more negative impact for women 

than for men. It is still unclear the underlying mechanisms for such sex difference. Women are 

found to be at significantly higher risk of depression.92 In the current study sample, depression 

status is highly predictive of poor health.82 It may be that the level of human development 

correlated with mental health services and women from countries with good mental health care 

(usually countries with higher human development) gain more in terms of health compared to 

their male counterparts.  

 

This is the first study to examine the pathways through which country’s development can affect 

individual’s health using causal mediation analysis. The standardized methodology used in WHS 
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allowed for pooled analyses from middle- and low-income countries across continents. The use 

of causal mediation analysis enable us to incorporate nonlinear relationships such as previously 

documented interactions between HDI and education75, and between education and BMI73 in 

affecting individual’s health outcomes. We conducted sensitivity analysis to test the robustness 

of the BMI-path-specific effect against the presence of confounders of the BMI-health 

relationship affected by HDI and/or education. We used linear mixed models to account for the 

multilevel structure of the data and adjusted for both contextual and individual confounders.  

 

Several methodological limitations need to be addressed. We imposed temporality assumptions 

on the cross-sectionally collected WHS data: although measured at the same time, educational 

attainment was taken to precede current BMI, which in turn preceded current health status at the 

time of survey. This is a reasonable assumption in an adult population. However, there is still a 

slight chance that middle-age health status affected the cumulative education years. BMI tends to 

be stable at middle age but we cannot rule out the possibility of reverse causation for BMI-health 

relationship. Despite conducting sensitivity analyses to account for intermediate confounding, 

our result for BMI-path-specific effect of HDI could still be subject to uncontrolled confounding 

between BMI and health. There could be measurement error in BMI that was created based on 

self-report height and weight.  

 

Our study went beyond linking contextual environment to country level health indicators such as 

mortality and provided evidence on the pathways through which country development could 

impact individual health. We also found that such impact was mainly through pathways other 

than education or BMI and that the impact differed by sex. Country development may harm or 
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benefit human health, which will eventually affect subsequent human development over time. 

Characterizing the impact of human development on health provides a promising initial foray 

into revealing and explaining the complex pathways between health and development. This can 

shed light on how to translate economic growth into improved health for all.   
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3.6   Appendix 

 

Description of the World Health Survey (WHS) data set 

Within each country, samples were probabilistically selected with every individual being 

assigned to a known non-zero selection probability. These samples were nationally 

representative except in China, Comoros, Congo, Côte d’Ivoire, India, and the Russian 

Federation, where the survey was carried out in geographically limited regions. This study 

included participants from 14 countries in the African region, nine in the European region, seven 

in the Americas, five in the South-East Asia region, five in the western Pacific region, and two in 

the Eastern Mediterranean region (Table A 3.1). All respondents were interviewed face-to-face 

with the standardized WHS survey, which included questions regarding demographic, 

socioeconomic, and behavioral factors. 

 

Assumptions for identification 

To estimate the effects defined in Table 3.1 using observational data, we assumed stable unit 

treatment value assumptions (SUTVA),46,93 general consistency, conditional exchangeability (no-

uncontrolled-confounding), and positivity.53 The conditional exchangeability assumption for 

natural effects included: (i) no uncontrolled confounding of the (X, M) – Y and X – M relationship 

given covariate set Z, and (ii) no members of the covariate set Z are affected by X in scenario 1. 

In scenario 2, we assumed that (iii) no uncontrolled confounding of the (X, L, M) – Y, (X, L) – M, 

and L – M relationship given covariate set Z, and (iv) no members of the covariate set Z are 

affected by X or L. Violation of assumption (ii) in scenario 2 – confounders for the M–Y 

relationship being affected by either X or L or both – will be examined in sensitivity analysis. 
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G-estimation for sensitivity analysis 

We examined how the BMI path-specific effect in scenario 2 will change under possible 

violation of assumption (iv) above (Figure A 3.2). We hypothesized that living in urban or rural 

areas, unemployment, marital status, smoking, alcohol use, and physical inactivity could be 

confounders of the BMI – health relationship that were influenced by HDI, education, or both 

and denoted these factors using V. In a structure presented in Figure A 3.2 (a), not adjusting for 

V will result in bias for the BMI-path-specific effect of HDI because of the extra path 

HDIintermediate confoundershealth. However, we cannot use traditional regression 

adjustment because adjusting for V will block the path HDIintermediate 

confoundersBMIhealth, which is part of the indirect effect of HDI via BMI but not 

education. In this case, using g-estimation to de-activate the path from intermediate confounders 

to health will be appropriate for unbiased estimation of this targeted effect as presented in Figure 

A 3.2 (b). We created the below new outcome variable Y* where Y* ⊥ V | X, L, M, Z: 

𝑌∗ = 𝑌 − 𝒗𝜑𝑉 + 𝜑𝑉 ∙ 𝐸(𝐕)  

where 𝜑𝑉 came from the model for Y with additional adjustment for V, i.e.,  

𝐸(𝑌|𝑥, 𝑚, 𝒛, 𝒗; 𝜑) = 𝜑𝑌 + 𝜑𝑋 ∙ 𝑥 + 𝜑𝑋2 ∙ 𝑥2 + 𝜑𝐿 ∙ 𝑙 + 𝜑𝑀 ∙ 𝑚 + 𝜑𝑋𝐿 ∙ 𝑥 ∙ 𝑙 + 𝜑𝑋𝑀 ∙ 𝑥 ∙ 𝑚 +

𝜑𝐿𝑀 ∙ 𝑙 ∙ 𝑚 + 𝒛𝜑𝑍 + 𝒗𝜑𝑉, and 𝐸(𝐕) represented the crude expected value for V. Then, we used 

this new Y* variable for all analyses. 
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Appendix Tables 

 

Table A 3.1 Country-specific sample size, percent female, mean age, and national human development index, World Health Surveys 

2002-2004. 

Country 

Initial 

sample 

size 

Human 

development 

index 1990 

N 

missing 

health 

score 

N missing 

education  

Final N 

(appendix 

result, 

scenario 1) 

N missing 

height or 

weight 

Final N 

(main 

result) 

Female 

(%) 

Mean 

age 

African Region (AFR) 

Burkina Faso 3605 Missing 91 749 0 2328 0 50.7 41.4 

Chad 3624 Missing 364 1177 0 748 0 51.7 41.8 

Comoros 1411 Missing 55 30 0 14 0 57.0 47.5 

Congo 1935 0.553 413 1170 673 225 651 52.4 40.0 

Côte d'Ivoire 2398 0.380 248 928 1353 222 1255 42.0 40.3 

Ethiopia 3772 Missing 442 2381 0 3138 0 51.1 41.9 

Ghana 3292 0.502 113 339 2855 214 2609 55.6 45.1 

Kenya 3441 0.471 46 256 3144 295 2842 57.9 42.6 

Malawi 3690 0.283 124 371 3203 213 2956 56.5 42.3 

Mali 3095 0.232 2389 2623 90 1056 35 43.2 46.2 

Mauritania 3008 0.367 294 854 1942 437 1558 61.7 43.2 

Mauritius 3385 0.621 302 42 3045 1239 1867 52.7 45.2 

Namibia 3283 0.577 1200 352 1947 321 1782 59.3 42.6 

Senegal 2527 0.384 548 1381 956 1110 590 48.2 42.9 

South Africa 1869 0.619 330 0 1539 624 866 53.2 41.8 

Swaziland 2364 0.538 851 748 1307 940 1002 53.8 43.8 

Zambia 2839 0.407 333 87 2424 1062 1502 53.5 41.2 

Zimbabwe 3013 0.488 117 48 2863 1014 1685 64.9 43.1 

Region of the Americas(AMR) 

Brazil 4209 0.612 548 42 3622 480 3194 56.8 45.6 

Dominican 

Republic 3758 0.589 61 17 3685 1199 2458 53.2 45.8 

Ecuador 3866 0.643 326 461 3126 444 2648 55.7 45.0 
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Country 

Initial 

sample 

size 

Human 

development 

index 1990 

N 

missing 

health 

score 

N missing 

education  

Final N 

(appendix 

result, 

scenario 1) 

N missing 

height or 

weight 

Final N 

(main 

result) 

Female 

(%) 

Mean 

age 

Guatemala 3822 0.483 143 754 2955 1140 2096 61.1 44.6 

Mexico 32129 0.647 0 0 32129 12689 19272 57.5 45.1 

Paraguay 4062 0.581 45 1 4017 357 3597 54.6 44.9 

Uruguay 2680 0.691 22 5 2654 2 2596 51.8 48.7 

Eastern Mediterranean Region (EMR) 

Morocco 4184 0.459 4184 2473 0 2538 0 58.3 44.9 

Pakistan 5027 0.402 190 696 4178 2400 1957 45.3 41.6 

Tunisia 4213 0.567 344 527 3411 737 2804 54.9 45.9 

European Region (EUR) 

Bosnia and 

Herzegovina 917 Missing 386 1 0 3 0 58.3 50.1 

Croatia 932 0.689 20 4 909 8 885 59.9 54.1 

Czech 

Republic 828 0.762 90 16 724 18 688 55.6 51.3 

Estonia 927 0.73 41 3 884 5 849 63.8 52.3 

Georgia 2441 Missing 16 8 0 7 0 57.9 52.2 

Hungary 1262 0.701 315 0 947 17 906 59.4 53.0 

Kazakhstan 4110 0.686 104 9 3997 330 3621 65.8 43.3 

Latvia 763 0.71 72 18 679 116 568 68.3 54.6 

Russian 

Federation 4068 0.729 278 174 3629 869 2838 64.6 54.0 

Slovakia 1917 0.747 680 585 1222 585 1185 63.8 43.8 

Ukraine 2517 0.705 205 37 2275 920 1395 65.3 50.8 

South-East Asia Region (SEAR) 

Bangladesh 4526 0.382 821 1380 2633 3891 500 52.2 42.6 

India 8139 0.431 1640 1371 5492 1911 4196 51.7 43.0 

Myanmar 4996 0.347 4 0 4992 30 4946 57.3 44.6 

Nepal 6979 0.388 49 426 6511 4694 2146 56.3 43.3 

Sri Lanka 5642 0.62 710 673 4409 1328 3353 54.0 44.9 
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Country 

Initial 

sample 

size 

Human 

development 

index 1990 

N 

missing 

health 

score 

N missing 

education  

Final N 

(appendix 

result, 

scenario 1) 

N missing 

height or 

weight 

Final N 

(main 

result) 

Female 

(%) 

Mean 

age 

Western Pacific Region (WPR) 

China 3674 0.502 54 17 3603 4 3579 51.4 47.2 

Lao People's 

Democratic 

Republic 4060 0.395 86 5 3969 9 3923 52.7 41.8 

Malaysia 5249 0.641 203 153 4909 999 3910 56.8 44.2 

Philippines 8378 0.591 110 24 8245 1582 6614 54.6 42.6 

Viet Nam 2982 0.476 1427 35 1532 7 1524 55.5 43.4 

  



 

63 

 

 

Table A 3.2 Participant characteristics by WHO region, World Health Survey 2002-2004 (N=148,679). 

Characteristics, mean (SD) Africa The Americas 

Eastern 

Mediterranean Europe 

South-East 

Asia 

Western 

Pacific All 

Male        

Total, N (%) 12216 (18.6) 22724 (34.6) 3926 (6.0) 5419 (8.2) 11250 (17.1) 10201 (15.5) 65736 (100) 

Human development index 0.47 (0.11) 0.63 (0.04) 0.47 (0.08) 0.71 (0.02) 0.43 (0.09) 0.54 (0.09) 0.55 (0.12) 

Age, years 42.7 (14.4) 45.7 (15.4) 43.4 (14.2) 48.7 (15.3) 44.3 (14.0) 43.9 (13.4) 44.7 (14.7) 

Education, years 7.3 (5.1) 7.1 (5.1) 6.6 (5.9) 12.3 (3.5) 6.0 (4.9) 7.7 (4.3) 7.4 (5.1) 

Health score 87.7 (14.8) 90.8 (11.5) 90.2 (13.5) 85.9 (13.8) 86.0 (15.9) 88.2 (13.9) 88.6 (13.8) 

Female        

Total, N (%) 15125 (18.2) 29464 (35.5) 3663 (4.4) 9847 (11.9) 12787 (15.4) 12057 (14.5) 82943 (100) 

Human development index 0.47 (0.10) 0.63 (0.04) 0.48 (0.08) 0.71 (0.02) 0.43 (0.09) 0.55 (0.09) 0.56 (0.12) 

Age, years 42.5 (14.6) 44.9 (15.2) 42.5 (14.2) 50 (15.7) 42.8 (13.8) 43.5 (13.7) 44.4 (14.9) 

Education, years 5.7 (4.9) 6.6 (5.0) 3.5 (5.1) 12.0 (3.6) 4.1 (4.6) 7.0 (4.5) 6.6 (5.2) 

Health score 83.8 (16.1) 87.5 (12.9) 83.5 (17.0) 81.3 (15.6) 82.0 (18.0) 86.8 (14.2) 84.9 (15.3) 

 

 

Table A 3.3 Effect estimate (95% confidence interval) for scenario 1a, World Health Survey 2002-2004 (N=148,679). 

 Male Female 

Total effect 1.54 (-0.74, 3.83) 2.42 (0.44, 4.41) 

Pure direct effect 1.29 (-0.99, 3.57) 2.00 (0.02, 3.98) 

Total indirect effect 0.26 (0.17, 0.34) 0.42 (0.30, 0.55) 
a Examining the mean difference of health score associated with 0.1-unit increase of human 

development index (HDI) with reference level of median HDI of 0.572, with education being the 

mediator of interest. 
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Table A 3.4 Potential confounders for BMI-health relationa by WHO region, World Health Survey 2002-2004 (N=105,630). 

Characteristics, mean (SD) Africa 

The 

Americas 

Eastern 

Mediterranean Europe 

South-East 

Asia 

Western 

Pacific All 

Living in rural areas, N (%) 

13240 

(61.55) 

11093 

(31.66) 1815 (42.14) 

3398 

(27.38) 

11313 

(75.19) 

10513 

(53.22) 

51372 

(47.54) 

Unemployment, N (%) 

8710 

(40.49) 

15602 

(44.52) 1993 (46.27) 

4905 

(39.52) 

4951 

(32.91) 

6390 

(32.35) 

42551 

(39.37) 

Not Married, N (%) 

7635 

(35.5) 

15485 

(44.19) 866 (20.11) 

4809 

(38.75) 

3037 

(20.18) 

3553 

(17.99) 

35385 

(32.74) 

Currently smoking, N (%) 

3616 

(16.81) 

8031 

(22.92) 1215 (28.21) 

3396 

(27.36) 

5418 

(36.01) 

6619 

(33.51) 

28295 

(26.18) 

Alcohol use, N (%) 

6926 

(32.2) 

19785 

(56.46) 308 (7.15) 

9700 

(78.16) 

2900 

(19.27) 

7433 

(37.63) 

47052 

(43.54) 

Physical inactivity, N (%) 

13663 

(63.52) 

28328 

(80.84) 3379 (78.45) 

9061 

(73.01) 

8630 

(57.36) 

12858 

(65.1) 

75919 

(70.25) 
a Factors examined in sensitivity analyses and their statistics were from sample further restricted to individuals have complete 

information on these factors. 
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Appendix Figures 

 
Figure A 3.1 Effect decomposition when education is the mediator of interest (a-c), using the larger sample of 148,679 participants, 

the World Health Survey 2002-2004. Y axis: mean difference in health score associated 0.1-unit increase in HDI; X axis: selected HDI 

values within the range of the current sample. 
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Figure A 3.2 Graphical representation of scenario 2 in the presence of M-Y confounder set V that was affected by X and L (a) and the 

unbiased indirect effect of HDI on health via BMI only (solid line) after implementing g-estimation (b). 
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Figure A 3.3 Results from sensitivity analyses for natural indirect effect via BMI only in Scenario 2, the World Health Survey 2002-

2004 (N=109,448). Y axis: mean difference in health score associated 0.1-unit increase in HDI; X axis: selected HDI values within the 

range of the current sample. 
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Chapter 4.   Education and Health in 46 Countries: Modeling the Mediating Role of 

Social Factors and Health Behaviors 

4.1   Abstract 

Introduction: Past studies examining the pathways from socioeconomic status to health via 

health behaviors seldom considered multiple mediators and rarely accounted for the possible 

interactions between exposure and downstream behaviors. Using causal mediation analysis, this 

study examined the health disparities in education and the contributions of pathways through 

social mediating factors and health behaviors.  

