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Abstract

Some Periodic Solutions of the Two-Dimensional Stokes-Oldroyd-B System with
Stress Diffusion

by

Erica Isaacson
Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Jon Wilkening, Chair

We use a limited memory BFGS optimization method to seek time-periodic solutions
of the Stokes-Oldroyd-B system of equations with a 4-roller forcing field and periodic
boundary conditions. The gradient of the objective function for the optimization
is found using a method which is based on the calculus of variations, and employs
a pseudo-spectral implicit-explicit Runge-Kutta scheme. Once solutions are found,
their asymptotic stability is calculated via an eigenvalue method. A variety of sta-
tionary and periodic solutions are found, plotted and systematized in a manner that
suggests a global structure of periodic solutions.
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Chapter 1

Mathematical Models of
Viscoelastic Fluids

1.1 A Short Discussion of Viscoelastic Fluids and
their Properties

Viscoelastic fluids are a broad class of non-Newtonian fluids that exhibit properties
of both viscous fluids and elastic materials. Most fluids have both viscous and elastic
properties, but only those in which both properties play a significant role in the fluid’s
behavior are called viscoelastic. Molten metal, paint, bread dough, and biological
fluids such as blood are all viscoelastic fluids. [19]

Viscoelastic fluids behave differently than Newtonian fluids because their mi-
crostructure is different. A Newtonian fluid’s macroscopic behavior can be described
mathematically by modeling it as a homogeneous medium. But a viscoelastic fluid
has large molecules called polymers suspended in it, and these contribute significantly
to its behavior. They do this chiefly in two ways. First, polymers tend to align with
the direction of a flow, adding a stress in that direction which is called a normal
stress. In addition, if the fluid is stretched, for example by pouring, the polymers are
stretched by the viscosity of the surrounding flow and can exert a strong restoring
force in response; this is called elongational viscosity. Once stretched, the polymers
take some amount of time to recoil back to a rest state; as we will see, much of the
fluid’s behavior is determined by the ratio of the time scale on which this happens to
the time scale of the fluid flow.

These effects lead to many interesting phenomena. If a jet of viscous fluid emerges
from a pipe, the radius of the jet is a little smaller than that of the pipe; in a
viscoelastic fluid, it is a little bigger. Think of pulling on a piece of rubber and
letting it go again; the rubber gets shorter along the axis of pulling and fatter in
the transverse dimension; the normal stresses of the viscoelastic fluid inside the pipe
cause the same effect. A viscoelastic fluid also undergoes less jet breakup, because
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the polymers in the fluid encourage it to cling to itself. In fact, polymers are often
added to a fluid to stabilize its jet breakup in industrial applications. If you spin a
rod in a Newtonian fluid, the centrifugal force from the rod pushes the fluid away
and forms a dip around the rod. But a viscoelastic fluid will climb up the rod –
think of cake batter climbing up the stem of an electric beater. Normal stresses are
also responsible for this: the tension along the concentric stream lines pulls the fluid
towards the center and pushes it up the rod. Finally, elongational viscosity in a
viscoelastic fluid can cause it to exhibit what is called the tubeless siphon effect, in
which the fluid pulls itself out of a beaker if a little bit goes over the side: an elastic
solid would not be deformable enough to do this, and a purely viscous fluid would
not adhere to itself enough [19]. You can see this effect by pouring egg whites out of
a glass, as in Figure (1.1): the pouring is steady, and the bulge at the top of the fluid
occurs because the egg whites are pulling themselves out of the glass.

Figure 1.1: An experiment you can do in your kitchen. Egg whites pull themselves
out of a glass against gravity.

Viscoelastic fluids in the low Reynolds regime have been seen in experiments to
exhibit complex behavior normally associated only with the high Reynolds regime of a
Newtonian fluid. Low Reynolds numbers are often associated with simple fluid behav-
ior, roughly because the high viscosity and low inertia prevent the fluid from forming
eddies, vortices, and other complex and unstable formations commonly associated
with high Reynolds number mixing. But experiments have shown that low Reynolds
number polymer suspensions can do all of these things also, because the nonlineari-
ties arising from the fluid’s elastic properties replace (if not identically) those arising
from the inertia term in the high Reynolds regime of the Navier Stokes equation.
(see [23], [7], [9]). Our search for periodic solutions to a model of viscoelastic flow is
partly motivated by a desire to reproduce some of these complex behaviors.
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1.2 The Stokes-Oldroyd-B System

We will obtain the Stokes-Oldroyd-B model of viscoelastic flow by modifying a
few simpler models. We are studying a two-dimensional flow on the domain [0, 2π]2,
and we assume that our solutions have periodic boundary conditions. As with all
mathematical descriptions of a fluid, we begin with the continuity equation

∂ρ

∂t
= −∇ · (ρu), (1.1)

where ρ is the local density of the fluid and u is the fluid velocity. This is the
mathematical statement of the local conservation of matter. If ρ remains constant in
space and time, which we assume, it becomes simply

∇ · u = 0. (1.2)

Next, we require the fluid to obey the law of balance of momentum:

ρ(
∂u

∂t
+ (u ·∇)u) = f +∇ · S −∇p+ µ� u. (1.3)

The left side expresses the fluid’s rate of change of momentum; f is an external force
applied to the fluid, S is the polymer contribution to the stress tensor of the fluid, and
the last two terms represent the contribution of pressure and Newtonian viscous forces
to the fluid stress. This would be the Navier-Stokes equation if S were not there. It
is a local equation, so the terms have units of force divided by volume. Since the fluid
is incompressible, ρ has a constant value ρ0. Let us nondimensionalize this equation
by writing every variable as a dimensional constant times a dimensionless variable
(the latter has the carat):

u = V û, t = T t̂,∇ =
1

L
∇̂, f = F f̂ , S = σŜ, p = P p̂. (1.4)

Notice that stress is an intrinsically local quantity, since it has units of force divided
by area. Before completing the nondimensionalization, we take the intermediate step
of dividing by µ, and declaring that LV is much smaller than the kinematic viscosity
µ
ρ0
, i.e., that the Reynolds number is small. Now we have

0 =
V

L2
�̂û+

σ

µL
∇̂ · Ŝ +

F

µ
F̂ − P

µL
∇̂p̂. (1.5)

This is the Stokes equation. As was mentioned in the previous section, the disap-
pearance of the nonlinear inertial terms gives rise to very different dynamics than
those of the high Reynolds regime [17]. However, the nonlinearity of the constitutive
equation governing the stress tensor S in a viscoelastic fluid can lead to effects similar
to those normally associated with the high Reynolds regime [7]. Now we get rid of
all the units by dividing by V

L2 :
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0 = �̂û+
Tσ

µ
∇̂ · Ŝ +

L2F

V µ
f̂ − L2P

V µL
∇̂p̂ (1.6)

Let us define β to be the coefficient in front of ∇̂ · Ŝ. If we relate the flow time
T = τflow to the other system parameters via

τflow =
µ

LF
, (1.7)

we see that

β = τflow
σ

µ
=

µ

LF

σ

µ
=

σ

LF
. (1.8)

Thus β is a measure of the ratio of the polymer stress per unit length to the driving
force.

Rewriting our dimensionless variables without carats for legibility, we have the
nondimensional Stokes equation

0 = �u+ β∇ · S + f −∇p (1.9)

We have defined the dimensionless variables f and p in such a way as to absorb the
magnitude of the parameters that appeared in front of them in (1.6).

Notice that, since from (1.7) we have that

τflow ∝ 1

F
, (1.10)

it is reasonable to guess that a similar relation exists between the polymer force σ
L

and the time scale on which the polymers relax:

τpolymer ∝
σ

L
(1.11)

Then, since β = σ
LF , it is the case that

β ∝ τflow
τpolymer

(1.12)

or, defining the Weissenberg number

Wi =
τpolymer

τflow
(1.13)

we have

β ∝ τflow
τpolymer

(1.14)

where the constant of proportionality can be shown to be the product of τpolymer

with the ratio of the isotropic polymer stress due to microscopic drift to the solvent
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viscosity [22]. Thus the value of Wi is dependent on the experiment – as can be
seen from its being inversely proportional to the scale of the external force – but the
product β ×Wi is intrinsic to the fluid.

In our model, we use the value β×Wi = 0.5, because this regime has been shown
in [23] and [22] to produce mathematically interesting results.

We also choose f to be a 4-roller force defined by

f1(x, y) = 2 sin(x) cos(y) (1.15)

f2(x, y) = −2 cos(x) sin(y). (1.16)

To complete our system, we need an equation representing a constitutive law for
the polymer stress tensor S. Most of the content of our model will reside in this
equation. We will arrive at the equation by modifying some stress models of simpler
fluids. This material is developed in Joseph [11] and Renardy [19]. Note that we do
not include an energy equation, because we assume that the fluid’s temperature is
constant (see Chorin and Marsden, [2]).

