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Due to lack of targetable receptors and intertumoral heterogeneity, triple negative breast
cancer (TNBC) remains particularly difficult to treat. Doxorubicin (DOX) is typically used as
nonselective neoadjuvant chemotherapy, but the diversity of treatment efficacy remains
unclear. Comparable to variability in clinical response, an experimental model of TNBC
using a 4T1 syngeneic mouse model was found to elicit a differential response to a seven-
day treatment regimen of DOX. Single-cell RNA sequencing identified an increase in T cells
in tumors that responded to DOX treatment compared to tumors that continued to grow
uninhibited. Additionally, compared to resistant tumors, DOX sensitive tumors contained
significantly more CD4 T helper cells (339%), gd T cells (727%), Naïve T cells (278%), and
activated CD8 T cells (130%). Furthermore, transcriptional profiles of tumor infiltrated T
cells in DOX responsive tumors revealed decreased exhaustion, increased chemokine/
cytokine expression, and increased activation and cytotoxic activity. gd T cell derived IL-
17A was identified to be highly abundant in the sensitive tumor microenvironment. IL-17A
was also found to directly increase sensitivity of TNBC cells in combination with DOX
treatment. In TNBC tumors sensitive to DOX, increased IL-17A levels lead to a direct effect
on cancer cell responsiveness and chronic stimulation of tumor infiltrated T cells leading to
improved chemotherapeutic efficacy. IL-17A’s role as a chemosensitive cytokine in TNBC
may offer new opportunities for treating chemoresistant breast tumors and other
cancer types.

Keywords: triple negative breast cancer, doxorubicin, IL-17A, gd T cells, chemoresistance, 4T1, single cell RNA seq
INTRODUCTION

The aggressiveness and lack of targetable receptors in triple negative breast cancer (TNBC) pose
significant clinical challenges in treating this disease. Additionally, the frequent late-stage of
diagnosis further complicates current therapeutic success. Standard of care for TNBC is a
combination of surgery, radiation, and systemic chemotherapy, depending on genetic drivers and
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the severity of disease progression. Systemic, non-specific
cytotoxic chemotherapy remains a common treatment
approach, yet no clinically significant differences in efficacy
have been established between neoadjuvant (prior to surgical
intervention) or adjuvant (post-surgical) administration (1).
Standard chemotherapeutic therapy is comprised of an
anthracycline (doxorubicin, daunorubicin, epirubicin) and a
taxane (paclitaxel, docetaxel) given in sequence to avoid
excessive toxicity (2). Anthracyclines exhibit their efficacy via
numerous established mechanisms of action; these include
inhibition of topoisomerase II, DNA intercalation, and
generation of reactive oxygen species (3). However, regardless
of treatment, resistance to chemotherapy in TNBC is prevalent.
Mechanisms of resistance include altered metabolism and
upregulation of ATP-binding cassette transporters (4–6) and
pose a significant challenge to patients as late stage TNBC has
poor prognosis (up to 20% response rate) and very low median
progression-free survival (~4.2 months) (7, 8).

The inability to effectively treat TNBC may in part be
attributed to disease heterogeneity. Thus, innovative therapies
focus on finding subtype-specific treatment regimens and
determining subtype vulnerabilities that can be targeted and
customized to the patient (9). Prior studies have shown that
doxorubicin (DOX) therapy modulates both the cancer and the
stromal cells found in the tumor microenvironment (TME),
independently. For example, neutrophil exposure to
anthracycline drugs resulted in the suppression of extracellular
traps of DNA-protein complexes which may affect the cytotoxic
and inflammatory response to DOX (10). Furthermore,
regulation of neutrophil phenotypes (specifically down
regulation of CD133 and CD309 via administration of
berberine) has been shown to increase cancer cell sensitivity to
DOX (11). Other myeloid lineages have also been implicated in
altering chemotherapeutic efficacy, specifically DOX has been
shown to stimulate proliferation of myeloid derived suppressor
cells and subdue antitumor activity (12). In the TME,
macrophages have been shown to decrease the localized
response of DOX by filtering away the drug from cancer cells
yet they can also potentiate the anti-cancer effects through
activation and release of active DOX into the cancer cells (13).
This stromal response can be further exploited as a potential
stromal-modulating treatment in combination with alternative
anticancer therapies. In fact, the immunomodulatory effect of
DOX treatment increases the efficacy of adoptive T-cell transfer
therapy in some breast cancer subtypes, when administered
before immunotherapy (14). CD86 expression has also been
shown to be upregulated in B cells that then enhance CD4+ T
cell anti-cancer activity (15).

IL-17 is a proinflammatory cytokine that has previously been
linked to several tumor behaviors. It is primarily secreted by T
helper 17 (Th17) cells and innate lymphocytes [gd T cells, natural
killer (NK) cells, and innate lymphoid cells] (16) yet the receptor
it binds to is broadly expressed across a variety of immune and
non-immune cell types (17, 18). In multiple types of cancer, IL-
17 expression has been correlated with tumor progression and is
associated with poor prognosis in breast cancer (19) however,
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previous studies have also identified both pro- and anti- tumor
function in the TME. Chronic IL-17 expression leads to a pro-
tumor microenvironment through modulation of stromal cell
types that increase angiogenesis and antitumor immunity (19).
Yet upon exposure to chemotherapeutics, the presence of IL-17
appears to encourage anti-tumor effects (20). Furthermore,
decreased efficacy of anthracyclines and oxaliplatin was
observed in mouse fibrosarcoma allografts in IL-17A knockout
mice, a phenotype that was rescued upon adoptive transfer of gd
T cells with normal IL-17 production (21). In breast
adenocarcinomas a similar correlation was observed in which
optimal DOX therapeutic efficacy was found to require IL-17, in
mice (22). Correlation with increased efficacy was also observed
in gastric cancer patients (20). IL-17’s proinflammatory role in
combination with chemotherapy has been implied to aide in
recruitment of antitumor cytotoxic T cells, however, specific
mechanisms of action remain to be elucidated (21).