Methods: We analyzed data on 164,743 participants aged 25 or older from 46 countries across 

continents, collected by the World Health Survey 2002-2004. The outcome was a health score 

based on measures from eight health state domains. Exposure was individual educational 

attainment (no formal education, less than primary school, primary school completed, secondary 

school completed, and high school or beyond). The social mediating factors were residence, 

unemployment, and marriage. The mediating health behaviors were smoking, alcohol use, 

physical inactivity, and stress. G-computation algorithm implemented using Monte Carlo 

simulation of generalized linear mixed models was used to estimate natural and controlled direct 

effects, and pathway effects, comparing ‘lower education’ to ‘high school or beyond’ (reference) 

education.  

Results: Lower educational attainment had an overall negative impact on health (regression 

coefficient b ranging from -1.06 for secondary school completed to -4.05 for no formal 

education), the largest proportion of which was neither mediated by social factors nor health 

behaviors. Pathways through only health behaviors accounted for around one tenth of the total 

effect of education. A substantial amount of the observed health disparities would be eliminated 
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if everyone had healthy behaviors (proportion eliminated ranging from 48% for secondary school 

completed to 72% for no formal education).  

Conclusion: Simultaneous intervention on education together with health behaviors or social 

factors will be more effective in reducing health disparity than intervention on education alone, 

since these subsequent mediating factors were important effect modifiers for the education-

health relation.   

  

4.2   Introduction 

The literature has persistently documented the relationship between lower socioeconomic status 

(SES) and poor health among affluent countries94–98 and worldwide.82 However, the mechanisms 

underlying education and health are not conclusive. Though different factors and pathways have 

been proposed to explain the socioeconomic inequalities in health,90,99–104 health 

behavior/lifestyle appeared to be the most popular factor. It is suggested that unhealthy behavior 

or lifestyle accounted for 50% of mortality in 1976 in the U.S., according to the Healthy People: 

The Surgeon‐General's Report on Health Promotion and Disease Prevention in 1979105, 

highlighting the importance of studying these behavioral factors in explain the educational 

gradient in health. 

 

Empirical evidence is abundant on the relations between low SES and health behaviors such as 

smoking, alcohol consumption, physical inactivity,106–108 or psychosocial factors,109,110 and 

between these behaviors and various health comes.100,107,111,112 Some studies also examined the 

pathways or the direct impact of SES on health accounting for possible mediating 

pathways.96,99,106,107,110,113,114 However, these studies were mainly from European countries and 



 

70 

 

the U.S., results reflecting a global picture is lacking. Also, past studies using traditional 

regression approaches such as the “difference method”14 or linear path model6 seldom consider 

the possible interactions between SES and downstream behaviors. Past decade has seen 

blooming literatures on the effect definition, identification, and estimation issues for causal 

mediation analysis under the potential outcome framework.8,11,12,19,34,35 Such work also extends 

to complex settings involving multiple causally ordered mediators28,52,53 and time-varying 

exposure and mediators.32  

 

In this study, we examined (1) health disparities due to educational attainment, a commonly used 

SES measure that shapes future occupational opportunities and income,100 and (2) the 

contributions of possible mediating pathways through social factors and health behaviors. We 

partitioned the total effect of education on health into pathway effects while preserving the 

interaction between education and mediators (mechanistic perspective). We also examine two 

types of controlled direct effect that correspond to certain hypothetical public health 

interventions on social factors and health behaviors.  

 

4.3   Method 

Study sample and variables 

We used data from the cross-sectional World Health Survey (WHS) conducted by the WHO in 

70 high-, middle-, and low-income countries from 2002 to 2004. The study design and methods 

of the WHS have been documented in detail in the appendices and elsewhere.81,82 The 

standardized methodology allowed for examination of individual health measures across 

countries.81 
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Outcome 

The health state measures has been extensively tested83 and have showed good consistency and 

reliability.82 Individual participants were asked to report their perceived difficulties based on a 5-

point Likert scale question for eight health state domain. These domains are mobility, self-care, 

pain and discomfort, cognition, interpersonal activities, vision, sleep and energy, and affect, each 

of which consists of two questions.81 We performed factor analysis using polychoric correlations 

to account for the covariance structure of the responses to individual questions. Similar to a 

previous study,82 we chose one factor solution based on the high eigenvalue of the first factor 

(8.92, 73% as a cumulative percentage of the variance explained) and the high communalities of 

the original variables (between 0.36 and 0.70). Then, we used the principal component method 

for factor extraction and the regression scoring method to obtain the factor scores. The factor 

score was rescaled with 0 indicating worst health and 100 indicating best health. 

 

Exposure 

Individual educational attainment was measured as the highest level of education a person 

completed. There are seven categories: “no formal schooling”, “less than primary school”, 

“primary school completed”, “secondary school completed”, “high school (or equivalent) 

completed”, “college/preuniversity/university completed” or “post graduate degree completed”. 

The last three categories are combined into “high school or beyond”. When an individual’s 

educational attainment was missing but reported having 0 years of schooling, we assigned “no 

formal schooling” as their educational attainment (N=37). These categories were made to be 
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applicable to all countries regardless of the type of educational system via a mapping algorithm 

to record educational categories other than specified above.63 

Mediators 

Social factors included residence (living in rural areas versus urban or semi-urban area), 

unemployment (currently not employed versus employed), and marital status (currently not 

married versus married). 

Individual health behaviors included smoking (currently smoke versus not), alcohol drinking 

(ever versus never), physical inactivity (having <3 times of vigorous physical activity per week 

versus having ≥3 times) and stress. Participants were asked “How often have you felt that you 

were unable to control the important things in your life” and “How often have you found that 

you could not cope with all the things that you had to do”.  Answers based on 5-point Likert 

scale (ranging from “1-never” to “5-very often”) were aggregated and then log transformed 

(using log base 2) and re-centered so that higher scores indicated more stress while 0 represented 

no stress (score ranging from 0 to 2.3). 

 

Confounders 

Potential contextual confounder are WHO region and country level wealth, measured by gross 

domestic product per capita (in current US$) in 2003 that ware obtained from the UN 

database.115 Individual level predisposing factors are age and sex. 

 

Conceptual framework 

We used a directed acyclic graph (DAG)24 to represent our assumptions about the data 

generating process (Figure 4.1). Let Y denote one’s health state, X the educational attainment, 
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MA the social factors – the first set of mediators of interest, MB the individual health behaviors – 

the second set of mediators of interest, and Z the set of covariates not affected by the exposure 

but which are assumed to be sufficient for confounding control for effects estimation. Let Y(x, 

MA(x), MB(x, MA(x))) represent the potential Y had X been set to x, MA been set to the natural 

value under X=x, MB been set to the natural value under X=x and MA = MA(x). Let x denote any 

one of the four index education level: “no formal education”, “less than primary school”, 

“primary school completed”, and “secondary school completed”, and x* the reference level: 

“high school or beyond”, which were the two values of the exposure we wish to compare. Let 

ma
*

 and mb
* denote the reference values for MA and MB used in controlled direct effects. We 

consider factors in MA and MB jointly as a construct without further specifying the causal 

direction between factors in the same set. 
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Figure 4.1 DAG depicting a single exposure X, two sets of causally ordered mediators MA and 

MB, an outcome Y, and a set of confounders Z sufficient for confounding control. 

DAG depicting a single exposure X, two sets of causally ordered mediators MA and MB, an 

outcome Y, and a set of confounders Z sufficient for confounding control. When only mediator 

MB is of interest, MA is sometimes called “intermediate confounders” or “endogenous 

confounders” as they are consequences of X.  

 

Effect decomposition, definition, and empirical analogs  

In the presence of two causally ordered mediators, total effect (TE) of education on health can be 

decomposed into a natural direct effect (NDE) of education that is not through any of the two 

mediator sets, a natural indirect effect through social factors and their consequences (NIE-A), 

and a natural indirect effect through health behaviors only (NIE-B) (Figure 4.2). We also 

examined two types of controlled direct effect: (i) one that captured the direct effect of education 

had we fixed both social factors and health behaviors at their reference levels (CDE-00), and (ii) 

one that captured the direct effect of education while fixing only health behaviors at the 
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reference levels but not fixing social factors (i.e., allowing them to respond to education) (CDE-

X0). Effect definitions under the potential outcome (counterfactual) framework were listed in 

Table 4.1. There are other ways to decompose the total effect into components representing 

natural direct and indirect effects.53 The current decomposition was also discussed in the 

intermediate-confounding context28,116 and has the advantage of circumventing the need for 

specifying an additional sensitivity parameter. This parameter represents the conditional 

correlation between MA(x) and MA(x*) given Z and cannot be obtained from the observed data. 

Notice that each potential outcome expression (half of the effect definition) listed in Table 4.1 

(left column) follows the form of Y(x1, MA(x2), MB(x3, MA (x4))) and for all listed expressions, 

we have x2 = x4 and thus is a special case.53 We invoked the stable unit treatment value 

assumption (SUTVA) 46,93, and assumptions of general consistency, positivity, and conditional 

exchangeability (no uncontrolled confounding).53 Details for conditional exchangeability 

assumption are listed in the appendix. 
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Figure 4.2 Graphical representations for different types of effect of interest. X: educational attainment, MA: social factors including 

residence, unemployment, and marital status; MB: individual health behaviors including smoking, alcohol use, physical inactivity, and stress; Y: 

individual’s health; and Z: contextual and predisposing factors including WHO region, country level wealth and individual’s age and sex; TE: 

total effect; NDE: natural direct effect; NIE-A: natural indirect effect that is through MA and its consequences; NIE-B: natural indirect effect that 

is through MB only; CDE-00: controlled direct effect while fixing MA=ma
* and MB=mb

*; CDE-X0: controlled direct effect while fixing only 

MB=mb and allowing MA to respond to X. Black solid lines represent the corresponding effect of X on Y. NDE, NIE-A and NIE-B add up 

to TE.   
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Table 4.1 Effect definition and empirical analogs, applied to World Health Survey 2002-2004a. 

Effect Counterfactual definition Empirical analogb  

TE E{Y(x, MA(x), MB(x, MA(x)))  

– Y(x*, MA(x*), MB(x*, MA(x*)))} 

∑ ∑ ∑ {𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛, 𝐳)𝑃(𝐦𝐛|𝑥, 𝐦𝐚, 𝐳)𝑃(𝐦𝐚|𝑥, 𝐳) −𝐦𝐛𝐦𝐚𝐳

𝐸(𝑌|𝑥∗, 𝐦𝐚, 𝐦𝐛, 𝐳)𝑃(𝐦𝐛|𝑥∗, 𝐦𝐚, 𝐳)𝑃(𝐦𝐚|𝑥∗, 𝐳)}𝑃(𝐳)  

NDE E{Y(x, MA(x*), MB(x*, MA(x*)))  

– Y(x*, MA(x*), MB(x*, MA(x*)))} 

∑ ∑ ∑ {𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛, 𝐳) −𝐦𝐛𝐦𝐚𝐳

𝐸(𝑌|𝑥∗, 𝐦𝐚, 𝐦𝐛, 𝐳)}𝑃(𝐦𝐛|𝑥∗, 𝐦𝐚, 𝐳)𝑃(𝐦𝐚|𝑥∗, 𝐳)𝑃(𝐳)  

NIE-A E{Y(x, MA(x), MB(x*, MA(x)))  

– Y(x, MA(x*), MB(x*, MA(x*)))} 

∑ ∑ ∑ 𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛, 𝐳)𝑃(𝐦𝐛|𝑥∗, 𝐦𝐚, 𝐳){𝑃(𝐦𝐚|𝑥, 𝐳) − 𝑃(𝐦𝐚|𝑥∗, 𝐳)}𝑃(𝐳)𝐦𝐛𝐦𝐚𝐳   

NIE-B E{Y(x, MA(x), MB(x, MA(x)))  

– Y(x, MA(x), MB(x*, MA(x)))} 

∑ ∑ ∑ 𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛, 𝐳){𝑃(𝐦𝐛|𝑥, 𝐦𝐚, 𝐳) −𝐦𝐛𝐦𝐚𝐳

𝑃(𝐦𝐛|𝑥∗, 𝐦𝐚, 𝐳)}𝑃(𝐦𝐚|𝑥, 𝐳)𝑃(𝐳)  
CDE-00c E{Y(x, MA=𝐦𝐚

∗, MB=𝐦𝐛
∗)  

– Y(x*, MA=𝐦𝐚
∗, MB=𝐦𝐛

∗)} 

∑ {𝐸(𝑌|𝑥, 𝐦𝐚
∗, 𝐦𝐛

∗, 𝐳)𝐳 − 𝐸(𝑌|𝑥∗, 𝐦𝐚
∗, 𝐦𝐛

∗, 𝐳)}𝑃(𝐳)  

CDE-X0d E{Y(x, MA(x), MB=𝐦𝐛
∗) 

– Y(x*, MA(x*), MB=𝐦𝐛
∗)} 

∑ ∑ {𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛
∗, 𝐳)𝑃(𝐦𝐚|𝑥, 𝐳) − 𝐸(𝑌|𝑥∗, 𝐦𝐚, 𝐦𝐛

∗, 𝐳)𝑃(𝐦𝐚|𝑥∗, 𝐳)}𝑃(𝐳)𝐦𝐚𝐳
  

aY: health score, X: educational attainment (x represents each index level of education and x* represents the reference level of 

education – high school or beyond), MA: social factors including residence, unemployment, and being unmarried, MB: individual 

health behaviors including smoking, alcohol use, physical inactivity, and stress), Z: age, sex, country level gross domestic product 

per capita (in current US$) in 2003, and WHO region.  
b We use 𝐸(𝑌|𝑥, 𝐦𝐚, 𝐦𝐛, 𝐳) as a shorthand for 𝐸(𝑌|𝑋 = 𝑥, 𝐌𝐀 = 𝐦𝐚, 𝐌𝐁 = 𝐦𝐛, 𝐙 = 𝐳), 𝑃(𝐦𝐛|𝑥, 𝐦𝐚, 𝐳) as a shorthand for 

𝑃(𝐌𝐁 = 𝐦𝐛|𝑋 = 𝑥, 𝐌𝐀 = 𝐦𝐚, 𝐙 = 𝐳) and 𝑃(𝐦𝐚|𝑥, 𝐳) as a shorthand for 𝑃(𝐌𝐀 = 𝐦𝐚|𝑋 = 𝑥, 𝐙 = 𝐳). Summations are replaced by 

integrals and the probability functions by appropriate density functions for continuous variables (e.g. stress). 
c CDE-00 represents the controlled direct effect of education on health when participants lived in urban area, being employed and 

married, did not smoke nor drink alcohol, being physically active and having no stress (𝐦𝐚
∗ and 𝐦𝐛

∗ equal to zero).  
d CDE-X0 represents the controlled direct effect of education on health when participants did not smoke nor drink alcohol, being 

physically active and having no stress (𝐦𝐛
∗ equals to zero). 
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Statistical analysis 

We used appropriate descriptive statistics to summarize the characteristics of the 

participants by their educational attainment. Under the assumptions mentioned above, 

each effect can be expressed in terms of their empirical analogs (Table 4.1, right column). 