The simplest fluid is a Newtonian fluid. The total stress experienced by a New-
tonian fluid is given by

Stotal(x, y, t) =
µ

2
(∇u(x, y, t) +∇u(x, y, t)T )− pI. (1.17)

where p is the pressure function and u is the fluid velocity. (It makes sense that a
fluid’s internal stress should depend upon its velocity gradient, since if all particles
of a fluid have the same velocity, the fluid will not interact with itself!) This model
has the property that the stress depends only on the present value of the strain rate.
This is not the case with a viscoelastic fluid because the polymers take time to recoil
to a rest state even if the flow has stopped, giving the fluid a kind of memory of what
has happened to it before.

A modification of Newton’s model that gives the fluid a memory is the Maxwell
model, in which we define the polymer contribution to the stress as the solution to
the differential equation

∂S

∂t
+ λS = µ(∇u(x, y, t) +∇u(x, y, t)T ). (1.18)

In this model, S is credited with a memory by making the Newtonian term a
source term in a differential equation. It is not surprising that it has a Duhamel-type
solution, namely the convolution of the solution to the corresponding homogeneous
equation with the source term:

S(x, y, t) = µ

� t

−∞
e−λ(t−s)(∇u(x, y, t) +∇u(x, y, t)T )ds. (1.19)

It is clear from this solution that λ, which has units of inverse time, represents
the memory scale of the fluid: if λ is small, and therefore the time scale is large,
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then e−λ(t−s) decays slowly, and values of the velocity gradient from a long time ago
contribute significantly to the present value of the stress. This is an example of the
general representation of a linear viscoelastic fluid’s stress as a convolution

S(x, y, t) =

� t

−∞
G(t− s)(γ̇(x, y, s))ds (1.20)

of what is called the relaxation modulus G(t) with γ̇, the rate of strain undergone by
the fluid. G(t) tells you how much influence the strain rate from t time units ago has
on the present value of the stress.

Unfortunately, every linear model of a fluid stress tensor except Newton’s model
has the property that the stress tensor does not transform appropriately if the fluid is
rotated (see Renardy [19]). We also note that Maxwell’s model track the history of γ̇
at a fixed point in space rather than following particle trajectories. To address these
problems, we can modify the Maxwell model by replacing ∂S

∂t with what is variously
called the upper convected time derivative or the Oldroyd derivative

∂S

∂t
+ (u ·∇)S − (S∇u+∇uTS), (1.21)

which measures a tensor quantity in a coordinate system that is rotating and stretch-
ing with the fluid (see Joseph [11] and Van and Matolcsi [14]). This gives us

∂S

∂t
+ (u ·∇)S − (S∇u+∇uTS) + λS = µ(∇u+∇uT ). (1.22)

Equation (1.22) is called the Oldroyd-B equation. As in the Maxwell model, λ
has units of inverse time. Its value arises as a function of the size of the molecules in
the polymers and from thermodynamical constants. Notice also that µ has different
units than in Newton’s model (this was the case in Maxwell’s model also). It arises
as a function of the drag force of the surrounding fluid on the polymers.

The Oldroyd-B equation has the weakness that it sometimes produces infinite
stresses for finite strain rates [18]. This happens because, if the model is derived from
microscopic principles, it represents the polymers as springs whose restoring force is
a linear function of how far they are stretched, so the macroscopic flow is sometimes
enough to stretch them infinitely. Some models, like the FENE-P (finitely extensible
nonlinear elastic polymer) model, use a nonlinear spring law for the polymers that
enforces a finite maximum length, but the mathematics involved are formidable [23].
Our solution is to add a stress diffusion term

ν � S (1.23)

to the constitutive law. This effectively enforces a finite length for the polymers by
transferring energy from highly stretched polymers to more relaxed ones [6]. Stress
diffusion does occur in real polymers, but our coefficient ν is artificially large [22].
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Let us nondimensionalize this equation. Defining our nondimensional variables as
in the discussion of the Stokes equation, and defining τpolymer by λ = 1

τpolymer
, we get

σ

τflow

∂Ŝ

∂ t̂
+
V σ

L
[(û·∇̂)Ŝ−(Ŝ∇̂û+∇̂ûT Ŝ)]+

σ

τpolymer
Ŝ =

V

L
(∇̂û+∇̂ûT )+

νσ

L2
�̂Ŝ (1.24)

Dividing through by σ
τflow

and once again rewriting the nondimensional variables

without carats, we get

∂S

∂t
+ (u ·∇)S − (S∇u+∇uTS) +

1

Wi
S = (∇u+∇uT ) + ν � S. (1.25)

Here again is Wi = τpolymer

τflow
. We have adjusted the value of σ as necessary to make

it equal to µ so that the parameter in front of (∇u +∇uT ) disappears; this has the
effect of rescaling the dimensionless variable S. We have also redefined ν to equal
τflow
L2 νold.
Finally, if we define a new variable S̄ = S + I and then rewrite S̄ as just S again,

we have

∂S

∂t
+ (u ·∇)S − (S∇u+∇uTS) +

1

λ
(S − I) = ν � S. (1.26)

This absorbs the term (∇u+∇uT ) into the Oldroyd derivative and changes 1
λ(S)

to 1
λ(S − I), which makes the equation more legible. Note that adding a constant

matrix to S does not change its definition in the Stokes equation, since it appears
there inside a divergence.

In our model, we define the value of the stress diffusion coefficient ν to be 0.01
Wi . It

is sensible for ν to be inversely proportional to Wi, since we expect the terms which
together are equated with the Oldroyd derivative to depend on the value of Wi in
the same way.

So, all together, the system we will use in our simulations is

∇ · u = 0

β∇ · S +�u−∇p+ f = 0

∂S

∂t
= −(u ·∇)S + (∇uS + S∇uT )− 1

Wi
(S − I) + ν � S. (1.27)

The conservation of angular momentum requires that S is a symmetric matrix�
S11 S12
S12 S22

�
. S has three independent components; u has two components, and p is a

scalar. Therefore, these are six equations in six unknowns.
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Chapter 2

Some Theoretical Background

2.1 Overview

In the last chapter, we developed the system of equations that we will use in our
simulations. In this one, we develop some methods to find periodic solutions of this
system, and to study their stability properties. First, we define a functional G which
measures a norm of the difference between the initial value of the stress tensor S
and its value at some later time. G will depend upon the initial value S0, which is
represented as a sum of Fourier modes, and upon the final time T . We will minimize
G using the BFGS algorithm, which will be introduced and discussed in section (3.6).
To implement this algorithm, we will need both the value of G and its gradient when
it is represented as a function of the discrete list of Fourier amplitudes of S0. The
calculation of this gradient is a lengthy one, to which most of this chapter is devoted.
It requires the development of both the linearization of the Stokes-Oldroyd-B system
and the adjoint of that linearization. Finally, we discuss how to calculate the stability
of the solutions that we find.

Throughout this chapter, we treat the Oldroyd-B equation (1.26) as the main
equation to solve, and S the main variable whose value we find. Since u and p obey
static equations, we regard them as functions of the value of S at every time step.

2.2 Finding Periodic Solutions with an Optimiza-
tion Method

Suppose that S(x, y, t) is the 2 × 2 symmetric matrix solution, at time t, of our
PDE, with initial condition

S(x, y, 0) = S0(x, y). (2.1)

Let us define a functional G to be the quantity
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1

2

� 2π

0

� 2π

0

2�

i,j=1

(Sij(x, y, T )− Sij(x, y, 0))
2dxdy. (2.2)

Notice that this is one half of the square of a norm of the distance between S and
itself at some later time. Suppose that a solution of our equations has the initial
value S0 and is periodic with period T . Then we will have

G(S0, T ) = 0. (2.3)

Thus, we can seek a periodic solution by finding an initial condition S0 and a final
time T such that G = 0. Since G can never have a negative value, this is the same
as minimizing G.

To minimize G numerically, we need to represent it as a function of a finite list of
variables. G is a functional that depends on the initial conditions S0(x, y) and T , so
let us represent S0(x, y) as a discrete Fourier sum:

S0 =
�

m,n∈Λ

[amne
i(mx+ny) + a(−m,−n)e

−i(mx+ny)] (2.4)

where

a−m,−n = amn, (2.5)

since S is real-valued, and

Λ = {(0, n) : 0 ≤ n ≤ N} ∪ {(m,n) : 1 ≤ m ≤ N,−N ≤ n ≤ N} , (2.6)

i.e. Λ is a set of integer pairs in a region of the right half-plane. Now we can represent
G as a function of a finite list of variables:

G = G(amn, T ). (2.7)

The advantages of representing S in Fourier space instead of physical space will be
discussed further in section (3.7).

We are going to use the BFGS optimization method to minimize G, and this
method needs the gradient of G. We now find this gradient using a method developed
in [1] which is based on the calculus of variations.

2.3 Calculating ∇G

Throughout this section we denote by �:� the following inner product for 2 × 2
matrix functions:

�A : B� = �
�
A1 A2
A3 A4

�
: �
�
B1 B2
B3 B4

�
� :=

� 2π

0

� 2π

0

(A1B1+A2B2+A3B3+A4B4)dxdy. (2.8)
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Using this notation, our definition of G becomes

G(S0, t) =
1

2
�S(x, y, T )− S0(x, y) : S(x, y, T )− S0(x, y)�, (2.9)

or, suppressing the spatial arguments and writing the time values as subscripts,

G(S0, t) =
1

2
�ST − S0 : ST − S0�. (2.10)

We must calculate the partial derivative of G with respect to each variable. These
variables are the period T, and the amplitudes amn of the Fourier modes eimx+iny.