To advance our understanding of emergent drug resistance
and develop novel approaches for overcoming it, this study
examined the altered stromal composition and behavior of
cells residing in the TNBC TME to determine molecular and
cellular drivers of DOX treatment response. To recapitulate
clinical relevance in an immune competent animal model, 4T1
murine cancer cells were injected into the mammary fat pad of
BALB/c mice to generate syngeneic tumors. These tumor bearing
mice exhibit a range of responses to a 7-day dosing regimen with
DOX ranging from suppressed to unaltered tumor growth.
Further examination of the TME identified a significant
increase in the absolute number of T cells in chemo-
responsive, DOX-sensitive tumors. T cell subtypes with
increased cytokine secretion and decreased exhaustion were
found to be more prevalent in DOX -sensitive relative to
-resistant tumors. Specifically, we found a significant increase
in IL-17A+ CD8 T cells in DOX-sensitive tumors and these
lymphocytes may exert effects on several TME cell types. In vitro
analysis of IL-17’s activity directly on cancer cells showed anti-
tumor effects by increasing tumor responsiveness to DOX upon
co-administration with recombinant IL-17A. In response to IL-
17A and DOX, 4T1 cells increased cytokine signaling and cell
cycle dysfunction while decreasing DOX-induced stimulation of
immune response genes which may contribute to T cell
exhaustion. This study demonstrates the effects of the TME on
doxorubicin response in TNBC and identifies IL17+ T cells as a
potential prognostic marker or therapeutic target for improved
chemotherapeutic efficacy.
MATERIALS AND METHODS

Cell Culturing and Allograft Generation
4T1-Thy1.1 cell line, referred to as 4T1 throughout the
manuscript, (a gift from Dr. Julian Lum) (23) was used in all
allograft and in vitro experiments. 4T1 cells were cultured in
RPMI Medium 1640 containing 10% FBS with 100,000 U/L of
penicillin and 100 mg/L of streptomycin at 37°C with 5% CO2.
Female mice (8-10 weeks old) NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
July 2022 | Volume 12 | Article 928474
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(NSG) or BALB/c mice (Jackson Laboratories, Bar Harbor, ME,
USA) were injected with 1×105 4T1 cells into the mammary fat
pad, as previously described (24). Tumors were established to
70–140mm3 size range prior to Doxorubicin (Sigma Aldrich, St.
Louis, MO, USA) (DOX) administration. DOX was introduced
intravenously (IV) by tail vein injection at 5 mg/kg for 3
treatments, 3-days apart. All mice were weighed, and tumor
sizes were determined using manual palpation and caliper
measurements prior and during chemotherapeutic treatment,
up to terminal endpoints. Tumor volume calculations were
determined using the formula: volume=½ x (length x width2).
Moribund behavior was evaluated regularly throughout the
tumor bearing period. All animal experimental procedures
were completed under an approved Institutional Animal Care
and Use Committee (IACUC) protocol at Lawrence Livermore
National Laboratory (LLNL) and conforming to the National
Institute of Health (NIH) guide for the care and use of
laboratory animals.

Tumor Single Cell Isolation
and Enrichment
Single-cell suspensions of tumor cells were prepared as
previously described using a combination of physical
dissociation and enzymatic digest (24). Red blood cell lysis was
performed using ACK Lysing Buffer (Gibco, Waltham, MA,
USA) per manufacturer’s recommendation. Digests were
filtered through a 100µm cell strainer prior to debris removal
(Miltenyi Biotec, Bergisch Gladbach, Germany; Cat # 130-109-
398). Cells were resuspended in BD FACS Pre-Sort Buffer (BD,
Franklin Lakes, NJ, USA; Cat # 563503) for further fluorescently
activated cell sorting (FACS) analyses, or in washed 2X in sterile
PBS+0.04% non-acetylated BSA for single cell sequencing.

Single-Cell Sequencing and Data Analysis
Immune and cancer cell depletions were performed for T cell
specific reactions using Pan T Cell Isolation Kit II, mouse
(Miltenyi Biotec, Bergisch Gladbach, Germany; Cat# 130-095-
130) in combination with CD90.1 MicroBeads (Miltenyi Biotec,
Bergisch Gladbach, Germany; Cat# 130-121-273) per
manufacturers protocols prior to were cell depletion using LS
columns (Miltenyi Biotec, Bergisch Gladbach, Germany; Cat#
130-042-401). Sequenced T cell populations were derived from 3
independent syngeneic 4T1 tumors in BALB/c mice as
previously described; independent experiments (N=3) were
pooled into a single sequencing population. Cell pellets were
resuspended in PBS with 0.04% non-acetylated BSA prior to
single-cell sequencing preparation using Chromium Single-cell
3′ GEM, Library & Gel Bead Kit v3 (10× Genomics, Pleasanton
CA, USA Cat # 1000075) on a 10× Genomics Chromium
Controller following manufacturers protocol.

Sequencing data was demultiplexed, quality controlled, and
analyzed using Cell Ranger (10× Genomics, Pleasanton CA,
USA) and Seurat (25). The Cell Ranger Single-Cell Software
Suite was used to perform sample demultiplexing, barcode
processing, and single-cell 3′ gene counting. Samples were first
demultiplexed and then aligned to the mouse genome (mm10)
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using “cellranger mkfastq” with default parameters. Unique
molecular identifier counts were generated using “cellranger
count”. Further analysis was performed using Seurat V4 (26).

Flow Cytometry
Cell preparations for tumor cells were derived from cell
suspensions as previously described in the single cell isolation
section then resuspended in FACS buffer (PBS with 2% FBS).
Bone marrow preparations were performed from isolated
femurs. Femoral epiphyses were removed from the bone then
the marrow cavity was flushed with a 28-gauge needles with 2 mL
of PBS. The bone marrow derived cell suspensions were
centrifuged at 500g for 10 minutes followed by red blood cell
lysis and resuspension in FACS buffer prior to cytometric
analysis. Splenocytes were prepared from isolated spleens that
were forced through a 40-µm cell strainer. Cells were washed
with PBS and pelleted by centrifugation at 500g for 10 min. Red
blood cell lysis was performed using ACK lysis buffer and
resuspended in FACS buffer prior to cytometric analysis.