For a specific effect, each half of the empirical analog used to estimate the expected 

potential outcome under different exposure and mediator assignment is recognized as an 

extension of the g-computation formula39 or the mediation formula19 to multiple-mediator 

settings. We adopted a fully parametric approach, implemented via Monte Carlo 

simulation, to obtain marginal estimates for each effect. Detailed steps can be found in 

Appendices. Briefly, we estimated parameters for predicting each mediator and the 

outcome using multilevel generalized linear models with random intercept for country. 

Then we created an education intervention variable, simulated the potential mediators and 

outcomes sequentially based on the counterfactual definition of each effect. Finally, we 

ran a marginal structural model to obtain a marginal estimate for each type of effect and 

used non-parametric bootstrap to obtain standard errors and 95% confidence intervals. 

All analyses were conducted in SAS 9.4 (SAS Institute Inc., Cary, North Carolina, USA). 

 

4.4   Result 

Among 231,274 participants aged 25 years or older, 164,743 (71.2%) participants from 

46 countries had complete information on all covariates. Country-specific sample size 
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and characteristics, and the characteristics of the excluded participants are presented in 

appendix (Tables A 4.1 and A 4.2 respectively). The main reason for exclusion was 

missing information on at least one health behavior factor or health score. Excluded 

participants were slightly older, more likely to obtain education greater than high school, 

and be unemployed, unmarried, and physically inactive but less likely to have used 

alcohol. Distributions of other variables were similar to that among participants in the 

analytic sample. 

 

Table 4.2 shows participant characteristics by educational attainment. As education 

increased, participants were younger, less likely to live in rural areas or be unemployed, 

more likely to have used alcohol and be physically inactive, and reported better health. 

More females and higher level of stress were seen among people with no formal 

education than the rest of the participants.  

 

Table 4.3 displays the effect estimates comparing each of the four index education levels 

to the reference ‘high school or beyond’ category. Across all education levels, low 

educational attainment was associated with poorer health (TE ranging from -4.05 to -

1.06). The impact of low education on health was negative through pathways involving 

social factors (NIE-A ranging from -0.54 to -0.18), pathway through health behaviors 

only (NIE-B ranging from -0.43 to -0.14), and pathways other than through social factors 
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or health behaviors (NDE ranging from -3.08 to -0.74). Lower educational attainment 

was associated with poorer health when we either fixed all mediators at the desired 

reference levels (i.e. living in urban areas, being employed and married, not currently 

smoking, never used alcohol, being physically active, and not feeling stressed) (CDE-00 

ranging from -0.22 to -0.34), or fixed only health behaviors at the desired levels (CDE-

X0 ranging from -1.12 to -0.55). One exception is that, after fixing all mediators at the 

aforementioned desired levels, ‘no formal education’ was not associated with health 

(CDE-00: -0.10, 95% CI: -0.40-0.19). For all types of effects, effect sizes became smaller 

as education level increased from “no formal education” to “secondary school 

completed”.  

 

Figure 4.3 depicts the proportion explained by each type of effect relative to the TE 

across different education levels. Indirect effect of education through social factors and 

their consequences made up 13.4% ~ 16.9% of the TE. Pathway involving health 

behaviors only accounted for around one tenth (10.6% ~ 13.3%) of the TE. The negative 

impact of lower education on health was mainly direct (i.e., via other pathways) (69.8% ~ 

76.0%). The majority of the negative impact of lower educational attainment on health 

could be prevented if we could, by some hypothetical intervention, fix both social factors 

and health behaviors at the desired levels, especially for those with no formal education 

[PE(CDE-00): 97.5%, PE(CDE-00) ranging from 67.4% to 82.1% for other education 
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levels]. A large portion of the health disparities due to education could be eliminated if 

hypothetical intervention was implemented to fix health behaviors at the desired levels 

[PE(CDE-X0) ranging from 47.8% to 72.3%].
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Table 4.2 Participant characteristics by educational attainment, World Health Survey 2002-2004 (N=164,743). 

Characteristics 

No formal 

education 

Less than  

primary school 

Primary school 

completed 

Secondary school 

completed 

High school 

or beyond All 

Total, N (%) 35973 (21.8) 20958 (12.7) 32018 (19.4) 40663 (24.7) 35131 (21.3) 164743 (100) 

Age, mean (SD) 47.9 (16.1) 46.7 (15.8) 45.6 (15.6) 43.3 (14.3) 41.8 (12.8) 44.8 (15.0) 

Females, N (%) 22784 (63.3) 11107 (53.0) 16847 (52.6) 21923 (53.9) 18609 (53.0) 91270 (55.4) 

Social factors       

Living in rural areas, N (%) 28093 (78.1) 14213 (67.8) 16739 (52.3) 13965 (34.3) 8833 (25.1) 81843 (49.7) 

Unemployment, N (%) 17005 (47.3) 8960 (42.8) 14116 (44.1) 18653 (45.9) 10711 (30.5) 69445 (42.2) 

Not Married, N (%) 10213 (28.4) 7523 (35.9) 10394 (32.5) 12962 (31.9) 11249 (32.0) 52341 (31.8) 

Individual health behaviors       

Currently smoking, N (%) 9438 (26.2) 5893 (28.1) 8187 (25.6) 10297 (25.3) 9006 (25.6) 42821 (26.0) 

Alcohol use, N (%) 8045 (22.4) 8201 (39.1) 12479 (39.0) 18511 (45.5) 18396 (52.4) 65632 (39.8) 

Physical inactivity, N (%) 22961 (63.8) 13722 (65.5) 22112 (69.1) 30374 (74.7) 26889 (76.5) 116058 (70.5) 

Stress (log transformed), 

mean (SD) 1.2 (0.7) 1.0 (0.8) 1.0 (0.7) 0.8 (0.7) 0.9 (0.7) 1.0 (0.7) 

Health score, mean (SD) 80.8 (18.1) 84.3 (15.8) 86.4 (14.8) 89.1 (12.7) 89.6 (12.0) 86.3 (15.1) 
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Table 4.3 Marginal effect estimate (95% Confidence Interval)a for educational attainment on health using g-computation formulab, 

World Health Survey 2002-2004 (N=164,743). 

 

No formal 

education 

Less than 

primary school 

Primary school 

completed 

Secondary school 

completed 

High school 

or beyond 

Total effect -4.05 (-4.24, -3.85) -3.15 (-3.35, -2.95) -2.09 (-2.24, -1.94) -1.06 (-1.19, -0.92) Reference 

Natural direct effect -3.08 (-3.31, -2.85) -2.28 (-2.49, -2.06) -1.50 (-1.65, -1.34) -0.74 (-0.87, -0.61) Reference 

Natural indirect effect-A -0.54 (-0.68, -0.41) -0.49 (-0.60, -0.37) -0.32 (-0.38, -0.26) -0.18 (-0.21, -0.15) Reference 

Natural indirect effect-B -0.43 (-0.49, -0.37) -0.39 (-0.45, -0.34) -0.28 (-0.31, -0.24) -0.14 (-0.16, -0.12) Reference 

Controlled direct effect-00 -0.10 (-0.40, 0.19) -0.56 (-0.88, -0.24) -0.22 (-0.46, 0.02) -0.34 (-0.57, -0.12) Reference 

Controlled direct effect-X0 -1.12 (-1.38, -0.86) -1.20 (-1.46, -0.94) -0.70 (-0.91, -0.50) -0.55 (-0.75, -0.35) Reference 
a Wald type confidence intervals (CIs) were calculated as: point estimate ± 1.96  SD, where SD was the standard deviation of the 

200 point estimates from 200 bootstrapped samples. 
b g-computation formula approach was domestic product per capita. implemented via Monte Carlo simulation, accounting for 

confounding due to age, gender, WHO region and country level wealth, measured by gross  
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Figure 4.3 Effect decomposition and proportion explained by each pathway. A: natural decomposition; B and C: decomposition 

involving controlled direct effect. NDE: natural direct effect; NIE-A: natural indirect effect that is through social mediating factors and their 

consequences; NIE-B: natural indirect effect that is through health behavioral mediators only; CDE-00: controlled direct effect while fixing all 

mediators at the reference level (i.e. living in urban areas, being employed and married, not currently smoking, never used alcohol, being 

physically active, and not feeling stressed); CDE-X0: controlled direct effect while fixing only health behavioral mediators at the reference level 

(i.e. not currently smoking, never used alcohol, being physically active, not feeling stressed); PE(CDE-00) and PE(CDE-X0): the corresponding 

complement of total effect, also called “proportion eliminated”.  
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4.5   Discussion 

This large population-based global study found a widening gap in health status among 

participants with varying educational attainment compared to participants with high 

school or beyond education. Mechanistically, the major contribution of the negative 

impact of lower education on health was through pathways other than through social 

factors or health behaviors. Still, pathways through social factors or health behaviors 

accounted for more than one tenth of the health disparities due to education. A substantial 

amount of the observed health disparities would be eliminated if, in addition to increasing 

education, everyone had healthy behaviors and achieved the desired level of social factors 

via hypothetical interventions.   

 

We found that health behaviors contributed to the education ‘gradient’ in health, though 

the former did not fully explain the latter. This is in line with one study that found a 

significant direct effect of education even adjusting for work and economic conditions, 

social-psychological resources, and health lifestyle99, but not with the other, which found 

no educational impact after adjusting for income and health behaviors.107 From a 

mechanistic perspective, only 11% to 13% of the educational disparity was attributed to 

the pathway from education to health behaviors and in turn to health. Direct comparison 

to the existing literature is difficult due to the different methods used in defining and 

estimating the pathway effects. Only one other study used causal mediation analysis to 
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examine the mediating role of health behaviors in the relation between education and 

diabetes incidence.117 Body mass index and physical activity appeared to be mediating 

such relationship but the mediation proportion cannot be calculated because some of the 

pathways operated in the opposite directions. The large portion of direct effect not 

explained in the natural decomposition could be attributed to other important pathways 

such as physical and social environment, access to health care, psychosocial factors such 

as job control or social support.90,109,118 

 

Health behaviors and social factors may be less important mechanistic mediators in the 

current study sample, but they were important effect modifier, as can be seen in the 

discrepancy between natural and controlled direct effects (DEs). In our study, interaction 

was present between education and each mediator in affecting health. In this case, the 

three types of DEs examined in the current study can differ because they captured the 

direct impact of education on health under different assignments of the mediators. The 

NDE evaluated the education effect had the distribution of the social factors and health 

behaviors for all participants achieved the same distributions as those among participants 

with high school or beyond education. In other words, it quantified the remaining health 

disparity due to education had all participants achieved the same living status and behave 

the same way as people with high school or beyond education did in terms of residence, 

employment, marriage, smoking, alcohol drinking, physical activity, and stress level. On 
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the other hand, the CDE-00 evaluated the remaining health disparity due to education had 

everyone lived in urban areas, been employed and married, never smoked nor used 

alcohol, and been physically active and not stressed. Similarly, the CDE-X0 quantified 

the remaining education effect had everyone never smoked nor used alcohol, and been 

physically active and not stressed. Multiple values of CDE-00 and CDE-X0 were 

possible, depending on the value we set the mediators. The presence of such education-

mediator interaction highlights the need for health behavior interventions in addition to 

the effort in increasing education, in that these behavioral factors not only mediate the 

education impact but also moderate the strength of such impact. Health gap by education 

will exacerbate in the presence of unhealthy behaviors (appendix Table A 4.3). 

 

Another reason for such difference was that these social factors and health behaviors 

were not completely deterministic by educational attainment: the mediator assignments 

were quite different for natural versus controlled direct effects. Consider unemployment 

as an example: despite the lower rates seen among the most educated, the unemployment 

rate was far from zero (data not shown), an ideal scenario that was evaluated in the CDE-

00. Also, the most educated were not the ones that had the healthiest profiles; they drank 

alcohol more and were more physically inactive. Some of the positive impact of reducing 

smoking rates or stress may be offset by the negative impact of more alcohol use and 

being physically inactive and thus the NDE differed from the two CDEs.  
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From a public health intervention perspective, 48% to 72% of the educational gradient in 

health can be prevented by setting health behaviors at the desired level. Using the 

difference method, the British Whitehall II studies reported that health behaviors assessed 

at baseline explained 42%, 29%, and 61% of the socioeconomic gradient (measured by 

occupational grade) in all-cause, CVD, and non-cancer/non-CVD mortality whereas the 

repeated assessments of these behaviors during follow-up explained 72%, 45%, and 94% 

respectively.114 In a later analysis of the Whitehall II study in comparison to the French 

GAZEL study, health behaviors were found to attenuate the association of SES with 

mortality by 75% in the former but only by 19% in the later.106 Using data from the 

National Health and Nutrition Examination Survey, researchers found that in the low-

income group, health behaviors attenuated the risk of all-cause and CVD/diabetes 

mortality by 30% and 21%, respectively.113 In a study analyzing data from the National 

Health Interview Survey, the effect of education on mortality was reduced by 30% when 

controlling for exercise, smoking, drinking, seat belt use, and use of preventive care.110 

Our study is not easily comparable to the above studies because of the different 

behavioral factors included, health outcomes, and measures of SES. Some scholars did 

point out that different measures of SES are not interchangeable119,120 and there is 

variation in the SES-health association because of the choice of measure.121 It is also 

possible that the causal chain from SES to health/mortality via health behaviors played 
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out differently due to the difference in social patterning of unhealthy behaviors between 

countries.106 Nevertheless, our study showed that health behaviors played an important 

role, especially among the least educated. Under hypothetical intervention of fixing the 

health behaviors at the desired level, the health disparity gap by education narrowed as 

educational attainment increased. People with no formal education would potentially 

benefit most from interventions that promote healthy behaviors in terms of narrowing the 

educational gradient in health. 

 

To the best of our knowledge, this is the first study to quantify the contribution of 

underlying pathways that explained educational disparities in health across countries and 

continents using causal inference technique. The use of standardized global health data 

allowed for pooling data from multiple high-, middle-, and low-income countries and 

examining a global picture. We used causal mediation analysis tool that incorporated 

nonlinear relationships, which is crucial in the presence of exposure-mediator interaction. 

We presented results from both mechanistic and interventional perspectives that shed 

light on the well-established yet mysterious relationship between education and health. 

The hierarchical nature of the data was accounted for by using multilevel generalized 

linear models. Apart from partitioning the impact of education on health into pathway-

specific effects, we also examined the remaining health disparities due to education under 
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hypothetical intervention of either setting health behaviors singly or combined with social 

factors at the desired levels.  

 

Several methodological limitations need to be addressed. Due to the cross-sectional 

nature of the WHS data set, we assumed that educational attainment preceded participants 

residence, employment and marital status, health behaviors including current smoking 

status, alcohol use, physical activity status and stress level, and the present health status. 

Also, social factors were assumed to precede health behaviors, which preceded current 

health status. This is a reasonable assumption after we restricted our sample to 

participants aged 25 and older. Education, unlike income,122 is less likely to be influenced 

by mid-life health conditions. Sensitivity analysis that restricted analysis to participants 

aged 40 and older (N=91,728) revealed similar patterns but slightly larger estimates. 

Repeated measurements on behaviors were not available, which explained a significantly 

greater part of the SES-mortality association compared to baseline-only assessments.114 

Due to missing information on health behaviors and health status, we lost participants 

from 24 countries, most of which were countries from the European Region. We also did 

not include fruit and vegetable consumption in our analysis due to vast missing values. 