First, we have that ∂G
∂T (S0, T ) is simply

∂G

∂T
(S0, T ) = �(ST − S0) :

∂ST

∂t
�. (2.11)

Next, for a given (m,n), the partial derivative of G with respect to amn is

Ġ =
∂

∂�

���
�=0

G(S0 + �Ṡ0, T )

where Ṡ0 = eimx+iny. (It will become clear in a moment why we introduce the notation
Ṡ0.)

To find Ġ, we have to calculate the solution at time T to the Oldroyd-B equation
with initial condition S0 + �Ṡ0. Let S(x, y, t, �) be this solution, and define

Ṡ(x, y, t) =
d

d�

���
�=0

S(x, y, t, �). (2.12)

Ṡ is a measure of the sensitivity of St to perturbations in its initial condition. Using
this definition, we have

∂G

∂�
(S0 + �σ0, T ) = lim

�→0

G(S0 + �σ0, T )−G(S0, T )

�
= �ST − S0 : ṠT − Ṡ0�. (2.13)

If we define

u̇ =
d

d�

���
�=0

u(x, y, t, �), (2.14)

and

ṗ =
d

d�

���
�=0

p(x, y, �), (2.15)

then we can find the values of Ṡ, u̇, and ṗ by linearizing the Stokes-Oldroyd-B system.
Let us rewrite the system as

∇ · u = 0

β∇ · S +�u−∇p+ f = 0
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∂S

∂t
= UC(S, u)− 1

Wi
(S − I) + ν � S (2.16)

where
UC(S, u) := −(u ·∇)S + (∇uS + S∇uT ) (2.17)

is the spatial part of the upper convected time derivative. Because UC is a bilinear
operator, we have

d

d�

���
�=0

UC(S, u) = UC(Ṡ, u) + UC(S, u̇). (2.18)

Applying this to (2.16) shows that Ṡ, u̇, and ṗ solve the equations

∇ · u̇ = 0

−∇ṗ+�u̇+ β∇ · Ṡ = 0

∂Ṡ

∂t
= UC(Ṡ, u) + UC(S, u̇)− 1

Wi
Ṡ + ν � Ṡ (2.19)

This system is called the linearization of the Stokes-Oldroyd-B system. In fact, if we
consider the system (2.16) as being of the form

∂S

∂t
= F (S), (2.20)

then (2.19) is simply

∂Ṡ

∂t
= DF (S(t))Ṡ, (2.21)

where DF is the Frechet derivative of F with respect to S. Thus there is an analogy
between the functional analysis we are doing and the simpler case of ODEs.

To calculate ∂G
∂amn

using the above method, we must solve a different initial value

problem to find Ṡ(x, y, t) for each choice of Ṡ0(x, y)! Fortunately, we can avoid this.
After all, ∂G

∂amn
is a directional derivative in what we can think of as the direction

of Ṡ0, so it is reasonable to suspect that we can find a quantity δG
δS0

that mimics a
gradient in the sense that any directional derivative can be represented as an inner
product of the direction with δG

δS0
:

∂G

∂�
(S0 + �Ṡ0, T )

���
�=0

= Ġ = � δG
δS0

, Ṡ0� (2.22)

To find a formula for δG
δS0

, we use a trick. Suppose that there exists a function

S̃(x, y, s) with the property that

�Ṡ(x, y, t) : S̃(x, y, T − t)� (2.23)
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has a constant value for all 0 ≤ t ≤ T . Then, suppressing spatial arguments and
writing time arguments as subscripts as before, we have that

�ṠT : S̃0� = �Ṡ0 : S̃T �. (2.24)

Now let us define
S̃0 = S̃(x, y, 0) = S(x, y, T )− S(x, y, 0). (2.25)

Then
Ġ = �S̃0 : ṠT − Ṡ0�. (2.26)

We split up the terms to get

�S̃0 : ṠT − Ṡ0� = �S̃0 : ṠT � − �S̃0 : Ṡ0�, (2.27)

and then by (2.23) we have

�S̃0 : ṠT � − �S̃0 : Ṡ0� = �S̃T : Ṡ0� − �S̃0 : Ṡ0� = �S̃T − S̃0, Ṡ0�. (2.28)

Comparing the above with (2.22) and (2.26), we see that

S̃T − S̃0 =
δG

δS0
. (2.29)

So let us find S̃T . Taking the time derivative of both sides of (2.23), we obtain

� ∂
∂t

Ṡt : S̃T−t�+ �Ṡt :
∂

∂t
S̃T−t� = 0 (2.30)

or

�∂Ṡt

∂t
: S̃s� = �Ṡt :

∂S̃s

∂s
� (2.31)

where
s := T − t. (2.32)

Substituting the right hand side of (2.19) for ∂Ṡ
∂t , we obtain

� UC(Ṡ, u)+UC(S, u̇)− 1

Wi
Ṡ+ν� Ṡ : S̃(x, y, s)� = �Ṡ(x, y, t) : ∂S̃(x, y, s)

∂s
�. (2.33)

Our goal is to integrate by parts the terms in the left hand side of the above equa-
tion to obtain �Ṡ : Q�, where Q is an expression involving S̃, S, and their derivatives.
Then, we could equate this with the right hand side of (2.33) and conclude, because

the inner product is non-degenerate, that in fact ∂S̃
∂s = Q, and use this PDE to obtain

the value of S̃T .
How will we deal with terms like (u̇ ·∇)S, in which Ṡ does not appear? Observe

that
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�
∂Ṡ

∂t
: S̃

�
=

�


∂Ṡ
∂t
0
0



 ,




S̃
w
r




�
. (2.34)

Now since




∂Ṡ
∂t
0
0



 =




UC(Ṡ, u) + UC(S, u̇)− 1

Wi Ṡ + ν � Ṡ
−∇ṗ+�u̇+ β∇ · Ṡ

∇ · ũ



 , (2.35)

we have

�∂Ṡ
∂t

: S̃� =
�


UC(Ṡ, u) + UC(S, u̇)− 1

Wi Ṡ + ν � Ṡ
−∇ṗ+�u̇+ β∇ · Ṡ

∇ · ũ



 ,




S̃
ũ
p̃




�
, (2.36)

and now we can sort the terms into those containing Ṡ, those containing u̇, and those
containing p̃:

�∂Ṡ
∂t

: S̃� = {�UC(Ṡ, u) : S̃� − � 1

Wi
Ṡ : S̃�+ �ν � Ṡ : S̃�+ �β∇ · Ṡ : ũ�} (2.37)

+{�UC(S, u̇) : S̃�+ ��u̇ : ũ�+ �∇ · u̇ : p̃�}
−{�∇ṗ : ũ�}

We isolate the dotted variables on the left side of each product using matrix
identities and integration by parts. For example, the fact that for any matrices A, B,
and C we have

�AB : C� = �B : ATC� (2.38)

gives us readily

�(∇u)Ṡ : S̃� = �Ṡ : (∇u)T S̃�. (2.39)

For the term
�∇u̇S : S̃�, (2.40)

we use the identity

�AB : C� = �A : CBT � (2.41)

to write
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�∇u̇S : S̃� = �∇u̇ : SS̃�, (2.42)

and use integration by parts to isolate u̇:

�∇u̇ : SS̃� = �
�
∂1u1 ∂2u1
∂1u2 ∂2u2

�
: SS̃�

= −
� 2π

0

� 2π

0

u1[∂1(SS̃)11 + ∂2(SS̃)12] + u2[∂1(SS̃)21 + ∂2(SS̃)22]dxdy

= �
�
u1
u2

�
,−∇ · (SS̃)�. (2.43)

Notice that we have used the periodic boundary conditions to kill the boundary terms.
The other terms are calculated similarly. When we put it all back together, we get

�


Ṡ
u̇
ṗ



 ,




∂S̃
∂s
0
0




�

=

�


Ṡ
u̇
ṗ



 ,




Q

�ũ−∇p̃− 2∇ · (SS̃) +
�2

i,j=1 Sij∇S̃ij

∇ · ũ




�
, (2.44)

where

Q = (u ·∇)S̃ + (∇uT S̃ + S̃∇u)− 1

2
β(∇ũ+∇ũT )− 1

Wi
S̃ + ν � S̃. (2.45)

So the system that evolves (S̃,ũ,p̃) is

∇ · ũ = 0

�ũ−∇p̃− 2∇ · (SS̃) +
2�

i,j=1

Sij∇S̃ij = 0

∂S̃

∂s
= (u ·∇)S̃ + (∇uT S̃ + S̃∇u)− 1

2
β(∇ũ+∇ũT )− 1

Wi
S̃ + ν � S̃ (2.46)

Since the variables of which G is a function are the amplitudes amn of the functions
eimx+iny, and since for a real-valued function we have amn = ā−m,−n, we see that the
components of ∇G are given by

∂G

∂(�(amn))
= �S̃T − S̃0 : e

imx+iny + e−imx−iny� = 8π2�(F(S̃T − S̃0)mn) (2.47)

and

∂G

∂(�(amn))
= �S̃T − S̃0 : ie

imx+iny − ie−imx−iny� = 8π2�(F(S̃T − S̃0)mn)), (2.48)
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where F denotes the Fourier transform. In other words, the components of ∇G are
multiples of the components of the Fourier transform of S̃T − S̃0! This is convenient
and elegant, but it is not special to the Fourier basis; it would have arisen with any
orthogonal basis.