Cell suspensions were stained with the following antibodies
for 30 minutes on ice prior: BioLegend (San Diego, CA, USA):
CD45 (1:100; Cat# 103116, 157613), CD3ϵ (1:50; Cat# 100312),
CD4 (1:100; Cat# 100414, 100406), CD8b (1:100, Cat# 126622,
126609), CD279 (PD-1) (1:100, Cat# 135213), IL-17A (1:100,
Cat# 506922), TCR g/d (1:100, Cat# 118107; Miltenyi Biotec
(Miltenyi Biotec, Bergisch Gladbach, Germany): CD90.1 (1:10,
Cat# 130-102-637). Viability dyes Zombie Violet™ Fixable
Viability Kit (BioLegend, San Diego, CA, USA), Zombie
Aqua™ Fixable Viability Kit (BioLegend, San Diego, CA,
USA), or eBioscience Fixable Viability Dye eFluor506
(Invitrogen, Waltham, MA, USA) were utilized to discriminate
live/dead cells. Following staining, cell populations were washed
2 times with FACS buffer prior to 20-minute fixation using
Cytofix Buffer (BD Biosciences, San Jose, CA; USA) then
resuspension in FACS buffer for analysis.

For cytokine detection, tumor derived cells were cultured in
RPMI supplemented with 10% FBS, 50ng/ml PMA Sigma, St.
Louis, MO, USA, Cat# P-8139, 1µg/ml Ionomycin (Sigma, St.
Louis, MO, USA, Cat# I-0634), and GolgiPlug (BD Biosciences,
San Jose, CA; USA) at 37°C with 5% CO2 for 4 hours followed by
extracellular staining then fixation as described previously.
Intracellular staining was accomplished using Intracellular
Staining Permeabilization Wash Buffer (BioLegend, San Diego,
CA, USA) for permeabilization, staining buffer, and subsequent
washes followed by resuspension in FACS buffer for downstream
analysis. Flow cytometric analysis was performed using
FACSMelody (BD Biosciences, San Jose, CA; USA), BD LSR II
(BD Biosciences, San Jose, CA; USA), FACSAria Fusion (BD
Biosciences, San Jose, CA; USA) instrument.

Immunofluorescent Staining
Tumor samples were collected at terminal time points, snap
frozen in liquid nitrogen and stored at -80°C until processing.
Frozen tumors were embedded in optimal cutting temperature
(OCT) compound (Fisher Healthcare, Waltham, MA, USA) and
sectioned at 10µm slices. Tumor sections were placed onto
July 2022 | Volume 12 | Article 928474
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Superfrost Plus microscope slides (Fisher Scientific, Waltham,
MA, USA) and stored at -80°C until utilized. To stain sections,
slides were warmed to room temperature and then were
immersed in PBS with 4% formaldehyde for 15 minutes. Slides
were then immersed in PBS with 0.1% Tween 20 and 10% goat
serum for one hour at room temperature. Primary antibody IL-
17-A [Abcam, Cambridge, MA, USA, ab79056, (1:250)] was
incubated overnight at 4°C. Sample slides were then incubated
at room temperature for 1 hour with the secondary antibody goat
anti-rabbit [Thermo Fisher Scientific, Waltham, MA, USA; A-
11037 (1:1000)]. Negative control slides were incubated with
secondary antibody only. Stained slides were mounted with
Prolong Gold with DAPI (Molecular Probes, Eugene, OR,
USA). Slides were imaged using a Leica DM5000 microscope.
ImagePro Plus V7.0 Software and a QIClick CCD camera
(QImaging, Surrey, BC, Canada) were used for imaging and
photo editing.

Western Blot
Tumor samples lysed in RadioImmunoPrecipitation Assay
(RIPA) buffer followed by centrifuging at 14,000g for 5 min.
The supernatants were collected and analyzed using the Jess
automated Western blotting system (ProteinSimple, San Jose,
CA, USA). Jess reagents (biotinylated molecular weight marker,
streptavidin-HRP fluorescent standards, sample buffer, DTT,
stacking matrix, separation matrix, running buffer, wash buffer,
matrix removal buffer, fluorescent labeled secondary antibodies,
antibody diluent, and capillaries) were purchased from the
manufacturer and used according to the manufacturer’s
standard protocol. Antibodies were diluted with ProteinSimple
antibody diluent at the following dilutions: anti IL-17-A (1:50,
Abcam, Cambridge, MA, USA, ab79056, and GAPDH (1:100,
Licor, Cat# 926-42216). Target protein concentration is
quantitated using Compass for SW 4.0 software (https://www.
proteinsimple.com/compass/downloads/). The expression of
each target protein is normalized to the expression of GAPDH.

Ex Vivo Culturing and In Vitro Doxorubicin
and IL-17A Administration
Single cell suspensions from syngeneic tumors were performed
as described in the Single-cell sequencing section. CD90.1
MicroBeads, mouse and rat (Miltenyi Biotec, Bergisch
Gladbach, Germany; Cat# 130-121-273) were used for cell
isolation using LS columns. Subsequent elution of cells of the
cell isolation columns were then cultured overnight. Cancer cell
populations from 3 syngeneic tumors derived from unique mice
were utilized for ex vivo 4T1 DOX response experiments for each
tumor phenotype.

Doxorubicin (200ng/ml, Sigma Aldrich, St. Louis, MO, USA)
and/or Recombinant Mouse IL-17A Protein (25ng/mL, R&D
Systems, Minneapolis, MN, USA) were administered for 48
hours prior to cell quantitation using CellTiterGlo 2.0
(Promega, Madison, WI) according to manufacturer’s
protocols then read for luminescent signal on a Modulus II
Microplate Multimode Reader. Raw reads were first background
(media without cells) subtracted then normalized to untreated
Frontiers in Oncology | www.frontiersin.org 4
cells for cell quantitation. 3 independent experiments were
performed for in vitro DOX viability assays.

Bulk RNA Sequencing and Analysis
4T1 cells were cultured to 25% confluency in a 12 well culture
plate. Total RNA was isolated using RNeasy mini spin columns
(Qiagen). Sequencing library preparation was performed using
QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina
(Vienna, Austria; Cat# 015.96) according to manufacturer’s
protocols. and single end 75 base pair sequencing was
performed using an Illumina NextSeq 500. Sequencing data
quality was checked using FastQC software (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were
mapped to the mouse genome (mm10) using STAR (version
2.6) (27) and read counts per gene were determined using
“featureCounts” from Rsubread package (version 1.30.5;
https://bioconductor.org/packages/release/bioc/html/Rsubread.
html). Subsequently, data was normalized using TMM
normalization (28) and differentially expressed genes were
identified using voom and limma (29). A gene was significantly
differentially expressed when its false discovery rate adjusted p-
value was <0.05 and fold change was >2. Gene set enrichment
analysis was performed using GenePattern with Reactome
pathway ontologies (30, 31).