We did not impose directionality between different social factors nor between different 

health behaviors; rather, we hypothesized variables within each of these two constructs 

were related by their upstream determinants as depicted in our DAG. Despite the use of 
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causal inference techniques, our result could still be subject to uncontrolled confounding 

between health behaviors and health status and measurement error biases. The results of 

CDEs should be interpreted with caution. They correspond to an ideal scenario that might 

never happen: you cannot force people to be married or have no stress. Therefore, they 

can be an overestimation of the educational disparities in health that could be eliminated 

by such joint interventions on health behaviors and social factors. In future studies, we 

will explore different intervention scenarios and the combinations of them in reducing 

health disparities by education. 

 

This study provided evidence on the contribution of underlying pathways that explained 

educational gradient in health. Mechanistically, the impact of education on health was 

mainly direct. Yet, if the population can achieve the desired levels for health behaviors by 

certain interventions, a large portion of educational disparities could be eliminated, 

especially among those with no formal education. The results showed that natural direct 

effect and controlled direct can differ substantially in the presence of exposure-mediator 

interactions, which should be taken into account in future studies. Also, our study 

highlighted the need for continuing efforts on health behavior interventions among the 

less educated as countries throughout the world continue to achieve universal primary 

education or universal secondary education in the post-2015 era of the Millennium 

Development Goal.123
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4.6   Appendix 

Description of the World Health Survey (WHS) data set 

Within each country, samples were probabilistically selected with every individual being 

assigned to a known non-zero selection probability. These samples were nationally 

representative except in China, Comoros, Congo, Côte d’Ivoire, India, and the Russian 

Federation, where the survey was carried out in geographically limited regions. This 

study included participants from 17 countries in the African region, 10 in the European 

region, six in the Americas, five in the South-East Asia region, five in the western Pacific 

region, and three in the Eastern Mediterranean region (Table A 4.1). All respondents 

were interviewed face-to-face with the standardized WHS survey, which included 

questions regarding demographic, socioeconomic, and behavioral factors. 

 

Assumptions for identification 

To estimate the effects defined above using the observational data, we assumed stable 

unit treatment value assumption (SUTVA),46,93 general consistency, conditional 

exchangeability (no uncontrolled confounding), and positivity.53 The conditional 

exchangeability assumption for natural effects included: (i) no uncontrolled confounding 

of the (X, MA, MB) – Y, X – MA, or (X, MA) – MB relations given covariate set Z, and (ii) 

no members of the covariate set Z are affected by X or MA. To identify controlled direct 
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effect, we assumed no uncontrolled confounding of the (X, MA, MB) – Y relationship 

given Z (CDE-00) and of the (X, MB) – Y relationship given Z (CDE-X0) respectively.  

 

Description of the g-computation steps 

We implemented the parametric g-formula algorithm in the three steps described here. 

First, we used multilevel generalized linear models with random intercept for country for 

each of the social factors and individual health behaviors and health score to account for 

the clustering within country (PROC MIXED procedure for stress and health score and 

PROC GLIMMIX procedure for the other variables in SAS). For each prediction model, 

confounders including an age-squared term and preceding factors for the corresponding 

outcome are included based on Figure 1. Bivariate interaction terms between education 

and all individual level factors were included as covariates in prediction models if the 

terms were significant at the P<0.15 level. Second, we created five copies of the original 

sample and assigned each copy the following education level: “no formal education”, 

“less than primary school”, “primary school completed”, “secondary school completed”, 

or “high school and beyond”. The pooled data set contained five synthetic cohorts under 

different education interventions (XINT=xINT). We then simulated potential variables for (i) 

social factors, (ii) health behaviors, and (iii) health sequentially using both the fixed 

effect estimates and the random intercept value for each country obtained from the first 
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step. Use no formal education as index intervention as an example. According to the 

counterfactual definitions presented in Table 4.1, we simulated: 

(i) each potential social factor had we assign everyone no formal education 

[MA(x)], or high school or beyond education [MA(x*)], or under the 

specific education intervention for their own cohort [MA(xINT), i.e. 

combinations of MA(x) and MA(x*)]; 

(ii) potential health behavior variables under different education intervention 

and potential social factor assignments: MB(xINT, MA(xINT)), MB(x*, 

MA(x*)), MB(x*, MA(xINT)), and MB(xINT, MA(x)); and  

(iii) potential health status under education intervention, potential social factor 

from (i) and potential health behaviors from (ii): Y(xINT, MA(xINT), MB(xINT, 

MA(xINT))) (TE), Y(xINT, MA(x*), MB(x*, MA(x*))) (NDE), Y(x, MA(xINT), 

MB(x*, MA(xINT))) (NIE-A), Y(x, MA(x), MB(xINT, MA(x))) (NIE-B), Y(xINT, 

MA=ma, MB=mb) (CDE-00), Y(xINT, MA(xINT), MB=mb). 

To reduce Monte Carlo simulation error, the simulation was done on a dataset 200 times 

the size of the original (obtained via resampling with replacement), but the parameter 

estimation were based on the original sample size. For continuous stress and health score, 

the simulated value was bounded within the observed values (0≤stress≤2.32 and 

0≤health≤99.9). The final step involved regressing each potential health variable from 
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(iii) on education intervention to obtain the point estimate for the corresponding marginal 

effect. 

We repeated the above three steps on 200 bootstrapped samples taken at random with 

replacement from the original data by country. The Wald type 95% confidence interval 

(CI) was calculated as: point estimate ± 1.96  SD, where SD was the standard deviation 

of the 200 resultant point estimates from the final regression in the third step.  
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Appendix Tables 

 

Table A 4.1 Country-specific sample size, percent female, mean age, and national 2003 Gross Domestic Product per capita 

(GDP/c), World Health Surveys 2002-2004. 

Country 

Initial 

sample 

size 

N 

missing 

health 

score 

N missing 

education 

information 

N missing 

demographics 

N 

missing 

health 

behaviors 

Final 

sample 

size 

Female 

(%) 

Mean 

age 

GDP/c 

(current 

USD) 

African Region (AFR) 

Burkina Faso 3607 91 0 4 25 3486 50.7 41.4 332 

Chad 3628 364 0 43 281 2991 51.8 41.8 292 

Comoros 1411 55 0 82 21 1262 57.0 47.5 569 

Congo 1937 414 11 247 540 1212 52.4 40.0 1039 

Côte d'Ivoire 2402 248 13 86 117 2027 42.0 40.3 905 

Ethiopia 3775 442 2 5 254 3115 51.1 41.9 117 

Ghana 3302 114 34 25 96 3047 55.7 45.1 603 

Kenya 3449 47 0 5 65 3332 57.9 42.6 504 

Malawi 3761 126 1 16 39 3519 56.9 42.3 262 

Mali 3176 2450 15 541 646 514 43.7 46.2 376 

Mauritania 3011 295 5 114 604 2108 61.7 43.2 527 

Mauritius 3385 302 0 2 24 3066 52.7 45.2 4830 

Namibia 3284 1201 3 205 255 2016 59.3 42.6 2489 

Senegal 2542 553 9 609 769 1247 48.2 42.9 643 

South Africa 1876 331 1 39 89 1444 53.1 41.8 3739 

Swaziland 2396 870 8 786 897 1390 54.0 43.8 1704 

Zambia 2847 333 0 2 15 2490 53.5 41.2 399 

Zimbabwe 3020 117 0 45 3020 0 64.8 43.1 529 

Region of the Americas (AMR) 

Brazil 4209 548 0 139 4209 0 56.8 45.6 3039 
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Table A 4.1 Country-specific sample size, percent female, mean age, and national 2003 Gross Domestic Product per capita 

(GDP/c), World Health Surveys 2002-2004. 

Country 

Initial 

sample 

size 

N 

missing 

health 

score 

N missing 

education 

information 

N missing 

demographics 

N 

missing 

health 

behaviors 

Final 

sample 

size 

Female 

(%) 

Mean 

age 

GDP/c 

(current 

USD) 

Dominican 

Republic 3758 61 1 5 67 3638 53.2 45.8 2210 

Ecuador 3869 326 7 97 1855 1801 55.7 45.0 2442 

Guatemala 3836 143 173 100 105 3351 61.1 44.6 1817 

Mexico 32129 0 0 0 0 32129 57.5 45.1 6601 

Paraguay 4062 45 0 1 30 3993 54.6 44.9 1159 

Uruguay 2680 22 0 3 17 2640 51.8 48.7 3622 

Eastern Mediterranean Region (EMR) 

Morocco 4184 4184 0 257 233 0 58.3 44.9 1684 

Pakistan 5030 192 1 29 546 4315 45.3 41.6 597 

Tunisia 4213 344 0 27 495 3430 54.9 45.9 2788 

United Arab 

Emirates 984 65 3 0 64 863 47.8 40.3 36906 

European Region (EUR) 

Austria 940 940 0 17 940 0 62.5 48.0 32019 

Belgium 875 875 0 107 875 0 56.2 48.8 30675 

Bosnia and 

Herzegovina 917 386 0 1 5 526 58.3 50.1 2182 

Croatia 932 20 0 1 11 902 59.9 54.1 7857 

Czech Republic 828 90 1 5 11 729 55.6 51.3 9732 

Denmark 959 959 1 0 959 0 53.0 52.2 40517 

Estonia 928 41 0 3 10 876 63.7 52.3 7333 

Finland 944 944 0 1 944 0 55.3 55.1 32814 

France 889 889 0 34 889 0 60.6 46.6 29657 

Georgia 2441 16 0 64 12 2352 57.9 52.2 874 
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Table A 4.1 Country-specific sample size, percent female, mean age, and national 2003 Gross Domestic Product per capita 

(GDP/c), World Health Surveys 2002-2004. 

Country 

Initial 

sample 

size 

N 

missing 

health 

score 

N missing 

education 

information 

N missing 

demographics 

N 

missing 

health 

behaviors 

Final 

sample 

size 

Female 

(%) 

Mean 

age 

GDP/c 

(current 

USD) 

Germany 1147 1147 1 35 1147 0 59.9 53.2 29864 

Greece 916 916 0 2 916 0 50.1 53.8 18269 

Hungary 1262 315 1 4 1262 0 59.4 53.0 8355 

Ireland 866 866 5 113 866 0 56.0 48.5 40759 

Israel 1075 1075 6 12 1075 0 58.1 48.3 19407 

Italy 907 907 0 7 907 0 58.2 51.1 27135 

Kazakhstan 4111 105 0 2 3 4001 65.8 43.3 2091 

Latvia 763 72 0 1 763 0 68.3 54.6 5632 

Luxembourg 620 620 0 3 620 0 50.8 48.3 65088 

Netherlands 825 825 0 825 825 0 70.3 51.3 35385 

Norway 872 872 2 872 872 0 50.8 50.9 50165 

Portugal 911 911 0 0 911 0 62.5 54.4 15802 

Russian 

Federation 4070 278 21 10 180 3605 64.6 54.0 2970 

Slovakia 1922 680 573 598 613 1170 63.9 43.8 6307 

Slovenia 512 30 1 512 4 0 54.3 50.9 14914 

Spain 5959 187 0 5 31 5741 59.1 54.9 21583 

Sweden 908 908 0 21 908 0 58.7 53.9 37030 

Turkey 9678 344 7649 9678 9678 0 56.3 45.3 4595 

Ukraine 2517 205 0 234 74 2048 65.3 50.8 1088 

United Kingdom 1069 1069 0 79 1069 0 62.9 53.8 32561 

South-East Asia Region (SEAR) 

Bangladesh 4528 821 1 9 49 3666 52.2 42.6 427 

India 8140 1640 56 76 369 6238 51.7 43.0 541 

Myanmar 4996 4 0 0 3 4989 57.3 44.6 200 
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Table A 4.1 Country-specific sample size, percent female, mean age, and national 2003 Gross Domestic Product per capita 

(GDP/c), World Health Surveys 2002-2004. 

Country 

Initial 

sample 

size 

N 

missing 

health 

score 

N missing 

education 

information 

N missing 

demographics 

N 

missing 

health 

behaviors 

Final 

sample 

size 

Female 

(%) 

Mean 

age 

GDP/c 

(current 

USD) 

Nepal 6979 49 0 2 29 6900 56.3 43.3 264 

Sri Lanka 5642 710 0 375 369 4303 54.0 44.9 968 

Western Pacific Region (WPR) 

Australia 3316 3316 75 3316 3316 0 58.0 49.7 28017 

China 3674 54 0 5 3 3614 51.4 47.2 1267 

Lao People's 

Democratic 

Republic 4060 86 9 3 50 3919 52.7 41.8 358 

Malaysia 5250 203 4 20 66 4996 56.8 44.2 4607 

Philippines 8380 110 0 9 58 8207 54.6 42.6 1016 

Viet Nam 2983 1428 0 8 26 1535 55.5 43.4 475 
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Table A 4.2 Characteristics of 66,531 participants excluded from the main analyses due to missing 

values in one or more of the variables, World Health Survey 2002-2004. 

Characteristics Sample size Descriptive statistics 

Total, N (%)   

Age, mean (SD) 66237 46.7 (15.6) 

Females, N (%) 66474 37961 (57.1) 

Educational attainment 57835  

No formal education  14595 (25.2) 

Less than primary school  5593 (9.7) 

Primary school completed  10882 (18.8) 

Secondary school completed  11044 (19.1) 

High school and beyond  15721 (27.2) 

Social factors   

Living in rural areas, N (%) 59677 27165 (45.5) 

Unemployment, N (%) 61638 33309 (54) 

Not Married, N (%) 55639 20798 (37.4) 

Individual health behaviors   

Currently smoking, N (%) 45080 10857 (24.1) 

Alcohol use, N (%) 43458 14159 (32.6) 

Physical inactivity, N (%) 40637 31416 (77.3) 

Stress (log transformed), mean (SD) 42956 0.9 (0.8) 
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Note: Table A 4.3 below shows the parameter estimates from a regular linear mixed model for health score, conditional on education, 

compositional factors, health behaviors and stress, and covariates while allowing for bivariate product terms between education level 

and every mediator and individual level confounders. The result presented below cannot be directly compared to the marginal CDE-00 

presented in the main text because those effects are marginalized over covariates, representing the population average. Due to the 

presence of interaction between education and sex, conditional estimates were presented for males and females separately.  

 

Table A 4.3 Conditional controlled direct effect estimate (95% confidence interval) for educational attainment on health using 

linear mixed model with random intercept for countrya, World Health Survey 2002-2004. 

 

No formal 

education 

Less than 

primary school 

Primary school 

completed 

Secondary school 

completed 

High school 

or beyond 

Males      

Conditional CDE-00b 0.24 (-0.38, 0.86) -0.76 (-1.46, -0.07) -0.47 (-1.07, 0.13) -0.92 (-1.47, -0.36) Reference 

Conditional CDE-01c -4.22 (-4.80, -3.63) -2.86 (-3.53, -2.20) -3.38 (-3.94, -2.83) -3.34 (-3.84, -2.84) Reference 

Females      

Conditional CDE-00 -0.03 (-0.67, 0.61) -1.28 (-2.00, -0.55) -0.29 (-0.92, 0.34) -0.49 (-1.09, 0.10) Reference 

Conditional CDE-01 -4.49 (-5.18, -3.80) -3.38 (-4.19, -2.57) -3.21 (-3.89, -2.52) -2.92 (-3.54, -2.30) Reference 
a Model included bivariate product terms between education level and every mediator and individual level confounder. 
b Conditional CDE-00 represents the controlled direct effect when fixing both social factors and health behaviors at reference levels 

(i.e. living in urban areas, being employed and married, not smoking, never used alcohol, being physically active and not stressed) 

for 45 year-old participants. 
c Conditional CDE-01 represents the controlled direct effect when fixing social factors at reference levels (i.e. living in urban areas 

and being employed and married) but health behaviors at index levels (i.e., smoking, ever used alcohol, being physically inactive 

and having 1-unit increase in stress score) for 45 year-old participants. 
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Chapter 5.   The Modifying Influence of Leisure Time Physical Activity on the 

Impact of Occupational Physical on 20-Year Incidence of Acute Myocardial 

Infarction 

5.1   Abstract 

Objectives: To disentangle the complex interplay between occupational physical activity (OPA) 

and leisure-time physical activity (LTPA) in affecting cardiovascular health, this study aimed to 

examine (1) interactions between OPA and LTPA and their combined effect on 20-year 

incidence of acute myocardial infarction (AMI), and (2) the effect of OPA on AMI that is 

mediated through LTPA. 