2.4 Stability of Periodic Solutions

Once we have found a periodic solution to the Stokes-Oldroyd-B system, we would
like to compute its stability. Does the solution remain true over many periods, or do
the small deviations introduced by roundoff error in the numerics, or by noise in the
physical system, cause it to stray off course? To understand how to discover this, we
discuss some elegant ODE theory from Coddington [3] and Verhulst [24].

We begin by revisiting the linearization of our system, this time in a different
guise. Let us once again consider the Oldroyd-B equation as being of the form

dS

dt
= F (S). (2.49)

Suppose that S(t) is a periodic solution to (2.49) and that ∆S is a small pertur-
bation. Then ∆S satisfies

d∆S

dt
= F (S +∆S)− F (S). (2.50)

From the definition of the Frechet derivative, we have then that

d∆S

dt
= DF (S) ·∆S + o(||∆S||). (2.51)

It is nice that these calculus-like principles hold even for operators such as DF
which send functions to functions. Note the similarity between this and the lineariza-
tion that we obtained in the previous section. The difference is that, whereas ∆S
equals the difference between two distinct solutions, Ṡ represents the rate at which
a small perturbation in the initial condition grows over time, so the o(|∆S|) term
in its equation disappears when we take the limit. But the beautiful fact is that
the presence of the o(|∆S|) term in (2.51) will not stop the linearization obtained in
the previous section - the same equation as above but without the o(|∆S|) term -
from governing the stability of the nonlinear Oldroyd-B equation. Now we will briefly
describe why this is the case.

First, we can consider DF (S) to be a matrix. It is a linear operator, and in dis-
cretizing the problem we have made it effectively one that acts on a finite dimensional
space. As we will see, it is not necessary to compute the entries of this matrix, but
knowing that there is one allows us to apply the following analysis to our situation.

Let us make our idea of stability more precise. A solution x(t) to a differential
equation is said to be asymptotically stable if any solution that starts out sufficiently
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close to it eventually becomes arbitrarily close to it; that is, if there is a δ > 0 such
that if

||x(0)− y(0)|| < δ (2.52)

then

lim
t→∞

||x(t)− y(t)|| = 0. (2.53)

If the zero solution to (2.51) is asymptotically stable for a given periodic solution
S, then if ∆S is initially small, S +∆S will approach S over time.

We have already noted that the equation (2.51) can be regarded as a matrix
ODE. By the same reasoning, the Oldroyd-B equation in the form (2.49) can also be
regarded as a matrix ODE. The asymptotic stability of solutions to an equation of
this form can understood by relating it to simpler cases. First, it is the case that if
A is an n× n constant matrix, and x evolves according to

dx

dt
= Ax, (2.54)

then x is asymptotically stable if and only if A’s eigenvalues all have negative real
parts. This can be seen because the equation has the fundamental solution x(t) =
CeAt, where C is constant. If A = PΛP t where Λ is A’s Jordan form, then we have
x(t) = CPeΛtP t. If Λ is diagonal, eΛt is readily seen to go to zero as t increases. If Λ
is a proper Jordan matrix, then eΛt is a direct sum of matrix exponentials of Jordan
blocks, each of which is equal to eλjeN , where λj are the diagonal entries of Λ, and
N is a nilpotent matrix. Since N is nilpotent, the series for eN has a finite number of
terms, so eΛt approaches zero if and only if all the λj’s have a negative real part.

So the eigenvalues of A tell us how x behaves. But in fact, they still tell us how
x behaves if it evolves according to a nonlinear ODE whose nonlinear part is not too
big. Suppose that

dx

dt
= Ax+ f(t, x) (2.55)

where |f(t, x)| = o(|x|) for all t ≥ 0. Suppose that φ is a solution of (2.55). Then as
long as φ(t) exists, it is equal to

etAφ(0) +

� t

0

e(t−s)Af(s,φ(s))ds. (2.56)

If A’s real parts are negative, then there are positive constants K and α such that

|eAt| ≤ Ke−αt (2.57)

for t ≥ 0. Picking x small enough that |f(t, x)| ≤ �|x|
K and applying the Gronwall

inequality, we obtain the estimate
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eαt|φ(t)| ≤ K|φ(0)|e−(α−�)t, (2.58)

so φ approaches zero as long as � < α.
If x satisfies the same kind of equation but A is periodic in time, we can reduce

back to the case in which A is constant. First, suppose that x satisfies

dx

dt
= A(t)x (2.59)

with A(t + T ) = A(t). Let Φ be a fundamental matrix solution of this system of
equations, by which we mean that Φ is a real-valued n × n matrix whose columns
comprise a basis for the solution space of the equation. We then have the matrix
equation

Φ̇(t) = A(t)Φ(t). (2.60)

Since the above holds for any value of t, and A is periodic with period T, we have
that

Φ̇(t+ T ) = A(t+ T )Φ(t+ T ) = A(t)Φ(t+ T ), (2.61)

i.e., the columns of Φ(t+T ) are also solutions of the ODE. Since the columns of Φ(t)
are a basis for the solution space, each column of Φ(t + T ) is expressible as a linear
combination of the columns of Φ(t) – that is, there is a real-valued constant matrix
C such that

Φ(t+ T ) = Φ(t)C. (2.62)

You can see immediately that, since

Φ(t+mT ) = Φ(t)Cm (2.63)

for any positive integer m, the eigenvalues of C will determine the behavior of Φ(t).
However, we need a few more facts to see what will happen when we add the o(|x|)
term. Let B be a constant matrix such that TB is a logarithm of C, so C = eBT .
Let us define a matrix function Ψ(t) by Ψ(t) = Φ(t)e−Bt. Then we can write Φ as

Φ(t) = Ψ(t)eBt. (2.64)

Now it is readily seen that

Φ(t+ T ) = Ψ(t+ T )eBteBT = Φ(t)C = Ψ(t)eBtC = Ψ(t)eBteBT . (2.65)

Therefore Ψ(t+ T ) = Ψ(t). Thus, a fundamental solution to this system can always
be written as a matrix product of a periodic matrix Ψ with a matrix eBt, where B
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is a constant matrix. Furthermore, Ψ is nonsingular, since it is the product of the
nonsingular matrix e−Bt with the nonsingular matrix Φ (since Φ is a fundamental
solution, its columns are linearly independent).

Finally, suppose that x satisfies

dx

dt
= A(t)x+ f(t, x) (2.66)

where f(t, x) is o(|x|) for t ≥ 0. Let Φ(t) = Ψ(t)eBt be a solution to the equation
without the o(|x|) term, where Ψ and B are defined as above. If we make the change
of variables

w = Ψ−1(t)x, (2.67)

then w satisfies
dw

dt
= Bx+Ψ−1f(t,Ψ(t)w). (2.68)

Since Ψ(t) and Ψ−1(t) are periodic and nonsingular, and therefore harmless, it
is the case that Ψ−1f(t,Ψ(t)w) = o(|w|) for t ≥ 0. So w, and therefore also x, are
asymptotically stable if and only if the real parts of B’s eigenvalues are negative.
Since, by defining C as above, we have C = eBT , we see that our earlier intuition was
correct, and a solution to our system will be asymptotically stable if the eigenvalues
of C are less than one in magnitude. This is called the theorem of orbital stability [3].

Note that for an autonomous equation – that is, one that does not explicitly
depend on time – there will always be one eigenvalue of magnitude exactly 1. This
is because a phase shift in the solution produces another periodic solution, and one
can make an arbitrarily small shift and produce two solutions that do not approach
one another, but rather maintain a discreet (and discrete) distance. This is not
an instability in the sense that solutions will wander away from one another; an
appropriate phase shift will bring the two solutions arbitrarily close together.

To compute the eigenvalues of eBT , we choose a basis such that Φ(0) is the identity
matrix. Then Ψ(0), and thus Ψ(T ), are also equal to the identity matrix. Therefore,
Φ(T ) = eBT . We choose an initial value of Ṡ0 and evolve it to ṠT via the linearized
equations. Since ṠT is equal to Φ(T ) applied to Ṡ0, one can use an iterative algorithm
to update Ṡ0 at each iteration so that it converges to a basis of an invariant eigenspace
of Φ(T ). Thus, we can calculate the stability of a solution S without ever needing to
find the matrix representing DF (S): we only need to solve the linearized problem for
an iterated sequence of initial conditions.
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Chapter 3

Numerical Methods

3.1 Code Overview

Figure (3.1) shows the steps we used to find families of periodic solutions. To
solve the forward equation (1.27), we first transform it into an ODE using the Fast
Fourier Transform. Then we advance this ODE using an implicit-explicit Runge
Kutta (IMEX-RK) scheme of fifth order, inverting the Fourier transform to perform
the multiplications in physical space.