Statistical Analyses
Statistical analyses were performed using GraphPad Prism. Data
is presented from at least three biological replicates. One-way
ANOVA and post-hoc Tukey’s Test or Student’s t-test were used
to assess statistically significant differences of mean expression
values. Results were considered statistically significant
for p values < 0.05. IC50 curves were generated using a
nonlinear regression curve fit analysis.
RESULTS

Stromal Complexity Correlates With TNBC
Responsiveness to Doxorubicin
Treatment, in Mouse Allografts
To recapitulate the TNBC microenvironment, syngeneic
allografts by injection of 4T1 cells were generated by delivery
into the mammary fat pad of immune competent BALB/c mice.
Upon reaching a volume of ~100 mm3, tumor bearing mice were
administered 3 doses of DOX treatment over 7 days. Two days
following the final dose, tumors were measured and harvested for
downstream analysis (Figure 1A).

In control, saline-treated mice (n=10), tumors reached a
volume ~400% of the initial recorded size, on day 8 post-
treatment initiation (Figures 1B, C). However, in the DOX-
treated group, tumor growth was either inhibited (sensitive
tumors; n=16) or was unaffected (resistant tumors; n=16)
(Figures 1B, C). Sensitive tumors showed a consistent
inhibition of growth throughout the chemotherapeutic
treatment yielding tumors that were significantly smaller
(142% terminal tumor volume) than control tumors.
July 2022 | Volume 12 | Article 928474
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Conversely the growth rate of resistant tumors was comparable,
and not significantly different than the growth rate of saline-
treated tumors (438% terminal tumor volume) (Figures 1B, C).
This polarized response to DOX treatment was specific to the
immune competent BALB/c allograft host strain and was not
recapitulated in the immunocompromised (NSG) host strain
that lacks mature B, natural killer (NK), and T cells in addition to
having functionally defective macrophages and dendritic cells
(32, 33). All NSG-DOX dosed tumors exhibited a drug response
that resembled drug resistant DOX response in BALB/c mice; no
statistically significant differences in growth rates were observed
between DOX- and saline-treated control tumors (Figure 1D).
The absence of sensitivity to DOX in mice lacking functional
immune cells suggests that DOX treatment efficacy is dependent
on immune subtypes present in the tumor microenvironment.

Increased Abundance of Tumor Infiltrating
T-Cells in DOX Sensitive Tumors
Single cell RNA sequencing (scRNA-Seq) was performed on
1,325 tumor derived cells from representative tumors from each
DOX responsive category (untreated controls, drug sensitive and
drug resistant) to further investigate alterations in the abundance
of stromal cell subtypes. Unsupervised hierarchical clustering of
cell types based on transcriptional profiles identified cancer, T
cell, neutrophil, and myeloid populations as represented in a
Frontiers in Oncology | www.frontiersin.org 5
UMAP projection (Figures 2A, D–G). The percentage of T cells
was found to be increased in sensitive tumors (15.3%) relative to
saline-treated controls (5.54%) and drug-resistant tumors (3.6%)
(Figures 2B, C). ScRNA-Seq data was further validated using
flow cytometric analysis (Figures 2H–M). Sensitive tumors were
comprised of 16.6% T cells in the primary tumors which were
significantly increased relative to saline-treated control tumors
(10.3%) or tumors unresponsive to treatment (11.3%)
(Figure 2H). There was no significant change in CD4 T cell
abundance observed across conditions (Figure 2I), yet an
increase in the number of CD8+ T cells within the tumor T
cell population of drug resistant primary tumors, compared to
the drug-sensitive tumors (58.1%, 47.8% respectively) was
observed (Figure 2J).

Responsiveness to DOX did not increase tumor infiltration of
other immune subtypes. In fact, DOX treatment decreased the
absolute abundance of tumor infiltrating lymphocytes, in drug-
treated tumors, regardless of tumor response, and significant
increases in total number of CD45+ immune cells were only
observed in saline-treated tumors (30.0% of tumor cells)
compared to both sensitive and resistant tumors (16.85%,
15.92%, respectively) (Figure 2K). Furthermore, the increase in
lymphocyte abundance was specific to the TME as both the bone
marrow (Figure 2L) and the spleen (Figure 2M) were found to
be largely unchanged with a slight increase in abundance only
A

B C D

FIGURE 1 | Syngeneic 4T1 tumors differentially respond to doxorubicin (DOX) treatment. (A) DOX treated BALB/c 4T1 mammary fat pad tumor experimental
design. (B) Syngeneic tumor growth rates of tumors in response to DOX. Relative tumor volume was normalized to initial volume and calculated from caliper
measurements throughout the experiment. (C) Relative terminal tumor volume at Day 8 post DOX initiation from saline-treated controls or DOX treated tumors in
immunocompetent BALB/c mice binned into resistant or sensitive populations (n=10-16). (D) Relative terminal tumor volume at Day 8 post DOX initiation from saline-
treated controls or DOX treated tumors in immunodeficient NSG mice (n=3-9). ns: non-significant p > 0.05, ****p < 0.0001.
July 2022 | Volume 12 | Article 928474
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observed in the bone marrow of mice bearing resistant tumors
compared to control tumor bearing mice (Figure 2L).

Altered T Cell Composition in
Chemoresistant Tumors
The function and behavior of these infiltrated lymphocytes was
further examined using targeted scRNA-Seq focused on tumor
residing lymphocyte populations. 3,495 Ptprc (CD45) and CD3e
expressing cells were identified from pooled resistant and
sensitive tumors (SFigure 1). In silico dimensional reduction of
the transcriptional profiles of each cell produced 12 clusters of
cells denoting different T-cell subtypes, as visualized in a UMAP
plot (Figure 3A and SFigure 1). CD8+ T cells were more
abundant in resistant (84.8% of T cells) than in sensitive
tumors (67.6%) and conversely CD4+ T cells were more
abundant in sensitive (15.5%) than in resistant tumors (7.0%).
No single population was uniquely present in either sensitive or
resistant tumors however, biases toward specific subtypes were
identified correlating with chemosensitivity status (Figure 3B).
Frontiers in Oncology | www.frontiersin.org 6
Cluster identification was performed using published gene
markers of T cell subtypes (Figure 3C) (34, 35) and
distribution of T cell abundance was quantitated based on cell
quantity per cluster (Figure 3D). In order to identify modulation
of T cell subtypes in the TME, normalization of relative T cell
abundance was performed based on overall T cell abundance
observed in previously described flow cytometric analysis
(Figures 2H, 3E), and shifting populations were compared to
identify modulating populations of interest (Figure 2F).