Methods: We analyzed data on 1891 men, aged 42-60 years, from the prospective Kuopio 

Ischemic Heart Disease Risk Factor Study. We obtained first-time incident AMI after baseline 

via hospitalization discharge and death registries. OPA was measured as relative aerobic strain 

(RAS), which took into account both the absolute energy expenditure at work and the workers’ 

cardiorespiratory fitness. Averaged 12-month LTPA was assessed based on survey as were with 

potential confounders.  

Results: We found multiplicative interactions between OPA and LTPA among men with IHD. 

The multivariable-adjusted (age, education, smoking, alcohol consumption, technical and 

psychosocial job factors) Cox model showed that high OPA positively predicted AMI at low 

LTPA level for both men without and with IHD —HR 1.27 (95% CI: 0.96, 1.68) and HR 1.59 
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(95% CI: 0.99, 1.68) respectively—but not at high levels of LTPA. Analysis using continuous 

physical activity measures showed a stronger effect estimate in men without IHD. The 

combination of high OPA and low LTPA constituted the group associated with the highest risk 

for AMI, irrespective of IHD status. LTPA was not independently predictive of AMI and did not 

mediate the impact of OPA on AMI.  

Conclusions: LTPA interacted with OPA on the multiplicative scale but did not mediate the 

effect of OPA on AMI.  

 

5.2   Introduction 

Sedentary lifestyle, or physical inactivity, is an established risk factor for cardiovascular 

disease.124–126 Accordingly, physical activity both in work setting and leisure time have been 

recommended.127 While leisure-time physical activity (LTPA) has been well documented to 

promote health,128,129 the effect of occupational physical activity (OPA) is inconsistent.130 

Without adjustment for LTPA, higher levels of OPA were reported to be protective against CVD 

in some studies,131,132 have no effect,133,134 or increase the CVD risk.135,136 When adjusting for 

LTPA, some studies showed that greater OPA is associated with progression of carotid 

atherosclerosis,137 and increased AMI incidence138 or risk of IHD mortality.139 

 

One explanation for such inconsistency could be that the effects of OPA depend on the level of 

LTPA140,141 and possibly individual aerobic fitness.137,142 If interaction between OPA and LTPA 
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exists, a model ignoring such interaction could in some scenarios result in cancellation of effect 

of one variable across levels of another and yield a misleading average estimate of no effect. 

Another explanation for such pattern could be that high levels of OPA preclude workers from 

engaging in LTPA; thus these workers cannot benefit from LTPA. Finally, OPA could directly 

affect CVD. Based on the negative correlation between OPA and LTPA observed in previous 

work137 and previous observations that LTPA participation was relatively low among blue-collar 

workers,143 we hypothesized that LTPA both interacts with OPA and mediates the effect of OPA 

on CVD. Therefore, as a follow-up study to our previous publications examining the relationship 

between OPA or LTPA and cardiovascular outcomes, we further assess the modifying and 

mediating role of LTPA on the pathway from OPA to 20-year incidence of AMI. We also 

explored the impact of LTPA on AMI at different levels of OPA. We conducted separate 

analyses for men with and without preexisting ischemic heart disease (IHD), as past studies 

suggested a heterogeneous OPA effect by IHD status.138 

 

More specifically, and separately for men with and without preexisting IHD, our study aimed to: 

(1) assess both multiplicative and additive interaction between OPA and LTPA, and their 

combined effect on 20-year incidence of AMI, and (2) examine the potential mediating role of 

LTPA on the pathway from OPA to AMI, using causal mediation analysis that allowed for 

exposure-mediator interaction.28,144 
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5.3   Methods 

Study design, setting and population  

Participants were from the prospective Kuopio Ischemic Heart Disease Risk Factor (KIHD) 

Study, an age-stratified, random, population-based sample of Eastern Finnish men, residing in 

the city of Kuopio or its surrounding rural communities. Details of the study population are 

available elsewhere.138,145 Out of 3235 eligible men aged 42, 48, 54, or 60 years, 2682 (82.9%) 

men agreed to participate, with 553 men being excluded due to refusal (N=367) and no contact 

(N=186). All participants underwent baseline examinations and interviews between March 1984 

and December 1989 and were passively followed by national hospitalization discharge and death 

registries until 2011. We excluded 791 participants who were not working at baseline or in the 

12 months prior, resulting in a final study sample of 1891 participants with complete information 

on all the baseline covariates for the main analyses. All participants provided written informed 

consent. The University of California, Los Angeles (UCLA) Institutional Review Board 

approved this study. 

 

Assessment of incidence of acute myocardial infarction 

As described previously,138 we ascertained first-time incident AMI (ICD-9 code 410) during 

follow-up via record linkage with national hospitalization discharge and death registries 

including the national AMI register established under the World Health Organizations 

“Monitoring of Trends and Determinants of Cardiovascular Diseases (MONICA)” project.146,147 
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A university-based cardiologist for this study confirmed hospital discharge diagnoses using other 

hospital records, lab results, and electrocardiograms. We censored the follow-up at 31 December, 

2011 or date of death whichever came first.  

 

Assessment of occupational physical activity  

We measured OPA as relative aerobic strain (RAS), the most predictive factor for AMI among 

other OPA measures found in the same study population.148 RAS (aka relative aerobic workload) 

expresses the caloric demands of work as a percentage of the individual worker’s aerobic 

cardiorespiratory fitness or maximal work capacity (%VO2max).149 RAS takes into account both 

the absolute energy expenditure (EE) and the workers’ individual aerobic capacity. Detailed 

descriptions of the assessment of these variables can be found elsewhere.148,149 Based on work 

physiology and ergonomic principles, it is often the misfit between high job-related energy 

demands and low worker aerobic capacity, rather than a high absolute amount of EE alone, that 

will lead to elevated blood pressure and heart rate during work, two established risk factors for 

AMI.148 Also, OPA has been shown to be detrimental among workers with low cardiorespiratory 

fitness but not among those with high fitness level.150 Thus, we decided to use RAS as our OPA 

exposure measure in the main analyses. 

 

Absolute EE at work (in kcal/day) was assessed from baseline interview data on time spent in 

various activities at work during a typical workday and reference data on the energy 
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requirements (kcal/kg/hour) of these activities. EE in kcal for each reported activity was 

calculated by multiplying the duration (hours per day) by the respective intensity (MET) and 

body weight (kg) for each individual. EE per typical workday was the sum of EE for all 

activities.  

 

Cardiorespiratory fitness (also known as aerobic capacity or VO2max) was measured with a 

maximal, symptom-limited exercise-tolerance test on a bicycle ergometer as explained in detail 

elsewhere.151–153 VO2max, in ml O2 per kg per minute, was defined as the highest value or 

plateau in oxygen uptake during maximal symptom-limited bicycle ergometer and was 

standardized by body weight. 

 

Assessment of leisure-time physical activity  

LTPA was measured using the KIHD 12-Month Leisure-Time Physical Activity History, a 

modified version of the Minnesota Leisure Time Physical Activity questionnaire,154 that included 

the 16 most common leisure time physical activities of middle-aged Finnish men.153,155 

Respondents were asked to record the frequency, duration, and intensity of each of 16 activities 

performed for each of the 12 previous months. Conditioning (of vigorous-intensity) LTPA 

included walking, jogging, cross-country skiing, bicycling, swimming, rowing, ball games, and 

gymnastics, dancing, or weightlifting. We calculated the sum of these activities and obtained the 



 

108 

 

average conditioning LTPA, expressed in minutes per week, in the previous year. Unless 

otherwise noted, we used LTPA to represent conditioning LTPA throughout the article.  

 

Assessment of covariates 

We included as confounders age, education, participation in unrelated lipid-lowering drug trial 

(placebo group, treatment group, versus none), and baseline IHD. Education was categorized 

into: (i) some elementary school, (ii) elementary school completed, or elementary school plus 

some junior high school, (iii) junior high school completed, or junior high school plus some 

senior high school, and (iv) senior high school completed or beyond. A continuous smoking 

variable “cigarette-years” was calculated based on the number of cigarettes per day and the 

number of years smoked. Alcohol consumption (grams per week) accounted for frequency of 

drinking and amount of drinks per occasion for each type of alcoholic beverage (beer, wine, 

spirits) for the last 12 months. Psychosocial job factors were measured using questionnaires that 

captured mental strain at work (11 items of psychological demands), social support at work (3 

items), and stress from work deadlines. These factors have been associated with progression of 

atherosclerosis and an increased risk for myocardial infarction and mortality in this study 

population and showed satisfactory Cronbach’s  coefficients.156,157 We classified participants as 

having preexisting IHD at baseline if they (i) had a history of prior (before baseline) myocardial 

infarction or angina pectoris, (ii) currently used anti-angina medication, or (iii) had positive 

findings of angina according to the London School of Hygiene cardiovascular questionnaire.158 
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Statistical analysis  

We summarized the participants’ characteristics by their baseline IHD status.  

 

Interaction analysis 

We used Cox proportional hazard models159 with adjustment of covariates listed in Table 5.1. 

We added an OPA × LTPA product term to assess the interaction between OPA and LTPA on 

the multiplicative scale. We also calculated the relative excess risk for interaction (RERI) as a 

measure for additive interaction:160 HR11 – HR10 – HR10 + 1, where HR11, HR10, and HR01 

respectively represented the joint effect of OPA and LTPA, the main effect of OPA, and the 

main effect of LTPA. Variables were recoded jointly when necessary so that the reference 

combined category represented lowest risk group.161 OPA was modeled both as a binary 

indicator (RAS > 33% as high versus RAS ≤ 33% as low), based on the maximum level of 33% 

VO2max recommended for 8 hours of work,149,162 and continuous variable (1 unit representing a 

20% increase in RAS) centered at a level of 23.5%. Similarly, LTPA was modeled as a binary 

indicator (LTPA≥ 75 minutes/week as high versus LTPA < 75 minutes/week as low) based on 

WHO global recommendations163 as well as continuous variable (1 unit representing a 75 

minutes/week increase). Binary OPA was paired with binary LTPA whereas continuous OPA 

was paired with continuous LTPA in all analyses. We also performed the analyses using low 

OPA and high LTPA as the reference category for binary physical activity measures and 
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compared different combination of OPA and LTPA relative to this reference group as done in the 

existing literature. We reported hazard ratio (HR) for AMI associated with a 1-unit increase in 

OPA and its corresponding 95% confidence interval (CI) at different levels of LTPA. Similarly, 

effect estimates associated with a 1-unit increase in LTPA at different levels of OPA were also 

presented. The quadratic term for the continuous RAS measure was not significant at P=0.1 level 

and did not improve model fit. Thus, the hazard function was modeled in a linear form for this 

measure. 

 

Mediation analysis 

We assumed that baseline OPA level determined the baseline LTPA level, not the other way 

around, and that first-time incidence of AMI occurred during follow-up can be attributed to the 

OPA and LTPA levels measured at baseline. We invoked the stable unit treatment value 

assumption (SUTVA),46 and assumptions of consistency, positivity, conditional exchangeability 

(no-uncontrolled-confounding),47,48 and no selection bias and measurement error. Further 

discussions of these assumptions can be found elsewhere.164 We used recently proposed inverse-

probability weighted (IPW) fitting of marginal structural models (MSMs) for causal mediation 

analysis144 to estimate the marginal pure direct effect (PDE) of baseline OPA on AMI and the 

marginal total indirect effect (TIE) of baseline OPA via baseline LTPA (Figure 5.1). PDE was 

defined as the hazard ratio comparing high to low OPA levels while allowing LTPA attain the 

natural value under the low OPA level. TIE was defined as the hazard ratio comparing two 
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LTPA levels – the natural LTPA level under high OPA versus the natural LTPA level under low 

OPA – while setting OPA level to be high. Methodological details can be found in the appendix. 

 

 

Figure 5.1 Graphical presentation (solid black lines) of pure direct effect (a) and total indirect 

effect (b) of occupational physical activity (OPA) on acute myocardial infarction (AMI), with 

mediator leisure-time physical activity (LTPA). 

 

Sensitivity analysis 

We conducted the following sensitivity analyses to test the robustness of our results for assessing 

interaction between OPA and LTPA. First, we repeated our analyses using trichotomized OPA 

(low: RAS≤23%, moderate: 23%≤RAS<33%, high: RAS>33%) and LTPA (low: LTPA<20 

minutes/week, moderate: 20 minutes/week ≤LTPA<75 minutes/week, high: LTPA≥75 

minutes/week) measures. Second, we repeated our main analyses with additional adjustment for 

biological factors including blood glucose, plasma fibrinogen, body mass index, LDL-

cholesterol, HDL-cholesterol, systolic blood pressure, lipid-lowering mediation, and anti-

hypertensive medication. Third, we used continuous absolute EE (500 kcal increase), centered at 
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the population mean of 2111 kcal/day, as an alternative measure of OPA to assess the interaction 

between OPA and LTPA.  

 

For assessing the mediating role of LTPA, we additionally included 4-year LTPA as a second 

mediator and examined the effect of OPA via pathways involving baseline LTPA, or 4-year 

LTPA, or neither. We further restricted our analytical sample to 455 men without baseline IHD 

and who had complete information on all variables. Detailed sample restriction criteria, 

methodology, effect definition, and implementation steps can be found elsewhere28 and in the 

appendix.  

 

All analyses were performed using Stata version 14 (StataCorp LP, College Station, Texas).  

5.4   Results 

Characteristics of the study sample 

The distribution of exposure variables and covariates by preexisting IHD status is listed in Table 

5.1. Participants’ mean age was 51.5 years [standard deviation (SD): 5.0] for participants without 

IHD and 53.5 (SD: 3.9) for those with IHD. Over 70% of the participants completed elementary 

school but not junior high school. Participants with IHD had higher levels of RAS, absolute EE, 

and mental strain at work, smoked and drank more, and experienced more stress from work 

deadlines, but had lower level of fitness than men without IHD. LTPA and social support at work 

were similar in these two subgroups.  
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Incidence of AMI 

During an average of 19.56 years of follow-up (SD: 7.53; range: 0.01-27.76) and a total person-

time of 36991 years, 495 first-time incident AMI occurred among 1891 study participants, 

yielding a yearly incidence rate of 1.34%. Among 1565 men without baseline IHD, 353 AMI 

occurred (yearly incidence 1.11%) whereas among 326 men with baseline IHD, 142 AMI 

occurred (yearly incidence 2.60%).  

 

Interaction between binary OPA and binary LTPA in affecting AMI  

Table 5.2 displays the associations between one type of PA and AMI at different levels of the 

other PA type by preexisting IHD status and the joint association of both OPA and LTPA with 

AMI, using low OPA and high LTPA as reference. For men without IHD, RAS greater than 33% 

was only positively associated with AMI incidence among men with low LTPA and with age 

adjustment (HR: 1.34, 95% CI: 1.01, 1.76) but such association attenuated after adjusting for 

other factors (HR: 1.27, 95% CI: 0.96, 1.68). For men with IHD, RAS positively predicted AMI 

at low LTPA (HR: 1.59, 95% CI: 0.99, 2.57) but not at high LTPA (HR: 1.04, 95% CI: 0.61, 

1.79). For both IHD subgroups, high LTPA was weakly negatively associated with AMI at high 

but not at low OPA level. Compared to men with low OPA and high LTPA, men with high OPA 

and low LTPA had the highest risk for AMI, irrespective of IHD status (HR: 1.33, 95% CI: 0.99, 

1.78 for men without IHD; HR: 1.36, 95% CI: 0.84, 2.18 for men without IHD). Multiplicative 
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interaction between OPA and LTPA was observed among men with IHD (ratio of HR: 0.65, 

P=0.240) but no additive interaction was observed for both subgroups. 