When the value of S is obtained at a final time T, the quantity (ST −S0) is used for
the initial condition of the adjoint equation as described in section (2.3). The adjoint
equation is evolved using the same IMEX-RK scheme. If G and ||∇G|| are small
enough – about 10−16 and 10−10, respectively – we declare the solution minimized,
and compute its stability using ARPACK and the methods developed in section (2.4).
If it is stable, we use it as the initial condition for a search for a periodic solution for
a nearby value of Wi.

In this chapter, we develop and discuss the methods outlined above in more detail.

3.2 The First Periodic Solution

Many quasi-periodic solutions can be found by starting with S0 equal to the
identity matrix and letting it evolve for a long time. A typical such solution develops
quasi-periodic behavior after one thousand to several thousand units of time. Figure
(3.2) shows a plot of the first velocity component versus time of a solution that was
found in this manner, with Wi=12. This was the first function that our algorithm
refined into a periodic solution; its initial value ofG was about 10−3, and our algorithm
brought it down to 10−16. This solution was then used to start the process in Figure
(3.1).
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Figure 3.1: A process for finding families of periodic solutions using the BFGS algo-
rithm, starting with the yellow box in the upper right corner.

3.3 Pseudospectral Methods

Our Fourier representation of S and its related functions will transform our system
of PDE’s into a system of ODE’s by turning the spatial derivatives into various
operators in Fourier space. Methods in which the data are computed in Fourier
space are called spectral methods; our method is called pseudospectral because the
derivatives are computed in Fourier space, but the multiplications are performed in
physical space [16]. Let us examine what is the effect of such a calculation on accuracy
and performance time. A representative term in our equations is

u1(x, y)∂xS11(x, y). (3.1)

Both MATLAB and our C++ code use the fftw package to compute the Fourier
transforms. This transform is accomplished in O(n log(n)) time. Suppose our two-
dimensional domain is discretized with n equally spaced points on a side in physical
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Figure 3.2: Evolution from the identity to develop quasi-periodic behavior for Wi =
12.

space, so that the quantities u1 and S11 are each represented by n2 values. A finite
difference approximation of ∂xS11(x, y) requires O(n2) calculations - say 2n2 for a
central difference approximation - and multiplication by u1 requires n2 more calcu-
lations. If we use a central difference approximation, this calculation has an error of
O(h2). On the other hand, if we compute the above term via

(F−1û1)(F−1(iξŜ11)) (3.2)

we still need n2 multiplications for the physical multiplication, n2 for the multipli-
cation (iξŜ11), and O(n log(n)) for each of the Fourier transforms. So more floating
point operations are involved, but for the same O(n2) calculation we get an error of
O(e−Cn). This is called spectral accuracy. Note that it is made possible by the space
periodicity (not the time periodicity) of our solutions, as well as by their smoothness,
and facilitated by the simplicity of the domain on which our solutions are defined.

3.4 A Fourth or Fifth Order Implicit Explicit Runge
Kutta Scheme

We face a dilemma in our choice of a scheme to advance S in time. On one
hand, the Laplacian term has a maximum eigenvalue of 2 × (N2 )

2 where N is the
number of spatial grid points on one side, since the eigenvalues are sums of squares
of Fourier frequencies. This means that the Laplacian term is stiff, and explicit
numerical schemes work badly on stiff problems. On the other hand, the nonlinear
terms in the PDE for S make an implicit scheme hard or impossible to implement.
So we use an implicit-explicit or IMEX Runge Kutta scheme [13], which works by
splitting the PDE into a linear and a nonlinear part, and treating them differently.
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Let us write
∂S

∂t
= f(S) + g(S) (3.3)

where

f(S, u) = −u ·∇S + (∇uS + S∇uT )− 1

Wi
(S − I) (3.4)

and
g(S) = ν � S. (3.5)

The implicit part of the scheme handles the stiff linear part of the PDE; the explicit
part handles the non-linear part. (Note that 1

Wi(S − I) has been included in the
nonlinear part of the operator; it is not stiff so we might as well keep it there.) The
result is a scheme that is faster and easier to implement than a purely implicit method,
and more robust than a purely explicit one. As in Chapter 2, the equations for u and
p are treated as constraints at each time step.

The scheme is as follows:

l1 = g(Sn + hl1A11)

k1 = f(Sn + hl1A11)

(3.6)

and for i from 2 to s

li = g(Sn + h
i−1�

j=1

Aijlj + h
i−1�

j=1

Âijkj + hAiili)

ki = f(Sn + h
i−1�

j=1

Aijlj + h
i−1�

j=1

Âijkj + hAiili)

Sn+1 = Sn + h�b ·�l + h�̂b · �k
(3.7)

Sn+1 = Sn + h�b · (�l + �k). (3.8)

At each stage, we calculate l first, using the linearity of g, and calculate k using this
latest l and all the previous stages. When all s l�s and k�s have been computed, a
weighted average of them is used to update S. We use Kennedy and Carpenter’s
4th order scheme ARK4(3)6L[2]SA, which has s = 6 stages (see [13]), and a variant
of their 5th order scheme ARK5(4)8L[2]SA, which was modified to obtain a dense
output of order 4 (see [5], [26]).

Figure (3.4) shows a plot of the logarithm of the absolute error at (x = 2π, y = 2π),
versus the logarithm of the step size in time, for the second component of S with
Wi = 14, final time t = 0.1, and initial condition S0 =

�
1+0.1 sinx sin y 0

0 1+0.1 sinx sin y

�
.
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Figure 3.3: Fifth order convergence of the IMEX scheme with final time 0.1.
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Figure 3.4: Slightly unruly convergence of the IMEX scheme due to instability for S
with high frequency modes.
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It is necessary to use a simple function like 1 + 0.1 sin x sin y to illustrate the
scheme’s convergence. Figure (3.4) shows why. The final time is still 0.1, but instead
of the simple function, we use the periodic solution we found with Wi = 14. The high
frequency modes in this solution make the convergence unruly. It bounces around for
higher step sizes, and then suddenly appears to converge at a rate more rapid than
fifth order. This is probably because there is significant amplification of error even
for step size 0.05, and by the time this instability has been pacified, the truncation
error has already almost disappeared compared to the roundoff error.

3.5 Computing the Adjoint Solution in Backwards
Time

Advancing a solution via the adjoint equation is more challenging than via the
original forward equation because the terms in the adjoint equation at time s involve
the solution to the forward equation at time t = T − s. This complicates the code
for two reasons. One is that the forward and adjoint computations cannot be done
simultaneously, since forward values near t = T are needed to compute adjoint values
near s = 0. The forward data must be either stored, which takes memory space, or
recomputed, which takes time. We handle this situation by defining the time grid for
the forward equation as a coarse grid of N major time steps with d minor time steps
between each major one. We store the forward data at the N+1 major grid values
between 0 and T, and recompute the values on the minor grid at each step as they
are needed to advance the adjoint solution. This procedure is illustrated in Figure
(3.5).

The other problem is that, to advance the adjoint equation from time s to time
s + dt with a Runge-Kutta scheme, we need, not just the data from the forward
equation at times T − s and T − s− dt, but at several other times between those two
values, for which we have not computed the values. In the fourth order method, we
obtain approximations for these using a Hermite interpolation of third-order accuracy
which is sufficient for fourth order accuracy in the IMEX-RK scheme, given by

f(t+ θdt) ≈ (1− θ)f(t) + θf(t+ dt)

− θ(1− θ)
�
(1− 2θ)(f(t+ dt)− f(t))− (1− θ)dt∂tf(t) + θdt∂tf(t+ dt)

�

(3.9)
where 0 < θ < 1. In the fifth order method, we use the fourth order dense

output formula presented by Wilkening in [26] to interpolate the solution at those
intermediate times.



25

Forward time grid:

t = 0 t = T
−∆t

Backwards time grid for the adjoint computation:

s = 0
∆t

Figure 3.5: We compute ST with N major grid steps and d minor ones, and store
only the values at the major grid points. To compute the adjoint values in backwards
time, we recompute the values of the forward equation between the major grid points.

3.6 BFGS minimizer

Now we will discuss the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
algorithm, whose theory and implementation are described in Nocedal [15].

Consider a function G(x) that we want to minimize. (In our case x = [amn, T ]).
As with all optimization methods, we make a starting guess x0 and refine it via

xk+1 = xk + p (3.10)

until G(xk) is small enough to suit us. All of the content of the method resides in
how p is chosen at each step.

The BFGS algorithm is the most popular quasi-Newton line search algorithm. It
is a line search algorithm because it computes the direction of p first and afterwards
how far to walk along it. The simplest and most natural line search algorithm is to
model G(x) by a first order Taylor expansion

G(xk + p) ≈ mk(p) := G(xk) +∇G(xk)
Tp (3.11)

which yields the search direction

p = −∇G(xk) (3.12)
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at every step. A more accurate and more expensive refinement is to use the model

mk(p) := G(xk) +∇G(xk)
Tp+

1

2
pTD2Gkp, (3.13)

yielding the search direction

p = −(∇2G(xk))
−1∇G(xk) (3.14)

at each step. But if we choose the model

mk(p) := G(xk + p) ≈ G(xk) +∇G(xk)
Tp+

1

2
pTBkp, (3.15)

in which the Hessian matrix D2G is replaced by some approximation B that is faster
and easier to compute, we can devise a model that is more accurate than the first-order
model, and less unwieldy than a second-order one involving the expensive computa-
tion of the Hessian. Thus, it is called a quasi-Newton method.