Antigen-presenting (AP) T cells (expressingH2-Ab1, H2-Eb1,
CD74) were the only lymphocyte subtype found to be
significantly increased in resistant tumors however, this
population represented the least abundant cell type observed
(Resistant: 0.2%; Sensitive 0.1% of lymphocytes). Minor shifts in
T cell subtype abundance were observed in 6 clusters
(Figure 3F). Three effector CD8+ populations expressing
classical cytotoxic T cell markers (CD8b, Ifng, Gzm genes,
Prf1), were the dominant subtype of cells in the TME
comprising 63.7% and 53.3% of infiltrating T cells in resistant
A B C

D FE G

H KJI L M

FIGURE 2 | Single cell RNA sequencing (scRNA-Seq) of tumors following DOX administration. (A) UMAP plot representing all tumor cells following DOX treatment.
(B) Colors depict cells derived from tumors of different treatment/response. (C) T cell [Ptprc (CD45)+ CD3d+] relative abundance derived from single cell RNAseq
data. (D–G) Feature plots of gene markers used in identifying cell clusters. (H) Flow cytometric quantification of T cell (CD3ϵ+) abundance in syngeneic 4T1 tumors.
(I) Flow cytometric quantification of cytotoxic T cell (CD8+CD3ϵ+) abundance in syngeneic 4T1 tumors. (J) Flow cytometric quantification of immune [Ptprc (CD45)+]
abundance in syngeneic 4T1 tumors. (K) Flow cytometric quantification of immune [Ptprc (CD45)+] abundance in bone marrow of tumor bearing mice. (L) Flow
cytometric quantification of immune [Ptprc (CD45)+] abundance in spleens of tumor bearing mice. (M) Flow cytometric quantification of immune [Ptprc (CD45)+]
abundance in spleens of tumor bearing mice. ns: non-significant p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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and sensitive tumors, respectively. Minor increases in effector
(Eff CD8+) or activated effector (Act CD8+) T cells expressing
increased cytotoxic genes were observed in sensitive tumors,
while exhausted effector CD8 (Exh/Eff CD8+) T cells
characterized by decreased cytotoxic genes and increased
Pdcd1 (PD-1) expression (Figure 4A) relative to effector CD8+

T cells were also found to be relatively unchanged in relation to
all cells in the TME. Furthermore, interferon stimulated CD8 T
cells (IFN CD8+) characterized by high levels of Jak/Stat
signaling pathway activation genes (i.e., Stat1, Stat2) and
interferon response genes (Ifit1, Ifit2, Ifit3) were 77.8% more
abundant in sensitive compared to resistant tumors. Proliferating
T cell populations (Prolif-1, Prolif-2) were observed in two
Frontiers in Oncology | www.frontiersin.org 7
clusters and characterized by expression of Mki67 (Ki-67),
mini-chromosome maintenance genes (Mcm3, Mcm7), and cell
cycle progression genes (Top2a, Ccna2). This population was
found to be only slightly elevated (1.2%, 1.3% respectively) in
abundance in resistant tumors.

Upon comparison of infiltrated T cells from sensitive tumors
and resistant tumors, four T cell subtypes in addition to Natural
Killer cells were observed to be significantly increased in sensitive
tumors (Figure 3F). Naïve T cells expressing genes associated
with immature T cells and quiescence (Klf2, Klf3, Sell (CD62L),
Lef1) (34, 36) were found to be increased to 1.3% of cells in the
sensitive TME relative to 0.5% in the resistant TME. Sensitive
tumors were also found to possess more CD4+ T helper cells,
A B

C D

F

E

FIGURE 3 | ScRNA-Seq of tumor infiltrating T cells. (A) UMAP plot of tumor infiltrated T cells. 12 populations identified via transcriptional profiles are denoted by
color. (B) UMAP plot with colors denoting tumor response to DOX. (C) Heat map showing relative gene expression for genes of interest per cell in each cluster.
(D) Distribution of T cell subtypes in sensitive and resistant tumors. (E) Normalized T cell subtype abundance in sensitive or resistant tumors relative to all tumor cells.
(F) Shifts in abundance of tumor infiltrating T cells in sensitive and resistant tumors. Blue bars denote populations with increased abundance in sensitive tumors, red
bars denote populations increased in resistant tumors. Bars outside the grey shaded region represent significant (>2-fold) shifts in cell type abundance. Exh/Eff CD8,
exhausted effector CD8 T cells; Eff CD8, effector CD8 T cells; Act CD8, activated CD8 T cells; CD4, CD4 T cells; Prolif-1, proliferating T cells-1; Naïve, naïve T cells;
IFN CD8, interferon stimulated CD8 T cells; Prolif-2, proliferating T cells-2; NK Cell, natural killer cells; Treg, T regulatory cells; gd, gd T cells; AP, antigen presenting T cells.
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regulatory T cells (Tregs), and gd T cells. CD4+ T cells expressing
CD4 and several cytokines (IL4, IL5, IL13) increased to 1.8% of
all cells in sensitive tumors compared to 0.5% in resistant tumors.
Tregs, denoted by increased expression of Foxp3, Ctla4, and
Tnfrsf4 (CD134), represented 4.5% of sensitive tumor T cells
compared to half as many (2.3%) in the resistant populations. gd
T cells expressing gamma and delta T cell receptors (Tcrg-C1 and
Trdv4) in addition to TNFa and IL-17A were a minor population
of T cells yet accounted for a significant, 6-fold increase in
abundance in sensitive tumors (Resistant: 0.1%; Sensitive 0.6% of
total tumor residing cells).