 

Results from sensitivity analysis using trichotomized PA measures are presented in appendix 

Tables A 5.1 and A 5.2. Moderate and high OPA, compared to low OPA, was positively 

associated with AMI at moderate and high LTPA levels among men without IHD but only at 

high LTPA level among men with IHD. LTPA did not predict AMI across OPA levels. The 

combined effect of moderate OPA and moderate LTPA was greater than the product of their 

separate effects among men without IHD. The combined effect of high OPA and moderate 

LTPA was greater than the product of their separate effects among men with IHD. When using 

the low OPA and moderate LTPA as the general reference group for men without IHD, those 

with moderate OPA and moderate LTPA had the highest risk for AMI (HR: 2.35, 95% CI: 1.43, 

3.85). For men with IHD, those with low OPA and moderate LTPA had the highest risk for AMI 

(HR: 3.92, 95% CI: 1.20, 12.78), when compared to moderate OPA and low LTPA reference 

group. Negative (i.e., the combined effect of two PA measures being smaller than the sum of 

their separate effects) but uncertain additive interactions were found (1) comparing moderate 

OPA and low LTPA to low OPA and moderate LTPA among men without IHD, and (2) 

comparing low OPA and high LTPA to moderate OPA and low LTPA among men with IHD. 
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Results from sensitivity analysis that additionally adjusted for biological factors are presented in 

appendix Table A 5.3. Neither RAS nor LTPA predict AMI. We did not observe multiplicative 

or additive interactions between RAS and LTPA.   

 

Interaction between continuous OPA and continuous LTPA in affecting AMI  

Table 5.3 depicts the associations between one type of PA and AMI at different levels of the 

other PA by preexisting IHD status. For men without IHD, a 20% increase in RAS (from a 

reference RAS level of 23.5%) positively predicted AMI incidence at both LTPA of 0 

minute/week (HR: 1.45, 95% CI: 1.19-1.75) and at LTPA of 75 minutes/week (HR: 1.49, 95% 

CI: 1.28-1.75). Weaker associations between RAS and AMI were found among men with IHD 

(HR: 1.25, 95% CI: 0.96, 1.64 at LTPA of 0 minute/week; HR: 1.32, 95% CI: 1.07, 1.62 at 

LTPA of 75 minutes/week). We found no association between LTPA and AMI across levels of 

RAS and no multiplicative interaction between RAS and LTPA. 

 

Table A 5.4 depicts results from using absolute EE as OPA measure. High absolute EE was 

associated with AMI only at LTPA level of 75 minutes/week (HR: 1.06, 95% CI: 1.00-1.13) but 

not at a lower LTPA level for men without IHD and was not associated with AMI across LTPA 

levels among men with IHD. LTPA did not predict AMI or interact with EE at the multiplicative 

scale. 
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The mediating role of LTPA on the pathway from OPA to AMI 

Table 5.4 depicts the pure direct effect of OPA on AMI and the total indirect effect via baseline 

LTPA, estimated using IPW fitting of MSMs. We observed similar effect estimates from all 

three methods that differed only in the way confounding was handled. For men without IHD, the 

estimate for total effect of OPA on AMI was 1.31 (0.99, 1.79) when marginalizing over all 

covariates and LTPA. The majority of such positive impact of OPA on AMI was through 

pathways other than through LTPA (PDE: 1.27, 95% CI: 0.93, 1.74). The effect estimates for 

men with IHD were similar to that among men without IHD.  

 

Table A 5.5 in the appendix depicts results from sensitivity analysis that used also LTPA 

measured at 4-year follow-up and further decomposed the total effect into baseline LTPA 

pathway-specific effect, 4-year LTPA pathway-specific effect, and natural direct effect that is 

through neither baseline nor 4-year LTPA. In this restricted sample of men without IHD, OPA 

was not associated with AMI overall (TE: 1.08, 95% CI: 0.58, 2.02). Weak positive direct effect 

(NDE: 1.22, 95% CI: 0.57, 2.46) and weak negative indirect effect via baseline LTPA 

(NIEbaseline: 0.93, 95% CI: 0.69, 1.21) were observed. Follow-up LTPA at 4 years did not mediate 

the effect of baseline OPA on AMI (NIE4-year: 0.96, 95% CI: 0.79, 1.05). 
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Table 5.1 Characteristics of the study sample and distribution of exposure and covariates by 

preexisting ischemic heart disease (IHD) status, Kuopio Ischemic Heart Disease Risk Factor 

Study, 1984-2011 (N=1891). 

 

Men without IHD  

(N = 1565) 

Men with IHD  

(N = 326) 

Occupational physical activity (OPA)   

Relative aerobic strain (%), mean (SD) 29.7 (12.1) 38.5 (16.4) 

Binary relative aerobic strain (>33%), N(%) 490 (31.3) 179 (54.9) 

Absolute energy expenditure (kcal/day), mean 

(SD) 2078.0 (874.7) 2272.0 (969.6) 

Leisure-time physical activity (LTPA)   

Conditioning LTPA (minutes/week), mean (SD) 104.6 (117.1) 108.9 (144.6) 

Binary conditioning LTPA (≥75 minutes/week), 

N(%) 742 (47.4) 143 (43.9) 

Cardiorespiratory fitness (VO2max, O2/kg/minute) 32.8 (7.0) 27.5 (6.9) 

Covariates   

Age at baseline (years), mean (SD) 51.5 (5.1) 53.5 (3.9) 

Age group, N(%)   

42 years old 292 (18.7) 17 (5.2) 

48 years old 274 (17.5) 47 (14.4) 

54 years old 916 (58.5) 233 (71.5) 

60 years old 83 (5.3) 29 (8.9) 

Participation in lipid-lowering drug trial, N(%)   

Placebo group 135 (8.6) 28 (8.6) 

Treatment group 136 (8.7) 27 (8.3) 

Education, N(%)   

Some elementary school 113 (7.2) 41 (12.6) 

Elementary school completed/some junior high 

school 1144 (73.1) 251 (77.0) 

Junior high school completed/ some senior high 

school 150 (9.6) 28 (8.6) 

Senior high school completed or beyond 158 (10.1) 6 (1.8) 

Behavioral factors   

Smoking (cigarettes/day × years) 141.8 (290.3) 210.2 (348.1) 

Alcohol consumption (g/week) 71.5 (111.8) 88.3 (196.4) 

Psychosocial job factors   

Mental strain at work index  11.5 (6.3) 13.4 (7.1) 

Social support at work score 6.5 (2.5) 6.5 (2.4) 

Stress from work deadlines 357 (22.8) 105 (32.2) 
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Table 5.2 Hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of occupational physical activity 

(OPA) and leisure-time physical activity (LTPA) on 20-year incidence of acute myocardial infarction (N=495) when both types of physical 

activity were modeled as binary variables, by preexisting ischemic heart disease (IHD) status, Kuopio Ischemic Heart Disease Risk Factor 

Study, 1984-2011 (N=1891). 

 Men without IHD (N=1565) Men with IHD (N=326) 

  Age-adjusted Fully-adjusteda  Age-adjusted Fully-adjusteda 

 N HR (95% CI) HR (95% CI) N HR (95% CI) HR (95% CI) 

Binary RAS (RAS>33% versus RAS≤33%) 

Low LTPA (< 75 minutes/week) -- 1.34 (1.01, 1.76) 1.27 (0.96, 1.68) -- 1.52 (0.95, 2.42) 1.59 (0.99, 2.57) 

High LTPA (≥75 minutes/week) -- 1.20 (0.83, 1.74) 1.10 (0.76, 1.60) -- 0.97 (0.58, 1.63) 1.04 (0.61, 1.79) 

Binary LTPA (LTPA≥75 minutes/week versus <75 minutes/week) 

Low OPA (RAS ≤ 33%) -- 0.85 (0.66, 1.11) 0.95 (0.73, 1.25) -- 1.18 (0.70, 1.99) 1.17 (0.69, 2.01) 

High OPA (RAS > 33%) -- 0.77 (0.53, 1.12) 0.83 (0.57, 1.21) -- 0.76 (0.48, 1.19) 0.77 (0.48, 1.23) 

P for Multiplicative Interactionb -- 0.649 0.543 -- 0.205 0.240 

       

Combination of RAS and LTPA, using low RAS and high LTPA as the reference 

Low OPA and high LTPA 571 Reference Reference 80 Reference Reference 

High OPA and high LTPA  171 1.20 (0.83, 1.74) 1.10 (0.76, 1.60) 63 0.97 (0.58, 1.63) 1.04 (0.61, 1.79) 

Low OPA and low LTPA  504 1.17 (0.90, 1.52) 1.05 (0.80, 1.37) 67 0.84 (0.50, 1.42) 0.85 (0.50, 1.46) 

High OPA and low LTPA 319 1.57 (1.19, 2.07) 1.33 (0.99, 1.78) 116 1.28 (0.83, 1.99) 1.36 (0.84, 2.18) 

RERI (95% CI)c -- 0.19 (-0.37, 0.75) 0.18 (-0.32, 0.69) -- -0.55 (-1.49, 0.38) -0.54 (-1.51, 0.43) 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, social 

support at work, and stress from work deadlines.  
b P value for the RAS  LTPA product term. 
c RERIs were measures for additive interaction. For men without IHD, RERIs were calculated as HRhigh OPA, low LTPA – HRhigh OPA, high LTPA – HRlow 

OPA, low LTPA +1. For men with IHD, RERIs were calculated as HRhigh OPA, high  LTPA – HRhigh OPA, low LTPA – HRlow OPA, high LTPA + 1, using low OPA and 

low LTPA as the reference group. 
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Table 5.3 Hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of occupational physical activity 

(OPA) and leisure-time physical activity (LTPA) on 20-year incidence of acute myocardial infarction (N=495) when both types of physical 

activity were modeled as continuous variables, by preexisting ischemic heart disease (IHD) status, Kuopio Ischemic Heart Disease Risk Factor 

Study, 1984-2011 (N=1891). 

 Men without IHD (N=1565) Men with IHD (N=326) 

 Age-adjusted Fully-adjusteda Age-adjusted Fully-adjusteda 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Continuous RAS (20% increase) 

LTPA = 0 minute/week 1.45 (1.21, 1.74) 1.45 (1.19, 1.75) 1.20 (0.93, 1.55) 1.25 (0.96, 1.64) 

LTPA = 75 minutes/week 1.50 (1.30, 1.74) 1.49 (1.28, 1.75) 1.26 (1.04, 1.52) 1.32 (1.07, 1.62) 

Continuous LTPA (75 minutes/week increase) 

RAS = 23.5% 0.96 (0.88, 1.04) 0.98 (0.90, 1.07) 0.95 (0.82, 1.09) 0.95 (0.82, 1.10) 

RAS = 43.5% 0.99 (0.91, 1.08) 1.01 (0.93, 1.10) 0.99 (0.88, 1.11) 1.00 (0.89, 1.12) 

P for multiplicative interactionb 0.362 0.458 0.571 0.494 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, social 

support at work, and stress from work deadlines.  
b P value for the RAS  LTPA product term. 
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Table 5.4 Hazard ratios (HR) and 95% confidence intervals (95% CI) for the pure 

direct effect (PDE) and total indirect effect (TIE) of occupational physical activity as 

measured by binary relative aerobic strain (with leisure-time physical activity as 

mediator) on 20-year incidence of acute myocardial infarction (N=495) for all men, 

stratified by preexisting ischemic heart disease (IHD) status, and estimated using 

inverse-probability weighted (IPW) fitting of marginal structural models (MSMs)a, in 

the Kuopio Ischemic Heart Disease Risk Factor Study, 1984-2011 (N=1891). 

 Men without IHD (N=1565) Men with IHD (N=326) 

Method HR (95% CI)b HR (95% CI)b 

MSMc   

PDE 1.27 (0.93, 1.74) 1.28 (0.88, 1.90) 

TIE 1.04 (0.88, 1.22) 1.04 (0.88, 1.27) 

Total effect 1.31 (0.99, 1.79) 1.33 (0.97, 1.85) 

Conditional MSMd   

PDE 1.20 (0.96, 1.55) 1.28 (0.87, 1.93) 

TIE 1.02 (0.90, 1.15) 1.05 (0.90, 1.24) 

Total effect 1.22 (1.02, 1.54) 1.35 (0.96, 1.91) 

Doubly robust MSMe   

PDE 1.23 (0.93, 1.67) 1.30 (0.88, 1.95) 

TIE 1.04 (0.90, 1.21) 1.04 (0.89, 1.24) 

Total effect 1.28 (0.98, 1.70) 1.34 (0.97, 1.92) 

   

Conditional total effectf 1.22 (0.97, 1.53) 1.34 (0.94, 1.91) 
a Occupational physical activity was measured by binary relative aerobic strain (RAS) 

indicator (RAS>33% versus RAS≤33%) and leisure-time physical activity was 

dichotomized (≥75 minutes/week versus <75 minutes/week). Covariates included age, 

education, participation in an unrelated clinical trial, smoking, alcohol consumption, 

mental strain at work, social support at work, and stress from work deadlines.  
b Bias-corrected and accelerated 95% confidence intervals (CIs) were obtained using 

1000 bootstrap samples.  
c IPW was created based on a weight for OPA (dealing with confounding) and a weight 

for LTPA (decomposing effect). 
d IPW was created based on a weight for LTPA (decomposing effect)  only. 

Conditional MSM included covariates to control for confounding.  
e IPW was created based on a weight for OPA (dealing with confounding) and a weight 

for LTPA (decomposing effect). In the final MSM, covariates were adjusted for. 
f Cox proportional hazard model included OPA, age, education, participation in an 

unrelated clinical trial, smoking, alcohol consumption, mental strain at work, social 

support at work, and stress from work deadlines. 
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5.5   Discussion 

This 20-year follow-up study examined the interaction between OPA and LTPA in 

affecting AMI incidence and the pathway effect of OPA on AMI via LTPA among men 

with and without preexisting IHD. We found high levels of OPA positively predicted 

AMI at low LTPA level for both IHD subgroups; however, LTPA was not predictive of 

AMI after accounting for OPA. We found multiplicative interactions between OPA and 

LTPA among men with IHD but no additive interactions. LTPA did not appear to 

mediate the effect of OPA on AMI. 