We have to find a suitable Bk at each step, and also a suitable step size αk so that

xk+1 = xk + αkpk. (3.16)

In this discussion we use the terms B and Bk interchangeably. First, we require B to
be a symmetric, positive definite matrix, to mimic the behavior of the Hessian matrix
of a smooth function at a local minimum, and because it simplifies calculations and
guarantees the existence of a solution. Using the notation Gk = G(xk), the direction
of steepest descent of the model m is

pk = −B−1
k ∇Gk. (3.17)

B’s positive-definiteness guarantees both that its inverse exists and that this choice of
p is a descent direction for the real function G (as is seen by taking the inner product
with ∇G on both sides of the equation).

Instead of computing a completely new Bk at each step, we would like to update
it iteratively by combining former values of B with the information gained at the
latest step. A natural requirement is that Bk+1 be chosen so that the gradient of the
model m matches that of G at steps k and k + 1. This will be the case if

Bk+1αkpk = ∇Gk+1 −∇Gk. (3.18)

This condition also requires the curvature of mk+1 to equal the average curvature of
G over the line between xk and xk+1.

Since B is a symmetric, positive definite matrix, (3.18) will not have a solution
unless

(αkpk)
T (∇Gk+1 −∇Gk) > 0. (3.19)
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This condition is satisfied, as can be seen with a little algebra, if we require α to
satisfy the Wolfe conditions

G(xk + αkpk) ≤ G(xk) + c1αk∇GT
k p (3.20)

∇G(xk + αkpk)
Tpk ≥ c2∇GT

k pk (3.21)

where 0 < c1 < c2 < 1. Equations (3.20) and (3.21) are called, respectively, the
condition of sufficient decrease and the curvature condition. They ensure that G is
reduced enough at each step, and also that it is not decreasing too much at the new
point, which would indicate that we could do better to move even farther in that
direction. Notice that, if G is convex, c1 needs to be less than 1, or else (3.20) cannot
be satisfied.

The n×n symmetric matrixB has n(n+1)
2 degrees of freedom, but only n constraints

are imposed upon it by condition (3.18). The BFGS algorithm determines Bk+1 by
defining its inverse Hk+1, and requiring that Hk+1 satisfies

Hk+1 = min||H −Hk|| (3.22)

over all symmetric positive definite matrices H satisfying the underdetermined system
(3.18). Here || · || is the weighted Frobenius norm (see Nocedal, [15]). The unique
Hk+1 that meets these requirements is given by the relation

Hk+1 = (I − ρkyks
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k (3.23)

where sk = αkpk, yk = ∇Gk+1 −∇Gk, and ρk = sTk yk. By rewriting this as

Hk+1 = Hk − ρkHkyks
T
k − ρksky

T
k Hk + ρ2ksky

T
k Hkyks

T
k (3.24)

one can see readily that it is a rank 2 update: the second term sends any input vector
to a multiple of H − kyk; the last two send it to a multiple of sk.

The matrices Hk are generally dense, and therefore expensive to compute and
store. We can improve the algorithm by exploiting the fact that it is built up by outer
products of vectors. One can think of the BFGS update (3.23) as the construction
of a matrix Hk+1 from all previous values of sj and yj: in the limited memory BFGS
(L-BFGS) algorithm, we construct it from some of the previous sj and yj’s

sk−1, yk−1, ...sk−m, yk−m (3.25)

for some value m; earlier pairs are discarded as new ones are added. So instead of
storing the entire dense matrix Hk, we choose an initial H0

k - often as a multiple of
the identity matrix - and update it by inner products of the last m steps and gradient
differences. This update costs O(n) calculations, where n is the size of the problem.
In our program, we used m = 200 pairs of vectors.
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Figure 3.6: The convergence is superlinear when only T is allowed to vary.

Figure (3.6) shows a typical convergence of the L-BFGS algorithm when only the
period T is allowed to vary. The convergence is superlinear but usually the final value
will only be around 10−6 or 10−10. So our procedure is to vary T until this value is
achieved and use the period obtained, along with S0, as the starting guess for the
minimization using the full gradient of G as developed in section (2.3).

Figure (3.7) shows the decrease of the logarithm of G over 45 iterations of the
L-BFGS algorithm when S0 and T are both allowed to vary. The shape of the graph
is very typical of all our use of the algorithm: the first approximation of the Hessian
is a poor one, so the first update of G is several orders of magnitude larger than the
starting value. The rest of the decrease is characterized by long plateaus of practically
no decrease, interspersed with rapid plunges of one or several orders of magnitude,
especially at the very end. What is happening is that the quasi-quadratic model
becomes more and more accurate as the updates to Hk accumulate; eventually the
approximate Hessian is so accurate that it finds a very good search direction, resulting
in a plunge; then it is in a new region of [S0, T ] space for which a new Hessian
approximation is needed, so it plateaus for awhile as the new Hessian accumulates,
and so on. Sometimes as many as 300 iterations are needed.

3.7 Fourier Representations

There is a naturalness in using wave amplitudes as the variables to represent the
motion of a fluid, as this is, in some sense, the natural language of the fluid. More
importantly, it is practical, because many calculations are simpler and more accurate
when performed in Fourier space, like finding the components of the adjoint function
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Figure 3.7: The convergence is slower when the full gradient for G is used, with many
plateaus during which the algorithm accumulates its approximation of the Hessian
matrix.

in section (2.3). We also take advantage of the Fourier representation when doing
integrals: if a function f(x, y) has the Fourier representation

f(x, y) =
�

(m,n)∈Λ

f̂mne
imxeiny, (3.26)

then

� 2π

0

� 2π

0

f(x, y) = 4π2
�

(m,n)∈Λ

f̂mn (3.27)

We can thus perform all the integrations in calculating G and ∇G with spectral
accuracy, as opposed to the polynomial accuracy of integration by finite volume ap-
proximation, and less computation time than Gaussian quadrature and other approx-
imation methods in physical space, by simply adding up their Fourier coefficients.
Again, this is a feature of any orthogonal basis representation whose basis functions
are easy to integrate.

It is slightly awkward to store the variables amn from equation (2.7). To illustrate
why, consider the discrete Fourier transform of a 1-dimensional array with n entries,
where n is even. Such a transform represents the physical data as

n
2�

k=0

ake
ikx +

−1�

k=−n
2+1

ake
ikx, (3.28)
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and stores it as

[a0, a1, ...an/2, a−n
2+1, a−n

2+2, ...a−1]. (3.29)

This array is easy to store and manipulate; in particular, we can take advantage of
the fact that, in a real-valued function, we have

an = ā−n (3.30)

by storing only the left half of the vector. (n2 is called the Nyquist frequency, and
unlike the other nonconstant modes it has no conjugate partner, making it a nuisance
to work with, since it is not clear whether to define it as belonging to e

inx
2 or e

−inx
2 . In

our code, as is standard in this situation, we simply zero it out.) For a two-dimensional
Fourier representation, we similarly have the Fourier coefficients

amn = ā(−m,−n), (3.31)

but there is no longer an obvious way to order them. One sensible approach, which we
adopt, is to store the modes that lie in the right half-plane minus {(0,−N)}, spiraling
out clockwise from (0, 0): see Figure (3.8). In addition to being simple to remember
and understand, this ordering has the advantage of making it easy to change the mesh
size because new modes get added onto the end instead of being interspersed with
old ones, as they would be if we counted them row by row or column by column.

(0,0)
(0,1)(1,1)

(1,0)
(1,-1)

(0,2)(1,2)(2,2)
(2,1)
(2,0)
(2,-1)
(2,-2)(1,-2)

(0,3)(1,3)

Figure 3.8: A spiral ordering of two-dimensional Fourier modes.

A drawback of spectral and pseudospectral methods is that errors develop in the
higher part of the spectrum, since high frequency oscillations have large derivatives
that can amplify roundoff error. This is a problem because many of a function’s
delicate features, for instance its singularities, are characterized by the higher part
of its Fourier spectrum. A common method of suppressing this error is called the 2

3
method: one simply removes the highest one third of the frequency spectrum after
each time step. This is simple to implement, but errors are spread out over the
solution in space instead of concentrating near singularities, and the abrupt cutoff
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in the spectrum can also cause the Gibbs phenomenon [10]. A better method is the
so-called 36 rule, in which we multiply the kth mode by

ρ(k/N) = e−36( |k|N )36 (3.32)

where N is the highest mode number (one half the grid size). The value of ρ is very
close to 1 until |k|

N is about 78 percent, whereupon it plunges rapidly but smoothly
towards zero. Thus we preserve a few more modes than in the 2

3 method, and the
smoothness of the cutoff discourages bad behavior near the boundaries.