T Cells Populations From DOX Sensitive
Tumors Are Less Exhausted, Release
Higher Levels of Cytokines and Show
Increased Activation
Because the increased number of T cell subsets in chemo-
sensitive tumors may not necessarily translate into an increase
in activation, further analysis of the single cell transcriptomic
data was performed to examine critical T-cell functions in the
TME. Chronic antigen stimulation is a well-documented
phenomenon in tumor activation resulting in an exhausted
phenotype characteristic of decreased effector function,
proliferation, and cytokine production and can be identified
Frontiers in Oncology | www.frontiersin.org 8
through over expression of Pdcd1 (37, 38). T cells from DOX
resistant tumors expressed higher levels of Pdcd1 per cell with
increased median normalized expression (Figure 4A).
Additionally, a 10% increase in the frequency of Pdcd1+

exhausted T cells was observed in resistant tumors (Resistant:
58%, Sensitive: 48%) (Figure 4B). Cytometric analysis of tumor
infiltrated T cells identified fewer PD-1+ T cells compared to the
single-cell transcriptional data however, a significant increase in
abundance was confirmed in resistant tumors (Figure 4C). Upon
segregation of lymphocytes by subtype, elevated exhaustion was
observed in exhausted effector CD8 (Cluster 0), activated effector
CD8 (Cluster 2), proliferating cell populations (Cluster 4,7), and
antigen presentation (Cluster 11) (Figure 4D). Furthermore,
DOX resistant populations with increased exhaustion relative
to sensitive tumors were observed in CD4 (Cluster 3), interferon
response CD8 (Cluster 6), and Treg (Cluster 9) populations.

These differentially exhausted subpopulations in addition to
gd T cells (Cluster 10) were found to be responsible for increased
cytokine and chemokine genes and these T cell subtypes were
found to be increased in abundance in sensitive tumors
(Figures 4E, F). Furthermore, T cells from sensitive tumors
exhibited an increased mean and median expression of CD69, an
activation marker (39) (Figure 4G). Effector proteins associated
with cytotoxic activity, Gzmb and Prf1, were also found to be
A B C D
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J K
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FIGURE 4 | T cell behavior in response to DOX sensitivity. (A) Violin plots denoting expression of Pdcd1 per T cell in sensitive or resistant tumors. (B) Percentage of
tumor residing T cells expressing Pdcd1 as quantified in scRNA-Seq data. (C) PD-1+ T cells quantified from tumor infiltrated T cells following DOX treatment using
flow cytometric analysis. (D) ScRNA-Seq expression levels of Pdcd1 by cluster ID depicted as violin plots. (E) Fold upregulation of chemokine and (F) cytokine genes
in sensitive vs resistant T cell populations inferred from scRNA-Seq data. (G–I) Activation gene markers (CD69) and cytotoxic genes (Prf1, GzmB) associated with T
cell activity expression in sensitive or resistant tumors depicted as violin plots. (J, K) Dimeric transcription factors comprising the AP-1 transcription factor indicative
of T cell activation expression segregated by cell types identified in single cell transcriptomic data. *p ≤ 0.05.
July 2022 | Volume 12 | Article 928474

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hum et al. IL-17A Modulates Chemotherapeutic Efficacy
increased in the sensitive T cell population (Figures 4H, I).
Additionally, expression levels of Jun and Fos, transcription
factors critical to T cell activation, were elevated in the
cytokine producing CD4 and gd populations potentially
indicating a critical role in tumor response (Figures 4J, K) (40).

Higher Numbers of CD8 gd IL-17+ T Cells
in the Tumor Microenvironment of DOX
Sensitive Tumors
Due to the increased cytokine production and activation of
cytokine secreting T cell populations in tumors responsive to
chemotherapeutic treatment, we next examined the impact of
cytokines on cancer cells. Specifically, IL-17A expressing T cells
were found to be more abundant in DOX- sensitive than in
resistant tumors. IL-17A is a proinflammatory cytokine with
known pro and anti-tumor effects (41–44). Further
transcriptional characterization of IL-17A expressing T cells
revealed that they are not derived from ab CD4 T cells but from
gd IL-17+ T cells based on expression of delta and gamma T cell
receptor genes (Trdv4, Trdc, Tcrg-V6, Tcrg-C1) (Figures 3C, 5A).
This T cell subpopulation comprised 1.32% of all T cells in
sensitive tumors and 0.26% of all T cells in resistant tumors
(Figure 5B). While this population only represents a minor
portion of the tumor infiltrating lymphocytes, scRNA-Seq on
syngeneic 4T1 tumors revealed that IL-17A is uniquely expressed
Frontiers in Oncology | www.frontiersin.org 9
and secreted from these specialized T cells into the TME yet
numerous cell types in the TME can bind this cytokine by
expressing its receptor (IL-17ra) underlying the potential impact
of IL-17A in the TME (SFigure 2). Furthermore, despite the low
number of these T cells, histological analysis of representative
sensitive and resistant tumors confirmed detectable levels of IL-
17A protein throughout the tumor with increased relative
abundance in DOX sensitive tumors (Figures 5C, D). Protein
quantification by western blot further confirmed 257% higher IL-
17A levels in homogenized tumor samples of sensitive tumors
compared to resistant tumors (Figure 5E).