 

Our finding on the positive link between OPA and AMI, regardless of categorical or 

continuous PA measures being used, is in line with a previous study on OPA and AMI 

from the same cohort, despite slightly different covariate adjustment. Our study 

confirmed the previous finding that conditional on LTPA, relative OPA measure (RAS) 

that accounts for individual cardiorespiratory fitness was more predictive of AMI than 

absolute OPA measure (EE).137,148 This finding is robust against the choice of OPA 

measure and modeling schemes, and agrees with an overall harmful effect of OPA on 

coronary heart disease (CHD) synthesized based on five prospective cohort studies 

published in 2011, 2012, and the first quarter of 2013165 but not the other two prospective 

observational studies published earlier that suggest a protective effect166 or no effect.167 

All seven studies simultaneously modeled OPA with LTPA: one found a positive 

association with IHD mortality;139 one found a positive association with CHD incidence 

only among men with high LTPA level but not among men with low LTPA level;140 three 

found no associations with MI168 or CHD incidence,167,169; and two found negative 
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associations with IHD incidence when additionally accounting for occupational heavy 

lifting, or with CHD incidence when additionally accounting for commuting physical 

activity. Adjusted for LTPA, one recent study reported elevated risk for CHD 

mortality.170 Additionally accounted for physical fitness, Holtermann and colleagues171 

found an increased risk of IHD mortality associated with high OPA in the least and 

moderately fit group, but not among the most fit men. Similarly, Clays et al.142 reported a 

positive association between high OPA and mortality, and such association was 

particularly pronounced among workers with low physical fitness level. Our study used a 

unique RAS measure that took into account individual cardiorespiratory fitness, which, 

we believe, is crucial in studies examining the effect of different PA domains on 

cardiovascular health. The use of continuous versus broad categorical PA measures, 

difference in definition and categorization of these measures, and different study 

endpoints can be the reasons for the inconsistent findings in the current study as well as 

in the literature.138   

 

Our study did not confirm the overwhelming evidence on and the long-held belief in the 

protective effect of LTPA on cardiovascular events.165,172 For workers with high OPA, 

high LTPA was found to be preventive in some studies139,168 but harmful in others.140  

A cluster randomized controlled trial also found opposing health impact of a 4-month 

aerobic exercise intervention among cleaners. While such intervention was found to 

increase cardiorespiratory fitness, lower resting and sleeping heart rate, and reduce 

relative workload (heart rate reserve), it also significantly increased systolic blood 

pressure.173 These mixed findings cast doubt on whether the international physical 
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activity recommendation for the public at large163 is similarly applicable to certain 

working populations with high physical job demands.    

 

OPA and LTPA have different inherent characteristics. Mandatory OPA often has high 

frequency and long duration, involves activities such as heavy lifting, bending, pushing 

and pulling, monotonous and static postures with limited ability for pauses and 

restitution, and may not allow for adequate rest periods.138,174 Such long-term high 

cardiovascular workloads can cause atherosclerosis via a prolonged elevated heart rate 

that leads to increased intravascular turbulence, unfavorable wall shear stress, endothelial 

injury,175–178 and in turn inflammatory processes in the arterial walls,137 according to the 

hemodynamic-inflammatory theory of atherosclerosis.178 Other proposed physiological 

mechanism include high OPA-induced elevation in systolic blood pressure over the day 

(during work, at home and during sleep),179 a strong predictor for cardiovascular 

events.180 On the contrary, voluntary LTPA has shorter duration compared to OPA, 

involves more dynamic movements and sufficient variation and restitution.174 Thus, 

people can achieve a training effect on the heart by performing relatively short (<1 

hour/day) but intensive bursts of exhausting conditioning physical activity.130  

 

When assessing the combined effect of both OPA and LTPA, we found men with high 

OPA and low LTPA had the highest risk for AMI. This is in line with the above theory 

on the different health impact of OPA versus LTPA, and the Belgian Physical Fitness 

Study.142 However, another Belgian study showed an almost four times increased 

incidence of coronary events comparing men with high OPA and high LTPA to men with 
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low OPA and high LTPA.140 A recent study in Israel found that employees who 

performed moderate-hard OPA (self-reported) and no LTPA had the greatest risk for all-

cause mortality.170 The combination of low OPA and low LTPA, averaging over levels of 

commuting PA, was associated with the highest risk for heart failure among Finnish 

men.181 Given these mixed findings in the literature, the question of whether workers 

with high OPA should be advised to be highly physically active during leisure time,174 

remains open.  

 

In our sensitivity analysis that used trichotomized PA measures, we divided the non-high 

PA category (originally labelled “low”) into low and moderate PA categories. Among 

men without preexisting IHD, the highest AMI risk was observed among men with 

moderate OPA and moderate LTPA, followed by men with high OPA and low LTPA. 

Among men with IHD, the combination of low OPA and moderate LTPA, or high OPA 

and moderate LTPA, or moderate OPA and high LTPA positively predicted AMI when 

compared to the moderate OPA and low LTPA (lowest risk group). We did not choose to 

present these results as our main findings due to the somewhat arbitrary cutoff point for 

dividing low versus moderate PA and the relatively small sample size within each 

combination of OPA and LTPA. However, such exploration suggested interesting 

patterns that may be worth considering in future studies. First, the impact of OPA on 

AMI within a specific level of LTPA can be non-linear. As suggested by our analyses 

using continuous OPA measures, quadratic terms for PA measures may not capture such 

non-linearity. Second, how OPA is related to AMI (i.e. the shape of the relation) may 

differ across different levels of LTPA. These two points also apply to the relation 
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between LTPA and AMI by levels of OPA. Third, results from analyses that use 

dichotomized PA measures may depend on the cut-off points chosen for the 

categorization. To further complicate matters, the pattern seems to differ by preexisting 

IHD status as well.  

 

Few studies examined the interplay between OPA, LTPA, and fitness on cardiovascular 

outcomes among workers with preexisting CVD. One study among Copenhagen men 

with preexisting CVD182 found no association between moderate or high OPA and IHD 

mortality and a positive but uncertain association between high OPA and all-cause 

mortality. We observed greater impact of RAS on AMI at low compared to high LTPA 

level among men with IHD. Both studies failed to find an association between LTPA and 

cardiovascular outcomes. Compared to their counterparts free of IHD at baseline, these 

men had higher absolute EE and RAS levels but lower level of cardiorespiratory fitness. 

They may be more likely to experience an overloading associated with job-related heavy 

and especially static work on their cardiovascular system183 and thus experienced a more 

detrimental health impact of high OPA than men without preexisting CVD. The positive 

but uncertain association between OPA and the outcome could be attributed to the small 

sample size. However, we cannot rule out the possibility that these employees who 

remained working, despite their preexisting conditions, were a selected, relatively healthy 

group.  

 

Despite the fact that high RAS negatively predicted high LTPA in our sample (adjusted 

OR: 0.56, 95% CI: 0.44, 0.70 among men without IHD; adjusted OR: 0.51, 95% CI: 0.32, 
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0.83 among men with IHD), our hypothesized mediating pathway from OPA to AMI via 

LTPA was not supported due to the absence of an independent effect of LTPA on AMI 

after accounting for OPA and interaction between OPA and LTPA. In the current study, 

socioeconomic status as captured by education, cumulative measures for smoking and 

alcohol consumption, and psychosocial job factors are considered potential confounders 

and were adjusted for but biological factors were not. Different from PA measures that 

are reflective of their PA levels for the past year or even a longer period of time before 

baseline interview, biological measures such as blood pressure and blood glucose were 

assessed during baseline examination. Therefore, biological factors were conceptualized 

as mediating variables on the pathways from OPA or LTPA to AMI and not adjusted for 

in the main analyses. Analysis with additional adjustment for these factors showed that 

the positive OPA-AMI association at low LTPA attenuated, suggesting possible 

mediation by these factors. However, among men with IHD, positive OPA-AMI 

association persisted, despite the widened confidence interval. Future studies can 

examine the possible mediating role of both LTPA and these biological factors.184,185   

 

The main strengths of our study include the prospective design, the representative sample 

of the population in Kuopio, long register-based follow-up, and adequate covariate 

adjustment. Also, the use of a validated detailed occupational interview produced better 

assessment of OPA compared to broad OPA categories obtained from most population-

based surveys. The assessment of LTPA accounted for the seasonal variability of LTPA 

among Finnish men by averaging LTPA over a 12-month period. Different analytic 

strategies were implemented to disentangle the impact of OPA and LTPA on AMI. The 
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strategies included: accounting for cardiorespiratory fitness, using both categorical and 

continuous measures for OPA and LTPA, using a priori cutoff-points based on 

recommended and established guidelines for OPA and LTPA, and conducting several 

sensitivity analyses. Although previous studies have examined the interaction between 

OPA and LTPA, this is, to our best knowledge, the first study that used causal mediation 

analysis to examine the possible mediating pathway from OPA to AMI via LTPA.                                            

 

Several limitations need to be addressed. Misclassification of OPA may be possible due 

to self-reporting rather than direct observations on type and duration of work activities 

and because energy expenditure assessment did not include upper extremity work or the 

handling of external loads. The EE also did not account for the amount of static work and 

ambient temperature, leading to a possibly conservative measure of the actual amount of 

energy expended at work.137 Also, due to the lack of repeated cardiorespiratory fitness 

assessment at 4 years, we cannot compute a repeat RAS measure and further examine the 

change in RAS over time, leading to possible exposure misclassification. Examination of 

repeated measures for absolute EE in this cohort revealed relatively high correlation 

between baseline and 4-year absolute EE (correlation coefficient: 0.77). Due to the lack 

of 4-year RAS, our mediation analysis for estimating the path-specific effect of OPA on 

AMI via 4-year LTPA could be subject to intermediate confounding. Future work will 

involve conducting sensitivity analysis to check these results against the presence of such 

uncontrolled OPA-induced LTPA-to-AMI confounding that can introduce collider-

stratification bias in the OPA-to-AMI relation. 
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In conclusion, our study contributed to clarifying the perplexing yet unsettled inter-

relations among OPA, LTPA, and fitness in predicting AMI with and without preexisting 

conditions. Our finding on the positive association between OPA and AMI reaffirmed the 

need to develop physical activity recommendations that distinguish between OPA and 

LTPA,186 and take into account individual worker health status, aerobic fitness, and 

physical demands of the job when designing strategies for CVD prevention for working 

populations.138  
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5.6   Appendix 

Description of inverse-probability weighted (IPW) fitting of marginal structural models 

(MSM) for causal mediation analysis applied in the main analysis 

Let X0, M0, and Z denote baseline OPA, baseline LTPA, and the set of covariates sufficient for 

confounding control. For binary OPA and LTPA, the steps are as follows. First, we created two 

copies of the original data set and included an additional variable 𝑋0
∗. 𝑋0

∗ was set to the actual 

value of OPA (i.e., 𝑋0
∗ = 𝑋0) for the first copy and was set to the opposite of the actual value of 

OPA (i.e., 𝑋0
∗ = 1 − 𝑋0). Then, in order to achieve both confounding control and effect 

decomposition, two sets of weights were computed: 𝑊𝑋0
 and 𝑊𝑀0

. We modeled baseline OPA as 

a function of covariates and modeled baseline LTPA as a function of baseline OPA and 

covariates. The weight for each individual was calculated as: 

𝑊 = 𝑊𝑋0
∙ 𝑊𝑀0

 where 𝑊𝑋0
= 𝑃(𝑋0 = 𝑥0) 𝑃(𝑋0 = 𝑥0|𝐙 = 𝐳)⁄  and 𝑊𝑀0

=

𝑃(𝑀0 = 𝑚0|𝑋0 = 𝑥0
∗, 𝐙 = 𝐳) 𝑃(𝑀0 = 𝑚0|𝑋0 = 𝑥0, 𝐙 = 𝐳)⁄ . Finally, we ran a marginal 

structural Cox model (MSCM), weighted by 𝑊, on 𝑋0,  𝑋0
∗, and 𝑋0 ∙ 𝑋0

∗. The exponenttiated 

coefficient for 𝑋0 was taken as the point estimate for PDE whereas the exponent of the linear 

combination of coefficients for both 𝑋0
∗, and 𝑋0 ∙ 𝑋0

∗ was taken as the point estimate for TIE. 

Bias-corrected and accelerated 95% CIs were obtained based on 1000 bootstrap samples 

randomly selected from the original data with replacement. 

 

To avoid unstable estimates due to extreme values of 𝑊𝑋0
, we also ran (1) a conditional MSCM, 

weighted by 𝑊𝑀0
 and with adjustment for covariates, and (2) a doubly robust (DR) MSCM, 

weighted by 𝑊 and with adjustment for covariates. The latter has DR property because we 

would obtain unbiased estimates for PDE and TIE as long as either the exposure model or the 
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final Cox model for the outcome was correctly specified. For continuous exposure and mediator, 

this approach became less ideal because this method requires substituting the probabilities 

[𝑃(𝑋0 = 𝑥0|𝐙 = 𝐳) and 𝑃(𝑀0 = 𝑚0|𝑋0 = 𝑥0, 𝐙 = 𝐳] in the weights by probability densities, 

which may yield unstable weights.144 In the current study, only binary OPA and LTPA were 

examined in the mediation context. We further assumed that our models for the exposure and the 

mediator were correctly specified. 

 

Description for sensitivity analysis of mediation by LTPA 

Sample restriction 

Of the total cohort of 2682 participants, a sub-cohort of men (N=1229) was actively followed at 

4 and 11 years by examinations and questionnaire. Only 1038 participated at 4-year follow-up, 

after excluding 191 men due to death (N=35), severe illness (N=12), migration (N=5), no address 

(N=2), refusal (N=107), no contact (N=29) and other reason (N=1). We further excluded men 

who had retired (N=486) or had first-time AMI incidence after baseline (N=5) before 4-year 

follow-up, or had first-time AMI incidence within 1 year after the 4-year follow-up (N=1), or 

had missing data on key variables (N=41), leaving a sample of 505 men. Data involving 4-year 

follow-up on the sub-cohort were only used in the sensitivity analyses. Due to small number of 

men with IHD (N=50), we limited our analysis to men without IHD (N=455).  

 

Method description 

Due to the lack of 4-year repeated measurement of cardiorespiratory fitness, an important co-

determinant of the health impact of OPA, mediating effect via 4-year OPA was not examined in 

the current study. With 4-year LTPA as an additional mediator, the PDE examined in the main 
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analysis where only baseline LTPA was considered as the mediator was further decomposed into 

the pathway effect of OPA on AMI that was through 4-year LTPA (NIE4-year) only and the 

natural direct effect of OPA that was through neither baseline nor 4-year LTPA (NDE) (Figure A 

5.1). To account for differential censoring by exposure, covariates and the outcome, we used 

inverse probability of censoring weights (IPCW) to reweight the sample in the final MSM so that 

censoring was statistically made to appear as a random event conditional on exposure, 

covariates, and the outcome. 

 

Incidence of AMI for the restricted sample of 455 men without IHD 

For the restricted sample of 455 men without preexisting IHD that has the start of follow-up as 

the survey date of 4-year follow up, 71 first-time incidence AMI occurred during an average of 

16.96 years of follow-up (SD: 4.79; range: 1.01-20.81) and a total person-time of 7716 years. 

 

Appendix Table A 5.5 depicted the results from this sensitivity analysis.  
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Appendix Tables: Results from sensitivity analyses  

1. Use a trichotomized OPA measure and a trichotomized LTPA measure 

1a.  Effect estimates for one type of PA across levels of the other type of PA 

Table A 5.1 Adjusteda hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of occupational physical 

activity (OPA) and leisure-time physical activity (LTPA) on 20-year incidence of acute myocardial infarction (N=495) when both types of 

physical activity were modeled as trichotomized variables, by preexisting ischemic heart disease (IHD) status, Kuopio Ischemic Heart Disease 

Risk Factor Study, 1984-2011 (N=1891). 