3.8 Software

Most of the code was written in the C++ computer language and run on the
computer called apps, a 12-core intel Xeon 5680 westmere rackmount server with 24
GB of RAM and a clock speed of 3.33 GHz, running ubuntu linux version 11.10 and
using the intel composer XE compiler version 12.1 and the math kernel library; this
computer is located in Earl Warren Hall on the corner of Hearst Avenue and Oxford
Street in Berkeley, California. Some backup code and much of the data processing
was written in MATLAB. The eigenvalues and eigenvectors of the linearized equations
were computed using ARPACK, a collection of Fortran77 subroutines for solving large
scale eigenvalue problems using the Implicitly Restarted Arnoldi Method (IRAM)
[4]. The Fourier transforms were computed using the fftw package. We parallelized
the Fourier transform by computing different rows of the same array on different
processors, and transforming multiple functions simultaneously when possible.
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Chapter 4

Results

4.1 Overview of Results

We have found two families of periodic solutions and two families of stationary
solutions, with Weissenberg values ranging between Wi = 5.0 and Wi = 18.0. The
first family of periodic solutions connects to one of the stationary families at the
value Wi ≈ 7.5. All of the stationary solutions are determined to be unstable using
the method described in section (2.4), so there are potentially many other families of
periodic solutions emerging from them.
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Figure 4.1: A global plot of some periodic and stationary solutions. The red and
magenta dots represent periodic solutions, and the green and blue dots represent
stationary states.

Figure (4.1) shows a global map of the stationary and periodic solutions we dis-
covered. The horizontal axis shows the value of Wi, and the vertical axis shows the
value of the real part of the (1,0) mode of S11 at the moment when the trajectory of
the (1,1) mode crosses its axis of symmetry. (It does this twice over one period; we
made an arbitrary conventional choice of which one to pick.)
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Figure (4.2) shows the trajectories of one of the Fourier modes of the first stress
component S11 of the periodic solutions in the red family as Wi increases from 7 to
16.
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Figure 4.2: The amplitude of eiy in S11 for Wi from 16.0 down to 7.0.

The shapes are similar and the amplitude shrinks asWi decreases. This illustrates
the manner in which this family of periodic solutions connects with the family of
stationary ones: the oscillation shrinks in amplitude as we approach the bifurcation
until, at the bifurcation, the oscillation disappears.

4.2 Two Families of Stationary Solutions

The two families of stationary solutions in Figure (4.1) appear to connect to one
another, but there is great sensitivity near the bifurcation: if the value of Wi changes
by as little as 0.05, one obtains stationary solutions that do not appear to belong to
either family.

The two families have different characters. The solutions in the family represented
by the horizontal line of green dots in Figure (4.1) appear to be symmetrical; the ones
in the family represented by the blue dots have stronger vorticity in the upper right
quadrant.

For Wi=5.5 near the putative bifurcation, the flows are similar, although the
asymmetry is starting to be apparent in the second one; see Figure (4.3).

Far from the bifurcation, at Wi = 10, the asymmetry in the solution from the
second family is more apparent; see Figure (4.4).

The asymmetry of the second family leads to very different mixing properties than
for the symmetrical flows. Note that, in this context, to be a stationary state does
not mean that there is no flow: it means that the values of the stress tensor and
the velocity field of the flow remain constant in time. Figures (4.5) and (4.6) show a
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Figure 4.3: Streamline plots of two stationary states with Wi = 5.5 on [0, 2π]2.

particle tracker simulation for, respectively, the symmetric and asymmetric velocity
fields pictured in Figure (4.4). At time t = 0, the particles are evenly spaced as in the
left-hand figure. As time passes, one sees how this initial configuration is mixed by the
flow. This was achieved by requiring each particle’s position (x, y) to evolve according
to (x(t), y(t)) = u(x(t), y(t)), where u is the velocity field. The particle positions are
updated using the same IMEX-RK method as was used to update S and u, with the
velocity between grid points obtained by a fourth-order spatial interpolation. The
symmetric flow shows no mixing between quadrants, even after 300 units of time.
The asymmetric flow preserves most of the matter in the area of strong vorticity,
with smaller areas from the off-diagonal quadrants remaining intact but sheared and
distorted by the flow.
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Figure 4.4: Streamline plots of two stationary states with Wi = 10 on [0, 2π]2..

Figure 4.5: Particle mixture for a symmetrical stationary flow on [0, 2π]2 with Wi =
10, at times t=0 and t=300.
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Figure 4.6: Particle mixture for an asymmetrical stationary flow on [0, 2π]2 with Wi
= 10 at times 0, 6, 12, 25, 50, and 100.
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The asymmetrical stationary states all have a hidden symmetry: one can check
numerically that S(x, y, t) = S(π − x, π − y, t) for all of the ones that we found.

Since the original problem is symmetrical, it is likely that there exist other families
of asymmetrical solutions with strong vorticity in the other three quadrants. Note
that asymmetry is a known phenomenon in viscoelastic flows, thought to be caused
by the polymers in the fluid aligning with the flow.

4.3 Periodic Solutions with Higher Weissenberg
values

The first family of periodic solutions are those in which the value of Wi ranges
between 7.5 and 18.0. It is represented by the red points in Figure (4.1).

In Figure (4.7), the periods of some of this family of solutions are plotted versus
their Weissenberg numbers. The periods of the solutions get higher as the value of
Wi increases, ranging from 42 units of time for Wi = 7 to 106 units of time for Wi =
17 (see Figure 4.7). As Wi increases, the period increases in a smooth and monotonic
manner.
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Figure 4.7: A plot of the period T versus the Weissenberg number in a family of
periodic solutions with high Weissenberg values.



38

10 5 0 5 10
12

11.5

11

10.5

10

9.5
1,0,3

3 2 1 0 1
5

0

5
1,3,2

1 0.5 0 0.5 1
0.8

0.6

0.4

0.2

0
1,4,3

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2
1,7,3

0.05 0 0.05
0.04

0.02

0

0.02

0.04
1,11,3

0.1 0.05 0 0.05 0.1
0.1

0.05

0

0.05

0.1
1,10,3

0.04 0.02 0 0.02 0.04
0.04

0.02

0

0.02

0.04
1,12,3

0.02 0.01 0 0.01 0.02
0.02

0.01

0

0.01

0.02
1,14,3

0 0.5 1 1.5 2
1

0.5

0

0.5

1
1,5,2

0.2 0.1 0 0.1 0.2
0.2

0.1

0

0.1

0.2
1,12,2

3 2 1 0 1
4

2

0

2

4
6,2,3

0.4 0.2 0 0.2 0.4
0.4

0.2

0

0.2

0.4
2,12,2

2 1 0 1 2
1

0.5

0

0.5

1

1.5
8,3,3

0.4 0.2 0 0.2 0.4
0.2

0.1

0

0.1

0.2
8,4,1

2 1 0 1 2
1

0.5

0

0.5

1

1.5
4,9,1

2 1 0 1 2
1

0.5

0

0.5

1
4,5,2

Figure 4.8: Trajectories in the complex plane of some of the Fourier modes of S for
Wi=14. The label (m,n,k) indicates the (m,n)th mode of the kth component of S.

Shown in Figure (4.8) are some of the trajectories of the lower Fourier coefficients
of a stationary solution with Wi = 14. The trajectory of the coefficient of the (m,n)th

Fourier mode is symmetric about the real axis if (m+n) is even, and symmetric about
the imaginary axis if (m + n) is odd. In fact, for the solutions with Wi equal to 14
or higher, it is the case that if amn(t) is the coefficient of eimx+iny, then

amn(t+
T

2
) = (−1)m+nāmn(t) (4.1)

This actually reveals a simple spatial symmetry: plugging the above into our
Fourier representation for S, we see that

S(x, y, t+
T

2
) =

�

m,n∈Λ

[amn(t)(−1)m+nei(mx+ny) + amn(t)(−1)m+ne−i(mx+ny)] (4.2)

=
�

m,n∈Λ

[amn(t)e
−iπ(m+n)ei(mx+ny) + amn(t)e

iπ(m+n)e−i(mx+ny)]

=
�

m,n∈Λ

[amn(t)e
−i(m(π−x)+n(π−y)) + amn(t)e

iπ(m+n)ei(m(π−x)+n(π−y))]

= S(π − x, π − y, t)
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It is easy to show that, if [S(x, y, t), u(x, y, t), p(x, y, t)] solves the Stokes Oldroyd-B
system with our choice of f , then [S(π−x, π−y, t),−u(π−x, π−y, t), p(π−x, π−y, t)]
solves the same system with f replaced by -f . However, this does not predict that this
transformation will be achieved every half-period, as is the case with these solutions!

Between Weissenberg values of 13 and 14, this symmetry breaks down. The tra-
jectories of the Fourier coefficients in the complex plane still have bilateral symmetry,
but the moment at which the coefficient achieves its own mirror image no longer
happens after one half period, but varies in time from mode to mode.

A helpful way to picture the periodic motion of these solutions is to look at the
vector field of the velocity’s deviation from an average value over time. In Figure
(4.9), we plot the average velocity of the periodic solution with Weissenberg value
14.0, computed over one period. It is not surprising that it exhibits the asymmetry
characteristic of the second family of stationary solutions, since it is from that family
that this family of periodic solutions emerges.

Figure 4.9: Average velocity over one time period for Wi = 14.0 on [0, 2π]2.