Flow cytometry analysis of tumor infiltrating T cells was
consistent with the scRNA-Seq data, confirming a significantly
higher number of IL-17A expressing T cells in sensitive tumors
than resistant tumors (1.83%, 0.85% respectively, p-
value=0.0016) (Figures 5F–H) with gd T cells constituting the
majority of the IL-17A expressing cells (1.36%, 0.51%
respectively) regardless of tumor chemotherapeutic response
(Figure 5I). Interestingly, CD8+ IL17A+ T cells were identified
as the most abundant and significantly increased population in
sensitive tumors (p<0.0001). CD4+CD8+IL17A+ double positive
T cells population were also found to be significantly increased in
chemo-sensitive tumors relative to resistant (p=0.0218) while
double negative and CD4 T cells were not found to be
significantly altered in abundance (Figure 5J).
FIGURE 5 | Increased gd IL-17+ T cells in the DOX sensitive tumor microenvironment. (A) UMAP projection of 4T1 syngeneic tumor cells identifying that IL17a expression is
restricted to gd T cells. (B) Ratio of IL17a+ cells in sensitive and resistant tumors extrapolated from scRNA-Seq data. (C, D) Representative immunohistochemistry images of
IL17A expression in 4T1 tumor sections from sensitive and resistant tumors following DOX therapy. (E) Protein abundance quantification in tumors normalized to GAPDH
expression (n=3). (F, G) Representative flow cytometry plots identifying gd IL-17+ T cells in T cell populations. (H) Quantitation of IL17A+ T cells from DOX sensitive and
resistant tumors. (I) Quantitation of gd IL17A+ T cells from DOX sensitive and resistant tumors (n=4). (J) Distribution of gd IL17A+ T cells identifying expanded CD8 and double
positive (CD4+CD8+) cells in sensitive tumors (n=4). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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IL-17A Increases DOX Sensitivity of
4T1 Cells
Cancer cells were found to express the IL-17 receptor (SFigure 2),
and therefore to be potential targets of IL-17A signaling. While
cancer resistance evolution driven by genomic mutations has been
thoroughly reported as a long-termmechanism for waning efficacy
of chemotherapy, the hypothesis that transient molecular changes
in the stroma drive differential responses to treatment has been
minimally explored. Here we examined the ex vivo cytotoxicity of
4T1 cells isolated from DOX-sensitive and -resistant tumors to
examine intrinsic alterations in chemotherapeutic response
conferred from the in vivo manipulations. IC50 curves were
generated for 4T1 cells derived from the parental cell line, saline-
treated control, DOX sensitive, or DOX resistant tumors by
administering a range of drug dosages over 48 hours in culture.
Both in vivo DOX treated 4T1 exhibited a higher tolerance to the
drug treatment (4T1 from Resistant Tumors: 44.32 ng/mL; 4T1
from Sensitive Tumors: 32.67 ng/mL) than 4T1 from saline-treated
tumors (15.89 ng/mL) or mouse-naïve 4T1 cells (24.50 ng/mL)
(Figures 6A, B). In vivo DOX treatment, regardless of drug
response, increased the tolerance of 4T1 cancer cells relative to
the parental control cell line. Next, we determined whether IL-17A
directly contributes toDOXchemosensitivity. The potency ofDOX
treatment was significantly enhanced when IL-17A was co-
administered to the culture media (Figure 6C). This data suggests
that the tumor behavior is only partially driven by cell autonomous
responseof cancer cells to tolerate the administereddrugand inpart
also by IL-17A levels in the TME.

IL-17A Mitigates PD-L1, Induces Cytokine
Signaling, Cell Cycle Dysregulation, and
Mitigates Interferon Activation in
TNBC Cells
Bulk RNA sequencing was performed on 4T1 cells exposed to
DOX or DOX co-administered with IL-17A. DOX alone up-
regulated 890 genes and down-regulated 794 genes while the
Frontiers in Oncology | www.frontiersin.org 10
DOX-IL-17A co-treatment yielded 1327 up-regulated and 914
down-regulated genes relative to untreated controls. Five
hundred and forty up-regulated and 472 down-regulated
genes were consistent across DOX treatments regardless of IL-
17 inclusion (Figure 7A). PD-1 ligand (CD274, PD-L1) was up-
regulated upon DOX treatment consistent with prior studies
(45). The addition of recombinant IL-17A to the culture media
during DOX exposure abrogated the CD274 upregulation.
Expression levels were found to be significantly different
relative to DOX only treatment but not control cells. IL-17A
was not found to significantly alter CD274 gene expression levels
when administered alone when compared to control or
combinatorial conditions (Figure 7B).

Consistent with prior reports, gene set enrichment analysis of
the transcriptional profiles determined that DOX elicits
enrichment in genes associated with cellular stress response
pathways (ATF4, EIF2AK1, NFKB, ATR, P53) (46–48) while
down-regulating pathways associated with cellular proliferation
(BMP, MET) (49, 50) regardless of IL-17A co-administration
(STable 1). Cell to cell signaling (Braf and Notch) and glycolysis
(51) were also found to be consistently down-regulated in
response to DOX independent of IL-17A treatment
(Figure 7C). Furthermore, enrichment scores for specific
biological processes were discovered to be affected by the co-
administration of IL-17A with DOX. Specifically, genes
correlating with cell cycle dysfunction in progression from G1
to S phase were also found to be highly up-regulated when
IL-17A was co-administered, as well as genes associated with
increased immune recruiting (IL4, IL10, and IL13). IL-17A
mitigated pathways of immune activation that were
upregulated because of DOX treatment including inhibition of
MHC1 antigen presentation, IL2 signaling, and interferon a/b
signaling (Figure 7D). Consistent with previous studies (52–54),
mitogen-activated protein kinase (MAPK) activation was found
to be increased in 4T1 cells treated with IL-17 and DOX relative
to DOX alone (Figure 7E).
A B C

FIGURE 6 | IL-17A co-administration with DOX directly affects chemotherapeutic efficacy in cancer cells. (A) Ex vivo DOX sensitivity from 4T1-Thy1.1 cells isolated from
primary tumors or from in vitro culture (n=12 from 3 independent tumors). (B) IC50 values extrapolated from dose response curves with error bars represent 95% CI.
(C) Relative viability of 4T1-Thy1.1 cells cultured in the presence of DOX and/or IL-17A for 48 hours (n=9-11). ns: non-significant p > 0.05; *p ≤ 0.05; ****p ≤ 0.0001.
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DISCUSSION

This study demonstrates the importance of stromal cellular
composition to chemotherapeutic efficacy (Figure 8). Single
cell transcriptomics and flow cytometric analysis identified
increased T cell abundance to correlate with tumors sensitivity
to DOX treatment relative to resistant tumors. Upon deeper
transcriptomic characterization of tumor infiltrated T cell
populations, alterations in the activity, behavior, and subtypes
of those T cells were found to also be strongly correlated to
chemotherapeutic response. Furthermore, IL-17A secreted by T
cells was found to play a direct role in cancer cell sensitivity to
DOX however transcriptional alterations as a result of IL-17A in
cancer cells also likely contributed to signaling cascades inducing
T cell exhaustion, recruitment and activation.

Despite the overall increase in T cells in sensitive tumors, the
TME of resistant tumors were found to possess an increase in
effector CD8 cells, however, these T cells exhibited increased
exhaustion as assessed by the transcriptional expression of
Pdcd1, Cd27, and Lag3. Increased levels of these genes has
been previously linked to decreased effector function and
Frontiers in Oncology | www.frontiersin.org 11
failure to eliminate cancer cells (55). This cellular state
manifests distinctly from the chronic stimulation of antigen in
tumors. Interestingly, cells exposed to DOX alone induced
several processes contributing to this phenotype such as
antigen presentation, interferon signaling, and increased
CD274 (PD-L1) expression. The upregulation of these
processes was significantly mitigated upon co-administration of
IL-17A protein, suggesting that the anti-exhaustion inducing
effects are derived from the cancer cells. The increased cytotoxic
gene expression (upregulated Prf1 and GzmB) in T cells found in
chemo-sensitive tumors further substantiates the increased anti-
cancer activity of IL-17A+ DOX sensitive tumors.