  Men without IHD (N=1565) Men with IHD (N=326) 

LTPA level OPA level N HR (95% CI) 

P for 

interactionb N HR (95% CI) 

P for 

interactionb 

Low  

(LTPA<20 minutes/week) 

Low  63 Reference -- 5 Reference -- 

Moderate 111 1.11 (0.53, 2.29) -- 21 0.27 (0.07, 1.08) -- 

High 153 1.71 (0.88, 3.31) -- 54 0.56 (0.17, 1.87) -- 

Moderate  

(20 minutes/week 

≤LTPA<75 minutes/week) 

Low  151 Reference -- 11 Reference -- 

Moderate 179 2.35 (1.43, 3.85) 0.093 30 0.39 (0.14, 1.11) 0.668 

High 166 1.91 (1.14, 3.20) 0.595 62 0.83 (0.33, 2.09) 0.011 

High  

(LTPA≥75 minutes/week) 

Low  323 Reference -- 28 Reference  

Moderate 248 1.38 (0.94, 2.02) 0.796 52 2.31 (0.97, 5.48) 0.614 

High 171 1.31 (0.85, 2.02) 0.509 63 1.84 (0.77, 4.37) 0.118 

OPA level LTPA level       

Low  

(RAS≤23%) 

Low  -- Reference --  Reference -- 

Moderate -- 0.77 (0.37, 1.60) --  1.04 (0.25, 4.37) -- 

High -- 0.99 (0.52, 1.91) --  0.30 (0.07, 1.20) -- 

Moderate  

(23%≤RAS<33%) 

Low  -- Reference --  Reference -- 

Moderate -- 1.64 (1.00, 2.70) --  1.53 (0.55, 4.25) -- 

High -- 1.24 (0.75, 2.04) --  2.58 (1.03, 6.45) -- 

High  

(RAS>33%) 

Low  -- Reference --  Reference -- 

Moderate -- 0.86 (0.57, 1.30) --  1.54 (0.89, 2.66) -- 

High -- 0.76 (0.50, 1.17) --  0.98 (0.55, 1.72) -- 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, social 

support at work, and stress from work deadlines.  
b P values for the product term between the corresponding OPA and LTPA categories. 
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1b.  Joint effect estimates of OPA and LTPA on AMI 

Table A 5.2 Adjusteda hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of occupational 

physical activity (OPA) and leisure-time physical activity (LTPA) on 20-year incidence of acute myocardial infarction (N=495) when 

both types of physical activity were modeled as binary variables, by preexisting ischemic heart disease (IHD) status, Kuopio 

Ischemic Heart Disease Risk Factor Study, 1984-2011 (N=1891).  

  Men without IHD (N=1565)b Men with IHD (N=326)c 

LTPA level OPA level N HR (95% CI) RERI (95% CI)d N HR (95% CI) RERI (95% CI) 

Low  

(LTPA<20 

minutes/week) 

Low  63 1.29 (0.63, 2.67) -- 5 3.77 (0.93, 15.35) -- 

Moderate 111 1.43 (0.79, 2.60) -1.21 (-2.69, 0.27) 21 Reference -- 

High 153 2.21 (1.32, 3.69) 0.01 (-1.21, 1.23) 54 2.11 (0.85, 5.19) -- 

Moderate  

(20 minutes/week 

≤LTPA<75 

minutes/week) 

Low  151 Reference -- 11 3.92 (1.20, 12.78) -0.38 (-6.05, 5.30) 

Moderate 179 2.35 (1.43, 3.85) -- 30 1.53 (0.55, 4.25) -- 

High 166 1.91 (1.14, 3.20) -- 62 3.24 (1.34, 7.83) 0.61 (-1.15, 2.36) 

High  

(LTPA≥75 

minutes/week) 

Low  323 1.28 (0.78, 2.13) -- 28 1.12 (0.36, 3.46) -4.23 (-10.44, 1.98) 
Moderate 248 1.77 (1.08, 2.91) -0.86 (-2.01, 0.29) 52 2.58 (1.03, 6.45) -- 

High 171 1.69 (1.00, 2.86) -0.50 (-1.57, 0.56) 63 2.05 (0.83, 5.05) -1.63 (-4.26, 1.00) 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, 

social support at work, and stress from work deadlines.  

OPA levels: low (RAS≤23%), moderate (23%≤RAS<33%), high (RAS>33%) 
b P=0.093 for the product term between moderate OPA and moderate LTPA. P values for other product terms are above 0.20. 
c P=0.011 for the product term between high OPA and moderate LTPA. P=0.118 for the product term between high OPA and high 

LTPA. P values for other product terms are above 0.20. 
d RERIs were measures for additive interaction and were calculated as HRindex OPA, index LTPA – HRindex OPA, reference LTPA – HRreference OPA, 

index LTPA +1 . 
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2. Additionally adjust for biological factors 

 

Table A 5.3 Adjusteda hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of 

occupational physical activity (OPA) and leisure-time physical activity (LTPA) on 20-year incidence of acute myocardial infarction 

(N=495) when both types of physical activity were modeled as binary variables, by preexisting ischemic heart disease (IHD) status, 

Kuopio Ischemic Heart Disease Risk Factor Study, 1984-2011 (N=1891). 

 Men without IHD (N=1565) Men with IHD (N=326) 

 HR (95% CI) HR (95% CI) 

Binary RAS (RAS>33% versus RAS≤33%) 

Low LTPA (< 75 minutes/week) 1.14 (0.86, 1.51) 1.43 (0.87, 2.33) 

High LTPA (≥75 minutes/week) 0.91 (0.62, 1.33) 0.89 (0.51, 1.53) 

Binary LTPA (LTPA≥75 minutes/week versus <75 minutes/week) 

Low OPA (RAS ≤ 33%) 1.02 (0.78, 1.34) 1.32 (0.76, 2.30) 

High OPA (RAS > 33%) 0.81 (0.56, 1.19) 0.82 (0.51, 1.33) 

P for Multiplicative Interactionb 0.281 0.421 

   

Combination of RAS and LTPA, using low RAS and high LTPA as the reference 

Low OPA and high LTPA Reference Reference 

Low OPA and low LTPA 0.91 (0.62, 1.33) 0.89 (0.51, 1.53) 

High OPA and high LTPA 0.98 (0.75, 1.28) 0.76 (0.43, 1.31) 

High OPA and low LTPA 1.12 (0.84, 1.50) 1.08 (0.66, 1.77) 

RERI (95% CI)c 0.23 (-0.21, 0.67) -0.58 (-1.58, 0.42) 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, 

social support at work, stress from work deadlines and biological factors including blood glucose, plasma fibrinogen, serum low-

density lipoprotein cholesterol, serum high-density lipoprotein cholesterol, body mass index, systolic blood pressure, and taking 

lipid- or blood-pressure-lowering medication during follow-up as listed in Krause et al.138 
b P value for the RAS  LTPA product term. 
c RERIs were measures for additive interaction. For men without IHD, RERIs were calculated as HRhigh OPA, low LTPA – HRhigh OPA, high 

LTPA – HRlow OPA, low LTPA +1. For men with IHD, RERIs were calculated as HRhigh OPA, high  LTPA – HRhigh OPA, low LTPA – HRlow OPA, high 

LTPA + 1, using low OPA and low LTPA as the reference group. 
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3. Use continuous absolute energy expenditure (EE) as OPA measure  

Table A 5.4 Hazard ratios (HR) and 95% confidence intervals (95% CI) for the main effect and joint effect of occupational physical 

activity (OPA), measured by continuous absolute energy expenditure, and continuous leisure-time physical activity (LTPA) on 20-

year incidence of acute myocardial infarction (N=495), by preexisting ischemic heart disease (IHD) status, Kuopio Ischemic Heart 

Disease Risk Factor Study, 1984-2011 (N=1891). 

 Men without IHD (N=1565) Men with IHD (N=326) 

 Age-adjusted Fully-adjusteda Age-adjusted Fully-adjusteda 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Association between absolute EE (500 kcal/day increase) and AMI at levels of LTPA 

LTPA = 0 minute/week 1.04 (0.96, 1.12) 1.04 (0.96, 1.12) 0.95 (0.85, 1.07) 0.96 (0.86, 1.08) 

LTPA = 75 minutes/week 1.07 (1.01, 1.13) 1.06 (1.00, 1.13) 0.98 (0.90, 1.08) 1.00 (0.91, 1.09) 

Association between LTPA (75 minutes/week increase) and AMI at levels of absolute EE 

Absolute EE = 2111 kcal/day 0.95 (0.89, 1.03) 0.98 (0.91, 1.06) 0.95 (0.86, 1.06) 0.96 (0.86, 1.07) 

Absolute EE = 2611 kcal/day 0.98 (0.90, 1.07) 1.01 (0.92, 1.09) 0.98 (0.87, 1.10) 0.99 (0.89, 1.11) 

P for multiplicative interactionb 0.220 0.297 0.333 0.193 
a Model adjusted for age, education, participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, 

social support at work, and stress from work deadlines.  
b P value for the RAS  LTPA product term. 
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4. Sensitivity analysis for mediation of LTPA 

Table A 5.5 Hazard ratios (HR) and 95% confidence intervals (95% CI) for the natural direct effect (NDE), natural indirect effect 

via baseline (NIEBaseline) and 4-year (NIE4-year ) leisure-time physical activity of baseline occupational physical activity as measured 

by binary relative aerobic strain on 20-year incidence of acute myocardial infarction (N=71) among men without preexisting 

ischemic heart disease using inverse-probability weighted (IPW) fitting of marginal structural models (MSM)a, Kuopio Ischemic 

Heart Disease Risk Factor Study, 1984-2011 (N=455). 

Method HR (95% CI)b 

MSMc 

NDE 0.97 (0.48, 1.84) 

NIEbaseline 0.79 (0.57, 1.10) 

NIE4-year 1.00 (0.87, 1.08) 

Total effect 0.77 (0.41, 1.37) 

Conditional MSMd 

NDE 1.22 (0.57, 2.46) 

NIEbaseline 0.93 (0.69, 1.21) 

NIE4-year 0.96 (0.79, 1.05) 

Total effect 1.08 (0.58, 2.02) 

Doubly robust MSMe 

NDE 1.04 (0.45, 2.04) 

NIEbaseline 0.92 (0.68, 1.20) 

NIE4-year 0.97 (0.82, 1.05) 

Total effect 0.77 (0.41, 1.37) 
a Occupational physical activity was measured by binary relative aerobic strain (RAS) indicator (RAS>33% versus RAS≤33%) and 

leisure-time physical activity was dichotomized (≥75 minutes/week versus <75 minutes/week). Covariates included age, education, 

participation in an unrelated clinical trial, smoking, alcohol consumption, mental strain at work, social support at work, and stress 

from work deadlines.  
b Bias-corrected and accelerated 95% confidence intervals (CIs) were obtained using 1000 bootstrap samples.  
c IPW was created based on a weight for OPA (dealing with confounding) and a weight for LTPA (decomposing effect). 
d IPW was created based on a weight for LTPA (decomposing effect)  only. Conditional MSM included covariates to control for 

confounding.  
e IPW was created based on a weight for OPA (dealing with confounding) and a weight for LTPA (decomposing effect). In the final 

MSM, covariates were adjusted for. 
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Appendix Figures 

 

 

Figure A 5.1 Graphical presentation (solid black lines) of natural direct effect (a), natural indirect effect via baseline leisure-time 

physical activity (LTPA) (b), and natural indirect effect via 4-year LTPA only (c) of occupational physical activity (OPA) on acute 

myocardial infarction (AMI). Subscript 0 represents baseline measure and 1 represents 4-year measure.  
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Chapter 6.   Concluding Remarks 

From a methodological perspective, this dissertation provided a unified framework for estimating 

targeted effect(s) from the most recent 4-way decomposition in causal mediation analysis 

(single-mediator setting), and extended some of the existing estimation techniques to more 

complicated mediation settings. In Chapter 2, we first briefly reviewed the definition of different 

direct (natural and controlled), indirect, and interaction effects. Then we provided a three-step 

approach to implement g-computation via Monte Carlo simulation. This method provides an 

intuitive way of effect estimation by simulating and contrasting potential outcome values under 

different exposure intervention scenarios. We extended this framework to explore the mediating 

role of social factors and health behaviors in explaining education-related health disparities in 

Chapter 4. Effect estimation in this setting would be deemed almost impossible if we used other 

techniques not only because of examining multiple mediators simultaneously but also because 

the variables are of different types (continuous or categorical). G-computation, implemented via 

Monte Carlo simulation, is the most flexible approach and can be extend to longitudinal 

mediation analysis, despite its high demand of computation power.  

 

Alternatively, depending on the variables involved and the data structure, other techniques can 

be used in causal mediation analysis such as regression-based technique43 and inverse-

probability-weighted (IPW) fitting of MSMs.28,144 In Chapter 3, we extended the regression-

based technique for single-mediator setting to a scenario involving contextual level exposure and 

intermediate confounding. Such extension was straightforward in a linear system and was easier 

to fit using existing software packages. In Chapter 5, we extended IPW of MSM method to a 

setting with time-varying mediator and survival outcome. Though theoretically possible, g-
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computation applied to time-to-event data is very computationally intensive as it requires 

simulating conditional outcome (conditional on past exposure and survival history) at each unit 

of follow-up time.55 The IPW method circumvents this by supplying individuals weights derived 

from models for exposure and mediator to achieve desired joint probability distribution, although 

it can be less efficient in some cases.  

 

From an applied perspective, we explored the mechanisms underlying the effect of human 

development on individual health, the health disparity in education, and the effect of different 

physical activity domains on acute myocardial infarction, using various estimation techniques. 

Among low- and middle-income countries, we found a non-linear effect of human development 

on health, the majority of which was direct (not mediated by education nor BMI). Only a small 

portion of such impact was mediated by education and none was mediated by BMI. In the study 

of health disparity by education across countries over the world, we found that a substantial 

amount of the observed health disparities would be eliminated if everyone had healthy behaviors 

and achieving the desired level of social factors, although mechanistically, these factors were not 

the main contributor to the negative impact of lower education on health. In examining the 

interplay between occupational and leisure-time physical activity in affecting cardiovascular 

health, occupational physical activity was found to increase the risk of acute myocardial 

infarction at low but not high levels of leisure-time physical activity. Physical activity during 

leisure time did not mediate the impact of occupational physical activity on acute myocardial 

infarction. This dissertation has contributed to providing a clearer picture of how contextual as 

well as individual level causes affect health and offered some hypothesis and suggestions for 

further research in understanding the causal mechanisms at the end of each chapter.   
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In spite of the use of causal inference techniques, our results are based on the assumption of 

correct model specification for the outcome, mediator(s), or exposure (or some combinations of 

these), and the untestable assumption of conditional exchangeability (no uncontrolled 

confounding), as most observational studies do. No uncontrolled confounding assumptions 

required in mediation analysis are much stronger than those required for routine estimation of 

total effects. The presence of uncontrolled confounding for the mediator-outcome relationship 

given exposure and covariates is of particular concern. Reasons are the lack of measurements of 

such confounders in observational studies that are not designed to assess mediation, and no 

guarantee against such bias even when the exposure is perfectly randomized. We applied g-

estimation technique to achieve statistical independence between the outcome (health) and the 

intermediate confounders of the mediator-outcome (BMI-health) relationship. In this way, the 

BMI-path-specific effect was estimated without bias (Chapter 3 appendix). This approach 

suggests that some of these estimation techniques can be used jointly to estimate path-specific 

effect in the presence of uncontrolled confounding bias, although effect decomposition becomes 

impossible. In the future, we will continue to examine the properties of each of these causal 

inference techniques in mediation analysis and try to incorporate bias analysis into the general 

mediation analysis framework by exploring and extending existing tools including an 

imputation-based technique for uncontrolled confounding of the total effect.187  

 

As mentioned earlier in Chapter 2, causal mediation analysis has been criticized for its cross-

world independence assumption50 that can never be tested using data at hand. Nevertheless, 

effects defined in causal mediation analysis enjoy mathematical rigor and can still be useful in 
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disentangling mediation and interaction, and probing mechanistic questions. Estimation 

techniques presented in this dissertation such as g-computation can be used to estimate 

alternative causal parameters such as the stochastic controlled direct effect that does not suffer 

from this issue. When the satisfaction of certain assumptions is in doubt, researchers can present 

different mediation parameters to test competing hypothesis and conduct sensitivity analysis to 

check the robustness of the results to violations of key identification assumptions. 

 

Incorporating causal diagrams and using counterfactual potential outcome framework, modern 

causal mediation analysis allows for nonlinearities and relaxes the no exposure-mediator 

interaction assumption imposed by traditional mediation analysis. This dissertation aims to 

advance the use of causal mediation analysis in probing mechanistic research questions by 

providing accessible tools for unpacking the black-box connection between exposure and health 

outcomes.  
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