In Figures (4.10) and (4.11), the deviation from the average flow value is shown at
four equal time intervals over one period for the solution with Wi = 14; the progress
is along the rows. The maximum deviation is about 10 percent of the average value.
Small vortices appear and disappear. It appears that the flow at a point in time is
close to the opposite flow half a period later; however, a visual inspection reveals that
this symmetry is not exact. It is possible that it would become exact for a driving
force of smaller amplitude.
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Figure 4.10: A vector field plot of the deviation from average velocity of a solution
with Wi = 14.0 on [0, 2π]2 at equal time intervals over one period. The progress is
read along the rows.
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Figure 4.11: Deviation from average velocity for Wi = 14.0 on [0, 2π]2 at equal time
intervals over one period, pictured as streamlines.
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4.4 Periodic Solutions with Lower Weissenberg val-
ues

The second family of periodic solutions is represented by the magenta points in
Figure (4.1). Note that one magenta point overlaps with the asymmetrical family
of stationary solutions. It seems likely that the periodic solutions in this family
connect with this stationary solution as the value of Wi decreases from 6.3 to 6.0.
However, the solutions in this regime are so sensitive that finding periodic behavior is
difficult. If one decreases the value of Wi from 6.3 by as little as 0.025, then the new
solution experiences very light damping as it evolves, decreasing in amplitude over
tens of thousands of time units without achieving quasiperiodic behavior or becoming
stationary.
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Figure 4.12: A plot of the period T versus the Weissenberg number in a family of
periodic solutions with low Weissenberg value.

The solutions in the second family have periods of more than 800 units of time,
and their variation versus the Weissenberg number is more complex than those of the
first periodic family. See Figure (4.12).

In these solutions, we see a special case of the symmetry exhibited by the higher
family of solutions, in which the Fourier coefficient amn is purely real if the sum
(m+ n) is even, and purely imaginary if it is odd. Thus we cannot make plots in the
complex plane as in Figure (4.8).

Figure (4.13) shows a plot of the variation, over one period, of the constant modes
of the first and third stress components versus one another. It appears that the value
of one is the value of the other shifted by half a period, which seems to suggest a
symmetry between S11 and S22. However, this relation does not hold for other Fourier
modes of these two stress components.
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Figure 4.13: Symmetry in the constant mode of the first versus the third stress
components for some low Weissenberg values.
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Figure (4.14) shows the average velocity, computed over one period, of the solution
with Wi = 6.3.

Figure 4.14: Average velocity over one time period for Wi = 6.3 on [0, 2π]2, pictured
as streamlines.

Figures (4.15) and (4.16) show the deviation from the average velocity of the
solution with Wi = 6.3, once again read along the rows over equal times intervals
of one quarter period. The motion is noticeably different than in the first family
of solutions. As mentioned above, it happens over a longer time period, and rather
than having several small vortices that appear to travel around over time, there are
only two at fixed points. The general sense is more of a back and forth motion, as
compared with the roiling motion suggested in Figure (4.10).
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Figure 4.15: A vector field plot of the deviation from average velocity for Wi = 6.3
on [0, 2π]2 at equal time intervals over one period. The progress is read along the
rows.
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Figure 4.16: Deviation from average velocity for Wi = 6.3 on [0, 2π]2 at equal time
intervals over one period, pictured as streamlines.
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4.5 Solution Stability

Figures (4.17) and (4.18) show respectively some eigenvalues in the complex plane
of some of the stable and periodic solutions we computed using the methods discussed
in section (2.4). For each solution, the 11 eigenvalues of highest magnitude are plotted.
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Figure 4.17: Largest eigenvalues of some stationary solutions. The unit circle is shown
for reference.

Figure (4.18) indicates that the periodic solutions with Weissenberg values of 9
or lower have an eigenvalue outside the unit circle and are therefore unstable; those
with Weissenberg values of 10 or higher have no eigenvalues outside the unit circle
and are therefore stable. As discussed in section (2.4), all the periodic solutions have
one eigenvalue equal to 1.
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Figure 4.18: Largest eigenvalues of some periodic solutions. The unit circle is shown
for reference. Those solutions with an eigenvalue outside the unit circle are unstable.
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We can check that the magnitude of these eigenvalues reflects the stability of their
associated solutions by evolving the solutions for a long time to see what happens to
them. Figure (4.19) shows a plot of one mode of S for Wi = 14 over 200 periods.
The largest nonunit eigenvalue of this solution has a magnitude of 0.5, and after 200
periods, the value of G is still 5× 10−16.
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Figure 4.19: The evolution of a stable periodic state with Wi = 14.0 over 200 periods.

On the other hand, Figure (4.20) shows the instability that eventually develops
in the stationary solution with Wi = 16.2, whose largest eigenvalue has magnitude
1.05. Figure (4.21) shows the emergent quasiperiodic behavior in more detail.
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Figure 4.20: The evolution of an unstable stationary state with Wi = 16.2 over 200
periods.

Meanwhile, the periodic solution with Wi = 8.6 has two eigenvalues with mag-
nitude 1.19. After about 90 periods, it develops a wobble, and then a striking new
quasi-periodic motion develops, as pictured in Figure (4.22). This new behavior ap-
pears to have a period of about 420 units of time; the BFGS minimizer is able to
decrease the value of G to about 6 × 10−5 after 300 iterations; it is possible that it
represents a new kind of periodic behavior.
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Figure 4.21: Quasi-periodic behavior evolving from the stationary state with Wi =
16.2.
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Figure 4.22: Development of new quasi-periodic behavior from an unstable periodic
state with Wi = 8.6.
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4.6 Computation Times

Because the periods of the solutions we found were all so long, the computations
in finding these solutions were lengthy. A typical step size in time was approximately
0.06. For example, for a solution with period 70 time units, characteristic of the
family described in section (4.3), we used 1200 time steps to advance the solution by
one period. On the computer called apps mentioned in section (3.8), this computation
takes about one minute.

Typically, a solution was first approximated by evolving an initial approximation
(such as a periodic solution with a nearby Weissenberg value) for about 20 periods
to allow it to stabilize, taking about 20 minutes.

Next, the value of G for the resulting function was minimized by varying the
period only. Typically the size of ∂G

∂T was brought down to within 10−10 in about four
iterations. No significant additional time is needed to compute ∂G

∂T at each step, nor
the next guess for T , so this step takes about four minutes and brings the value of G
down to between 10−6 and 10−10.

The resulting function is now fed into the L-BFGS minimizer with the full value
of ∇G computed via the adjoint equation as discussed in section (2.3). Depending
on whether the forward S values can be stored at every step, or must be recomputed
at some steps as discussed in section (3.5), the adjoint computation takes between
1.5 and 2 times as long as the forward computation; extra time is needed even when
all the forward values of S are stored because the forward values of u must still be
recomputed, and because the adjoint system has more terms than the forward one.
Since this implementation of L-BFGS takes between 45 and 300 iterations to achieve
a G value of 10−16, a typical such minimization takes on the order of 8 hours to
complete.

In computing the stability of the solution, the forward and linearized equations
are calculated simultaneously. To do this over one period takes about 3 minutes.
ARPACK typically takes about 60 iterations to find 11 eigenvalues of the linearized
system, so this calculation takes about 3 hours. So, all together, to find a periodic
solution in this first family and compute its stability took around 12 hours.

The computation of stationary solutions was much faster. We evolved stationary
solutions to a final time of t = 3.5, so a stationary solution could be approximated
and minimized and have its stability calculated in about 6 hours.

On the other hand, the solutions with low Weissenberg values, described in sec-
tion (4.4), have periods of approximately 10 times the periods of those with high
Weissenberg values, so the computations take 10 times as long. The computations
for the solutions in this family took almost one week apiece.
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4.7 Summary and Conclusion

The periodic solutions we have found to the Stokes Oldroyd-B system exhibit
complex behavior not associated with the low Reynolds regime for Newtonian fluid
flow. These solutions vary qualitatively for high versus low values of the Weissenberg
number. When Wi > 10, small traveling vortices develop over periods in the range of
70 to 100 units of time. When Wi is between 6 and 7, low frequency oscillations arise
with periods of more than 800 units of time. For Newtonian fluids, periodic orbits
are thought to play an important role in the transition to turbulence in Couette
flow (see [8] [12], [25]) and pipe flow (see [21], [20]). We may be observing similar
transitions to elastic turbulence (see [7], [23]) in the low Reynolds number regime. In
addition, many of the flows we discovered have asymmetrical vorticity which leads to
interesting mixing properties.

The bifurcation plot in Figure (4.1) suggests a global structure of solutions whose
details may emerge in future work. It is likely that other families of solutions exist
with strong vorticity in different quadrants, and possible that these solutions emerge
from the family of symmetrical stationary solutions that seems to connect to the
asymmetrical states that we found, perhaps even at the same value of the Weissenberg
number. The quasi-symmetry observed in some solutions, in which the periodic flow’s
deviation from its average value appears to almost reverse itself every half period in
time, may become an exact symmetry for different amplitudes of the 4-roller forcing
field. It is also likely that more complex periodic behavior will emerge if the fluid
model is subjected to a 16-roller forcing field.
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