In addition to increased activity of cytotoxic effector T cells in
DOX sensitive tumors, elevated chemokine and cytokine
secretion was inferred from the increased abundance of CD4 T
helper cell and gd T cell populations. Chemokines identified,
such as Ccl3, Ccl4, Ccl5, and Cxcl9, have demonstrated roles in
increasing T cell infiltration into the TME (56, 57). Furthermore,
CC chemokines have also been correlated to improved prognosis
in breast cancer patients (57). These potent chemotactic
molecules may contribute to the increased infiltration of T
A B C
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FIGURE 7 | Transcriptomic analysis of 4T1 cells in response to DOX and IL-17A. (A) Venn diagrams depicting overlapping differentially expressed genes from 4T1
cells exposed to DOX +/- IL-17A for 48 hours. (B) Normalized gene expression of CD274 (PD-L1) across in vitro conditions. (C) GSEA analysis of enriched
Reactome pathways in common to DOX treated cells regardless of IL-17A. (D) Upregulated pathways with differential enrichment. (E) Downregulated pathways with
differential enrichment (n=3-4). ns non-significant p > 0.05; ***p ≤ 0.001; ****p ≤ 0.0001
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cells into the DOX sensitive TME increasing anti-cancer effects
through an increased quantity of active T cells. ScRNA-Seq
further identified increases in Il-4, IL-5, IL-10, Il-13, IL-17A,
and Il-21 transcripts. These cytokines support a wide range of
biological functions within the TME (58). Specifically, IL-4 and
IL-13 have demonstrated induction of cancer apoptosis as well as
anti-inflammatory and innate immune activation functions (59,
60). IL-10 also shares immunosuppressive function in addition
to proven roles in antiangiogenic function in tumors and a
correlation with improved prognosis in breast cancer (61–63).
These functions suggest that the sensitive TME may be
stimulated for increased anti-cancer function while modulating
the infiltration from pro-tumor stromal cell populations. Despite
the anti-tumor functions described previously, cytokine function
in the context of DOX treatment will require further studies to
fully elucidate the effects these cytokines have in the TME.

Interestingly, IL-21 can play a role in stimulating IL-17
production and has also been found to be upregulated in
sensitive tumors (55). Surprisingly, the IL-17A production was
largely identified to be secreted from gd but not Th17 T cells in
4T1 tumors. Specifically, sensitive tumors expanded the gd CD8
+IL-17A+ T cell population resulting in a net increase in IL-17A
protein levels. This potent cytokine has potentially wide-
spanning effects on numerous cell types found in the tumor
and has a direct effect on increasing DOX efficacy in cancer cells.
The presence of IL-17A has been examined in multiple cancer
types and has emerged as an attractive cancer biomarker (64, 65).
Studies on the impact of IL-17A in the TME have yielded both
pro- and anti-tumor functions (20, 41). This phenomenon may
be driven by the unique TME compositions found in different
cancer types. IL-17 in developing tumors was found to have a
negative correlation with survival, enhanced tumor development,
or poor prognosis in numerous tumor types including breast
Frontiers in Oncology | www.frontiersin.org 12
cancer, head and neck, ovarian, prostate, and colorectal cancer
(64–67) yet anti-tumor benefits have also been identified in and
esophageal squamous cell carcinoma (68, 69). Contrasting anti
and protumor effects have also been reported within the same
tumor type as seen in melanoma (70, 71) and lung cancer (72, 73)
suggesting that TME heterogeneity independent of tissue of
origin may also play a contributing role in IL-17 response.
This study determined no observable alterations in
proliferation when 4T1 TNBC cells were exposed to IL-17
alone. IL-17A increased anti-cancer phenotypes observed in
vitro only upon coadministration with DOX suggesting an
alternate function in the presence of chemotherapeutics. The
increased tumor responsiveness to chemotherapeutics in the
presence of IL-17 has been previously reported in a range of
cancer types (20–22, 74). The data provided here supports the
benefit of IL-17 in the TME upon anthracycline administration
in syngeneic TNBC tumors and functionally characterizes this
correlation to direct and indirect effects on cancer elimination.

The findings presented here suggest possible therapeutic
benefits of IL-17A coadministration or stimulation in
conjunction with anthracycline treatment regimens. Several
outstanding concerns still need to be addressed prior to clinical
implementation to better understand the pleiotropic pro and
anti-tumor effects noted previously. Furthermore, the long-term
effects of the presence of these IL-17A producing cells in TNBC
following DOX treatment will require further analysis to
establish therapeutic efficacy as studies on the effects of IL-17
in tumor development and progression have been controversial
(20, 21, 73) and outcomes may be dependent on tumor subtypes
and stage of the disease.

The source of gd IL-17A+ T cell populations was not
identified in this study. Future therapeutic avenues utilizing gd
IL-17A+ T cells will require investigating cellular steps involved
FIGURE 8 | Summary schematic.
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in differentiation pathways and/or means of recruitment into the
TME. Recruitment appears to be a viable therapeutic option as
intratumoral adoptive cell transfer of gd T cells during DOX
administration has been demonstrated to rescue the efficacy of
chemotherapeutics in IL-17A knockout mice. However,
subpopulations of gd T cells may need to be selected for as T
cells lacking IL-17A were unable to recover the sensitive
phenotype (21). Additionally, the molecular cues triggering the
presence of these beneficial T cells within the course of
doxorubicin treatment will allow for the identification of novel
therapeutic targets. The merits of recombinant IL-17A
coadministration DOX may also provide therapeutic benefits
yet bioavailability, targeting, and stability of this molecule will
need to be optimized to evaluate utility. Overall, the data
presented herein strongly supports the contribution of IL-17A
produced from gd T cells for modulating a tumor
microenvironment with increased T cell infiltration and
cytotoxic activity upon exposure to DOX in TNBC.
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